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I. INTRODUCTION

I have selected material from six recent papers that I
hope will be of interest.

II. TRIDIAGONAL MATRICES AND THE KALMAN FILTER

The Kalman filter is an entirely natural algorithm that
deserves to be well known in numerical linear algebra. It is
often derived via conditional probabilities, but we describe
it using ordinary elimination (an alternative is QR from
Gram-Schmidt). The most convenient starting point for
(block) tridiagonal matrices is their triangular factorization
into T = LDU.

The reverse factorization T'= U_ D_ L_from eliminating
upwards is occasionally useful. The pivots in D and D_
give a neat formula for the inverses of the diagonal entries
in 7-!, and we show how this formula (T~');;} = Dy, +
(D_)gr — Ty is applied in one part of the Kalman filter. The
output from the filter is the solution Z to a block tridiagonal
system, and also (most importantly) the diagonal blocks
(T~%),, are covariance matrices for errors in 7.

We also mention the corresponding formula when T is
not tridiagonal but “tree-diagonal.” Thus T;; = 0 if the
tree has no edge from node i to node j. These matrices
share important properties of tridiagonal matrices (which
come from straight trees with no branches).

It is an understatement to say that tridiagonal matrices
are important in mathematics. We have no hope of describ-
ing this enormous subject, and we won’t try. Instead we
discuss one particular identity that we found intriguing, for
the diagonal entries of the inverse matrix. Since the con-
tinuous analogue of a tridiagonal matrix is a second-order
differential operator, there must be (and there is) a corre-
sponding identity for the diagonal slice z = y of the Green’s
function G(z,y). It is tempting to include this too, with
its application to the continuous Kalman filter. We are in
the situation of Oscar Wilde, who could resist anything but
temptation. But we did resist. We will stay with matrices.

The identity is equation (1) below. We learned it from
a problem posed by Parlett; it was known earlier. Be-
fore starting on its applications, may we mention another
identity (also for symmetric tridiagonal matrices) that has
just now contributed to a remarkable formula of Dumitriu
and Edelman [1]. This second identity, found by Paige,
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connects the first components ¢; of the eigenvectors (unit
length) to the characteristic polynomials of T' and of its
last n — 1 rows and columns:

2 = 1)
o P(N)

See pages—of Parlett’s book [7] for proof. The first
Dumitriu-Edelman formula gives the Vandermonde deter-
minant of the eigenvalues (thus the discriminant of P,):
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From this they are able to compute the Jacobian of a trans-
formation of R2"~! that is crucial for symmetric tridiag-
onal matrices. The mapping takes the matrix entries T} ;
and T; ;41 to the eigenvalues A; and the g;. Its Jacobian is
beautifully simple:
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The application in [1] is to the eigenvalue statistics for new
classes of random matrices.

Please forgive one more extraneous remark before this
paper begins. It concerns a quite different fact about the
inverse of a tridiagonal matrix. The inverse has low rank
(in fact rank one!) above and below the main diagonal.
Thus the entries of 7! have the form u;v; for i < j. Other
band matrices have a corresponding property (low rank
triangles). This underlies the success of the Greengard-
Rokhlin Fast Multipole Method.

For large dense matrices arising from integral equations
we very often see large blocks of (nearly) low rank. Tt
seems probable that approximation by low rank blocks will
lead to useful algorithms in numerical linear algebra. Our
expository paper [6] is a guide to the original references.

III. THE Di1SCRETE COSINE TRANSFORM

Each Discrete Cosine Transform uses N real basis vectors
whose components are cosines. In the DCT-4, for example,
the jth component of vy, is cos(j + 3 )(k+3) & These basis
vectors are orthogonal and the transform is extremely use-
ful in image processing. If the vector x gives the intensities
along a row of pixels, its cosine series ) cgvr has the co-
efficients ¢, = (x,v;)/N. They are quickly computed from
an FFT of length 2N. But a direct proof of orthogonality,
by calculating inner products, does not reveal how natural
these cosine vectors are.

We prove orthogonality in a different way. Each DCT
basis comes from the eigenvectors of a symmetric “second
difference” matrix. By varying the boundary conditions



we get the established transforms DCT-1 through DCT-4.
Other combinations lead to four additional cosine trans-
forms. The type of boundary condition (Dirichlet or Neu-
mann, centered at a meshpoint or a midpoint) determines
the applications that are appropriate for each transform.
The centering also determines the period: N—1or NV in the
established transforms, N — 1 or N + 1 in the other four.
The key point is that all these “eigenvectors of cosines”
come from simple and familiar matrices.

