
Abstract— A methodology for the construction of predictive
empirical models of physiological characteristics from
microarray data is presented.  The method, applied here to the
study of the development of diabetes and insulin resistance, can
be further expanded to other cases and to also include a variety
of other data, such as protein expression, or metabolic flux data.
The importance of several of the genes identified by the
modeling methodology can be verified by comparison with
results from prior literature. This implies potentially
significant roles in diabetes for several of the uncharacterized
genes discovered during the modeling procedure.

Index Terms—Diabetes, microarrays, partial least squares,
systems biology

I. INTRODUCTION

Gene expression measurements by DNA microarrays are often
conducted either with a view to identify similarly expressed
genes, or genes that are differentially regulated between two or
more conditions under examination.  Besides clustering [1] and
classification [2], another important problem that arises when
quantitative transcriptional data are available is the
construction of models that have the ability to predict
physiological variables from the values of gene expression as
measured on microarrays.  The importance of such models lies
in the field of quantitative diagnostics, and toxicology models.
The problem has received to date insufficient attention,
primarily due to lack of a quantifiable phenotype, and the
availability of a sufficient number of samples for reliable model
construction.  In this study, we designed an experiment that
would provide a framework for the construction of these
predictive models, not just in an ideal in vitro  environment, but
in a more complex in vivo situation.

Cohort experiments were conducted to track the development
of diabetes in C57bl6 mice maintained on a high-fat diet for 12
weeks.  Diabetes has the advantage of a quantifiable
phenotype as measured through glucose and insulin levels in
the body, as well as body fat %.   Each week, mice were

sacrificed, and the liver harvested for microarray analysis.
Further, the serum was obtained to measure systemic glucose
and insulin levels.  Prior to sacrificing, DEXA measurements
were conducted to obtain abdominal fat %.  Based on the
transcriptional profiles, empirical regression models were
constructed between gene expression measurements and the
physiological variables, and the predictive power of these
models was evaluated.  The modeling effort also identified a
list of genes, several of which had previously been implicated
in the development of diabetes, and several novel genes that
bear potential for further investigation.

II. METHODS

A. Experimental

RNA isolation: The liver tissues were homogenized (1ml/50mg
tissue) in RNA STAT-60 (Tel-Test, Friendswood, TX) with a
Tissue-TearorTM  (Biospec Products, Bartlesville, OK).
Following homogenization, the homogenate was stored for 5
minutes at room temperature to permit the complete
dissociation of nucleoprotein complexes.  0.2ml of chloroform
per 1 ml of RNA STAT-60 were then added and the mix was
vigorously shaken for 15 seconds and centrifuged at 12,000g
for 15 minutes at 4°C. After centrifugation the aqueous phase
was transferred to a fresh tube and mixed with 0.5ml of
isopropanol per 1ml of RNA STAT-60 used for the initial
homogenization. The samples were stored at room temperature
for 10 minutes and centrifuged at 12,000g for 10 minutes at 4°C.
The supernatant was then removed and the pellet was washed
with 1ml of 75% ethanol, dried and resuspended in Rnase free
water. The RNA was further purified following the Rneasy
Mini kit (Qiagen, Valencia, CA) protocol for RNA cleanup.

Microarrays:
 i. Oligonucleotide library and Printing: The Operon Qiagen

Mouse Genome Oligo Set (Operon Qiagen, Alameda,
CA) Version 2 was used for the creation of the DNA
microarrays. The set contains 16,463 M. musculus genes
and 24 controls. The set was resuspended in 30µl of
RNase and Dnase-free 3x SSC for a final concentration of
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20µmol.  The set was printed on Corning GAPS II coated
barcoded slides (Corning, Corning, NY). Printing quality
was assessed by SYBR II staining (Molecular Probes,
Eugene, OR).

 ii. Microarray validation: The microarrays were extensively
validated for intra-array and inter-array variability.  A
mean coefficient of variation of 20% was observed
based on repeat experiments.  This implies that ratios
greater than 1.4 and less than 0.6 can be considered
significant at a 95% confidence limit.  In addition,
experiments were conducted to ensure that differential
expression could be detected.  Total RNA from healthy
skeletal muscle and testes tissues were hybridized
against each other, while on a control array skeletal
muscle RNA was hybridized against itself.  Based on our
cut-offs established above, about 35% of the genes were
found to be differentially expressed in the test array, as
opposed to only 6% in the control array.  Of the genes
differentially expressed, several were specific to skeletal
muscle, such as the skeletal muscle myosin, troponins,
and actins.

