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Abstract— Using recent progress on moment problems,
and their connections with semidefinite optimization, we
present in this paper a new methodology based on semidef-
inite optimization, to obtain a hierarchy of upper and lower
bounds on both linear and certain nonlinear functionals de-
fined on solutions of linear partial differential equations. We
apply the proposed methods to examples of PDEs in one
and two dimensions with very encouraging results. We also
provide computational evidence that the semidefinite con-
straints are critically important in improving the quality of
the bounds, that is without them the bounds are weak.

I. INTRODUCTION

In many real-world applications of phenomena that are
described by partial differential equations (PDEs) we are
primarily interested in a functional of the solution of the
PDE, as opposed to the solution itself. For example, we
might be primarily interested in the average temperature
rather than the entire distribution of temperature in a me-
chanical device; or we might be interested in the lift and
drag of an aircraft wing, which is computed by surface in-
tegrals over the wing; or finally we might be interested in
the average inventory and its variability in a supply chain
network.

Given that analytical solutions of PDEs are very
scarce, there is a large body of literature on numerical
methods for solving PDEs. Excellent references can be
found in Quarteroni and Valli [17], Strang and Fix [21],
Brezzi and Fortin [7]. Such methods typically involve some
discretization of the domain of the solution, and thus ob-
tain an approximate solution by solving the resulting equa-
tions, and matching boundary values and initial conditions.
Such approaches scale exponentially with the dimension,
i.e., if we use O(1/¢) points in each dimension, the size
of systems we need to solve is of the order of (1/€)¢ for
d-dimensional PDEs and result in accuracy of O(e).

Given the interest in a functional of the solution of
the underlying PDE, and the computational burden for ob-
taining a solution within ¢, 1t is desirable to obtain bounds
on the functional at a decreased computational burden.
An approach based on Lagrangean duality that performs
computations using a coarse discretization, but provides
bounds on the solution for a refined discretization is pre-
sented in Peraire and Patera [13], Paraschivoiu, Peraire and
Patera [14] and Peraire and Patera [15]. For other duality
based methods see Brezzi and Fortin [7].
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Contributions

Using recent progress on moment problems, and their
connections with semidefinite optimization, we present in
this paper a new methodology based on semidefinite opti-
mization, to obtain a hierarchy of upper and lower bounds
on both linear functionals, as well as the supremum and
infimum functionals, for linear PDEs with coefficients that
are polynomials of the variables. We apply the proposed
methods to examples of PDEs in one and two dimensions
with very encouraging results. We also provide computa-
tional evidence that the semidefinite constraints are crit-
ically important in improving the quality of the bounds,
that is without them the bounds are weak. The numerical
results further indicate fast convergence. The practicality
and numerical stability of the proposed method depends on
the numerical stability of semidefinite optimization codes,
which are currently under intensive research. We hope that
progress in semidefinite optimization codes will lead to im-
proved performance for obtaining bounds on PDEs using
the methods of the present paper.

Moment Problems and Semudefinite Optimization

Problems involving moments of random variables arise
naturally in many areas of mathematics, economics, and
operations research. Recently, semidefinite optimization
methods have been applied to several problems arising
in probability theory, finance and stochastic optimization.
Bertsimas [3] applies semidefinite optimization methods to
find bounds for stochastic optimization problems arising
in queueing networks. Bertsimas and Popescu [4] apply
semidefinite optimization methods to find best possible
bounds on the probability that a multidimensional random
variable belongs in a set given a collection of its moments.
In [5], Bertsimas and Popescu use these methods to find
best possible bounds for pricing financial derivatives with-
out assuming particular price dynamics. For a survey of
this line of work, including several historical remarks on
the origin of moment problems in the 20th century, see
Bertsimas, Popescu and Sethuraman [6].

Semidefinite optimization is currently in the center of
much research activity in the area of mathematical pro-
gramming both from the point of view of new application
areas (see for example the survey paper of Vandenberghe
and Boyd [23]) as well as algorithmic development.



Structure of the Paper

The paper is structured as follows. We present in Sec-
tion I the proposed approach. In Section III we present
three examples that show how the method works and how
it performs numerically. Finally, in Section IV we provide
some concluding remarks.