Just as the Fourier series is the starting point in trans-
forming and analyzing periodic functions, the basic step for
vectors is the Discrete Fourier Transform (DFT). It maps
the “time domain” to the “frequency domain”. A vector
with N components is written as a combination of N spe-
cial basis vectors vg. Those are constructed from powers
of the complex number w = €27/,

Vg = (l,wk,wzk,...,w(N_l)k) , k=0,1,...,N—1.

The vectors v;, are the columns of the Fourier matrix F' =
Fy. Those columns are orthogonal. So the inverse of F'
is its conjugate transpose, divided by || vt ||>= N. The
Fourier series = Y, ¢,vy is £ = Fc. The inverse ¢ = 'z
uses ¢ = (z,v;)/N for the (complex) Fourier coefficients.

Two points to mention, about orthogonality and speed,
before we come to the purpose of this note. For these
DFT basis vectors, a direct proof of orthogonality is very
efficient:

(wk,uje)N -1

(whyiaty = L

(vk,ve) =

The numerator is zero because w’ = 1. The denominator
is nonzero because k # £. This proof of (vg,vs) = 0 is short
but not very revealing. I want to recommend a different
proof, which recognizes the vy as eigenvectors. We could
work with any circulant matrix, and we will choose below
a symmetric Ag. Then linear algebra guarantees that its
eigenvectors vy, are orthogonal.

Actually this second proof, verifying that Agvy = Agvg,
brings out a central point of Fourier analysis. The Fourier
basis diagonalizes every periodic constant coefficient oper-
ator. Each frequency k (or 2mk/N) has its own frequency
response A\x. The complex exponential vectors v are im-
portant in applied mathematics because they are eigenvec-
tors!

The second key point is speed of calculation. The ma-
trices F and F~! are full, which normally means N? mul-
tiplications for the transform and the inverse transform:
y = Fz and z = F~'y. But the special form Fj; = w’* of
the Fourier matrix allows a factorization into very sparse
and simple matrices. This is the Fast Fourier Transform
(FFT). It is easiest when N is a power 2. The opera-
tion count drops from N2 to %N L, which is an enormous
saving. But the matrix entries (powers of w) are complex.

The purpose of this note is to consider real transforms
that involve cosines. Fach matrix of cosines yields a Dis-
crete Cosine Transform (DCT). There are four established

types, DCT-1 through DCT-4, which differ in the bound-
ary conditions at the ends of the interval. (This difference
is crucial. The DCT-2 and DCT-4 are constantly applied in
image processing; they have an FFT implementation and
they are truly useful.) All four types of DCT are orthog-
onal transforms. The usual proof is a direct calculation of
inner products of the NV basis vectors, using trigonometric
identities.

We want to prove this orthogonality in the second (in-
direct) way. The basis vectors of cosines are actually
eigenvectors of symmetric second-difference matrices. This
proof seems more attractive, and ultimately more useful.
It also leads us, by selecting different boundary conditions,
to four less familiar cosine transforms. The complete set of
eight DCT’s was found in 1985 by Wang [8], and we want
to derive them in a simple way. We begin now with the
DFT.

IV. TREES WITH CANTOR EIGENVALUE DISTRIBUTION

We study a family of trees with degree k at all interior
nodes and degree 1 at boundary nodes. The eigenvalues of
the adjacency matrix have high multiplicities. As the trees
grow, the graphs of those eigenvalues approach a piecewise-
constant “Cantor function”. For each value 7, we will
find the fraction of the eigenvalues that are given by A =

2vk — 1cos (Z2).

V. LOCALIZED EIGENVECTORS FROM WIDELY SPACED
MATRIX MODIFICATIONS

This paper is about the eigenvalues and eigenvectors of
familiar structured matrices, after changes in a small num-
ber of entries. The actual changes need not be small, so
we refer to them as modifications rather than perturba-
tions. The number of changes is small relative to the size
of the matrix, because the modifications are required to be
“widely spaced”. They occur in entries that are far apart.
They produce new eigenvectors that are localized in and
near the components that correspond to changed rows. By
knowing the approximate form of the eigenvectors, we also
determine a very close (and simple) approximation to the
eigenvalues.

