
Working Paper 188

May 1979

Evolutionary Programming
with the Aid of

A Programmers' Apprentice

Carl Hewitt

A.I. Laboratory Working Papers are produced for internal
circulation, and may contain information that is, for
example, too preliminary or too detailed for formal publi-
cation. Although some will be given a limited external
distribution, it is not intended that they should be con-
sidered papers to which reference can be made in the
literature.

This report describes research done at the Artificial Intelli-
gence Laboratory of the Massachusetts Institute of Technology.
Support for this research was provided in part by the Office of
Naval Research of the Department of Defense under Contract N00014-
75-C-0522.

Artificial Intelligence Laboratory

Massachusetts Institute of Technology

SMSSAHSETTS INSTITUTE OF TECHINOUY W

Evolutionary Programming

Evolutionary Programming
with the Aid of

a Programmers' Apprentice

Carl Hewitt

M.I.T.

Room 813
545 Technology Square

Cambridge, Mass. 02139
(617) 253-5873

I -- EVOLUTIONARY PROGRAMMING

The documentation, implementations (we use the plural because we want to allow
for multiple implemientat ions), and runtinie environment of useful software systems evolve
asynchronouisly and continually. This is particularly true of large systems for applications
such as reservations, programming environments, real-time control, data base query and
update, and document preparalion. Implementations change because of the development of
new hardware and algorithms. Documentation (including tutoring programs such as [Burton
and Brown: 1976, Goldstein: 1976, Genesereth: 1979, and Miller: 1979) changes to keep up
with other changes. Runtime environments change because of changes in legislation and
other unforseen events rearrange the physical environment.

Neither fully automatic program synthesis nor fully automatic program proving have
been very successful so far in dealing with large software systems. We believe that it is
necessary to build environnients to interact with software engineers in the course of the
co-evolution of the partial interface specifications and implementations of a system.
Realistic software systems impose the requirement that the interface specifications of
modules must be allowed to evolve along with the implementations. This situation makes it
correspondingly imore difficult to construct a fully automatic programmer for such systems.
In case of inconsistency between the partial interface specifications, runtime environment,
and implementation of a large system, it may be desirable to modify any of them. It is
naive to believe that complete interface specifications can be laid down once and for all
time in a large software system and the implementations of the modules derived by
top-down stepwise refinement.

It is important to realize that the co-evolution of implementations and interface
specifications is an entirely natural and fruitful process. In most applications it is fruitless
to delay implemenniation until complete and final interface specifications have been provided.

Programmers' Apprentice

Evolutionary Programming

The history of the development' of text editors on interactive systems provides a
good illustration of the co-evolution of implementations and interface specifications. In the
late fifties when text editors were first being developed, it would have been completely
impossible to have developed interface specifications or implementations for current
generation text editors. It was necessary for users and implementors of text editors to
evolve the systems over a long timne period in the context of an evolving hardware base in
order to reach the current state of development. Furthermore, it seems rather clear that
interactive text editors will continue to evolve at a rapid pace for quite some time in the
future.

Exploralion of what it is possible to implement provides guidance on what are
reasonable partial interface specifications. As experience accumulates in using an
implementation, more of the real needs and possible benefits are discovered causing the
partial interface specifications fo-change. An important consideration in a proposed change
is the difficulty of modifying the implementation and documentation. Conversly,
implementors attempt to create systems that have the generality to cope with anticipated
directions of evolution. Partial interface specifications in large systems change gradually
over a long period of time through a process of negotiation.

II -- A PROGRAMMERS' APPRENTICE

A group at MI.T. is engaged in a long term research effort to build an interactive
system [called the Programmners' Apprentice] to aid in the construction and evolution of
large software systemns using partial, multiple, incremental interfaces between users and
implementors of software systcms. The Programlilers' Apprentice effor [Rich, Shrobe,
Waters, Sussman, and Hewitt: 1978; Shrobe: 1978; Waters: 1978; Hewitt: 1978; and Rich,
Shrobe, and Waters: 19791 builds on antecedent and similar work by [Floyd: 1971; Hewitt:
1971; Su.ssma;n: 1975; Hewitt and Smith: 1975; Rich and Shrobe: 1976; Yonezawa: 1977; and
Moriconi: 1978].

The following diagram shows the relationship between the users of a module ri, its
partial multiple interface specifications, its implementations, and the knowledge of the
runtime environmnent of iM.