II. THE ProPOSED METHOD

Suppose we are given the partial differential operators
L and G operating on some distribution space A:

L.G:A— A,

and we are interested in finding

| Gute).

where u € A (note also that f € A) satisfies the PDE,

e EQCRY (1)

x = (r1,...

including the appropriate boundary conditions on 92,

Eq. (1) is understood in the sense that both sides
of the equation act in the same way on a given class of
functions D, 1.e.,

Lu:f<:>/(Lu)qS :/f¢, Yé €D,

where D 1s taken to be some sufficiently nice class of test
functions—typically a subset of the smooth functions C*.

We will assume that the operators L and G are linear
operators with coefficients that are polynomials of the vari-
ables. In Section II-E we discuss extensions for a nonlinear
operator . In particular,

Lu(x) = ZLa(az)%,

0% u(x)

e ’

Gu(z) = _ Galz)
a
,iq) 1s a multi-index,

where o0 = (i1, . ..

0% u(x) B 3Zk Zku(az)

= L
oz dxt -+ 0l

and La(®) and Gq(®) are multivariate polynomials (we
discuss extensions in Section II-F). We will restrict our-
selves to the case where D 1s separable, that is, it has a
countable dense subset. This restriction is not as limiting
as it might first appear. In particular, if the solution u has
compact support, then we may also assume without loss of
generality that every element of D has compact support as
well, and thus by the Stone—Weierstrass theorem, D 1s sep-
arable. The condition that u have compact support may
also be replaced by the (slightly) weaker condition that u
have exponentially decaying tails.

Let F = {¢1, ¢2, ...} generate (in the basis sense) a dense
subset of D. Then, by the linearity of integration we have

Lu=f = /(LU)¢>=/f¢, Vo €D,
— /(Lu)¢i:/f¢i, Vo € F.

We discuss different choices for the subset F in Section II-F.
One separable subspace around which this paper focuses is
the subspace spanned by the monomials & = 23" ...z}
Polynomials have the property that they are closed under
action by polynomial coefficient differential operators.
The Adjoint Operator

The adjoint operator, L*, is defined by the equation:

/(LU)¢ = /U(L*</>), V¢ €D.

Therefore, if we have both L and L*, then equality in the
original PDE becomes:

Lu=f < /(Lu)q/):/fq/), Vo €D,
— /(Lu)@:/m, Vi € F,
— /u<L*¢i):/f¢i, Ve € F. (2)

To illustrate the computation of the adjoint operator,
we consider the one dimensional case. The general term of
this operator is, up to a constant multiple:
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Using the notation q; = z%, this term’s contribution to
the adjoint operator is as follows.

/ﬂxa(ﬁbu)(/):/ﬂ(ﬁbu)(xaqb) dx:/ﬂ(abu)q”sdx

— u(b—nq;‘ - (_1)k+1u<b—k>(;<k—1>‘ T

N N

+(_1)b+1u¢;(b—1)‘6ﬂ+(_1)6/ udb e de.
Q

Thus, while perhaps notationally tedious in higher dimen-
sions, computing the adjoint of a linear partial differential
operator with polynomial coefficients is essentially only as
difficult as performing the chain rule for differentiation on
polynomials, and in particular, it may be easily automated.
A. Linear Constraints

Let us define variables in an optimization sense

Ma:/wau(:n):/x1“~~~xdidu(w),
Q Q

together with variables related to the boundary 9€:

za:/ azau(az):/ x1i1~~~xdidu(az).
a9 a9



The specific form of these variables depends on the nature
of the boundary conditions we are given (see Section IIT for
specific examples). We refer to the quantities M and zq
as moments, even though u(-) is not a probability distribu-
tion. We select as ¢;’s the family of monomials %. Since,
for the case we are considering, L, and thus L*, are linear
operators with coefficients that are polynomials in «, then
Egs. (2) can be written as linear equations in terms of the
variables M = (Mq) and z = (zq).

B. Objective Function Value

Given that the operator (G is also a linear operator with
coefficients that are polynomials of the variables, then the
functional [ Gu can also be expressed as a linear function
of the variables M and z. So if we minimize or maximize
this particular linear function, we obtain upper and lower
bounds on the value of the functional.

C. Semudefinite Constraints

Let us assume that the solution we are looking for is
bounded from below, that is u(®) > wg. The constant
ug 18 in fact unknown. In certain cases, wug is naturally
known; for example if u(#) is a probability distribution,
then u(®) > 0, i.e., ug = 0; or if u(®) represents tempera-
ture, then again u(a) > 0.