Imagine a large number of nodes around a circle. Edges
go only to the two neighbors of every node. Each row of the
adjacency matrix A of this cyclic graph has two 1’s. The
matrix is a circulant with 1’s on the first subdiagonal and
superdiagonal, coming from the neighbors to the left and
right. Now add a few edges going “across” the circle, so
that the nodes involved are widely spaced. The modified
graph has an adjacency matrix (symmetric if the added
edges are undirected, but this is not required) with 1 in
the i, j entry when an edge connects node i to node j. A
typical example of our work is to find the “new” eigenvalues
and eigenvectors of this modified matrix.

The first author mentioned in STAM News the simplest
case of this example. Only one undirected edge crosses
the circle, from node ¢ to a distant node j. This added
edge modifies A by a;; = aj; = 1, in other words by a
widely spaced submatrix with entries from B = [01;10].



The modified matrix has two new 1’s, far from the main
diagonal. The two new eigenvalues are almost exactly \/@
and —m. The corresponding eigenvectors show a sum
or difference of two spikes, as in Figure 1, centered at the
positions ¢ and j connected by the “shortcut edge”. The
remaining eigenvalues stay in the interval [—2, 2] that con-
tains all eigenvalues of the original A. Their eigenvectors
still oscillate like the original eigenvectors, but orthogonal-
ity to the new ones produces the pinching at ¢ and j that
is illustrated by Figure 2.

This brief mention in STAM News brought suggested
proofs from three friends, Beresford Parlett and Bill Trench
and Jackie Shen. All four approaches are different!
Shen connected the problem to the theory of perturbed
Schrodinger operators, and we believe that our work can be
seen as a small contribution (possibly not new) to that es-
tablished theory. We stay with this example in our first sec-
tion, and we find the following formula linking the (nearly
exact) new eigenvalues \ to the eigenvalues y of B:

A = (sign p)\/(4 + ).

The rank two perturbation from one undirected edge and
B =[01; 10] has 4 = 1 and —1, confirming that A = 1/(5)
and —m. In the two localized eigenvectors, the heights
of the “spikes” are given by the eigenvectors of B. We
also determine the ratio ¢ between neighboring entries near
positions ¢ and j (a smaller ¢ means a sharper spike and a
more localized eigenvector). This pattern extends to any
widely spaced modification by a nonsingular B.

Later sections of the paper extend the theory beyond the
circle of nodes and its particular adjacency matrix A. We
mention that an infinite string of nodes would give the same
results, or even a finite string with a tridiagonal matrix A,
provided the modifications occur far from the ends of the
string (the first and last rows of A). The Laplacian matrix
of a graph (a circle or a tree or an N-dimensional grid) is
another important source of examples.

A. The Model Problem

We start with a line of nodes (the graph has a node
at every integer). Its adjacency matrix A will be infinite,
with 1’s on the first subdiagonal and first superdiagonal:
a;,i—1=a;,i+1=1for —oo < i < 0o. The modification
of A will be governed by an M by M matrix B, which need
not be symmetric. We choose M widely spaced indices
r1 < ... < ryp; the differences between these indices all
exceed a number L >> 1. Then the i, j entry of B is added
to the r;,r; entry of A. By a terrible abuse of notation,
we call the modified matrix A + B. Qur problem is to
estimate the “new” eigenvalues and eigenvectors after the
modification:

(A+ B)z = Az. (1)

The key is that we expect each eigenvector z to be a sum
of M spikes. For a given eigenvector, suppose the spike
centered at the r; entry of x has height hy. The “spike
ratio” between neighboring entries is denoted by ¢. Then

the jth component of this eigenvector has the form
z; = sum from k=1 to M of 9 — T - (2)

When j = rg, the kth term reduces to hy as desired. The
ratio ¢t will be different for different eigenvectors (¢ will
depend on \).

Now substitute this form for x into the equation (A4 +
B)z = \x. We distinguish the special rows j = r,...,rym
from the other rows (ordinary unmodified rows). In those
ordinary rows there is no contribution from B. The ma-
trix A has 1’s to the left and right of the diagonal, which
produce an extra factor of ¢t and 1/¢ in every spike. The
eigenvalue equation (1) in the ordinary rows becomes

(t+1/t+0).’l7j=)\.’1:'j. (3)

In the special row j = 1, where B has an effect, the
equation is

2thy, + (Bh)x = My, + O(t5). (4)

You see the change. For the kth spike, centered on this
special row, both 1’s in A produce a factor ¢ (thus 2t). All
the other spikes in x are of order t* in this entry, because
the special rows are far apart. For the same reason z; on
the right side equals hy + O(tF).

