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Abstract—To date, group scheduling research has 

primarily focused on examining the performance of different 
group heuristics under various experimental conditions. 
However, the dynamic selection of group heuristics has not 
received sufficient attention from researchers. The objective 
of this paper is to demonstrate a mechanism for the dynamic 
selection of group heuristics from several candidate 
alternatives by exploiting real time information from the 
Flexible Manufacturing System (FMS). In this regard, two 
tools, viz., Analytic Hierarchy Process (AHP) and Simple 
Multi-Attribute Rating Technique Exploiting Ranks 
(SMARTER), are used to develop models for part type and 
family selection. The experimental results indicate that the 
performance of the proposed models are better than the 
common group scheduling heuristics under varied 
experimental conditions. 
 

Index Terms-Dynamic scheduling, FMS, AHP, SMARTER. 
 

I. INTRODUCTION 

An FMS is designed to combine the benefits of an 
automated transfer line and the flexibility of a job 

shop to produce a variety of parts on a group of machines 
and other workstations connected by an automated material 
handling system. Some of the advantages of FMS include: 
improved capital/equipment utilization, substantially 
reduced throughput times/lead times, reduction in work-in-
progress and setups, reduced inventory and smaller 
batches, and reduced manpower [1, 2]. An FMS is defined 
as “an integrated manufacturing system that consists of 
numerically controlled machines equipped with tool 
magazines and connected by a material handling system, 
where all system components are under computer control” 
[3]. Different issues have to be resolved in such an 
environment for efficient performance, which comprise 
design, production planning and control. Scheduling plays 
a vital role in the production control of an FMS, which 

involves several real-time decisions, such as part type and 
machine selection, resource allocation, machine allocation, 
and tool loading. The primary objective of an effective 
scheduling system is to produce the right parts, at the right 
time, at a competitive cost, by minimizing overhead and 
operating costs, subject to satisfying demand for the 
enterprise’s products. Several methods that have been 
proposed in the literature for scheduling an FMS are 
summarized in Table I. 
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real-time shop floor conditions and other useful 
information that may be required for effective scheduling 
[22]. These rules were designed in the 1950s and do not 
harness the collective information of other resources. With 
the recent development of computer technology, such 
collective information can be easily exploited. In the 
literature, these simple rules are either modified or grouped 
with other methods/heuristics to achieve better 
performance [6, 12]. The research reported in the literature 
has focused on examining the effects of these rules on the 
performance of an FMS under various conditions, such as 
static or dynamic, no routing flexibility or total routing 
flexibility [1, 4-6]. However, the dynamic selection of 
group heuristics for scheduling of an FMS has not received 
adequate attention from researchers. Group scheduling 
when properly implemented will reduce set-up costs, 
permit optimal determination of group and part sequence, 
permit flow line production, optimised group layout, and 
provide overall economic advantages [24]. 

In this paper, the scheduling problem is hierarchically 
decomposed into three distinct levels, comprising of 
performance measures, performance metrics and candidate 
heuristics. Besides offering the advantage of genericness, 
this hierarchical structure also provides a mechanism for 
directly relating the candidate heuristics to the performance 
measures through the performance metrics. The dynamic 
information available in the FMS is reflected in the 
performance metrics. In other words, the most appropriate 
scheduling heuristic is selected based on the current 
environment of the FMS. Two tools are explored in this 
paper for this purpose, namely the AHP and SMARTER. 

In the AHP, simple pairwise comparisons are made at 
each level throughout the hierarchy to arrive at overall 
priorities for the alternatives in accordance with the 
decision maker’s preference. The alternative with the 
highest priority will be selected for scheduling. The 
SMARTER method employs a systematic procedure in 
evaluating the attributes from a number of dimensions in a 
full range. The framework adopted in the developed 
models is of generic nature, and additional criteria (apart 
from the demonstrated attributes in this paper) could easily 
be appended. The rest of the paper is organized as follows. 
The concept of group scheduling is discussed in the next 
section. In Section III, the AHP based methodology and 
the models developed for part and family selection are 
discussed. In Section IV, the SMARTER based 
methodology is presented with the details of the two 
SMARTER models. In Section V, the results are discussed 
and the paper is concluded with a summary of the key 
findings in Section VI.  
 

II. GROUP SCHEDULING 
In group scheduling, the scope of the problem is reduced 

from a large shop floor to that of a small group of 

machines. Once the machine groups are identified, each 
part is then assigned to a particular group for processing 
and within each group of machines, one only needs to 
schedule the reduced number of parts that are assigned to 
that group [24, 25].  

