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Abstract— In an e-retailing setting, the efficient utilization of
inventory, storage space, and labor is paramount to achieving
high levels of customer service and company profits. To optimize
the storage space and labor, a retailer will split the warehouse
into two storage regions with different densities. One region is
for picking customer orders and the other to hold reserve stock.
As a consequence, the inventory system for the warehouse is a
multi-item two-stage, serial system. We investigate the problem
when demand is stochastic and the objective is to minimize the
total expected average cost under some space constraints. We
generate an approximate formulation and solution procedure for
a periodic review, nested ordering policy, and provide managerial
insights on the trade-offs. In addition, we extend the formulation
to account for shipping delays and advanced order information.

Index Terms— Inventory, multi-echelon, stochastic demand,
periodic review.

I. I NTRODUCTION

After a customer orders online at an e-retailer, the order is
assigned virtually to one of order fulfillment centers, which are
of several hundred thousand square feet. An order fulfillment
center is a warehouse consisting of apicking area, where
items are stored individually in bins, and adeep-storage area,
where items are stored in bulk on pallets. The customer-
ordered items are hand-picked in the picking area and sent
for packing afterwards. The deep-storage area receives items
from the outsider suppliers and replenishes the picking area.

For e-retailers, which operate with no physical stores, the
efficient utilization of inventory, storage space, and labor is
paramount to achieving high levels of customer service and
company profits. To optimize the storage space and labor,
an e-retailer splits the warehouse into two storage regions
with different densities. One region is for picking customer
orders and the other to hold reserve stock. Consequently, the
inventory in the warehouse flows in a serial, two-stage fashion,
as illustrated in Figure 1. We investigate the problem of multi-
item inventory ordering policy for a two-stage serial system
when demand is stochastic and the objective is to minimize
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Fig. 1. A serial, two-stage warehouse.

the long run average cost under space constraints. A key
assumption of this problem is the existence of economies of
scales (in the form of fixed order costs) for replenishing the
inventory at both stages.

The problem under consideration is fundamental in ware-
house operations, both in a brick-and-mortar or an e-commerce
operation. We will, however, consider extension of this prob-
lem that are particularly applicable in e-retailing later in the
paper. The problem is also well known for its theoretical
difficulties. Clark and Scarf [5] concluded that for the uncon-
strained two-stage, serial inventory system with set-up costs
at both stages, the optimal ordering policy, if one exists, must
be extremely complex. This observation has driven subsequent
research to focus on heuristic policies. There is an extensive
literature on various heuristic policies in different multi-
echelon, stochastic inventory systems. Here we contribute by
generating an approximate formulation and solution procedure
for a periodic review, heuristic ordering policy in a multi-item
two-stage problem, and provide insights about the intrinsic
trade-offs in a constrained warehouse operation.

Using periodic review ordering policy in the inventory
model is motivated by several practical considerations. E-
retailers often take pride in their wide range of products
available for customers. As a result, the number of products
an e-retailer orders from a single supplier is often very large.
Periodic review policy may reduce fixed replenishment costs
by combining order replenishment for different products. A
periodic review policy also has the practical benefits of fol-
lowing a regular repeated schedule to coordinate transportation
and other logistic considerations [16].

A. Literature Review

A considerable body of research has evolved in the field
of multi-echelon, stochastic inventory systems since the pub-
lication of Clark and Scarf in 1960. Axsater [2] and Feder-
gruen [9] provide comprehensive reviews of this literature. In
particular, Axsater [2] reviews the literature on continuous re-
view policies for multi-echelon, stochastic systems. Examples
include Sherbrooke [19], Graves [12], De Bodt and Graves [6],



Deuermeyer and Schwarz [7], and Svoronos and Zipkin [20].
Federgruen [9] reviews multi-echelon, stochastic models that
are centralized and have multiple locations, such as a serial
or assembly system. Examples include Clark and Scarf [5],
Eppen and Schrage [8], Federgruen and Zipkin [10], [11],
and Jackson [14]. However, progress is slow in establish-
ing near-optimal heuristic policies with a guaranteed, worst-
case performance. Chen [4] characterizes a continuous review
heuristic policy for a two-stage inventory system. The long-
run average cost is guaranteed to be within 6% of optimality,
where demand is Poisson, leadtime at stage 2 is zero, and both
stages incur a fixed order cost.