Suppose we ignore the error O(t%). Then equation (4)
says that the vector h of spike heights is an eigenvector of
B. If that eigenvector has an eigenvalue u, equations (4)
and (3) become

2+p=A=t+1/t. (5)

Compare the left side with the right side, to find t+u = 1/t.
This quadratic equation yields

t=1/2(—p+/— V@A +p*). (6)

Choose the plus-minus sign to agree with the sign of p,
so that |¢| < 1. Then substitute ¢ into (5) to find

A =2t + p = (sign of p)\/(4+ p2).(7) (7)

This is the (approximate) relation between the new eigen-
value A of A + B and the eigenvalue p of B. We want to
prove that the error in (7) is of the same order O(t") as
the terms that were dropped.

Theorem 1: If p is a non-repeated non-zero eigenvalue of
the M by M matrix B, with eigenvector A of norm one,
then X in (7) and z in (2) are within O(tL') of an exact
eigenvalue-eigenvector pair for the (infinite) modified ma-
trix A + B.

Ezample 1: Suppose we change only a single entry on the
main diagonal from 0 to 1. The modifying matrix is just
B = [1]. For the (infinite) modified matrix, the localized
eigenvector is exact! The eigenvalue is \/@ and the spike
ratio is the golden mean ¢ = 1/2(—1+ +/(5)). If the single
1 is| The (0,0) entry, the jth component of the eigenvector
is 1.



For a finite matrix, this eigenvalue-eigenvector pair is
only approximate. The approximation is good when the
modified entry is near the center of the finite matrix and
poor (see Figure ) as it approaches the ends of the diagonal
(where the limiting eigenvalue is ....).

Ezample 2: Connect three widely spaced nodes ¢, j, k by
three undirected edges. In this case the modifying matrix
is

B=[011;101; 110].

Its eigenvalues are y = 2,—1,—1. The eigenvalues of the
large matrix A 4+ B are approximately

A= VAT = /) and A = — T T -
—/(5) (twice).

The eigenvector h = (1,1,1) of the small matrix is correctly
reflected in the eigenvector of A + B for A = \/@ It is
very nearly a sum of three equal spikes.

The other eigenvalue 4 = —1 is repeated. The eigenvalue
A = —4/(5) is also repeated (very nearly). But Theorem
1 cannot apply as it stands to the eigenvectors, because
the small matrix has a plane of eigenvectors for y = —1.
Since A = —/(5) is not exactly repeated, there is no cor-
responding plane for A + B. Experiment shows that its
eigenvectors are sums of spikes at i, 7,k with heights h =
and h =.

To extend this example, suppose the modification adds a
complete graph on M nodes to the starting graph (which is
still an infinite line of nodes connected only to their neigh-
bors). The M by M matrix B has 0’s on the diagonal
and 1’s everywhere else. Its largest eigenvalue p = M — 1
has eigenvector h = (1,1,...,1). Then the modified matrix
A + B has largest eigenvalue

A=+v(@+ (M —1)?) with z = sum of equal spikes.

The M —1 remaining eigenvalues of the small matrix B all
equal —1. Again this produces A = —+/(5) as a multiple
eigenvalue.

VI. SIGNAL PROCESSING FOR EVERYONE

In the past, signal processing was a topic that stayed
almost exclusively in electrical engineering. It was only
the specialists who applied lowpass filters to remove high
frequencies from digital signals. The experts could can-
cel unwanted noise. They could compress the signal and
then reconstruct. It took two-dimensional experts to do
the same for images.

The truth is that everyone now deals with digital signals
and images (involving large amounts of data). We all need
to understand signal processing—sampling, transforming,
and filtering. These pages are intended to explain these
basic operations, using simple examples. We will reach as
far as filter banks (in discrete time) and wavelet expansions
(in continuous time).

Most signals start their lives in analog form. They
become digital by sampling at equal time intervals. If

manalog(t) is a continuous time signal, its samples give a
discrete time signal:

(8)

The sampling interval is T. We often normalize to T' = 1,
by a simple rescaling of the time variable.

A device that actually does this sampling is called an A-
to-D converter. The input is an analog (A) signal, proba-
bly from measurements. The output is a digital (D) signal,
probably for computer processing. Usually an A-to-D con-
verter loses high frequency information (or mixes it with
low frequencies, which is aliasing). Shannon’s Theorem
will tell us that when there are no high frequencies in the
signal, the analog signal can be recovered at all ¢ from its
(digital) samples at the discrete times nT.