 iii. Control RNA: Control RNA for all the hybridizations was
derived by pooling RNA from 20 mice from the following
tissues: hypothalamus, liver, skeletal muscle, brown fat,
white fat, kidney, adrenal gland, testis, ovary, heart and
lung.

 iv. Labeling and Hybridization: 10µg of RNA were used for
both the control and the samples. The labeled cDNA
synthesis took place as follows: 2 µL oligo-dT18-20 primer
(Invitrogen, Carlsbad, CA) were added to the sample and
the mix was heated to 70°C for 10 minutes, followed by 2
minute incubation on ice. Subsequently, 2.0 µL of 10X
Cy3 dCTP (PerkinElmer, Boston, MA) for the control and
10X Cy5 dCTP (PerkinElmer) dCTP were added, followed
by 2 µL 10X dNTPs (Invitrogen), 2 µL 100 mM DTT
(Invitrogen), 4 µL 5X First Strand Buffer (Invitrogen), 2
µL Superscript II (Invitrogen ). The final mix was then
incubated at 42°C for 2 hours. After the end of the
reverse transcription, 1.5 µL of 1 N NaOH were added in
each sample and a further incubation took place at 65 °C
for 10 minutes. Then, 1.5 µL of 1 N HCL were added to
each sample to neutralize NaOH. The Cy3 and the Cy5
samples were combined and purified from the
unincorporated dyes, nucleotides and enzymes with the
Qiagen QIAquick nucleotide removal kit. The samples
were then concentrated and resuspended in 20 µL of
warm GlassHybTM hybridization buffer (Clontech,
Franklin Lakes, NJ) and applied on the microarray slides.
A coverslip was placed on top of the slides with care not
to create bubbles under the coverslip. The slides were
subsequently sealed in Corning Hybridization Chambers
(Corning) and left overnight in a covered water bath at
55°C for a total of 12 hours hybridization time. At the
end of hybridization the coverslip was removed in a 1X

SSC, 1% SDS solution and then washed for 5 minutes in
the same solution, followed by a 5 minute wash in 0.2X
SSC and a 5 minute wash in 0.1X SSC. The slides were
then placed in a sterile Falcon tube and dried by
spinning at 500xg for 3 minutes.

 v. Scanning: The dried slides were scanned in the GenePix®

4000B microarray scanner (Axon, Union City, CA) and
analyzed with the GenePix® Pro (Axon) acquisition and
analysis software.

B. Partial least squares regression

Given a matrix X of independent variables, and a matrix Y of
dependent variables, each with s samples, and m, and n
variables respectively, partial least squares (PLS) can be used
to develop a regression model between the two.  PLS is
particularly well suited for constructing regression models for
microarray data, since the number of variables (genes) is much
larger than the number of samples, and due to the large
variation in microarray data.  The approach consists of
projecting the X and Y data matrices into a set of lower
dimensions, or latent variables (LVs), and then constructing a
regression model in this reduced space.  The X matrix or block
is linearly decomposed into a set of input scores, denoted by t,
and the Y matrix is similarly decomposed into a set of output
scores, denoted by u.  These are known as the 'outer relations'
in a PLS model.  The regression between the t and u vectors is
known as the 'inner relation'.  Like the PCA, the decomposition
is orthogonal, leading to successive t (or u) vectors that are
uncorrelated with their predecessors.  Each t (or u) vector is a
linear combination of the input (or output) variables.  In
addition, the t and u vectors are derived such that they contain
information about each other.  This is explained in more detail
below.

The t and u vectors are derived by applying the non-linear
iterative partial least squares (NIPALS) algorithm [3].  The
algorithm sequentially extracts a pair of t and u vectors, and
then regresses them against each other.  Then, it subtracts the
regressed information from both the X and Y matrices, and
proceeds to the extraction of the next pair of t and u vectors.
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Fig. 1. Bootstrap PLS modeling methodology for obtaining consensus
ranking of relevant genes. This procedure was repeated for 5000 trials.



