
MAS 622j MATLAB® help 
Originally written by Tom Minka, and modified by Yuan Qi and Ashish Kapoor Sept. 2002 

Matlab variables . Matlab language . Plotting Examples . Useful Subroutines 

Getting started 

Open an editor window next to your MATLAB® window. You'll often find yourself mousing text in 
the editor window and pasting it into the matlab window. 

If you're a complete MATLAB® novice, type "intro" or, if you're real fond of splashy colors, type 
"demo". You can also read help from matlab help menu. 

You can also type "helpwin" or "helpdesk" to get a help window. The MATLAB® help command is 
"help". Try "help general" or just plain "help". The apropos command is "lookfor". Try, e.g. "lookfor 
tangent" or "lookfor random". 

Syntax 

The MATLAB® continuation code is "..." i.e. if you have a long formula that is several lines long, 
end each line with ... and continue the formula on the next line. 

The MATLAB® comment character is "%". The semicolon ";" is useful too; it makes the command 
on that line operate silently. For example, "A = B;" copies matrix B into matrix A. "A = B" does the 
same thing, but prints out the whole contents of matrix B while copying. 

Data structures 

The most useful data strucutre in MATLAB® is matrix. Scalars is considered 1 by 1 matrices, and 
strings (delimited by 'single quotes') are considered vectors (which in turn are just skinny matrices). 
Check out 

sprintf sscanf num2str int2str 

MATLAB®5 and 6 added the very useful "cell array" and "struct" data types. A cell array is just like 
a matrix except each entry can be any data type, not just a number. For example: 

>> c = {'joe' 5 [1 2 3]} 

c = 

'joe' [5] [1x3 double] 

>> c{3} 

ans = 

1 2 3 

A struct is similar except its contents are addressable by name only. 

http://courses.media.mit.edu/2002fall/mas622j/matlab/matlabbasic.txt
http://courses.media.mit.edu/2002fall/mas622j/matlab/matlablang.txt
http://courses.media.mit.edu/2002fall/mas622j/matlab/matlabplot.html
http://courses.media.mit.edu/2002fall/mas622j/matlab/routines.zip


>> s = struct('name', 'joe', 'age', 30) 

s = 

name: 'joe'
age: 30 

>> s.name 

ans = 

joe 

>> s.age 

ans = 

30 

Plotting and I/O 

MATLAB® is very good at plotting your data. See our plotting examples and/or get MATLAB®'s 
help on: 

plot grid hold drawnow axis axes orient 
subplot mesh meshgrid plot3 rotate3d 

Then you'll want to print your plot to a file. To print the current plot to a postscript file, type 

orient tall %% this line is optional
print -deps myfilename.ps 

You can use C style file I/O. Get help on commands 

fopen fclose fscanf fprintf printf 

The MATLAB® parser is not too clever, so don't put "-" in a filename; poor MATLAB® will think 
you want to subtract! 

MATLAB® has a native data file format, plus it can save and load data from ASCII files. See the 
stock answers and check out 

save filename.dat -ascii 
load filename 

Subroutines and objects 

Yes, you can write subroutines in MATLAB®. Each subroutine lives in its own file, with a name 
ending with .m, and you call it by filename. MATLAB® will sometimes not notice that you have 
created a new subroutine. Use path(path) to make it rescan the directories. 

In MATLAB®, subroutines can be associated with specific classes to simulate "methods" for object-
orientation. To make a method for class myclass, all you have to do is put the subroutine in a 
subdirectory called @myclass. 

You must always have a subroutine in @myclass which is just called myclass. This subroutine is 
called to create instances of the class. Get MATLAB®'s help on class. If you redefine a class, e.g. 



by editing @myclass/myclass, MATLAB® will complain unless you clear the old definition with 
clear myclass. Don't ask me why. 

clear x can also be used to remove the variable x from the workspace, e.g. to reclaim memory. 
Careful: clear alone removes all variables! 

MATLAB® is a trademark of The MathWorks, Inc. 

Thomas P. Minka 