Notice that the signal is assumed to be infinitely long,
with no start and no finish. The time line is —o00 < t <
00. Then the discrete signal x(n) is defined for all integers
(=00 < m < 00). Neither of these assumptions is exactly
true for real signals. The realistic assumption (this is often
well justified) is that the signal is so long that end effects
are not significant. By working with the whole line R and
all integers Z, we can use Fourier methods to the utmost.

And those Fourier methods are very powerful. The chief
tool in our analysis will be the Discrete Time Fourier Trans-
form, which turns the samples z(n) = xdigital(”) into the

wdigital(n) = xanalog("T) n=0,+1,%+2,...

coefficients of a 2m-periodic function X (w):

9)

n=—oo

All terms are unchanged when w is increased by 27w. We
refer to w as the frequency, and we graph the transform
X (w) between w = —m and w = 7. Then “low frequencies”
refer to frequencies near zero, and “high frequencies” have
|w| ~ 7.

Two special signals have the lowest and highest fre-
quencies, w = 0 and w = w. The pure DC signal
z = (...,1,1,1,1,1,...) has exactly zero frequency. Its
transform X (w) has a Dirac delta function at w = 0. More
precisely, X (w) is a periodic train of delta functions of mag-

nitude 27. The pure AC signal z = (...,1,—-1,1,-1,...)
has the highest frequency w = 7 (and w = —m). Its trans-
form is a train of delta functions at w = £7, £37,.... This

alternation between 1 and —1 gives the fastest oscillation of
any discrete signal. Between w = 0 and w = £ is the fam-
ily of pure sinusoidal signals with frequency —7 < w < 7:
T, (n) = e™ for each n. (10)
We are frequently working with systems that respond to
these pure inputs with pure outputs. The output has no
change in frequency. The only change is in amplitude and
phase, from multiplication by H(w). This is a Linear Time

Invariant system:

LTT systems:

(11)

The input x,(n) produces the output H(w)z, (n).



The amplifying factor H(w), also written H(e™), is the
frequency response. It varies from one frequency to an-
other, but separate frequencies stay separate. H(w) is an
“eigenvalue” of the system, when the eigenvector is the os-
cillating signal z,,(n). A Linear Time Invariant system is
often called a filter.

We will study filters in detail. First we look again at
these special signals—complex exponentials and real sinu-
soids. Fourier (and Mozart too) assembled all signals out
of these pure harmonics.

VII. TEACHING AND LEARNING ON THE INTERNET

This paper comes from personal experience rather than
philosophy. My experience is with MIT’s linear algebra
course and it is ongoing. You will see that I have recently
got myself into some kind of box (a new box instead of
the usual one). As a result I don’t know exactly what
to do in the linear algebra lectures this fall. Writing this
paper in the summer of 2000 gives me a small chance to
think through this rapidly approaching problem. It in-
volves using the Internet, and videos in particular, in com-
bination with ordinary lectures and homework. I believe
that the reader will encounter the same problem, in some
form, soon.

In spite of the opening sentence I suppose there is a “phi-
losophy” that underlies my teaching of mathematics. Many
of the students are learning engineering and science, and
they care first of all about applications. This seems to fit
with my approach. I get a lot of pleasure from showing
them examples, and connecting with their interests, and
convincing them that mathematics is directly useful. It is
true that I use the words beautiful and wonderful to call
their attention to ideas that are especially neat. But the
beauty is alive and not frozen.

The only theorem that I mention by name is the “Fun-
damental Theorem of Linear Algebra”. I would not want
the rest of the faculty to know how seldom I complete a
proof in the lectures. An example can be much more mem-
orable anyway. Two examples are totally convincing! (My
favorite proof remains the one I found in a book by Ring
Lardner: “Shut up” he explained. But I only use this in
class when desperate.)

Let me come directly to the recent events that present
new problems.

1. My linear algebra lectures and review sessions last
fall were videotaped live. They are on the web page
http://web.mit.edu/18.06/www, and they can be viewed
with (free) Real Player software. The compression makes
my own motion a little jumpy, but the blackboard is sur-
prisingly clear. So all students are going to have the lec-
tures available when they want them (not only MWF at
1).
2. Independently of the videotaping, I joined with David
Jerison and Haynes Miller in a proposal to a new funding
source within MIT (established by a gift from Microsoft).
Our proposal was to introduce “new communication links”
in calculus (Jerison) and differential equations (Miller) and
linear algebra (Strang). It was nearly successful but in the

end was not funded for next year. I hope that some of the
ideas might be of interest to readers of this article.