The first t vector is the one that maximizes the information
between it and the Y space.  This is done by obtaining the first
eigenvector w1 of the sample covariance matrix XTYYTX, where
the superscript T implies the transpose of the matrix.  Then, the
first input scores vector, t1 = Xw1, and the loading vector is
obtained as p1 = X t1/ t1

Tt1.  The Y loading vector q1 is then
determined by q1  = Y t1/ t1

Tt1, and the output score vector u1 is
obtained as u1=Yq1/q1

Tq1. The X and Y matrices are then
deflated, and the process is repeated with the residual matrices.
More details may be obtained in Geladi et al. (1986).

As the number of latent variables increases, the quality of
regression improves, but so does the risk of over-fitting.  A
cross-validation procedure is implemented to circumvent this
problem.  One sample is withheld from the given data set, and
the procedure described above is conducted to determine the
latent variable at this stage.  Using this latent variable (and any
preceding ones), the values of the withheld samples are
predicted, and the squared error between the actual and the
predicted value recorded.  This procedure is then repeated
until all the samples have been withheld once, and the
cumulative predictive error sum of squares (PRESS) is
obtained.  This is repeated at each stage, and finally the PRESS
is plotted as a function of the latent variables. Dramatic
increases in PRESS imply that over-fitting has occurred, and
therefore, too many latent variables have been included.
Typically, it is observed that PRESS initially declines as the
number of LVs increase, and then rises.  The number of latent
variables chosen is the one that minimize the PRESS.

For our purposes, the X block data is the gene expression data,
and the Y block data is the physiological variables measured,
which in this case were insulin levels in the mice.  Since
microarray data displays a large amount of variability, a
bootstrap methodology was implemented in order to develop
robust classifiers and aid in the identification of a relevant set
of variables or genes. The procedure consisted of withholding
a certain number of samples for testing, and constructing the
PLS model on the remaining samples.  This involved pre-
selecting genes based on their signal to noise ratio (SNR), and
then choosing a PLS model based on cross validation.  The
model was then used to predict the value of the withheld
samples, and the correlation coefficient between the predicted
and actual values was calculated.  Further, the genes were
ranked by the absolute value of the regression coefficient.
Then, a different set of samples was withheld, and the entire
procedure repeated.  The reason this repetitive procedure was
implemented was due to the fact that a single PLS model is
very dependent on the nature of the samples in the training
data set.  By repeating this entire procedure several thousand
times, a more representative and valuable ranking of genes may
be obtained.  The consensus ranking of genes across these
several thousand trials will be less dependent on any particular
set of samples, and closer to the true biological significance.
This process is illustrated in Figure 1.

III. RESULTS

A. Experimental design and development of diabetes

C57bl6 mice on a high fat diet develop diabetes, and the
experiment was designed to track this development over
various stages.  The experiment design consisted of putting
the C57 strain of mice on a high-fat and low-fat diet, and
maintaining this diet for a period of 12 weeks.  Power analysis
was performed in order to determine the number of samples
that needed to be used to observe reliable  differential gene
expression measurements. Based upon our analysis, 5 mice
were sacrificed at the end of each week from each group, and
the liver was extracted and stored.  In addition, serum from
each animal was extracted in order to make measurements on
circulating insulin, and glucose levels.  Before sacrificing,
DEXA measurements were performed on the mice to determine
the abdominal fat %.  A total of 120 mice were used in this
experiment, and for each mouse, the microarrays were
conducted in duplicate, thus a total of 240 arrays were
conducted.  Physiological measurements revealed dramatic
increases in insulin and abdominal fat % over the weeks for the
C57 mice on a high fat diet, and are shown in Figure 2.  The
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% for the C57 mice on a high fat and low fat diet.



glucose measurements were similar across the weeks, implying
that the mice are controlling the level of glucose at the expense
of insulin.

