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Abstract-Feature matching in images plays an
important role in computer vision such as for 3D
reconstruction, motion analysis, object recognition,
target tracking and dynamic scene analysis. In this
paper, we present a robust cooperative strategy to
establish the correspondence of the contours between
two uncalibrated images based on the recovered
epipolar geometry. We take into account two
representations of contours in image as contour points
and contour chains. The method proposed in the paper
is composed of the following two consecutive steps: (1)
The first step uses the LMedS method to estimate the
fundamental matrix based on Hartley’s 8-point
algorithm, (2) The second step uses a new robust
cooperative strategy to match contours. The presented
approach has been tested with various real images and
experimental results show that our method can
produce more accurate contour correspondences.

1. INTRODUCTION

    In computer vision, feature matching between different
images of a single scene is one of the fundamental
problems and has many applications such as 3D
reconstruction, motion analysis, object recognition and
dynamic scene analysis. A large amount of related work
has been carried out during the last twenty years
[3][5][11][12][14]. However, the results by whichever
method are not satisfactory because the correspondence
problem is not straightforward to find one-to-one mapping
between two images.
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In this area, one distinctive correspondence problem is
contour matching. It aims at establishing the
correspondence between image contours observed at
different positions by one or more cameras. A contour in
an image is defined by two representations as contour
points and contour chains. Contours are more general
descriptions in an image and contain more geometric
information about the image. Matching is then usually
achieved as follows: First, contour segments are extracted
from two images by detecting edge maps, linking them
and determining a set of chained points. Then,
correspondence between two sets of contours is sought for
by using varies methods.
    In the literature, there are many investigations devoted
to the problem of either stereo or motion correspondence
of contours within two or more frames [3][7][11-18]. In
[15], the correspondence is obtained by using a relaxation
operation which tries to find the most consistent matches
preserving the geometric constraints between features.
Relaxation process is an attractive mean of inexact
matching because it has ability to infer consistent
interpretation from incomplete input. However, this kind
of method suffers from high computational cost. Another
method of facing this problem is to introduce a temporal
recursive filter to track contour segments [16][17].
Matching becomes a cyclic process composed of three
steps: predict, match and update. The correspondence
between observed and predicted segments is obtained
through the use of similarity function based on
Mahalanobis distance between attributes of the segments.
These methods can limit the search area and handle
ambiguities more effectively since they produce a
prediction of the displacement from frame to frame. Other
typical methods form matching have been proposed,
graphing matching methods [13] and cooperative strategy
for multi-level edge primitive matching [8].
    Unlike previous methods, the correspondence points on
the contours are investigated using the smoothness
constraints or curvature variations or the combination of
epipolar geometry and correlation_based technique for
contour matching [3][11][12]. As more information is
added, these methods tend to be more robust. However,
these methods will be more subjected to the noise
disturbance and the complexity of the real images.



    In this paper, we propose an approach for contour
matching based on recovering epipolar geometry and a
robust cooperative strategy. Our approach can handle the
correspondence problems robustly between different
related images with different complexity. Several real
images have been tested by our approach and good results
are obtained.
    We assume that two images are obtained from two
cameras at different positions or a single camera at
different time instants and the intensity value of a region
does not change too much.

2. EPIPOLAR GEOMETRY FOR CONTOUR
MATCHING

    As we know, the only available geometric constraint in
the correspondence problem between two images is the
epipolar geometry [1][2][4][6][8]. Considering the case of
two cameras as shown in Fig.1. Let Xk be a 3D point, xik

and x jk be its projections to image I and image J,
respectively and O1 and O2 be the optical centers of the
first and second cameras, respectively. The plane defined
by Xk, O1 and O 2 is known as epipolar plane. The
intersection of the epipolar plane with the Image J is
called the epipolar line and denoted by l jk. So the
correspondence of xik is constrained to lie on a line ljk.
This is because the point xik may correspond to an
arbitrary point on the semi-line O2Xk and the projection of
O2Xk on image J is ljk

    It is well known that at least eight point matches are
needed for computing an essential matrix [2]. The
essential matrix is called a fundamental matrix in the case
of two uncalibrated images. The fundamental matrix
between image I and image J is a 33×  matrix satisfying
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Fig.1 The Epipolar geometry of two images

Fig. 2 The geometry of a contour

Fig.3 Two corresponding contours

Fig. 4 Contour points along epipolar line

for any match pair (xik, xjk) in the two image I and image J.
The fundamental matrix F ij indicates the epipolar
geometry of the two cameras. Therefore, if the epipolar
geometry is recovered, the correspondence problem is
reduced from a 2D search (the whole image) to a 1D
search problem (along the epipolar line).
    In our paper, we use a classical robust approach named
the Least Median of Squares (LMedS) based on the
technique described in [1] and [2] to estimate the
fundamental matrix.
    Now we discuss the epipolar geometry for contour

matching. Let )(sci and )'(sc j be the projected image

curves of a parameterized space curve )(SC  in image I

and image J, respectively, as shown in Fig.2.  For a given

)(sci  in image I, as shown in Fig.3, we need to find its

corresponding contour )'(sc j
 in image J.