We consider the vector F(x) = [£?] and the semidef-
inite matrix F(x)F (x)". Then the matrices

[ w@) = w) F@F@), [ (u@) - w)F@)F ey
Q a0
are also positive semidefinite. This leads to semidefinte
constraints involving the variables (M, ug) and (z, ug).
Note that this is an extension to multiple dimensions
of the classical moment problem (see Akhiezer [2]). The
problem is to determine, given some sequence of numbers,
whether it is a valid moment sequence, that is to say,
whether the numbers given are indeed the moments of a
nonnegative function or distribution. In one dimension,
if u(z) > 0, and we define m; = f_-lfj zlu(z)dz, then the
sequence of moments {m, } is valid if and only if the matrix

mgo My mp

mp M2 Mp41
M, =

mp Map

is positive semidefinite for every n. In the case where u(x)
has support [0,00), we need to add the additional con-
straint, that the matrix

my ma Mp41
ma ms Mp42

Mopy1 =
Mp41 mon41

also be positive semidefinite.
In multiple dimensions, it is generally unknown which
are the exact necessary and sufficient conditions for Mg

and zq to be a valid moment sequence, when we are work-
ing over a general domain. For a wide class of domains,
however, Schmiidgen [20] finds such conditions. We review
his work briefly, and use it to derive the necessary and suffi-
cient conditions for Mg and zg to be a moment sequence.

An Operator Approach

Given a closed subset Q of R?, a sequence of num-
bers Mq defines a valid moment sequence if there exists a
measure p such that

Ma :/ 2 dy.
Q

We define the linear operator

Hf:/ﬂf(w)du.

It is obviously necessary that H f > 0, whenever f > 0 on
Q. A classical theorem says that it is also sufficient:
Theorem | (Haviland [11]) If @ C R™ is closed, then
Mq defines a valid moment sequence if and only if the
linear operator H is nonnegative on all polynomials that
are nonnegative on €.
Theorem 1 implies that the problem of finding necessary
and sufficient conditions for M and zq to be a moment
sequence, reduces to checking the nonnegativity of the im-
age of a polynomial that is nonnegative on Q. In one di-
mension, we know that any polynomial that is nonnegative
may be written as the sum of squares. Since the square
of a polynomial may be written as a quadratic form, the
nonnegativity of the operator reduces to matrix semidefi-
niteness conditions. The Motzkin polynomial in R3,

P(x,y,2) = 2*y? + 2y* + 2% — 32y,

is an example that shows that in higher dimensions, the
sum of squares decomposition of a nonnegative polyno-
mial is not in general possible (see Reznick [18] for details).
However, Schmiidgen [20] gives a representation of all poly-
nomials that are nonnegative over a compact finitely gener-
ated semialgebraic set €2, as defined in the theorem below.
This leads to necessary and sufficient conditions for a mo-
ment sequence to be valid on €.

Theorem 2 (Schmiidgen [20]) Suppose Q@ = {& €
R™ ¢ fi(®) >0, 1 <i<r}isclosed and bounded, where
fi(x) are polynomials. Then a polynomial g(#) > 0 on
if and only if it is expressible as a sum of terms of the form

hi(@) I fi(),

kel

for I Cc{l,...,7}, and h; some polynomial.
Theorems 1 and 2 lead to the following result.

Theorem 3: Given M = [Mq], there exists a distri-
bution u(2) such that

Mo = /ﬂ(u(az) — up)x®,



for a closed and bounded domain € of the form
Q={x eR*: fi(x)>0,..., f.(x) >0},

if and only if for all subsets I C {1,... 7} the following
matrices are positive semidefinite:

[ i) = w) @ Fay [T r@, @)
where I C {1,...,r}.

Examples of domains for which the above result ap-
plies include the unit ball in R¢, which can be written as

B={xeR 1—al— . —22>0},
and the unit hypercube,

C={xeR?: x;>0,1—2;>0,1<i<d}.