Those ideas are “speculative” and very much in flux. A
second proposal, more directly involved with the structure
of lectures and recitations, was awarded a planning grant
from a different fund. Haynes and David are testing new
possibilities in the calculus lectures. Eric Mazur’s website
http://mazur-www.harvard.edu/
education/educationmenu.html has been a source of in-
spiration. They have very properly suggested that this pa-
per should concentrate on my own part of the original pro-
posal, which was to create an “online encyclopedia” of short
and specific pieces of undergraduate mathematics. These
will be quite different from complete lectures, but a camera,
will still be involved.

Note added in proof: I have now seen a device that
records as you write on a whiteboard, without needing a
cameraman (it transmits the writing but not the speaker).
Combined with audio, this may become useful in commu-
nicating mathematics in real time.

THE VIDEOTAPES IN LINEAR ALGEBRA

I can explain first about the videotapes in 18.06. The
year before, when Gian-Carlo Rota died so suddenly, I ex-
pressed to the class my regret that we had no permanent
record of his lectures. They were exceptional in every way.
The conversation in class moved toward more ordinary
things, but several students emailed me afterward. They
suggested that I contact the Center for Advanced Engineer-
ing Studies. I discovered that the Center was embarking
on a large-scale videotaping project in physics (with Wal-
ter Lewin). Eventually we realized for a small additional
cost, the cameramen could stay in the lecture room and
tape the 18.06 lectures.

The original tapes were digitized and compressed (and
saved) by David Mycue, in between his work on engineering
classes that are running jointly with Singapore. This was
all a part of MIT that I had never seen.

I insisted on only one point, that the lectures must be
freely available to everyone. Modulo congestion on the web
(which depends on the viewer’s modem), this is now the
case. I had no idea what use might be made of the tapes,
it just seemed a good thing to try. I still have no idea!
Readers of this paper are very welcome to make sugges-
tions. I can mention two developments within MIT, and I
hope there will be more outside:

1. In the semester of videotaping, there were a few classes
that T had to miss. Those tapes were made in advance
without an audience. I asked the students whether they
would prefer to have a substitute teacher, but they firmly
chose the tape. Apparently they did come to class and
watch quietly.

You will realize the implications. One is that I can be
away more and more—leaving a shadow of myself behind.
On the other hand (and more seriously), the students can
be away more and more. Let me come back to this new
freedom, which is partly desirable and partly alarming.

2. The MIT Lincoln Laboratory learned about the tapes,
and decided to offer a linear algebra course this summer.



The volunteer students are mature scientists and engineers,
who watch two tapes each Thursday afternoon. My best
teaching assistant, Peter Clifford, is there to answer ques-
tions. I went three times, to be part of the group and ask
for their reactions. I frankly thought it would be a hor-
rible experience to watch the tapes with the class, but it
wasn’t. They are seeing the uncompressed form, not so dif-
ferent from a live lecture. The volunteers at Lincoln Lab
continue to attend and their comments are very positive.

I now realize more clearly and urgently that students will
have an alternative to attending lectures this fall—or pos-
sibly the tapes will be more a supplement or a complement
than an alternative. My question now is what to do in class
when they can watch the lectures at their own convenience.
I could vary the examples, and I certainly will. But I can’t
vary the mathematics...

18.06 splits into ten or more recitation sections, one hour
per week, to discuss homework problems and unanswered
questions. The lecture hours could now be more interactive
(subject to the limitations of a large class). I am very much
in favor of active learning, and I mix in questions as I go. I
don’t always wait for the answers! Students are hesitant to
stand out in a large anonymous group, but I am learning
about the successful use of flash cards and class votes.

In general it will not be possible to assume that students
have watched the lectures in advance. Do I want to assign
specific lectures as part of their homework (and risk devel-
oping a habit that will lead them to skip class)? The new
situation offers more freedom, but with it comes change
and uncertainty. Every innovation implies an altered set
of rules. Most definitely, students have learned to deal
successfully with the old rules. After long acquaintance,
those rules are more or less accepted as fair. Any alter-
ation implies that somehow or somewhere, an extra effort
is required. This is likely to be unwelcome.

In the present case, a more active lecture hour might
succeed. I have no means of compelling students to attend,
and don’t want any. I do already try to make the hour
more productive for the class than an hour spent reading
the textbook (which unfortunately I wrote). I was already
competing with myself, and now even more so! Where
I previously offered a focus on the more important points,
and used the medium of speech to bring home those points,
now the video lectures offer speech too, at all times of the
day.