    For every point xik of a contour )(sci , its epipolar 
jkl

in image J is defined as:

    
jkl = 

ijF * xik.

    If there is no error between the two images, we will
find a one-to-one mapping between the points of

)(sci and the points of a contour )'(sc j
 in image J.

Unfortunately, the ideal case does not exist because of
noise perturbation. For example, the end-points and
lengths of the correspondence contour chains may not be
identical as shown in Fig.3. Therefore, the matching
process should be able to handle inexact matching. We
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have the fact that the correspondence of x ik on )(sci

must be one of the intersections of ljk with the contours in
image J as shown in Fig.4. Out method for contour
matching will be based on the fact. In the later sections,
we assume that the epipolar geometry between two
images is recovered and will enforce the recovered
epipolar geometry when we use cooperative strategy in
the matching process.

3. COOPERATIVE MATCHING STRATEGY

    Since a contour point belongs to a contour, a pair of
matched contour points indicates a possible
correspondence of the two contours to which they belong.
Therefore, the output of the matching process of contour
points can be used as input of the matching process of
contours. The initial contour correspondences can be
obtained from the matching process of contours. Then, the
obtained initial contour correspondences are used as the
input of the next matching process of contour points and
the matching process of contours. This cooperative
strategy can be explained as the following three ordered
processes:
(1) The matching of contour points: This matching

process aims at establishing the contour point
correspondences. In order to solve the contour point
correspondences, a classical method based on
similarity criterion is used along with the recovered
epipolar geometry.

(2) The initial matching of contours: This process makes
use of the results of the first matching process. Since
a pair of matched contour points indicates a possible
correspondence of two contours to which they
belong, we can identify a set of candidates in image J
to be matched to a contour ci(s) in image I if points
on ci(s) correspond to a set of points on different
contours in image J.

(3) Final matching of contours: The matching process
aims at establishing the final correspondences using
the initial contour correspondences obtained from the
second step. We use the matching process of contour
points by using another different similarity criterion
to get contour point correspondences of ci(s) among
its initial contour correspondences. Then another
contour candidates corresponding to ci(s) will be
identified by using the matching process of contours.
Repeat the three processes iteratively. Finally a
contour to be matched with ci(s) will be found until
the set of the contour candidates consists of only one
contour.

    Based on the above discussion, we developed a
matching algorithm based on the cooperation between the
matching process of contour point and the matching

process of contours. In the following section, we will
explain in detail the cooperative method.

3.1 Similarity function

    As mentioned above, we first aim at establishing the
correspondences of contour points by using a similarity
criterion along with epipolar geometry. Without loss of
generality, we set up a general similarity function for the
correspondence problem. For each point xik in a contour,
we define its l normalized measures as {mi,k k=1,..,l}. For
examples, the measures can be defined the classical
normalized correlation coefficient, the norm of gradients,
or the value of convolution with a directional mask at this
point.
Let ),( jkikk xxS be the kth measure between a pair of

points (xik, xjk). If ),( jkikk xxS is equal to 1, we consider

the two points (xik, xjk) are matched under the kth measure.
Therefore, by combining the different measures, we can
define a measure function that depends on two contour
points to be matched.
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where kλ ( 0≥kλ ) is a weighted exponent applied to

),( jkikk xxS and can be set to 1. Obviously, the

weighted ),( jkik xxF will always be in the [0,1]. In an

ideal case, if ),( jkik xxF  is equal to 1, (xik, xjk) is a

contour point correspondence. In this paper, (xik, xjk) is
considered to be a pair of matched points if they satisfy
the following condition:
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where Ω  is an threshold in the range (0,1) for validating

the local maxima and ikSP  is the intersections of ljk with

the all contours in image J. This operation can be
explained as attempting to find a contour point

correspondence x j k  in 1iSP  that maximizes the

),( jkik xxF . In this paper, two measures (i.e. l=2) are

used to identify a contour point:
(1) The norm of gradients: This measure reflects the

image contrast near a point. Let Gi1 and Gj1 be the
norm of gradients of point xik and xjk in image I and

image J respectively. ),( jkikk xxS can be defined as

the follow formation:
      ||)||||,max(||/||)||||,min(||),( jkikjkikjkikk GGGGxxS =



(2) The correlation_based measure: The definition of this
measure can been seen in [1]. In this definition, if the
value is smaller than 0, we will regard it as 0.