We next make the connection to semidefinite con-
straints explicit. While all the results can be easily general-
1zed to d—dimensions, for notational simplicity we consider
d = 2, assume that vy = 0 and use €2 as the unit hypercube
C' in two dimensions. Note that in this case there are four
functions,

Jilzer,xe) = 21, folwy,x2) =1 — a4,

fa(z1,2) = 22, fa(z1,22) =129,
defining the set Q. Thus, there are 2* = 16 possible sub-
sets I of {1,2,3,4}. Each of these subsets gives rise to a

particular semidefinite constraint as follows. Denoting the
moment sequence as {m; ;}, for I = @), we have that

Mmoo MMio0 Mp1 My
mio M20 Mi11 M2
mo1 MMi1 Mol My2 =0
mi1 MM21 Mi2 M22

For I = {2}, we obtain

mo,0 — M1,0
mi,0 — M2,0
mo,1 — M1
mi1 — me1

mi0 —Mm2,0 Mol — M1
mi1 — me1
mo,1 — M1

mi2 —m22 v -

m2,0 — M3,0
mi1 — me1
ma 1 — ma31

Proceeding in this way, we obtain 16 semidefinite con-
straints. Note that these are only necessary constraints,
because we only check the semidefiniteness of the trun-
cated matrices. If € is the unit ball in d dimensions, we
have exactly two semidefinite constraints.

D. The Overall Formulation

As we mentioned, the variables are the moments
Ma = [qx%u(z), the boundary moments zg =
f(,m #%u(x) and the bound wug, which might be naturally
known. The semidefinite optimization consists of linear

equality constraints generated by the adjoint operator for
different test functions %, and of the semidefinite con-
straints that express the fact that the variables M and
ze are in fact moments. Subject to these constraints, we
maximize and minimize a linear function of the variables
that expresses the given linear functional. The overall steps
of the formulation process are then summarized as follows:
(i) Compute the adjoint operator L*.

(i1) Generate the n'™™ equality constraint by requiring

that
Juwon = [ 16,

(iii) Generate the desired semidefinite constraints; note
that these only depend on the domain © and not on the
operator L.

(iv) Compute upper and lower bounds on the given func-
tional by solving a semidefinite optimization problem over
the intersection of the positive semidefinite cone and the
equality constraints.

E. The Mazimum and Minimum Operator

Suppose that the given functional is

Gu = min u(x).
Ten

Then, we will formulate the objective function
min ug.

This approach gives a lower bound on the minimum of u(x)
over 2. However, if we maximize maxug we do not obtain
a true upper bound on the minimum of u(x) over Q, only
an approximation.

Similarly, if we are interested in

maxu(@)

we solve maxwg such that w(®) < wp, which leads to
semidefinite constraints involving M, z and vg. This ap-
proach gives an upper bound on vy, while minimizing vg
only leads to an approximation.

Note that here the semidefinite constraints are abso-
lutely crucial. This is because the additional variable ug 1s
introduced linearly, and because of the linearity of integra-
tion, cannot possibly be calculated by the family of linear
constraints. Rather, the linear constraints link it to the
variables of the optimization, and then it 1s constrained by
the semidefinite constraints.

F. Using Trigonometric Moments

Instead of choosing polynomials as test functions, we
could choose other classes of test functions. Polynomials
are particularly convenient as they are closed under differ-
entiation. While this property is not a necessary condition
for the proposed method to work, it significantly limits the
proliferation of variables we introduce. When the linear
operator has coefficients that are not polynomials, other
bases might be more appropriate.



The trigonometric functions {sin(nz),cos(nz)} are
also closed under differentiation (again we can form prod-
ucts in higher dimensions, just as with monomials). Us-
ing trigonometric functions as a basis of our test functions
provides a straightforward way for us to deal with linear
operators with trigonometric coefficients. This 1s an im-
portant point, as Section III-D reveals, namely, that the
choice of test function basis ought to depend on the coeffi-
cients of the linear operator. In Section III-D, we present
an example of the use of the method with trigonometric
test functions.

I11. EXAMPLES

In this section, we illustrate our approach with three
examples: (a) a simple homogeneous ordinary differen-
tial equation, (b) a more interesting ODE: Bessel’s equa-
tion, and (c) a two-dimensional partial differential equation
known as Helmholtz’s equation. In all three examples, we
take the solution to have support on the unit interval for
the ODEs, and on the unit square for the PDE.

A. Ezample 1: v’ 4+ 3v' +2u=0

We consider the linear ODE with constant coefficients
w3 +2u=0 (4)

with the boundary conditions u'(0) = —2¢? and /(1) =
—2, and © = [0,1]. In this case, we can easily find the
solution u(z) = e? - e72". Let us apply the proposed
method. For simplicity of the exposition we use the fact
that u(x) > 0.

