MAS 622J: Pattern Recognition and Analysis

Problem Set 3
Date: Lecture 7

Due: Lecture 10,11

This is a MATLAB®problem.

Download the datafile from the course webpage. The datafile consists of training and testing data for two different classes. The data given are 3-dimensional.

- Reduce the dimensionality of the data to 1 (You should only use the training data for this),
 - Using Principal Component Analysis
 - Using Fisher Linear Discriminant

Plot the histograms of the resulting data for each class and for each case.

- Compute the maximum-likelihood mean and variance of the dimension-reduced data for both the classes and for each case.
- Assuming that the classes are equally likely(P(class0) = P(class1) = ½) and that
 the likelihoods of observation given a class are Gaussian, write a MATLAB®script
 to classify the testing data using the estimated means and variances using 0-1 cost
 criterion. Report the recognition results for both the cases (PCA and Fisher Linear
 Discriminant).
- Let x be a Gaussian distribution

$$p(x|\theta) \sim \mathcal{N}(\theta, \sigma^2)$$

- (a) What is the noninformative prior for the mean parameter θ? Is it proper?
- (b) What is the relation between the noninformative prior and a Gaussian prior p(θ) ~ N(µ, α²)
- (c) Based on the noninformative prior for θ, compute the posterior of the mean p(θ|x). Is the posterior a proper distribution?

(Hint: you might use the result derived in the problem 2 of homework set 1.)

3. From Duda, Hart and Stork: Chapter 3 - Problem 4, 14, and 38