Closely related to this paper are two publications. De Bodt
& Graves [6] develop a similar two-stage serial model for a
continuous review(Q, r) policy. They provide approximate
performance measures under a nested policy assumption:
whenever a stage receives a shipment, a batch must be
immediately sent down to its downstream stage. They do not
make an assumption about the form of the demand distribution.
We, however, consider a periodic review(R, T ) policy. Our
major assumptions on the policy are different but close in
spirit as the model in De Bodt & Graves [6]. Most recently,
Rao [16] analyzed the properties of the single-stage(R, T )
model, as a counterpart of Roundy [17] and Zheng [21] for
a deterministic periodic review model and stochastic(Q, r)
model, but with certain demand function restrictions. In the
extension, he develops a two-stage serial system which is
similar to our model but has different assumptions on the
interaction between echelons.

B. Overview

§ II reviews the single-stage periodic review model and its
most recent results, and presents the two-stage serial model,
along with some space constraints.§ III is an extension that
accounts for shipping delays and advance demand information.

II. M ODEL FORMULATION AND SOLUTION APPROACH

Before proceeding further, we list the following standard
definitions:

I(t) − on-hand inventory or the amount of inventory

in the warehouse at timet,

B(t) − amount of unfulfilled customer demand att,

IL(t) − inventory level or net inventory att,

equivalent toI(t)−B(t),
O(t) − on-order replenishment att,

IP (t) − inventory position att,

equivalent toIL(t) + O(t).

Following the literature convention, we denote stage 1 as the
downstream stage that faces external demand, and stage 2 as
the upstream stage that replenishes stage 1 and is replenished
by outsider suppliers. In the e-retailing setting, stage 1 is the
picking area and stage 2 is the deep-storage area.

The basic modelin this paper is an unconstrained single-
item two-stage serial model. It extends the single-item single-
stage periodic-review(R, T ) model ([13], p. 237-245), where

R is the order-up-to level andT is the review period. After
everyT time units, we order up toR if the current inventory
position is belowR.

In the next few sub-sections, we first review the single-stage
model and then present the basic model.

A. Single-Stage Model Review

We first list the key assumptions of the single-stage model.
These assumptions apply to the basic model as well, while
additional assumptions will be introduced as we discuss the
basic model in detail.

A-1 The inter-arrival times between successive demands are
i.i.d.. Demand is stationary for the relevant time horizon.

A-2 Each stage has a constant known nonzero lead time.
A-3 When there is no on-hand inventories at stage 1, demand

at stage 1 is backlogged, and a penalty cost per backorder
is charged.

A-4 Demand backorder quantities are small. We will provide
more details on this assumption later in the section.

We need to discuss the validity of the assumptions. We assume
stationary demand in A-1. There are usually two distinct
demand patterns in the e-retailing setting, namely the off-
peak and peak season. Within each season, it is reasonable to
assume stationary demand trend. We can treat the two seasons
as two separate models. Relaxing A-2 to allow stochastic
lead time would not change the formulation much. Unlike in
A-3, many models in the literature have the backorder cost
as cost charged per item per unit time. Our assumption is
more applicable when the fixed cost component of backorder
is much larger than the time variable component. We note
that the formulation under our backorder cost assumption may
be less convenient for theoretical analysis, but it is easier in
computation.

We denote:

C(·) − expected total cost per unit time,

l − replenishment lead time,

d − expected demand per unit time,

a − fixed order, or replenishment, cost,

h − holding cost per item per unit time,

b − backorder cost per item,

f(x|l) − probability density function of lead-time demand,

given that the lead time isl.

We assume that discrete units of inventory can be approx-
imated by continuous variables. We follow the inventory
literature (e.g., [13], p. 237-245), and the expected total cost
per unit time can be approximated as:

C(R, T ) ∼= a

T
+ h

(
R− d(l +

T

2
)
)

+
b

T

∫ ∞

R

(x−R)f(x|l + T )dx (1)

Comparing Equation (1) with the exact model for Poisson
demand in Appendix A, we note that the main approximation
is the holding-cost term, which is underestimated. Figure 2
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Fig. 2. Single-stage inventory level and position.

is an inventory diagram for the single-stage model. The
time between[t + l, t + l + T ] is a typical replenishment
cycle. We can write the holding-cost term in Equation (1) as
h
T

∫ l+T

l
IL(t) dt, as opposed toh

T

∫ l+T

l
I(t) dt in the exact

model. That is, we approximate on-hand inventory with net
inventory. However, the approximation error is small when
backorder is small so that on-hand inventory is close to
net inventory. Hence, assumption A-4 guarantees that the
approximation is close. The backorder term is, however,
slightly overestimated. That is, we assume that we start each
replenishment cycle with zero backorders.