Will a live lecture three days a week be preferred to a
videotape available at all hours, seven days a week? In the
long run I really don’t know. Perhaps in the short run,
inertia (and maybe the lack of anything better to do) will
bring most of them to the classroom.

And there is another question. Could the videotapes
affect linear algebra classes around the country? The text
is widely used. I am hopeful that instructors will welcome
the availability of lectures on the web, as a supplement
to their own courses. This is really a key question that
will surely arise throughout our teaching—how to make
the Internet into a “TA”.

In short, I took this videotaping step in the belief that

it could only be useful—not knowing exactly how, but cer-
tainly knowing that lectures on the web are sure to come.
They will come in different forms, from different sources. If
it becomes clearly helpful to add summaries of the lectures,
or answers to frequently asked questions, or additional ex-
amples (all probably to be prepared on transparencies),
I will try to do that. First I hope to learn how these
videos can be used. I will be extremely grateful if read-
ers of this article send thoughts and suggestions by email
(to gs@math.mit.edu).

The Internal Proposal Within MIT

The second part of this paper will describe some aspects
of the proposal that Haynes Miller, David Jerison, and I
made in December 1999. We offered to create new on-line
possibilities for the students, without a radical change in
the existing lecture system. We were unwilling to destroy
something that is pretty good (certainly not perfect). The
new ideas would definitely need testing and adjustment,
and a lot of work.

Our overall goal is to make the experience of freshmen
and sophomores more active and positive. In every society,
whether on the scale of a nation or a university or a family,
there is tremendous constructive energy. Very often this
is potential energy, and it is never released. To convert
that stored potential into kinetic energy is a central goal of
teachers (and of leaders wherever they are).

One tool we proposed to use is the Internet. We know

that experiments are going forward in this direction in
many mathematics departments. Undoubtedly the results
are mixed—the same would surely be true for us. I can re-
produce here a substantially edited summary of two ideas,
from the proposal that the three of us prepared:
A. We will create an on-line encyclopedia to offer quick
help in our basic mathematics courses. This material could
extend beyond freshman courses to help all students who
have access to the Internet.

The advantage of video and multimedia presentations

over textbooks is that the added dimension of time can
convey complicated (and also simple!) mathematical ideas
more effectively. A critical advantage over lectures is that
the information can be delivered in packets at the moment
when it is needed. That moment can be the point at which
a student gets stuck on a homework problem. It can also
be the time in the next month or the next year when a
specific piece of information is needed again.
B. We will establish Chat Rooms in which students will
be able to discuss ideas and problems. They can manipu-
late the graphical tools that we plan to develop, and they
can have have fun working together. We want MIT stu-
dents to appreciate the active and cooperative elements of
mathematics. Mathematics depends on communication.

The chat rooms could develop into a new feature of
MIT education. Students already form study groups to do
problem sets and to review for exams. We do not wish
to lose the value of these interactive groups as we move
to exploit the power of computer education for every in-
dividual. On-line chat rooms allow students to interact



even if they cannot do so in person, or if they do not have
access to a compatible group. A group can use graphical
and computational tools jointly, to go further with discov-
ery than separate individuals. The transcripts of the chat
rooms will be useful in monitoring the whole process and
understanding where students get stuck.

Like most universities, MIT relies on lectures by expe-
rienced teachers. It would not be wise to overturn this
framework tomorrow—the quality of those lecturers (and
their dedication) is too valuable. But when we consider the
whole experience from the viewpoints of the students, we
do see new ways to communicate with them individually—
and new ways in which students can communicate with each
other.

It is changes in the student experience, made possible by
the revolution in faculty-student and student-student com-
munication links, that motivate this proposal. The first
project is the most straightforward—a direct way for stu-
dents to access (on line) essential concepts of each course.
The second is the most novel—a way for students to talk
to each other. We want them to work together, because in
some unexpected way that promotes individual learning.
Thus our presentation concentrates on these elements:

e Direct on-line access to quick help with the fundamen-
tal ideas of each course and their applications (with many
examples).

o Student-student interaction on homework problems as
well as central concepts. The magical moment of under-
standing generally happens outside the classroom.

May I return from the proposal to this MAA paper, for
several comments. One is to repeat that in the actual
development, changes in these ideas would be absolutely
certain. I will add some details to the descriptions given
above, but those changes are already coming. And there
was another key part of our proposal that is not reflected
in this paper—the idea of modules in differential equations,
where the biologists and physical scientists and engineers
are often interested in totally different examples.

