
BBF RFC 30 PoBoL architecture

BBF RFC 30: Draft of an RDF-based framework for
the exchange and integration of Synthetic Biology data

Raik Grünberg

April 24, 2009

1 Purpose

This Request for Comments (RFC) suggests a framework for the description,
exchange and interlinking of Synthetic Biology data. The framework would
create an open process for the evolution and “rolling” standardization of data
models. It describes how data and data models are to be published, how they
are exchanged and integrated between different parties, and how they can be
extended, corrected and interlinked in a decentralized fashion. These goals
are achieved by embracing the RDF (Resource Description Framework), a set
of W3C standards. A one-sentence summary of this proposal would there-
fore be: “Use RDF according to the W3C standards.” The PoBoL project
(Provisional BioBrick Ontology Language, http://pobol.org) is based on
this idea.

This RFC does not describe a data model per se but only outlines a
possible architecture and rules of data exchange.

2 Relation to other BBF RFCs

BBF RFC 30 does not update or replace any earlier BBF RFC.

3 Copyright Notice

Copyright (C) The BioBricks Foundation (2009). All Rights Reserved.

4 Background and motivation

The idea of sharing standardized parts and protocols is central to Synthetic
Biology. Yet, we have so far not been able standardize the exchange of
data about these parts and protocols. This lack of data exchange protocols

1

BBF RFC 30 PoBoL architecture

already affects the progress of Synthetic Biology software tools and limits the
exchange of information within the community.

Unfortunately, an all-encompassing data model for Synthetic Biology or
even only for standard biological parts seems completely out of reach. The
field is simply too young and needs are too diverse. Even a consensus model
for the description of standard biological parts, as much as it is needed right
now, will soon become insufficient and outdated. Furthermore, a fixed data
model runs contrary to our need of “playing around” and exploring differ-
ent strategies, for example, in part design, device measurement, or system
simulations. What we need instead is an open communication model which:

• Allows us to quickly fix operational data models for well defined prob-
lems.

• Remains open for extension and modification.

• Supports a decentral community-driven development.

An additional challenge is that Synthetic Biology data are not forming
“closed systems” but are actually diverse and interconnected. BioBrick parts
are often related to other parts, are embedded into various devices, which in
turn may be subjected to various measurements which in turn provide data
for various simulations which may feed back into different designs, and so on.
An open communication model should, ideally, not only allow the extension
of data models but also:

• Allow the extension and interlinking of the data itself.

Fortunately, we are not the first to face these challenges. The World Wide
Web Consortium (W3C) has developed the Resource Description Framework
(RDF) [1] – a set of standards that addresses all four points raised above.
RDF breaks with the idea of putting data into fixed tables. Instead“facts”
are put into “triples” of subject–predicate–object (i.e. noun or instance –
verb or property – object or value). Subject and predicate must be identified
by a unique address which typically translates to a location on the web. The
object can be a simple value but more often links to another subject. What
it boils down to is that data are uniquely identified, remain connected to
their meaning and can be linked through the web.

RDF documents can be serialized into XML, JSON and a number of
other file formats. Most available tools support the reading and writing to

2

BBF RFC 30 PoBoL architecture

XML and the N3/Turtle format. The simple examples below are written
in the “Notation 3” or N3 format. N3 allows to group statements about
a certain subject into blocks which gives a more object-oriented (“subject-
oriented”?) view. The result looks very much like a classic database record.
In fact, relational data are easily exported into RDF documents. Problems
may only arise in the other direction: The relational data model is more
rigid and restrictive than RDF. Third-party RDF data will therefore rarely
immediately map into a pre-existing relational database scheme – unless, of
course, both sides are complying with a common data standard.

This RFC outlines some simple rules that would establish an RDF based
data communication framework. The technical requirements are indeed quite
simple. We need (1) the RDF definition of a core data model, (2) some
guidelines for the extension of this data model, (3) a few recommendations
for data publication and synchronization and (4) software or servers that can
read and write RDF documents.