Group scheduling heuristics can be classified into two 
categories: exhaustive and non-exhaustive heuristics. 
Exhaustive heuristics do not schedule other families until 
all the parts within the current family are exhausted, while 
non-exhaustive procedures dynamically evaluate the 
condition of switching to another family queue [25]. To 
date, the dynamic selection of group heuristics has not 
been given due attention in the literature. In this paper 
exhaustive heuristics are considered for the demonstration 
of the proposed framework. The group heuristic 
collectively consists of a family selection heuristic and a 
part dispatching rule, e.g., MSSPT. The first two letters 
denote the family selection heuristic and the remaining 
letters denote the part dispatching rule. In MSSPT, the 
family with the minimum setup time is chosen, and the part 
with the shortest processing time in this family’s queue is 
scheduled.  

In recent years, two-stage group scheduling heuristics 
have been increasingly reported and exploited by numerous 
researchers [26, 27], as they can reduce overall machine 
setup time by taking advantage of similarities among part 
families. A typical group scheduling approach involves 
two stages: the first stage (part selection) involves 
sequencing parts of different types within each family and 
the second stage (family selection) consists of determining 
which family queue to select and when to switch to another 
family queue at each machine. Fig. 1 illustrates typical 
decisions that are involved in the group scheduling 
environment.  

 

 

 

Machine ‘Family-1’ 
Parts in queue: J1, J2, J3, ... 

‘Family-3’ 

‘Family-2’ 

Decision: Which of these parts in queue of
‘Family-1’ should be processed next? 

Tool:  Part Selection Model. 

Decision:  Which of these families should
be next processed after
‘Family-1’ is exhausted?  

Tool:  Family Selection Model. 

Fig. 1.  Typical Decisions in group scheduling 

III. AHP MODELS 
The AHP is a powerful and flexible decision making 

method to set priorities among the alternatives and make 
the best decision for problems involving multiple 
objectives when both qualitative and quantitative data are 
considered. The AHP provides a systematic technique to 
rank and order feasible alternatives in accordance with the 
decision maker’s preferences [22, 28-29]. By reducing 
complex decisions to a series of one-on-one comparisons 



 
 

and synthesizing the results, the AHP also provides a clear 
rationale for the best decision. For its flexibility, simplicity 
and easy understandability, the AHP has been widely and 
successfully applied to the problems in electric utility 
planning, energy policy planning, site selection, education, 
health care and finance [30]. Two AHP models are 
developed in this paper, one to sequence the parts of 
different types within the current family and the other to 
determine which family queue to be selected when parts 
within the current family are exhausted. 

The solution process employed in the AHP models 
consists of three levels. At level 1, the performance 
measures required for the evaluation of the FMS are listed.  
Normalized weights are assigned to identify the relative 
importance of these criteria.  Two performance measures, 
namely mean flow time and average cost are used in this 
paper.  These two measures are considered due to their fair 
representation of the objectives of a typical FMS. At level 
2, the performance metrics that influence the performance 
measures of level 1 are identified. The contributions of 
each of the metrics towards achieving the overall objective 
are computed by performing pairwise comparisons (of the 
metrics) with respect to the performance measures. At the 
last level, various candidate alternatives (family selection 
heuristics or part dispatching rules) are identified by 
performing pairwise comparisons of the alternatives with 
respect to each of the metrics in level 2. The alternative 
with the largest resulting weight is then applied to the 
scheduling problem. 

  

A. The AHP part type selection model 
 The objective of the AHP part type selection model is to 

select a part from those that are in queue of the current 
family. The relative weights of the dispatching rules can be 
determined at each decision point, and the rule with the 
highest weightage will be applied to select the next part in 
the family queue for processing. The AHP model for part 
type selection is described in Fig. 2, and the pseudocode is 
as follows: 
 
If  part types in current family > 1, 

{ 
1. For the performance measures  (level 1) 

{ 
Compute the performance weight matrix (PWM) 
that describes the importance of each performance 
measure on the fundamental objective. 

} 
2. For the metrics        (level 2) 

{ 
Compute the performance metric matrix (PMM) 
that describes the relative importance of the 
metrics on the performance measures. 

} 
3. For the dispatching rules    (level 3) 

{ 
Compute the dispatching rule matrix (DRM) that 
describes the normalized priority weights for the 
dispatching rules. 