For a given value ofT , C(R, T ) in Equation (1) is convex
in R. We can obtain the optimal value ofR for a given value
of T : ∫ ∞

R

f(x|l + T ) =
hT

b
. (2)

Moreover, for demand distributions that havef(x|l + T ) >
0, ∀x > 0, C(R, T ) is strictly convex inR for a given value
of T . Equation 2 then yields a unique value ofR. Given a
value ofR, C(R, T ) is not convex inT .

Note that for T > b
h , there exists no solution in Equa-

tion (2). In this case, we setR = 0. We search over values of
T in the range(0, b

h ). It is simple to tabulate over values ofT
and use Equation (2) to obtain the minimal value of expected
total cost.

B. The Basic Model : A Two-Stage Serial Model

Now we consider our basic model, an approximate two-
stage serial(R, T ) model based on§II-A. We use the concept
of echelon stock, which is the total inventory in the current
stage and all its downstream stages. In our notation, we use
subscript1 to denote echelon 1, that is stage 1, and2 to denote
echelon 2, that is stage 1 and 2.

We first present a main assumption of the basic model.

A-5 Each stage manages its echelon inventory with an(R, T )
policy. Furthermore, the ordering policies are nested. That
is, stage 1 places a replenishment when stage 2 receives
its replenishment. To coordinate the replenishment of
both stages, we impose the constraintT2 = nT1, where
n is a positive integer.

Nested policies are applicable when warehouses prefer to
move certain shipments from outside suppliers directly to stage
1. Certainly, this assumption on the ordering policy simplifies
analysis.

R1

R2

l2+ l1+T2

IL2(t)

IP2(t)

T2

l2 l2

l1
l1 l1

0  l2 l2+(n-1)T1

Fig. 3. A two-stage inventory level and position example,n = 3.

Figure 3 has an example forn = 3. We will demonstrate
the policy behavior through this example. Echelon 2 receives
its replenishment at timel2 and l2 + T2. Echelon 1 receives
its replenishment at timel2 + l1, l2 + l1 + T1, and l2 + l1 +
2T1. Since n = 3, there are three inventory replenishment
(reviews) of echelon 1 between every consecutive echelon-2
inventory replenishment (reviews). We denote a cycle as the
time between consecutive echelon-2 inventory replenishment.

To simplify the formulation, we have the following addi-
tional assumptions.

A-6 IP1(l2 + (n − 1)T1) = IL2(l2 + (n − 1)T1), given
stage 2 orders at timet = 0. That is, during the
last replenishment in a cycle, stage 1 ordersall of the
remaining on-hand inventory from stage 2.

We call the last echelon-1 replenishment in a cycle anex-
haustive replenishment, and the othern − 1 echelon-1 re-
plenishmentnormal replenishment. We claim that we have
n−1 normal replenishment for every exhaustive replenishment
in this ordering policy. At the exhaustive replenishment, our
order-up-level could be less than, equal to, or greater thanR1.
This assumption allows us to simplify the formulation without
having to track which cycle has extra inventory in echelon 2
at the end of the cycle. On average, the amount of such extra
stock is small. Otherwise, we could decrease the value ofR2.
Also, there is no value to leave the extra inventory in echelon 2,
since a replenishment for echelon 2 will arrive next. Therefore,
since the stock is already in the warehouse at the exhaustive
replenishment, it may be more cost effective to move the extra
stock to stage 1.

Given stage 2 orders at timet = 0, we assume that

A-7 IL2(l2 + (n− 2)T1) > R1.
This assumption ensures that echelon 2 has sufficient
inventory to raise the stage 1 inventory position toR1 for
every normal replenishment. SinceIL2(τ) is nondecreas-
ing for l2 ≤ τ ≤ l2+T2 , this assumption also implies that
IL2(l2 + mT1) > R1, ∀m < n − 1. However, because
of assumption A-6, inventory level at the exhaustive
replenishment is not restricted,IL2(l2 + (n − 1)T1) ≥
R1 or < R1.