Student-student on-line interaction.

Student learning often comes in bursts—frequently while

working on problem sets. These are crucial times outside
the classroom, and we can supply extra help. They are the
moments we must concentrate on, because the students are
concentrating. We will provide video clips to the students.
But we are convinced that their communication with each
other is a powerful force in learning. We will also pro-
vide graphical and computational tools that form integral
parts of the problem set. The next paragraphs discuss three
types of on-line support: Videos and graphical tools and
student chat rooms.
1. Videos. The advantage over textbooks is that video,
with the added dimension of time, can convey complicated
(and also simple!) mathematical ideas more effectively.
The critical advantage over lectures is that the informa-
tion can be delivered in packets at the moment it is needed.
Homework problems will in some cases be explicitly linked
to video clips. Successful animations will also enliven our
lectures.

2. Graphical Tools. These make a basic concept visual, and
they also teach methods of discovery. In using Newton’s
method, calculus students can discover rates of convergence
and periodic orbits and especially basins of attraction. At
the same time they will reinforce their basic understanding
of linear and quadratic approximations. By varying the
coefficients of a quadratic function of two variables, they
will see saddle points and maxima and minima. Graphi-
cal tools will be heavily used in the “technology-enabled”
classrooms of the future.

3. Chat Rooms. Students already form study groups to
do problem sets. But this includes only some students—it
is good but not fully inclusive. On-line chat rooms allow
students to interact even if they cannot do so in person, or
if they do not have access to a compatible group. A group
can use graphical and computational tools jointly, to go
much further with discovery than separate individuals.
The transcripts of the chat rooms would be recorded. This
makes it possible to see where students got stuck. To make
better use of the transcripts, we propose to require students
to cite their sources of help, with no penalty for accepting
help. This will make it possible to track down abuses, such
as wholesale copying of homework solutions, and (more im-
portant) to track down successful interactions.

Chat rooms should heat up before exams. Students will
have access to support at late night crunch times. And es-
pecially at exam times, teaching staff could participate. In
some cases the chat room can become an on-line recitation.
Transcripts of these pre-exam interactions will be partic-
ularly helpful in course design. The TA could clip pieces
and discuss the interaction with the lecturer.

An interesting problem is how students will communi-
cate with each other in chat rooms if the keyboard is the
only link. Mathematicians generally use an informal ver-
sion of Donald Knuth’s typesetting language TeX, where
f; f(x)dx means the definite integral of f(z). There may
be a better language for on-line mathematical conversa-
tions. And keyboards are presently inadequate for convey-
ing pictures. The Holy Grail is the functional equivalent
of a blackboard—which would support distance learning
everywhere.

One can object that we are proposing to encourage last
minute learning. But students learn when they are recep-
tive, and not before. Any mechanism that makes learning
easier must have its place. We may also include problems
that specifically develop reading and listening skills, be-
cause lectures and a textbook are still central to the course.
We could make the chat rooms off limits for certain home-
work exercises.

Furthermore we will use technology to help with learning
after the last minute, in the form of post-testing. Most
students do not go over their homework to see what was
wrong. Even worse, many of them don’t review their old
tests. Teachers are guilty of encouraging this behavior, by
racing to the next topic. This is a crucial learning oppor-
tunity and it is frequently lost. No experienced teacher
expects everyone to learn subjects the first time. We aim
to develop the habit of going back to learn and to reinforce



learning.

We can teach our students more successfully if we deliver
information to them when they need it and are ready for it.
Students can work cooperatively on line or in recitations.
With their friends also on line, students will find it easier
to learn to use these tools, to make progress on problems,
and to have fun doing it—without the hesitation that we
all recognize in a lecture room.

Our main goals are to engage the students more fully; to
make better use of their time; to provide more inspired
teaching; to encourage them to manipulate graphics in
their own mathematical experiments; and to offer easy ac-
cess to background information at the moment when it is
needed. We hope for, and we expect, changes in style and
substance.

That concludes the part of this paper which is drawn
from our joint proposal. I owe thanks in so many ways to
Haynes Miller and David Jerison. And over a very long
period, too long to contemplate, I have learned from an
army of students. To be truthful, I have seldom thought
deeply or carefully about theories of education—it has al-
ways been more instinct in a classroom, a feeling for what
students might understand and enjoy. And I read aloud
(quietly) everything I write, so the same instincts are in
control there too.

The arrival of the Internet has opened tremendous new
possibilities. Just in time.

This article was included in a recent book published by
the Math Association of America.
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