} 
4. Compute the final priority matrix (FPM), where, 

FPM = DRM × PMM × PWM  
This matrix quantifies the priorities assigned to 
each dispatching rule.  

Select the dispatching rule with the highest priority. 
}  
 Overall 
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Fig. 2.  AHP model for part type selection

 

At level 2, three performance metrics are identified: 
number of parts in queue, average processing time of 
remaining operations and tardiness penalty. The ‘number 
of parts in queue’ performance metric refers to the queue 
length of the current family. If the family queue is long, it 
indicates that the machine has become a bottleneck and the 
parts in its queue must be quickly processed and 
dispatching rules that reduce queue lengths, such as 
shortest processing time (SPT) will be preferred. The 
‘average processing time of remaining operations’ 
performance metric is defined as the ratio of the total work 
remaining of a part to the number of remaining operations 
of the part.  When the ratio is high, it implies that the 
processing time per part operation remaining is also high, 
and vice versa.  In such instances, the most work remaining 
(MWKR) dispatching rule would be preferred as this rule 
will produce good schedules for parts with fewer 
operations and long processing times. The ‘tardiness 
penalty’ performance metric refers to the tardiness cost, 
which is computed as the product of the unit tardiness cost 
and the tardiness of a part. Each part is pre-assigned a unit 
tardiness cost that reflects the importance of the part. For 
the same level of tardiness, a part that is required more 
urgently should reflect a higher tardiness cost than a part 
for which there is ample inventory and is not urgent. To 
minimize the tardiness cost, dispatching rules such as EDD 
(Earliest Due Date) are preferred. Three dispatching rules 
serve as candidate rules, namely, SPT, MWKR, and EDD. 
 



 
 

B. The AHP family selection model 
The objective of the AHP family selection model is to 

select the family to be processed, after all the parts in the 
current family are exhausted.  Through this AHP model, 
the relative weights of the family selection heuristics can 
be determined at each decision point, and the heuristic with 
the highest weight will be applied to select the family. The 
AHP model for family selection is described in Fig. 3, and 
the pseudocode is as follows. 

 
If  families in queue > 1 

{ 
 1. For the performance measures  (level 1) 
 { 

Compute the performance weight matrix (PWM) 
that describes the importance of each performance 
measure on the fundamental objective. 

 } 
 2. For the metrics        (level 2) 
 { 

Compute the performance metric matrix (PMM) 
that describes the relative importance of metrics on 
the performance measures. 

 } 
 3. For the family heuristics    (level 3) 
 { 

Compute the family selection heuristic matrix 
(FHM) that describes the normalized priority 
weights for alternative family selection heuristics. 

 } 
 4. Compute the final priority matrix (FPM), where, 

FPM = FHM × PMM × PWM  
This matrix quantifies the priorities assigned to 
each family selection heuristic.  

 Select the heuristic with the highest priority. 
} 

waiting in the machine queue to the setup time of the 
family. If the ratio is high, it indicates that the setup of the 
family is more efficient and vice versa. In such instances, 
the family selection heuristic should select the families 
with lower setup times and high total work content. The 
‘ratio of setup cost to total work of family’ performance 
metric is defined as the ratio of setup cost to the total work 
content of each family waiting in the machine queue. If the 
ratio for a family is low, it implies that the setup of the 
family is cost efficient, and vice versa. The family with the 
lower ratio is preferred to reduce setup cost and the 
heuristic selecting this family would be preferred. As 
previously, the ‘tardiness penalty’ performance metric 
refers to the tardiness cost. To minimize the tardiness cost, 
the family selection heuristic should select the family 
whose first part has the earliest due date. Three family 
selection heuristics are used as candidate heuristics in level 
3, viz., MSFAM (chooses the family that requires the 
minimum amount of setup time), DDFAM (selects the 
family whose first part has the earliest due date), and 
WOFAM (selects the family queue with the largest total 
work content). Note: the letters ‘FAM’ generically denote 
the family selection heuristic and is not dependent on the 
part dispatching rule. 
 