Programmers' Apprentice

Evolutionary I'rogramming

+-----·---+

I each I
module I

I which I
uses i i

+--------- +

+---------------+

contractual I
I external I

>--relies on-->I interface I
I of M I
+---------------+

A

I
subsumes

A

+---------------+

I partial I
limplementation I
I interface

of M I
+---------------+

+---------------+

<--implements--<
I each

limplementation

I of M

implementation I
knowledge of I

runtime I
environment I

for M

+-----relies on----- >

< ------- relies on-------+

+---------------+

V

subsumes

I
.V

+---------------+

I contractual I

I knowledge of I
runtime

I environment I

I for M I
+---------------+

The contractual external interface of a module n should be as close as possible to
an absolute interface in the sense that any external module which uses Mi should only rely
on properties of n implied by its external interface and the contractual knowledge of the
runtime environment for M. Notice that associated with each implementation of 11, we have
versions of the interface specification and knowledge of the runtime environment that are
private to each implementation. The private versions contain the documentation that is
special to each one.

Programmers',Apprentice

Evolutionary Programming

The contractual knowledge of runtime environment is the shared knowledge relied
on by both the users and implementors of it. Examples are the laws of physics in a bubble
chamber analysis program, the tax law for an income tax preparation program, models of
the behavior of jets and radars in an air traffic control program, and the number of
physical tracks on a disk for a memory management module.

A primary goal of the Programmers' Apprentice is to make explicit how each
module depends on the partial interface specifications of other modules and the knowledge
of the runtime envirnment, how each implementation of a module meets its partial interface
specifications, and how each implementation depends on the knowledge of the runtime
environment. The proposed Progranmqers' Apprentice will gradually make the above
dependencies explicit through 'a process of symbolic evaluation [Deutsch: 1973; Hewitt and
Smith: 1975; Yonezawa; 1977; King: 1976; Clarke: 1976; Shrobe: 1978; Hewitt: 1978; and
Cheatham, Holloway, and Townley: 19781 Symbolic evaluation consists of executing the
implementation of a module Mn on abstract input using the partial interface specifications of
modules it uses. An important purpose of symbolic evaluation is to make explicit exactly
how the xpartial interface specifications of t are satisfied. Symbolic evaluation ensures that
a module M only depends on the partial interface specifications and the knowledge. of the
runtime environment of the modules which it uses and does not depend on idiosyncratic
properties of particular immplementations. It establishes and maintains an interface between
users and implleimentois of a module. An explicit record of dependencies-is necessary for the
suceessfuil creation and co-evolution of the documentation, implementations, and knowledge
of runtime environment of a large software system.

Evolving systems of the kind we are describing will require the capabilities of
expert programmers for a long time into the future. Our proposed Programmers'
Apprentice plays mainly an advisory and bookkeeping role. We believe that this state of
affairs is entirely appropriate given the current state of the art in fully automatic program
synthesis and program proving.

Programmers' Apprentice

Evolutionary Programmning

III -- A DESCRIPTION SYSTEM

One fundamental tool in our approach is a description system (being developed
jointly with Giuseppe Attardi) which can be used to describe properties of modules to the
Programmers' Apprentice. It is intended to facilitate use of the following kinds of
descriptions:

PARTIAL descriptions are used to express whatever
properties of system. Descriptions of realistic systems such as air
traffic control involve ineviatable simplifications and approximations.
It is useless to wait for a complete description of an air traffic control
system because the goal of complete description is unattainable.

INCREMENTAL descriptions which enable us to further
describe objects when more infornmation becomes available arid are a
necessary feature for the effective use of partial descriptions. For
example at some point as the velocity of jet airplanes increases it will
be necessary to take the Coriolis effect into account in the air traffic
control svstenm.

MULTIPLE descriptions which enable us to ascribe multiple
overlapping descriptions to an object which is used for multiple
purposes. Mulliple descriptions are important in multiple specifications
and proofs because different properties of an object might be useful in
different contexts.

Our description system is used in stating partial specifications of programs, as a
powerful flexible notation to state type declarations, and as a notation to express conditions
that are tested during program execution. The assumptions and the constraints on the
objects manipulated by a programi are an integral part of the program and can be used
both as checks when the program is running and as useful information which can be
exploited by other syslems which examine the program, such as translators, optimizers,
indexers, etc. We believe that bugs occurring in programs are frequently caused by the
violation of implicit assumptions about the environment in which the program is intended to
operate. Therefore many advantages can be drawn by a language that encourages the
programmer to state such assumptions explicitly and by a system which is able to detect
when they are violated.