3.2 Contour matching algorithm

    Given a set of points { xik} of a contour ci(s) in image I
and {xjk} of a contour in image J, we need to seek the
correspondences between these two sets of points. As we
know, a point x ik on ci(s) is constrained to lie on its
epipolar line ljk. So, after we computed the fundamental
matrix Fij, we can use epiploar geometry in finding the
correspondences between the two sets of contour points.
In the other words, for a point x i k  on ci(s) , its

corresponding point has only be searched in ikSP  in

image J, where ikSP  is the intersections of ljk with the

contours in image J, as shown in Fig.4. The point xjk

satisfying (3) is found as the match of xik. If xjk on a
contour cj(s) in image J is found, we consider that xik is
matched to cj(s)  and then cj(s) will be identified a
candidate corresponding to ci(s). If points on ci(s) are
matched to several contours, then several contours are
identified as initial contour correspondences. This means
that there are false matches in the initial contour
correspondences, as shown in Fig.5 (1)-(2). So the next
step is to remove the false matches. In order to remove
these false matches, we used an iterative method based on
cooperative strategy.

Fig. 5 Contour candidates

    Let { cj1, cj2, …, cjn} be the set of contours in image J

that match to at least one point on contour ci, jkcn be the

number of points on cjk that match to points on ci and

maxjn  be maximal value of jlcn  for all , l≤ l≤ n. For

convenience, the set of { jkcn } (l≤ l≤ n ) is denoted by

Nj. Then, the set of {cj1, cj2, …,cjn} will be considered
initial correspondences to ci(s) in image I. The contour cjk

in {cj1, cj2, …,cjn} will be considered to be a candidate

match corresponding to ci(s) if its jkcn  satisfies one of the

following forms:

jkcn  > 
maxjn  - D1  (4)

jkcn  > maxjn /D2      (5)

where D1 and D 2 are initial numbers, such as 10, 3,
respectively. The main reason to do so is to try to ensure
that two matched contour chains will have similar lengths
according to an initial similarity threshold Ω .
    As the above discussion, we can get a set of possible
contours from {cj1, cj2, …,cjn}to be matched with ci(s)
after the first matching process of contours. For
convenience, this set of contour is defined as {cj1, cj2,
…,cjm}, where m ≤ n. So some false matches in {cj1, cj2,
…,cjn} will be removed if m<n. Then the next problem is
how to remove the other false matches in {cj1, cj2, …,cjm}.
In practice, if the similarity threshold Ω  is too big, such

as 0.95, the corresponding 
jlcn  will be often very small,

even equal to 0. If 
jlcn  is equal to 0, c jl is not the

corresponding contour of ci(s) and is discarded. If 
jlcn  is

a very small number, contour cjl in image J is lack of
confidence to be the correspondence candidate of ci(s)
because only a very few points are matched with the
points on ci(s). On the other hand, if Ω  is set to a relative
small value, such as 0.6, there may be several contours
that are all larger than a relative big number. For example,

2jcn and 
3jcn are equal to 45, 47, respectively, it is not

clear to determine which contour in {cj2(s), cj3(s)} is the
right correspondence of ci(s). Therefore, Ω  is set
adaptively and in a robust manner during each iteration.
The above observation is the key why we propose an
iterative method based on cooperative strategy for contour
matching.
    So after the first matching process, we get the
candidates {c j1, cj2, …,cjm} corresponding to ci(s). By
adding a small positive value δ  to Ω , we use the
matching process of contour points applied to {cj1, cj2,
…,cjm}. Then we will obtain a subset {cj1, cj2, …,cjl}of
{cj1, cj2, …,cjm} that match to at least one point on contour

ci, and get corresponding ckn and 
maxjn .  The cjk in {cj1,

c j2, …,cjl} will be considered to be a candidate

corresponding to ci if its ckn  satisfies (4) or (5). So a

subset of possible contour correspondences from {cj1, cj2,
…,cjl} will be obtained by using the matching process of
contours again. This means we remove other false
matches in {c j1, cj2, …,cjl} again. Do the cooperative
matching process iteratively until all false matches are
removed. The only existed contour in the set of possible
contour correspondences is the correct contour
corresponding to ci(s), as shown in Fig. 5 (3).
    In this algorithm, we use a cooperative method to solve
contour correspondence problem between the two sets of
contours in image I and image J. The method is robust
because it can deal with different contours with different

cj2(s)
cj2(s) cj2(s)c3(s)

cj1(s)

cj3(s)

cj4(s)



similarities by adjusting the similarity threshold
automatically.