IV.  SMARTER MODELS 
SMARTER is a modification of the Simple Multi-

Attribute Rating Technique (SMART) [31, 32], which 
provides a mechanism for implementing the principles of 
multi-attribute utility theory (MAUT). The basic idea of 
MAUT is that every outcome of an action may have values 
on a number of different dimensions [33]. MAUT seeks to 
measure these values one dimension at a time and 
aggregate these values across dimensions through a 
weighting procedure.  The simplest and most widely used 
aggregation rule is the weighted linear average formula: 
Valuej = ∑wk.sjk, where wk is the weight of the kth 
dimension and sjk is the measure of alternative j on 
dimension k. A problem identified in SMART is that the 
values of weights wk are related to the values of the single-
dimension utilities sjk.  SMART Swing weight (SMARTS) 
was developed to provide swing weights to reflect the full 
range of possible objective scores. SMART Exploiting 
Ranks (SMARTER) uses an ordinal approximation to 
replace the most difficult elicitation (for wk) step in 
SMARTS [33]. 

 

Two SMARTER models are developed for part and 
family selection. The mean flow time and average cost 
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Fig. 3.  AHP model for family selection

 

In level 2, three performance metrics are used: ratio of 
total work to setup time of family, ratio of setup cost to 
total work of family and tardiness penalty. The ‘ratio of 
total work to setup time of family’ performance metric is 
defined as the ratio of total work content of each family 

performance measures are utilized to evaluate the 
performance of the FMS. The selected alternatives and 
metrics should be related to these two performance 
measures. The following simplified steps are applied to 
develop the two SMARTER models. 
 



 
 

1. Identify the dispatching rules/family selection heuristics 
as alternatives that are considered for sequencing 
parts/families, among which one dispatching rule/family 
selection heuristic is selected for the application. 

2. Choose the metrics that influence the alternatives and 
performance measures. Apply swing weighting and 
generate relative order for these metrics, e.g. 1,2,3, … 
(higher to lower). Then normalize these relative values. 

3. Calculate scores for each of the identified alternatives 
(dispatching rule/family selection heuristic) on each 
metric. 

4. Calculate utility for each alternative (dispatching rule/ 
family selection heuristic) and select the alternative with 
the maximum utility for sequencing the parts/families. 

 

A. The part selection SMARTER model 
 This model is used to sequence parts within each 

family. At each decision point the utilities of the 
dispatching rules can be determined through the 
SMARTER model, and the rule with the maximum utility 
will be applied to select the part in the current family 
queue. 

Three candidate dispatching rules are used in the part 
selection SMARTER model, viz., SPT, MWKR, and EDD, 
which are similar to the AHP part selection model 
discussed in the previous section. Three metrics are 
considered and these are Number of parts in queue, 
Number of remaining operations, and Tardiness cost. If the 
queue is long, it indicates that the machine has become a 
bottleneck and the parts in its queue must be quickly 
processed. Selecting an alternative with a lower number of 
remaining operations will reduce the total number of parts 
in the system. Tardiness cost is calculated as the product of 
the unit tardiness cost and the tardiness of a part. To 
minimize the tardiness cost, the dispatching rules selecting 
the part with a higher unit tardiness cost are preferred. 
Based on the pilot experiments on swing weighting, it is 
found that the following relative order of metrics will yield 
good overall performance: Number of parts in queue > 
Number of remaining operations > Tardiness cost. 

 
 According to the operations of the SMARTER method, 
the normalized metric weights are generated as follows. 
 
W1 (Number of parts in queue)    : (1 + 1/2 + 1/3) / 3 = 0.61 
W2 (Number of remaining operations) : (0 + 1/2 + 1/3) / 3 = 0.28 
W3 (Tardiness cost)       : (0 +   0  + 1/3) / 3 = 0.11 
 
 The score of an alternative will be calculated on a 0-100 
scale, with 0 and 100 as the minimum and maximum 
plausible values respectively.  If the metric is measured on 
a continuous scale, we can use formulae to convert the 
value of the metrics onto a 0-100 scale.  For the case of 
metrics that are evaluated using a cost function, the 
conversion formula is defined as: 
 

 scorej,k = 100(maxk –Valuej)/(maxk – mink )     (1) 
 
where scorej,k  and Valuej  are the score and value of 
alternative j on metric k respectively, and maxk, mink are 
the maximum and minimum values of all alternatives of 
metric k.  For metrics that are evaluated using a profit 
function, the conversion formula is defined as: 
 
 scorej,k = 100(Valuej)/(maxk – mink )       (2) 
 

In the model, both ‘number of remaining operations’ 
and ‘tardiness cost’ are measured on a continuous scale. 
On the other hand, ‘number of parts in queue’ is not 
measured on a continuous scale. For example, if there are 
eight parts for each family, the maximum queue length of 
each family is eight and we assume that any family queue 
with three or more parts will be considered as long. For a 
long queue, we shall prefer SPT to the other rules, and 
based on pilot runs, we find that good overall performance 
is achieved when the score of SPT on this metric is 60 and 
the scores of MWKR and EDD are 40. If the family queue 
is not long, the candidate rules are equally preferred and in 
this case, the scores of the candidate rules are all identical, 
so the values will not affect the results. In such situations, 
an equal score of 40 for all candidate rules will be 
assumed. 