We can compute the adjoint operator directly by inte-

gration by parts:

1 1
+3u¢>‘ +
0] 0]

1 1
/ (' + 30 + 2u)¢ = u/q[)‘ — ud!
0 0

1
/ (ug” — 3u¢’ + 2ug).
0

We use ¢;(z) =2, i=10,...,n and let

1
mi:/ xlu(a:)dx
0

Together with the two unknown boundary conditions «(0)
and u(1), we have n + 1 variables m;, ¢ = 0,...,n for a
total of n 4+ 3 variables. The linear equality constraints
generated by the adjoint equations are:

d=1: = 3(u(l)—u(0))+ 2my = u'(0) — (1),

d==z: = 2u(l)+u(0) —3my + 2m; = —u'(1),
b=z = u(1) + 2mg — 6my + 2ms = —u/'(1),
b= = (Bn)u(l)+n(n— ma_s

—3n-my_1 + 2m, = —u/(1).

Variable LB UB
mo 3.1939 | 3.1951
my 1.0969 | 1.1619
mo 0.5975 | 0.5997
ms 0.3957 | 0.3961
my 0.2916 | 0.3179
ms 0.2580 | 0.8809

TABLE 1

UPPER AND LOWER BOUNDS FOR THE ODE (4) FOrR N = 14, USING
SDPA. THE TOTAL COMPUTATION TIME WAS LESS THAN 15 SECONDS
FOR ALL TWELVE SDPs.

Since we assume that the solution has support on [0, 1],
we apply Proposition 3 to derive the two semidefinite con-
straints:

mgo My mp
mp M2 Mp41
p— )
mp Map
mo — my mip —Mma My — Mp41
mip — M2 mg — g Mpy1 — Mp42

>0

My — Mpy1 Moy — Man41

Subject to these constraints, we maximize and mini-
mize each of the m;, 0 < ¢ < n in order to obtain values
for m;.

We applied two semidefinite optimization packages to
solve the resulting SDPs: the optimization package SDPA
version 5.00 by Fujisawa, Kojima and Nakata [10] and the
Matlab based package SeDuMi version 1.03, by Sturm [22].
The semidefinite optimizations were run on a Sparc b.

In Table I, we report the results from SDPA using
monomialsup to N = 14. As SDPA exhibited some numer-
ical instability, we replaced the equality constraints @’ = b
with —e 4+ b < a’® < b+ with ¢ = 0.001.

We observe that because of the perturbation we in-
troduced the bounds are only accurate up to the second
decimal point. We see; as we would expect, that the per-
formance begins to deteriorate as we ask for higher order
moments.

In Table I, we report results using SeDuMi with N =
60. SeDuMi successfully solved for the first 45 moments,
such that the upper and lower bounds agreed to 5 decimal
points.

In order to test the ability of our method to find the
minimum of u(xz), we reversed the sign of the boundary val-
ues for this linear ODE, to obtain an ODE with a solution
that is no longer nonnegative:

u(x) = —eZe™ 27,

By implementing the method we outlined to compute the
minimum of u(z) in the previous section, and using Se-
DuMi, we obtain the exact value for the minimum of the
function u(z) to be ug = —7.389.



N | Minimum | Maximum

20 -0.3087 0.4986

24 -0.3101 0.5068

30 -0.3111 0.5081

40 -0.3142 0.5046
TABLE 111

APPROXIMATIONS FOR THE MAXIMUM AND THE MINIMUM OF THE
SOLUTION OF EqQ. (5) using SEDUMLIL.

Variable LB UB
my 0.1766 | 0.1766
mo 0.0903 | 0.0903
ms 0.0583 | 0.0583
my 0.0438 | 0.0438
ms 0.0361 | 0.0361

TABLE 1V

UPPER AND LOWER BOUNDS FOR Eq. (5) FOR N = 24 USING

SEDUMI.

Variable LB UB
mo 3.1945 | 3.1945
my 1.0973 | 1.0973
mo 0.5973 | 0.5973
ms 0.3959 | 0.3959
My 0.2918 | 0.2918
ms 0.2295 | 0.2295
me 0.1884 | 0.18%84
my 0.1595 | 0.1595
me 0.1382 | 0.1382
Mo 0.1218 | 0.1218
mio 0.1088 | 0.1088
Mmoo 0.0524 | 0.0524
m3p 0.0344 | 0.0344
M40 0.0256 | 0.0256

TABLE 11

UPPER AND LOWER BOUNDS FOR THE ODE (4) FOR N = 60, USING
SEDUMI. THE TOTAL COMPUTATION TIME WAS UNDER FIVE MINUTES.