B. Model construction: Comparison of actual data and
random data

In addition to the actual data, the bootstrap PLS method was
also performed on a set of random data to act as a control on
the model construction process.  The correlation coefficient
between the experimental Y (insulin) values and the predicted
Y (insulin) values for both the transcriptional data and the
random data were compared.  It was found that the mean for
the correlation coefficient for the random data was -0.002, while
that for the transcriptional data was 0.67.  The histogram of
correlation coefficients is presented in Figure 3. The
histograms illustrate that the expression measurements have a
certain degree of predictive power that the random data set
lacks.  This is reassuring, since it increases our confidence in
the data obtained through microarrays, and also the model
construction procedure.

C. Good, average and bad PLS models

A comparison between a bad,  a good and an average model is
illustrative.  Here, good, average, and bad is determined on the
basis of the correlation coefficient between the predicted and
the actual insulin levels.  On comparing the lists of genes that
were obtained for the three kinds of models with the genes that
were obtained from the consensus rankings, it was found that
the bad models had an extremely different set and ranking of
genes, while both the good and the average models had similar
rankings and content.  The difference between the good and
the average models were the samples that had been chosen in
the training data set (Figure 4).  Further, it was observed that
the predicted values for the test set, in both the average and
the good models had an upper limit, or a “glass ceiling”.  This
is to say that the predicted insulin values based on just the
gene expression levels had a maximum upper limit.  This may be
due to a variety of reasons.  One of them may be that the

relationship between gene expression measurements and the
physiological data is non-linear, and therefore the linear
modeling method is unable to provide a full description of the
procedure.

D. Non-linear PLS

A non-linear PLS methodology based on the Implicit Non-
Linear Regression (INLR) technique was implemented [4]. Non-
linear PLS techniques are very flexible, and can tend to model
noise.  The INLR technique allows for the modeling of slight
non-linearities, and is simple to implement. Instead of
employing a non-linear inner relation, INLR squares the initial
X variables to try and model the non-linearity.  The rest of the
PLS construction procedure remains identically similar.

It was found that after implementing a bootstrap non-linear
PLS procedure, the mean correlation coefficient between the
predicted and actual insulin values was 0.63 for actual data,
while it was -0.075 for the random data matrix.  The list of genes
obtained was very similar to the consensus rankings obtained
from the linear PLS.  The decline in correlation coefficient to
0.63 from 0.67 may be an indication that the INLR technique is
beginning to model noise as compared to linear PLS.
Therefore, the non-linear approach was discontinued.

E. Discussion of the genes

The regression analysis provides a list of genes ranked by
their regression coefficient in the bootstrap PLS. A partial list
of the identified genes is provided in Table I Ranking gives an
indication of the importance of the gene.  The first gene in the
PLS model (BC002198) is an unknown gene that has a 31%
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Fig. 3. Histogram of the correlation coefficient between the actual insulin
levels and predicted insulin levels for the test data set in 5000 trials of the
PLS model construction.  Both random data and the actual gene expression
data was used. The mean correlation coefficient for the random data was –
0.002, and that for the actual data was much higher, about 0.67.

TABLE I
RANKED LIST OF GENES FROM PLS ANALYSIS

Gene ID Description

BC002198 RIKEN cDNA 4833425P12 gene
BC003249 Expressed sequence AI646975

NM_013697 Transthyretin
NM_010560 Interleukin 6 signal transducer
NM_010358 Glutathione S-transferase, mu 1
NM_009481 Ubiquitin specific protease 9, X

chromosome
AF349718 Procollagen, type IX, alpha 3
AK014145 RIKEN cDNA 3110038O15 gene
AK017001 RIKEN cDNA 4933431C10 gene
BC011111 RIKEN cDNA 0610038P07 gene
AK010783 RIKEN cDNA 2410127E18 gene

NM_013506 Eukaryotic translation initiation factor
4A2

BC006626 Expressed sequence C77440
AK020023 RIKEN cDNA 5830471E12 gene
AK003405 RIKEN cDNA 1110004B19 gene