 
Utilities can be obtained by applying the formula: 

Uj=∑wk.sjk.  For example, at a decision point, assume that 
the scores of alternatives on metrics have been calculated 
as follows:  

 
Alternative  Number of   Number of  Tardiness 
      parts in    remaining   cost 
      queue     operations 
 

Weights   0.61     0.28     0.11 
 

SPT    60      68.3     58.3 
MWKR   40      75.0     41.7 
EDD    40      50.0     45.8 

 
Then the utilities are computed as follows: 

SPT  : 0.61(60) + 0.28(68.3) + 0.11(58.3) = 62.1 
MWKR : 0.61(40) + 0.28(75.0) + 0.11(41.7) = 50.0  
EDD  : 0.61(40) + 0.28(50.0) + 0.11(45.8) = 43.4 

 
The dispatching rule SPT has the highest utility and thus it 
will be used for part selection. 
 

B. The family selection SMARTER model, 
The purpose of the second SMARTER model is to select 

the family to be processed, after all the parts in the current 
family are exhausted. The utilities of the family selection 
heuristics can be determined at each decision point through 
the model and the heuristic with the maximum utility will 
be applied to select the family. 



 
 

Three exhaustive family selection heuristics are selected 
as alternatives: MSFAM, DDFAM, and WOFAM. Five 
metrics are utilised in this model: Setup time of family, Due 
date of family, Tardiness cost, Total work of family, and 
Unit setup cost of family. Based on our experience and 
pilot experiments, the following relative order of metric 
will yield good overall performance: Setup time of 
subfamily > Due date of subfamily > Unit tardiness cost > 
Total work of subfamily > Unit setup cost of subfamily. 
 

The normalised metric weights are generated as follows: 
 

W1 (Setup time of family): (1 + 1/2 + 1/3 + 1/4 + 1/5) / 5 = 0.46 
W2 (Due date of family): (0 + 1/2 + 1/3 + 1/4 + 1/5) / 5 = 0.26 
W3 (Tardiness cost): (0 + 0 + 1/3 + 1/4 + 1/5) / 5 = 0.15 
W4 (Total work of family): (0 + 0 + 0 + 1/4 + 1/5) / 5 = 0.09 
W5 (Unit setup cost of family): (0 + 0 + 0 + 0 + 1/5) / 5 = 0.04 
 

All metrics in this model are measured on a continuous 
scale, so scores for each alternative on each metric can be 
computed using equations (1) or (2). The calculation of 
utility of each alternative is the same as that described for 
the part selection SMARTER model. 
 

V. RESULTS AND DISCUSSION 

A. Details of the FMS model 
 The hypothetical FMS examined in this paper is a 

modification of the model presented in [20], and is 
illustrated in Fig. 4. A machine is added to the original 
model and the process plans are slightly altered. The FMS 
is composed of two CNC machines, two machines and two 
robots for loading/unloading parts. The I/O station contains 
both the parts of different types and families waiting to 
enter the FMS and the completed parts are removed from 
the FMS by an automated guided vehicle. The capacity of 
the I/O station is assumed to be large, and each machine 
has an intra-cell buffer. A central conveyor moves bi-
directionally to transport parts between the two robots. 

 
A p

its fam
proces
eight 
the pa

i.e. all parts of type 1 irrespective of family 1, 2 or 3 have 
similar routings.  The sequence of operations for each part 
is fixed, but each part may have a choice of routes, a basic 
and an alternate route. The details of the basic and alternate 
routes (process plans) for the eight part types of the 
families are presented in Table II. When the basic machine 
is not available, or has too many parts waiting in its queue, 
the part will adopt its alternate machine. 