B. The Bessel Fquation

In this section we consider Bessel’s differential equa-

tion

22 + e + (27 — p?lu=0.
The Bessel function and its variants appear in one form
or another in a wide array of engineering applications, and
applied mathematics. Furthermore, while there are inte-
gral and series representations, the Bessel function is not
expressible in closed form. The series representation of the
Bessel function, which can be found in, e.g. Watson [24],
is:

o) = 0

r kl(k + p)!
k=0
Also, over the appropriate range, the Bessel function is
neither nonnegative, nor convex.

In order to avoid numerical difficulties from large con-
stant factors, we solve a modified version of Bessel’s equa-
tion:

22 + x4 (4927 — p?lu = 0. (5)

The solution is u(z) = J,(7z). Assuming we are given the
value of the derivatives on the boundary, using the mono-
mials as the test functions, we obtain the adjoint equations:

o=1: =
p=z:. =
(/):xz: = —3u

—u(1) + (1 — p*)mg + 49ms = u'(1),
—2u(1) + (4 — p*)my + 49m3 = v/(1),
(1) + (9 — p?)ma + 49my = u'(1),

—(n 4+ Du(1) + ((n +1)* = p*)my,
+49my, 10 = W/ (1).

In what follows, we choose p = 1. We used SeDuMi
to compute the moments, and also to compute the max
and min. Recall from the discussion in Section II-E that
while we are able to obtain bounds for the moments, our
method can only compute approrimations to the max and
min of the solution. In the case of the Bessel function, the
approximations we obtain of the minimum are greater than
the actual value, and the approximations for the maximum
are less than the actual value. The true values are: min =
—0.347 and max = 0.583. In Table III we report the results
from using SeDuMi.

SeDuMi reported severe numerical instabilities for the
computation of the maximum for the cases N = 30 and
N =40.

Next, we use these results to translate the function
so that it i1s nonnegative, and so that we can compute the
moments of the translated function. We use u(z) — ug > 0
with ug = —0.4. Again using SeDuMi, we obtain very
accurate bounds to the moments. We give the first few
in Table IV. We would expect by linearity, and indeed the
results show, that just having a lower bound on the function
is enough to find accurate results on the moments of the
function.

C. The Helmholtz Equation

In this section we consider the two dimensional PDE
Au+kPu=f (6)

over = [0,1]2. To compute the adjoint operator we need
to use Stokes’s formula:

/dw:/ w.
Q a0

Recall that in two dimensions we have:

w=fdr+gdy <= dw= (3_g_3_f) dzdy,



and thus computing the adjoint operator, we have:

5%u B 0 [Ou 3u3¢>
[, () oaetn= [ (5 (55 2) - e ) et
[ ou 06\ _ 0%
= | ae CW- /g<6 (693) “0a? )ddy

B Ou 0¢ 2(1)
_/(rm<3_x.¢_u3_x)dy+/ﬂ e da:dy

8%u
[(z
q \Oxz? 3y2

% term, we obtain
0? 0?
+ —Z+f) qsdxdy:/ (f¢>+ ¢
dy
Ou Ou 0¢
L ) o)
aa \ Oz v aa \ 0y v dy
Again we consider the family of monomials,

_ ua_‘/’)
Oz

F={a" -4}, fori je NU{0}.

In addition to the variables

e[ o

we also introduce the boundary moment variables:

(z,y)dedy,

1y)y dy, d¥=t = /3ux_1y)ydy

y)y' dy, d7=0 = /3ux_0y)ydy

J:dxdyl /3u =
J:dxdyo /3u

Then the adjoint relationship above yields:

l)xi dx

)a: dzx.

b=1 BT T A o =
/fdxdy
Q
o=a's = AT (i = Dmisgo +dfT - df
Q
o=y = GT a0 AT 4G Dmoo
+mo,; = / [y dedy
Q
o=y = T4 Dmyo 4+ dYT