Programmers' Apprentice

Evolutionary Programming

IV -- ACKNOWLEDGEMENTS

The development of the ideas expressed in. this paper has been the work of a large
group of people over many years. The intellectual roots go back to the early emphasis by
Minsky andl Papert of the importance of "debugging" in problem solving (especially
progranuning). I ain indcbted to my colleague Gerry Sussman for many an inspiring
discussion on how to best incorporate these ideas in practical systems. In turn we are
indebted to our thesis students Jerry Barber, Chuck Rich, Howie Shrobe, Dick Waters, and
Aki Yonezawa for providing the hard work and ideas necessary to make this area into
more of a science. The current members of the Programmers' Apprentice Research Group
include Beppe Attardi, Jerry Barber, Carl Hewitt, Henry Lieberman, Chuck Rich, Howie
Shrobe, Maria Simi, (erry Sussman, and Dick Waters.

Michael ienesi'reth and Chuck Rich made some valuable suggestions which
materially improvcd the presentation of this paper.

V -- REFERENCES

Burton, R. and Brown J. S. "A Tutoring and Student Modeling Paradigm for
G(aming Enviirioments" SIGCSE Bullectin. Vol. 8 No. 1. February 1976. pp.
236-246.

Cheatham, T. E; Holloway, G. H.; and Townley, J. A. "Symbolic Evaluation and
the Analysis of Programs" Aiken Computation Laboratory. Harvard University.
TR-19-78. November 1978.

Clarke, L "A System to Generate Test Data and Symbolically Execute Programs"
IEEE TSE-2 No. 3. Sept. 1976. pp 215-222.

Deutsch, P. "An Interactive Program Verifier" Report No. CSL-73-1. Xerox PARC.
May 1973.

Genesereth, M. R. "The Role of Plans in Automated Consultation" IJCAI-79. Tokyo,
Japan. August 1979.

Goldstein, Ira P. "The Computer as Coach: An Athletic Paradigm for Intellectual
Education" MIT Al Memo 389. December 1976.

HI-ewitt, C. and Smith, B. "Towards a Programming Apprentice" IEEE Transactions
on Software Engineering. SE-1, #1. March 1975. pp. 26-45.

Hewitt, C.; Attardi, G.; and Lieberman, H. "Specifying and Proving Properties of

Programmers' Apprentice

Evolutionary Programming

Guardians for Distributed Systems" MIT AI Lab Working Paper 172.
December 1978. Revised April 1979. Proceedings of International Symposium
on the Semantics of Concurrent Computation. Evian-les-bains, France. July
1.979.

HIewit, C. "Evolving Parallel Programs" MIT AI Laboratory Working Paper 164.
December, 1978. Revised April 1979.

King,J. C. "A New Approach to Program Testing" IBM Research Report RC-5037.
September 1974.

Miller, M. L "Planning and Dcbhugging in Elementary Programming" Unpublished
Doctoral Dissertation. MIT. February 1979.

Moriconi, Mark S. "A Designer/Verifier's Assistant" SRI Technical Report CSL-80.
October, 1978.

Rich,C. and Shrobe, H. "Initial Report on a LISP Programmer's Apprentice"
December 1976. AI-TR-354. IEEE Transactions on Software Engineering.
$E--4. No. 6. November 1978. pp. 456-467.

Rich,C.; Shrobe, H. E.; Waters, R. C.; Sussman, G. J.; and Hewitt, C. E.
"Programming Viewed as an Engineering Activity" MIT A.I. Memo 459.
January 1978.

Rich, C.; Shrobe, H. E.; and Waters, R. C. "Computer Aided Evolutionary Design
for Software Engineering" MIT A.I. Memo 506. January 1979.

Shrobe, IH. "Logic and Reasoning For Complex Program Understanding" MIT PhD.
Thesis, October 1978.

Sussnman, G. J. "A Computer Model of Skill Acquisition" American Elsevier. 1975.

Waters, R.C. "Automatic Analysis of the Logical Structure of Programs" MIT AI
Laboratory TR-492. December 1978.

Wulf,W. A. "Abstraction and Verification in ALPHARD: Introduction to Language
and Methodology" ISI/RR-76-46. June 1976.

Yonezawa, A. "Specification and Verification Techniques for Parallel Programs Based
on Message Passing Semantics" MIT/LCS/TR-191. December, 1977.

Prograrmmers' Apprentice