PROCESS PLAN

Operation → 
Part Type ↓ 1 

J1 M1/M2 
J2 M2/M3 
J3 M3/M4 
J4 M4 

J5 M4/M3 
J6 M1/M4 
J7 M3/M1 
J8 M1 

(Mp/Mq = the basic machine 
machine required for processin

 
 

The arrival of parts into the system is modeled as an 
exponential distribution. The processing times of the 
operations follow a third-order Erlang distribution with 
means of 15 minutes and 17.5 minutes for their basic and 
alternate machines respectively. The transportation times 
are considered to be negligible. Due dates are assigned to 
the parts as they enter the FMS. The due date of part j, is 
defined as: dj = aj + U[Tl,Tu] ; where aj is the arrival time of 
part j, Tl and Tu are lower and upper limits of a Uniform 
distribution. The setup times and setup costs are considered 
to be sequence dependent. The setup times are modeled as 
a second-order Erlang distribution since setup times are 
generally more variable than the processing times. The 
setup time of each part in a family is assumed to be 
negligible compared to the setup time of a family. In 
addition, the setup costs are modeled as a uniform 
distribution. Unit tardiness costs of parts are uniformly 
distributed between $0.1 and $1.5 per minute. The unit 
processing cost of each machine is fixed at $0.9 per minute 
for M1 and M2 and  $1.0 per minute for M3 and M4. 

 

B. Experimental factors 
 The simulation study proposed in this paper requires 

several parameters/factors to be set. However, only a few 
of them are expected to influence the relative performance 
of the proposed framework over the other scheduling 
heuristics. We have therefore confined this study to three 
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Fig. 4. The modified FMS [20] 
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Setup time to run time ratio: This factor is considered since 
the primary justification for group scheduling heuristics is 
setup reduction.  This is defined as the ratio of mean setup 
time to mean operation processing time.  Clearly, this 
factor varies widely from one industry to another and thus 
its inclusion can aid in determining the desirability of the 
group scheduling heuristics.  The average setup time to run 
time ratios are set at 0.5 and 1.0 for the low and high 
levels. 
 
Workload: This factor is considered to examine the effect 
of workload on the performance of the proposed models 
and heuristics.  Different workload levels, measured by 
bottleneck utilization, are achieved by varying the inter-
arrival times. The inter-arrival times are determined by 
pilot runs, so that a bottleneck utilization of 80% and 85% 
are realized at the low and high levels of workload 
respectively.  These bottleneck utilization rates are 
obtained using the FCFCFS group scheduling heuristic 
(first come first serve for both part selection and family 
selection) and the bottleneck utilization is the maximum 
utilization of the machines. 
 
Due date tightness: This factor is considered because 
recent surveys have concluded that the responsiveness of 
manufacturers has become increasingly important [18]. 
Therefore, due date tightness levels are established by pilot 
runs so that approximately 20% and 50% of the parts 
become tardy under the FCFCFS heuristic for loose and 
tight due dates. The loose and tight due dates can be 
achieved by adjusting Tl and Tu. 
 

C. Details of experiments 
 The simulation is developed in SIMSCRIPT II.5, using 

a combined process and event orientation [34]. The initial 
state of the system is empty and idle, and brought to steady 
state by a warm-up period of 60,000 minutes.  Statistics are 
collected for 120,000 minutes after the warm-up period. 
Fifty replications are produced to achieve the sufficient 
precision required to estimate the mean differences in 
performance [26]. To examine the performance of the 
heuristics, the three experimental factors discussed 
previously (namely: setup time to runtime ratio, workload, 
and due date tightness) are varied at two levels: high and 
low, thereby spanning a full factorial (23) experiment.  For 
evaluation purposes, the framework discussed in this paper 
are compared with common group scheduling heuristics.  
In this respect, we have identified three family selection 
heuristics (MSFAM, DDFAM and WOFAM) and three 
part dispatching rules (SPT, EDD and MWKR). Therefore, 
nine (3 × 3) combinations of group scheduling heuristics 
are possible and they are: MSSPT, MSEDD, MSMWKR, 
DDSPT, DDEDD, DDMWKR, WOSPT, WOEDD and 
WOMWKR. 