+i(j—Dmsj_o+m;; = / I ziy dedy.
Q

Note that either the {df,d?}, or the {b7,07}, are given

as boundary values. In order to compare with the exact

2
0 ¢) dxdy

Variable | Value

moo 2.9525

mio 1.7183

mlyl 10000

mao 1.2342

mzyl 07183

mzyz 05159

m370 09681

m371 05634

m372 04047

m373 03175

TABLE V
ExacT RESULTs FOR THE SOLUTION OF THE PDE (6).
Var LB UB LB UB LB UB
N=5| N=5 N=10 | N=10 N=20| N=20
m0,0 0.0000 +oo 0.0000 +oo 0.0000 +oo
™10 0.0000 | 4.3142 0.0000 4.0822 0.0000 3.8694
mi1 0.7559 | 1.0881 0.8557 1.0419 0.9400 1.0120
m2.0 0.0000 | 4.6790 0.0000 4.6790 0.0000 4.6790
ma 1 0.0545 1.0563 0.1417 1.0059 0.1749 0.9753
ma 2 0.0000 | 0.9447 0.0000 0.9087 0.0000 0.9087
m3.0 0.0000 | 4.8743 0.0000 4.4932 0.0000 4.4414
m3 1 0.1692 | 0.6806 0.4015 0.6063 0.5025 0.5758
m3 2 0.0000 | 0.6383 0.0000 0.6105 0.0000 0.5989
m3.3 0.0000 | 0.5291 0.1684 0.3640 0.2573 0.3296
TABLE VI

UPPER AND LOWER BOUNDS FROM LINEAR OPTIMIZATION FOR N = 5,
N =10, N = 20. FOR THE CASES N = 5,10 WE ONLY RUN UP TO

T)’L272.

solution, we selected the boundary conditions such that
flz,y) = 3e* TV,

In order for the m; ; to be a valid moment sequence,
we need to impose 16 semidefinite matrix constraints. Sim-
ilarly, we need to impose two semidefinite constraints for
all boundary variables. In order to illustrate the power of
the semidefinite constraints, we run our optimization prob-
lem in two different stages. First, we provide the results
of solving the linear optimization problem generated by
the adjoint equation, using the commercial software AM-
PLE. Next, we enforce the semidefinite constraints. The
true results, as computed by Maple 6.0, are repoted in Ta-
ble V. Solving a linear optimization problem, ignoring the
semidefinite constraints and only imposing nonnegativity
constraints on the variables, we obtain the bounds in Ta-
ble VI for N = 5,10, 20.

We then add the semidefinite constraints and use
SDPA to solve the corresponding semidefinite optimiza-
tion problems. SDPA gave very tight bounds; however,
there were nevertheless some numerical instabilities, which
required us to change the desired accuracy in the search
parameters, in order to obtain answers that made sense.
In Table VII we report upper and lower bounds for N =
5, 10, N = 20. Note that when we use monomials up to
degree N, there are in fact N? such monomials.




Var LB UB LB UB LB UB
N=5| N=5 N=10 | N=10 N=20| N=20
m0,0 2.7687 | 5.5689 2.9113 2.9809 2.9377 2.9599
™10 1.8377 | 2.2006 1.6955 1.7276 1.7106 1.7199
mi1 0.9679 1.0089 0.9851 1.0026 0.9988 1.0005
m2.0 1.0860 1.8173 1.2058 1.2437 1.2261 1.2353
ma 1 0.6089 | 0.7626 0.7019 0.7169 0.7177 0.7185
ma 2 0.3192 0.5456 0.5010 0.5107 0.5148 0.5161
m3.0 0.5263 1.8191 0.9411 1.0000 0.9601 0.9683
m3 1 0.5296 | 0.6076 0.5485 0.5653 0.5623 0.5639
m3 2 0.2021 0.4069 0.4009 0.4068 0.4036 0.4046
m3.3 0.1025 0.3495 0.3139 0.3191 0.3163 0.3179
TABLE VII

UPPER AND LOWER BOUNDS FOR EQ. (6) FOR N = 5, 10 USING
SDPA. THE COMPUTATION OF EACH BOUND TOOK LESS THAN 0.5
SECONDS FOR N = 5, 3-5 SECONDS FOR N = 10, AND 1-3 MINUTES

FOR N = 20.

We notice that the tightness of the bounds is nearly
as dramatic as in the one dimensional case. Moreover,
the bounds using semidefinite optimization are significantly
tighter than the ones obtained using linear optimization.
This observation is significant and emphasizes the impor-
tance of the semidefinite constraints. For example, with-
out the semidefinite constraints, the upper bound on mg o
18 400, whereas we obtain very tight bounds for N = 10
using the semidefinite constraints.