NM_011664 Ubiquitin B

AK002477 RIKEN cDNA 0610010I06 gene

NM_009284 Signal transducer and activator of
transcription 6

NM_007412 Adrenomedullin receptor

AK004835 RIKEN cDNA 1210002E11 gene

AK004636 SH3-domain kinase binding protein 1



amino acid homology with ankyrin 3. Ankyrins represent a
protein family whose members are associated with membrane
proteins and the actin cytoskeleton [5]. Liver Ankyrin 3 has
not been associated with diabetes.  The second gene in the
PLS ranking (BC003249) is the Thyroid Hormone Receptor
Interactor 10 a.k.a Trip10 or CDC42 interacting protein or
CIP4/2. This gene was recently identified as a requirement for
insulin-stimulated Glut-4 translocation in 3T3L1 mouse
adipocyte cell lines [6]. Along the same pathway of function is
another gene identified by PLS; SH3-domain kinase binding
protein 1 (AK004636) a.k.a. CAP. Figure 5 shows the pathway
and denotes the importance of those genes in the insulin
mediated glucose reuptake.

Although only 3 genes are reported in this gene discussion,
the full list of genes is currently being explored and many more
pathways are being examined as relevant to the phenomenon
of insulin resistance.

IV. DISCUSSION

This study attempted to develop quantitative, predictive

models of physiology based on gene expression data.  The
results were encouraging, with a mean correlation coefficient of
0.67 between the actual and the predicted insulin
measurements. The fact that only an average correlation
coefficient of 0.67 between the predicted and actual insulin
measurements for the test data set could be obtained, coupled
with the fact of the observed “glass ceiling” effect would seem
to imply that gene expression measurements, at least as
regards predictive model construction, are semi-quantitative.
This may be due to a variety of reasons:
• Quality of DNA microarray data.  Given the large amount

of variation observed in microarray data, it may not be
possible to construct more predictive models.
Improvements in DNA microarray technology can address
this question.

• Observation of a limited set of data.  Not all interactions
occur at the transcriptional level, hence the data may be
incomplete.  Further, to completely characterize the
circulating insulin levels, a systemic model of all the
affected tissues may be needed.

• Biology may not function as a purely quantitative system,
and a certain increase in the transcription of a gene may
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Fig. 4. Average and good PLS models.  (a) and (b) are the training and test data performance for the average PLS model, while (c) and (d) are the training
and test data performance for the good PLS model, respectively.  All the graphs contain the predicted insulin levels on the y-axis in ug/ml, and the
experimental insulin levels on the x-axis in ug/ml.  In both cases, the samples measured in week 9 present difficulties in modeling.  This is because the
gene expression doesn’t justify the larger increase in insulin for these samples.  Also, in the case of predicting the test data, in parts (b) and (d), there is a
upper limit in the predictions.  Note that correlation values reported are for the test data set, not the training data set



not always yield the same response, due to a plethora of
modulating effects.

Based on the histograms for the correlation coefficient, it may
be seen that there is a fair degree of variation in the correlation
coefficient for the test data.  Therefore, construction of just a
single PLS model is unjustified, and always a consensus
building procedure such as the one implemented here must be
employed.

An important aspect of the PLS based modeling methodology
is that it can be expanded to include multiple sources and a
variety of data, such as metabolic flux data, and protein
expression data.  In this way, it can allow for the construction
of a more comprehensive predictive models for physiology.

Based on prior literature, several of the genes found to be
important as a result of this analysis had already been
implicated in the development of diabetes.  This builds
credence around the identified genes, and the model
construction methodology.

The utility of viewing physiology as quantifiable and
constructing predictive models based on just gene expression
data is enormous.  Potentially, the model allows for the
construction of a space where different treatments may be
evaluated on a common platform that does not rely on just a
few variables.  For example, the model of insulin resistance as
developed here may be used to evaluate the efficacy of various
treatments that retard this process in a quantifiable fashion by
querying the model with the transcriptional profile of the
treated samples.  This approach, as opposed to just a simple
measurement of insulin levels may provide more insight into
the treatment chemical, since the evaluation is based on
several gene expression measurements.  Analogously, this may
also lead to the development of diagnostic techniques that not
only predict the occurrence/absence of a disease, but also if

the disease is diagnosed, then to what extent has the disease
progressed.  The complete potential of these high throughput
genomic methods in combination with sophisticated analytic
tools can only be realized by conducting samples in a high-
throughput fashion as well, specially given the large variance
inherent in microarray data.
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