A-8 IP−1 (l2) < R1.
We denoteIP−(t) as the inventory before the event takes
place at timet. We assume the inventory level in echelon
2 (equivalent to inventory level in echelon 1 due to A-
6) shortly before the shipment from the outside supplier



arrives is less thanR1. Otherwise, stage 2 doesn’t need
to send any shipment to stage 1 at timel2.

We denoteD(t, t+ τ) as the total demand placed from timet
to t + τ . If echelon 2 orders up toR2 at time t, then for A-7
to be valid, we must have that

D(t, t + l2 + (n− 2)T1) ≤ R2 −R1. (3)

For A-8 to be valid, we must have that

D(t, t + l2 + T2) ≥ R2 −R1. (4)

We expected that the accuracy of our cost expressions will
depend on the probability of the above two equations.

To develope the cost expressions, we derive the cost ele-
ments separately. The expected set-up cost per unit time is

a1

T1
+

a2

T2
. (5)

As a result of the assumptions, we order after every review
period.

To derive the holding cost element, we examine echelon
1 and 2 separately. It is easy to see that the holding cost of
echelon 2 can be approximated as in the single-stage model,
h2
T2

∫ l2+T2

l2
IL2(t) dt, that is

h2 (R2 − d (l2 + T2/2)) . (6)

The holding cost for echelon 1 needs a little more discussion.
For then− 1 normal replenishment cycles, we can derive the
holding cost for each cycle just as in the single-stage model.
However, the expected inventory level for a exhaustive replen-
ishment cycle needs to be re-derived. Referring to Figure 3,
the time between(l2 + l1 + (n − 1)T1, l2 + l1 + T2) is an
exhaustive replenishment cycle for stage 1. LetD(0, t) be the
demand up to timet. The inventory level at the start of the
cycle isR2 −D (0, l2 + l1 + (n− 1)T1). The inventory level
at the end of the cycle isR2−D (0, l2 + l1 + T2). The average
net inventory in the cycle is, therefore,

1
T1

∫ l1+l2+T2

l1+l2+(n−1)T1

IL1(t) dt = R2 − d

(
l1 + l2 + T2 − T1

2

)

We can then write the holding cost at stage 1 as

h1

(
n− 1

n
(R1 − d (l1 + T1/2))

+
1
n

(R2 − d (l1 + l2 + T2 − T1/2))
)

. (7)

We again derive the backorder costs for normal and ex-
haustive replenishment separately. The expected number of
backorders during a normal replenishment cycle is

∫∞
R1

(x −
R1)f(x|T1+l1)dx. The expected number of backorders during
an exhaustive replenishment cycle is

∫∞
R2

(x − R2)f(x|T2 +
l1 + l2)dx. We can express the expected backorder cost per
unit time as

b

T1

(
n− 1

n

∫ ∞

R1

(x−R1)f(x|T1 + l1)dx

+
1
n

∫ ∞

R2

(x−R2)f(x|T2 + l1 + l2)dx

)
. (8)

By summing up Equations (5) to (8), we have the expected
average total costC(R1, R2, T1, T2, n). Substituting the con-
straintnT1 for T2, we have the cost functionC(R1, R2, n, T1).
The optimization problem,P , can be written as:

min C(R1, R2, T1, n)
n ∈ Z+

R1, R2, T1 ≥ 0

For given values of (T1, n), the cost function
C(R1, R2, n, T1) is a convex function in R1, R2. We
can find solutions ofR1, R2 according to the following
equations:

∫ ∞

R1

f(x|T1 + l1)dx =
h1T1

b
, (9)

∫ ∞

R2

f(x|T2 + l1 + l2)dx =
h1T1

b
+

h2T2

b
. (10)

Equations (9) and (10) are a result of setting∂C
∂R1

, ∂C
∂R2

to be
zero. For Equation (9) and (10) to have unique solutions, we
need to have∂2C

∂R2
1

= b
T1

n−1
n f(R1|T1 + l1) > 0 and ∂2C

∂R2
2

=
b

T2
f(R2|T2 + l1 + l2) > 0. As in the single-stage model, for

demand distributions that havef(x|t) > 0, ∀x > 0, t > 0,
Equations (9) and (10) have unique solutions. However, the
cost functionC(R1, R2, n, T1) is not convex inT1 or n.