D. Trigonometric Test Functions

In this section we illustrate the use of trigonometric
test functions. We consider the differential equation

u” + 2u' + sin(27x)u =
10sinz — 20 cosz + (10 — 10sin z) sin(27z). (7)

Note that if we attempted to use a polynomial basis we
would encounter a proliferation of variables, since the poly-
nomials are not closed by action of the adjoint (which has
a sin(2mwx) term). We use the family of functions

$an(x) :=sin(2mne),  Pany1(x) := cos(2mn).
We define the variables:

mMon =

| w@yénna) da
/ﬂu(x)¢2n+1(x) de.

Mon41 =

The adjoint equations become:

$1 = 1:=2u(l) — 2u(0) + ma = / fda,
Q

. 1
$an = sin(2rne) : =27n(uw(0) — u(l)) + §m2(n_1)+1

1
—5M2(n+1)+1 = 4m°n?may, — 4Tnmay 41 = /ﬂf(bzn dx

Variable LB UB
mg 0.1128 | 3.1239
my 0.6730 | 1.0954
ma 0.0000 | 0.0294
ms 0.4471 | 0.7192
my 0.0127 | 0.0130
ms 0.3349 | 0.5390
Mg 0.0072 | 0.0073
my 0.2678 | 0.4310
mg 0.0046 | 0.0047
My 0.2231 | 0.3591
mig 0.0032 | 0.0032

TABLE VIII
UPPER AND LOWER BOUNDS FOR THE ODE (7) FOR N = 20 USING
SEDUMI.

1
$ant1 = cos(2mne) : =2u(l) — 2u(0) + 3M2(n+1)

1
—5Ma(n-1) ~ 4m°n?map 11 — 4Tnma, = / foony1de.
Q

Note that for the semidefinite constraints products
cos(2mnx) - sin(2rma) appear, which can be rewritten as
follows:

sin(2mnx) - cos(2rma) = %(sin(?ﬂ'(n +m)z)+
sgn(n —m)sin(2w|n — m|z))

sin(2mnx)-sin(2rma) = %(cos(?ﬂ'(n—m)a:)—cos(27r(n—|—m)a:))

cos(2mnx)-cos(2rma) = %(cos(?ﬂ'(n—m)x)—l—cos(?ﬂ'(n—l—m)x)).

Using SeDuMi we report in Table VIII upper and lower
bounds for this ODE using trigonometric test functions.
We see that the bounds are much tighter for the even mo-
ments. While the bounds are not as tight as in the earlier
cases, nevertheless they do give an indication that the pro-
posed method may have further applications than polyno-
mial moments.

E. Insights From The Computations

In this section we summarize the major insights from
the computations we performed.

(i) In both one and two dimensions, the proposed method
gave strong bounds in reasonable times.

(ii) Perhaps the most encouraging finding is that the
semidefinite constraints significantly improve over the
bounds from the linear constraints.

(iii) The software packages we used exhibited some nu-
merical difficulties.

(iv) Our experiments with trigonemetric moments indi-
cate that the proposed method is not restrictive to PDEs
with polynomial coefficients, but can accomodate more
general coefficients by appropriatedly changing the under-
lying basis.



IV. CoNCcLUDING REMARKS

We have presented a method for providing bounds on
functionals defined on solutions of PDEs using semidefinite
optimization methods.

The algorithm proposed in this paper uses N ele-
ments of our chosen function family (for example poly-
nomials), and uses O(N?) variables. Compared to tradi-
tional discretization methods, the proposed method pro-
vides bounds, as opposed to approximate solutions by solv-
ing a semidefinite optimization problem on O(N?) vari-
ables. The computational results at least for one or two
dimensions indicate that we obtain relatively tight bounds
even with small to moderate N, which is encouraging.

Despite a lot of progress in recent years, the current
state of the art of semidefinite optimization codes, espe-
cially with respect to stability of the numerical calculations
1s not yet at the level of linear optimization codes. This
1s one of the major limitations of the proposed method, as
it relies on the semidefinite optimization codes. Moreover,
we use general purpose semidefinite codes even though we
have a very particular formulation with a lot of structure.
The hope is that progress in the area of numerical methods
for semidefinite optimization codes will improve the ability
of the proposed method as well.
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