  

D. Results 
The performance of the AHP and SMARTER models 

are evaluated with respect to the group scheduling 
heuristics under varied conditions (23 experimental 
combinations).  The results of the simulation study are 
summarized in Table III. Hypothesis tests are conducted 
for the differences among mean responses. A series of 
paired t-tests are conducted to statistically rank the various 
approaches.  Generally, with N scheduling heuristics, K = 
N(N-1)/2 pairwise comparisons are performed for each of 
the performance measures. Thus according to the 
Bonferroni inequality, if an overall significance level of α 
percent is desired, each individual test should be significant 
at α/K percent level. In the statistical analysis, an overall 
confidence level of 95 percent is assumed (α = 0.05). The 
results indicate significant differences among the 
heuristics.  These results are summarized in Tables IV and 
V.  In these tables, the heuristics are listed in order of their 
performance (best to worst), and those connected 
symbolically do not exhibit statistically significant 
performance differences.  The performance of the 
heuristics is further analyzed in greater detail for each of 
the performance measures. 
 

 

TABLE III 
RESULTS 

HL – high load, LL – low load, HS – high setup to runtime ratio, LS – low 
setup to runtime ratio, TD – tight due date, LD – low due date, MFT – mean 
flow time, AC – average cost. 

HL, HS, TD HL, HS, LD HL, LS, TD HL, LS, LD  

Method MFT AC MFT AC MFT AC MFT AC 
MSSPT 156.12 81.03 155.93 67.73 135.71 70.07 135.40 58.73
MSEDD 159.95 78.95 159.96 66.20 141.04 68.26 140.71 57.28

MSMWKR 157.14 81.57 157.03 68.64 137.12 71.11 136.70 59.45
DDSPT 162.80 78.07 162.95 67.10 139.73 68.74 140.14 58.40
DDEDD 168.40 76.73 167.14 65.50 147.64 66.99 146.60 57.10

DDMWKR 163.46 78.42 164.14 67.94 141.38 69.42 140.84 59.08
WOSPT 162.15 81.19 162.15 69.02 139.78 70.15 139.78 59.14
WOEDD 167.14 79.73 167.63 67.11 146.60 68.81 147.05 58.33

WOMWKR 162.81 81.62 163.07 68.58 141.37 71.01 141.37 60.05
AHP 156.35 75.48 155.27 64.60 135.98 66.52 136.11 56.89

SMARTER 155.62 76.58 155.27 65.31 135.98 67.26 136.21 57.64
     

LL, HS, TD LL, HS, LD LL, LS, TD LL, LS, LD  

Method MFT AC MFT AC MFT AC MFT AC 
MSSPT 147.30 81.14 147.27 68.08 123.76 70.07 124.01 59.08
MSEDD 149.70 79.26 149.70 66.79 126.77 68.31 126.77 57.96

MSMWKR 148.23 81.64 147.90 68.55 124.52 70.82 124.74 59.58
DDSPT 152.40 78.68 152.46 67.09 127.25 68.37 127.13 58.67
DDEDD 155.61 77.70 155.74 66.43 130.91 67.23 131.14 57.72

DDMWKR 153.31 79.84 152.90 67.56 128.30 69.28 127.76 59.11
WOSPT 151.61 81.17 151.61 68.79 126.87 70.07 126.87 59.44
WOEDD 155.13 79.69 155.13 67.62 130.82 68.67 130.82 58.62

WOMWKR 152.37 81.92 152.45 69.36 127.64 70.97 127.64 60.50
AHP 147.19 76.35 146.22 65.31 123.84 66.51 123.48 57.00

SMARTER 146.92 77.35 146.87 66.13 123.56 67.14 123.63 57.71

E. Discussion 
Mean Flow Time: For mean flow time, the AHP and 
SMARTER models perform better than the common group 
heuristics under most of the experimental conditions.  This 
is expected since the developed models consider both 



 
 

processing time and setup time at each decision point and 
dynamically select the group heuristic with the highest 
priority to reduce mean flow time. MSFAM (comprising of 
MSSPT, MSMWKR, and MSEDD) dominates all other 
family heuristics regardless of the dispatching rules. 
WOFAM (comprising of WOSPT, WOMWKR, and 
WOEDD) is the second best heuristic under all 
experimental conditions and DDFAM (comprising of 
DDSPT, DDMWKR, and DDEDD) has the worst 
performance. The dispatching rules also have a major 
impact on the performance of the family selection 
heuristics.  Within the same queue, the SPT and MWKR 
part selection heuristics exhibit better performance than 
EDD.  After the AHP and SMARTER models, MSSPT and 
MSMWKR are the best performing heuristics under all 
experimental conditions while WOEDD and DDEDD 
generally exhibit the poorest performance. 
 