We can use a simple search method, where we search over
given values ofT1 andn. The value ofn is a positive integer.
Note that for large value ofT1 or n in Equation (10), we
set R2 = 0. Therefore, we search over the range of values
of (T1, n) such that(h1 + nh2)T1 < b. If the value ofT1

is restricted to be a multiple of some minimal review period
(e.g., a day), it is simple just to tabulate over the values of
T1 and n. For problems that have a large range of(T1, n),
we consider using simple gradient methods like Newton’s
method or Steepest Descent method where the step sized is
determined by Amijo’s rule. We can use the starting value

of TD
1 = EOQ

d =
√

2a1
h1d from the single-stage deterministic

problem. We can use the starting value ofnD ≈
√

a2
a1

h1
h2

from the deterministic demand two-stage problem. The starting
values ofR1 andR2 can be determined accordingly givenTD

1

andnD.
For n = 1, the problem can be solved as a single-stage

problem whose cost parameters areh = h1 +h2, a = a1 +a2,
and l = l1 + l2. However, the cost of then = 1 two-stage
problem is not equivalent to such a single-stage problem due
to a minor accounting difference in holding cost.

C. Multi-Item Two-Stage Model with Space Constraints

A multi-item two-stage problem based on the basic model
can be solved separately for each item as described in the
previous section. A space constraint couples all items together.
We consider two different space constraints:i) on the total
space in echelon 2, which corresponds to the picking and
deep-storage area, andii ) on the space in echelon 1 (i.e.
stage 1) only, which is the picking area. We need to introduce



additional notations:

M − number of items in storage,

γik − space taken by an itemi, (e.g., cubic in. per item),

in stagek. Typically, γi1 > γi2.

Aij − average inventory per unit time of itemi

in echelonj,

Sj − available space in echelonj.

1) Space Constraint on Echelon 2:In the context of an e-
retailer, stage 1 and stage 2 are in the same warehouse, and
therefore, share the total space in the warehouse. Imposing a
constraint on the total space seems natural. DenoteCi as the
total expected cost per unit time of itemi, then the problem
can be formulated as:

min
M∑

i=1

Ci(Ri1, Ri2, Ti1, ni)

s.t.
M∑

i=1

γi1Ai1 + γi2(Ai2 −Ai1) ≤ S2 (11)

ni ∈ Z+, ∀i
Ri1, Ri2, Ti1 ≥ 0, ∀i,

where for each itemi, A1 can be found in Equation (7).
Equation (7) is equivalent toh1A1. The termA2 can be found
in Equation (6). Equation (6) ish2A2. We use the average
inventory in the space constraint as an approximation. This
approximation is adequate as the number of itemsM becomes
large.

We solve the problem by solving the dual problem. Denote
θ to be the Lagrangian Multiplier. Givenθ, the Lagrangian
function is:

L(R̄1, R̄2, n̄, T̄1, θ) =
M∑

i=1

Ci(Ri1, Ri2, ni, Ti1) (12)

+ θ

(
M∑

i=1

γi1Ai1 + γi2(Ai2 −Ai1)

)
− θS2

=
M∑

i=1

C̃i(Ri1, Ri2, ni, Ti1, θ)− θS2, (13)

where R̄1, R̄2, n̄, T̄1 are vectors whoseith component is for
item i, and the cost functioñCi has the same cost structure as
Ci but with modified holding costs. Specifically, the holding
costs inC̃i, denoted as̃hij , can be set as:

h̃i1 ← hi1 + θ(γi1 − γi2)
h̃i2 ← hi2 + θγi2.

The dual functionq can be written as:

q(θ) = min
Ri1,Ri2,Ti1≥0, ni∈Z+

M∑

i=1

C̃i(Ri1, Ri2, ni, Ti1, θ)−θS2.

(14)
Equation (14) can be solved asM separable problems, and
each can be solved as a single-item problem with modified

holding costs. The valueθS2 is merely a constant. We can
then solve the dual problem:

max q(θ)
s.t. θ ≥ 0.