4. EXPERIMENTS

    We have implemented the presented robust cooperative
matching by using C++. We applied this algorithm to two
arbitrarily chosen images of one static scene. In our
system, we use Harris corner detection algorithm [19] to
extract corners and Deriche edge detection algorithm [20]
to extract edge points, then we use our own edge linker
algorithm to link edges. The first step of robustly
estimating epipolar geometry is used the methods
described in [1][2]. In the matching process of contours,
the matching speed is quite quick because we use two
data structures to index the related edge map directly. For
the validation of the local maxima of the similarity, an
initial threshold Ω , the incremental value δ , D1 and D2

are set to 0.7, 0.4, 10, 3, respectively in our experiments.
    In the first experiment, the two images are all size of
320× 240. There are 833 points and 899 points in image I
and image J, respectively, and 168 contours and 202
contours in image I and image J, respectively. We first
use the method described in [1,2] to get the following
fundamental matrix:

















=

01.0000000080.03652192-30.00349427-

90.0377113660.0000033680.00001125-

70.00034782-80.0000018880.00000005

F

    Then our robust cooperative method is used to establish
contour correspondences. We give an example to explain
the key in our algorithm. We would find the
correspondence of contour c147. We first use our method
to find the possible contours {c127, c128, c131, c147, c162, c173,
c174, c184} in image J and get Nj={17, 13, 7, 29, 31, 27, 6,
7}, respectively. According to (4) and (5), the false
matches {c131, c 1 7 4, c184} are removed. The possible
contours now become {c127, c128, c147, c162, c173}. Now add
0.4 to Ω , then do the same matching process of contour
points and the matching process of contours, we get
Nj={13, 7, 22, 28, 13} and discard the contour c128. When

Ω =0.78, we get N j ={11,22, 27,6} and discard the
contour c173. When Ω =0.82, we get Nj = {7, 16, 26} and
discard the contour c127. When Ω =0.86, we can get Nj=
{6, 25} and discard the contour c147. Finally the contour
c162 in image J is found to be matched with the contour
c147 in image I. For all contours in image I, we finally get
121 contour matches, as shown in Fig.6. The elapsed time
to match all contours is only 2 second.
    In the second experiment, the two images are all size of
384× 288. There are 910, 933 corners in image I, J
respectively and 168, 202 contours in image I, J
respectively. We first use the method described in [1,2] to
get the following fundamental matrix:

















=

01.0000000090.0307324540.01857535

30.03877801-90.0000069270.00013412-

90.01882492-40.0001383070.00000087

F

    Here we give an another example for finding
correspondence of the contour c22 to explain the key in
our algorithm. The process can been explain in the Table
1.1 in reference to the explanation in the first experiment,
here a, b, c represent the contour No. in image J, the
corresponding 

jkcN  and Ω  respectively. c46 in image J is

the contour to be matched with the contour c22 in image I.
The last result is 129 contour matches to be found as
shown in Fig.7. The elapsed time to match all contours is
about 2.5 second.
    Another example is shown in Fig8. The test images are
ob ta ined  f rom the  fo l lowing  addres s :
ftp://sunsite.unc.edu/pub/academic/computer-science/
virtual-reality/3d/
    In this experiment, the two images are all size of
268× 385. There are 907, 914 corners in image I, J
respectively and 162, 159 contours in image I, J
respectively. The estimated fundamental matrix is as
following:

















=

01.0000000080.2551026730.03509120

10.26246247-90.0000029490.00009262-

50.03071150-80.00009559 20.00000213

F

    Finally, 112 contour correspondences are found as
shown in Fig. 8. The elapsed time to match all contours is
about 2.7 second.

Table 1.1
0.7 0.74 0.78 0.82 0.86 0.9

0 77 74 67 58 37 13
2 25 24 24 23 14
3 62 62 54 17
4 22 17
6 67 41 18 12
9 50 32 23 17
11 73 70 67 58 53 46
21 45 45 44 37 33 4

Fig.6 Matching result

a
bc



Fig.7 Matching result

Fig.8 Matching result

5. CONCLUSIONS

    A robust cooperative strategy for matching contours
has been presented in this paper. Based on the cooperative
strategy, we have implemented a contour matching
algorithm which allows us to match the contours robustly.
The method is robust because it can deal with different
contours with different similarities by adjusting the
similarity threshold automatically. The performance of
this matching algorithm strongly depends on the
estimation of fundamental matrix and the success of the
segmentation process of edge maps. The presented
approach has been tested with various real images and the
above experimental results show that our method can
produce more accurate contour correspondences.
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