Average Cost: For average cost, the AHP models 
outperforms under all experimental conditions. The AHP 
models consider processing cost, setup cost and tardiness 
cost simultaneously and dynamically select the group 
heuristic with the highest priority to reduce total cost. The 
SMARTER models also performed well, and ranked next 
to the AHP under most of the experimental conditions.  
DDFAM (comprising of DDSPT, DDMWKR, and 

DDEDD) dominates the other family heuristics under all 
experimental conditions.  The WOFAM (comprising of 
WOSPT, WOMWKR, and WOEDD) heuristic performs 
the worst.  After the AHP, DDEDD is the best performing 
heuristic under all experimental conditions, and generally 
DDSPT performs the second best for tight due dates while 
MSEDD performs the second best for the loose due dates. 

VI. CONCLUSIONS 
In this paper an attempt has been made to develop and 

demonstrate a framework for the dynamic scheduling of an 
FMS. This framework considers the prevalent conditions at 
each decision point and dynamically select the most 
suitable group heuristic (collectively consisting of a family 
selection heuristic and a part dispatching rule). The 
performances of the models are compared with nine group 
heuristics. The results indicate that the proposed models 
exhibit better performance than group scheduling heuristics 
individually, under nearly all the experimental conditions. 
The framework proposed in this paper is a general one and 
additional criteria (such as schedule length, maximum 
lateness, etc.) may be easily added. In addition, the 
framework can also be modified to account for other 
factors such as the unreliability of machines. 

 

 

 

TABLE IV 
PAIRED T-TEST RESULTS FOR MEAN FLOW TIME 

HL,HS,TD HL,HS,LD HL,LS,TD HL,LS,LD LL,HS,TD LL,HS,LD LL,LS,TD LL,LS,LD 
SMARTER SMARTER MSSPT  MSSPT SMARTER SMARTER SMARTER AHP  

MSSPT AHP  SMARTER AHP AHP AHP MSSPT SMARTER  
AHP MSSPT  AHP SMARTER MSSPT MSSPT AHP MSSPT  

MSMWKR MSMWKR MSMWKR MSMWKR MSMWKR MSMWKR MSMWKR MSMWKR 
MSEDD MSEDD DDSPT WOSPT MSEDD MSEDD MSEDD MSEDD 
WOSPT WOSPT WOSPT DDSPT WOSPT WOSPT WOSPT WOSPT 
DDSPT DDSPT MSEDD MSEDD WOMWKR WOMWKR DDSPT DDSPT 

WOMWKR WOMWKR WOMWKR DDMWKR DDSPT DDSPT WOMWKR WOMWKR 
DDMWKR DDMWKR DDMWKR WOMWKR DDMWKR DDMWKR DDMWKR DDMWKR 
WOEDD DDEDD WOEDD DDEDD WOEDD WOEDD WOEDD WOEDD 
DDEDD WOEDD DDEDD WOEDD DDEDD DDEDD DDEDD DDEDD  
Symbolic links denote insignificant difference in the ranking of the heuristics. 

 

TABLE V 
PAIRED T-TEST RESULTS FOR AVERAGE COST 

HL,HS,TD HL,HS,LD HL,LS,TD HL,LS,LD LL,HS,TD LL,HS,LD LL,LS,TD LL,LS,LD 
AHP AHP AHP AHP AHP AHP AHP AHP 

SMARTER SMARTER DDEDD DDEDD SMARTER SMARTER  SMARTER  SMARTER  
DDEDD DDEDD SMARTER SMARTER DDEDD DDEDD DDEDD  DDEDD  
DDSPT MSEDD MSEDD MSEDD DDSPT MSEDD DDSPT MSEDD 

DDMWKR DDSPT DDSPT WOEDD MSEDD DDSPT MSEDD WOEDD 
MSEDD WOEDD WOEDD DDSPT WOEDD DDMWKR WOEDD DDSPT 
WOEDD MSSPT DDMWKR MSSPT DDMWKR WOEDD DDMWKR MSSPT 
MSSPT DDMWKR MSSPT DDMWKR MSSPT MSSPT MSSPT DDMWKR 
WOSPT WOMWKR WOSPT WOSPT WOSPT MSMWKR WOSPT WOSPT 

MSMWKR MSMWKR WOMWKR MSMWKR MSMWKR WOSPT MSMWKR MSMWKR 
WOMWKR WOSPT MSMWKR WOMWKR WOMWKR WOMWKR WOMWKR WOMWKR 

Symbolic links denote insignificant difference in the ranking of the heuristics. 
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