We can search over the values ofθ to solve the dual prob-
lem. This separable problem structure is helpful in solving the
dual problem. The cost function

∑M
i=1 Ci(Ri1, Ri2, Ti1, ni) is

not convex and the feasible solution set is not convex sinceni

is discrete. The separable structure is additionally helpful here
because it is known to have relatively a small duality gap, and
the duality gap can be shown to diminish to zero relative to
the optimal value asM increases [3].

2) Space Constraint on Echelon 1:In the context of e-
retailing, echelon 1 is the picking area. The larger the picking
area, the more costly it would be to pick items efficiently. For
example, a worker picks items from a list of customer orders.
The larger the picking area, the longer the route he or she
may have to walk to complete the task. Therefore, labor costs
are higher per customer order when the picking area is larger.
A space constraint on echelon 1 can ensure efficient picking
or efficient utilization of labor. Suppose the total warehouse
space may be augmented easily, such as adding some trailers
in the yard or finding a close storage building. Then imposing
a constraint only on echelon 1 is reasonable. The problem
with only echelon 1 is constrained can be formulated as the
following:

min
M∑

i=1

Ci(Ri1, Ri2, Ti1, ni)

s.t.
M∑

i=1

γi1Ai1 ≤ S1, (15)

ni ∈ Z+, ∀i
Ri1, Ri2, Ti1 ≥ 0, ∀i,

Similar to the procedures in the previous section, we again
solve for the dual problem. Given the value ofθ, the dual
function can be solved by solvingM separable minimization
single-item problems, where the holding costs can be set as
ĥij :

ĥi1 ← hi1 + θγi1

ĥi2 ← hi2

III. E XTENSION - ALLOCATING SPACE FORWIP

In most of the inventory models in the literature, inventory
units disappear from the warehouse as soon as they meet
demand. This modeling assumption is reasonable in most
applications. However, it is not so realistic in the e-retailing
setting. Demanded items often may be in a multi-item order,
where some of the items may be out of stock and the entire
order stays in the warehouse until all items are available. In
this sense, the order fulfillment process is more like a make-
to-assemble process: products can be any subset of all items,
and customer orders are assembled after their replenishment
are received.



We call items in the warehouse that were assigned to
customer orders but are waiting to be shipped as Work In
Process (WIP). One way to incorporate WIP into the current
inventory model is to allocate some space for WIP. Once an
item is ordered, we virtually direct the item to a WIPM/G/∞
queue. The item leaves the virtual queue when all items in the
same order are assembled. Note that we do not assume the
form of the demand distribution in the basic model, but we
assume Poisson demand in this extension. More formally, for
single item, we denote

λ − Poisson demand arrival rate,

Y − time from the item is assigned to a warehouse

to the time until it is assembled with all other items

in the order and sent to the shipping department.

Let N(t) be the number of demand arrivals for the item
in (0, t) still in service atτ , thenN(t) has non-homogenous
Poisson rate,λP (Y > τ − t). In steady state,

lim
τ→∞

E[N(τ)] = λ

∫ ∞

0

P (Y > t) dt

= λE[Y ]

The distribution ofY may depend on the ordering policy,
multi-item demand patterns, and assembly priority policy.
As an approximation, we can eliminate the complexity by
determiningY from historical data. Then we can incorporate
the term into our models by leaving the WIP queue in stage
1,

min

M∑

i=1

Ci(Ri1, Ri2, Ti1, ni)

s.t.

M∑

i=1

γi1 (Ai1 + diE[Yi]) ≤ S1, (16)

ni ∈ Z+, ∀i
Ri1, Ri2, Ti1 ≥ 0, ∀i,

where to be consistent with our previous definition,λ = d.

APPENDIX A: EXACT MODEL OF THESINGLE-STAGED

(R, T ) MODEL FORPOISSONDEMAND

Following the literature (e.g., [13] ), we write the exact
expected total cost per unit time for Poisson demand as:

C(R, T ) =
a

T
P (1|T ) +

b

T

∞∑

x=R

(x−R)p(x|l + T )

− b

T

∞∑

x=R

(x−R)p(x|l) + h

(
R− d(l +

T

2
)
)

+
h

T

∫ l+T

l

∞∑

x=R

(x−R)p(x|t)dt,

wherep(x|τ) is the PMF of demand during timeτ , andP (x|τ)
is the right-hand CDF of demand during timeτ .
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