5 Detailed description

5.1 Establishing a core data model

The BioBricks Foundation (BBF) MUST publish an RDF document defining
the core concepts of the data model. This document is henceforth termed
the core standard. The core standard SHOULD, for example, define the
concepts of a “BioBrick part”, a “BioBrick Format”, “BioBrick Vector” and
other concepts that are deemed useful or on which the community has reached
consensus. The definition is not required to be complete. It only serves as a
point of reference for the evolving data scheme. The document MUST adhere
to the Web Ontology Language (OWL) standard. It SHOULD be formatted
in XML but MAY also be offered in a more readable RDF serialization like
N3/Turtle. This document MUST be made available at a permanent and
immutable location on the web.

In order to avoid compatibility issues, the document SHOULD be created
with established RDF editing programs like, for example, Protégé and it
MUST be validated against an independent RDF validator. The W3C keeps
a long list of RDF/OWL editors, validators and development tools [2].

The core data model SHOULD be described in a separate RFC.

3

BBF RFC 30 PoBoL architecture

Example:

The BBF places an Unicode encoded, N3 formatted file at: http://biobricks.org/rdf/
core/v1.n3. This file defines the concept of a BioBrick and declares that each BioBrick
can have a single property (or field) of type dnaSequence:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:Biobrick

rdf:type owl:Class ;

rdfs:comment "representation of a Biobrick" ;

rdfs:subClassOf owl:Thing .

:dnaSequence

rdf:type owl:FunctionalProperty ; ## only one value per part

rdfs:comment "property type for a part’s DNA sequence";

rdfs:range xsd:string;

rdfs:domain :Biobrick.

Another XML-formatted version of the same file may be made available at: http:

//biobricks.org/rdf/core/v1.xml.
The same file MAY be routed to a static address that is always pointing to the latest

version of the standard: http://biobricks.org/rdf/core/current.xml.
Please note, unlike a classic data base schema, RDF is “open” by definition. The above

file does not imply that BioBrick records can have only dnaSequence properties. Anyone
is free to define and assign additional properties. For example, the very popular FOAF
(Friend of a friend) ontology already defines a property “foaf:maker” which connects any
“owl:Thing” to a person who has created it. This property can be immediately used for
BioBrick records because BioBricks are also derived from “owl:Thing”.

5.2 Extension of the core data model

Third parties MAY extend the core standard whenever this proves necessary.
The extension MUST be published as an RDF/OWL document at a perma-
nent and immutable location on the web. The document MUST link back to
the core standard and MUST only contain the additional or modified defi-
nitions. If the extension model is building on further third-party extensions,
these extensions SHOULD also be referenced and their content SHOULD
NOT be repeated.

4

BBF RFC 30 PoBoL architecture

Whenever appropriate, extension authors SHOULD re-use definitions from
well supported other RDF ontologies. Examples are the sequence ontology
project [3] for sequence related information and Foaf [4] for user descriptions.

The extended data model SHOULD be used immediately without ap-
proval of any kind. It is RECOMMENDED to announce the extension on
the BBF technical standards mailing list, along with a set of example data.

Example:

A Synthetic Biology team at Hong Kong University concludes that BioBrick parts should
also contain a human-readable description. They publish a OWL/RDF file at the address
http://hkust.edu.hk/sb/rdf/bbv1.n3 which defines a new property of BioBrick parts:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix bbf: <http://www.biobricks.org/rdf/core/v1#> .

:description

rdfs:domain bbf:Biobrick ;

rdfs:range xsd:string .

Their own data about BioBricks can now mix the core standard with the extension.
So their first Hong Kong BioBrick may look like this:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix bbf: <http://www.biobricks.org/rdf/core/v1#> .

@prefix hk : <http://hkust.edu.hk/sb/rdf/bbv1#> .

:HK1000

rdf:type bbf:BioBrick;

bbf:dnaSequence "AGGAGGTGG";

hk:description "highly optimised RBS".

They can also annotate existing MIT BioBricks with their new data field:

@prefix mit: <http://partsregistry.org/rdf/parts#> .

mit:P1010 hk:description "ccdB death casette".

RDF-aware software could then automatically merge the information that is available
from the MIT with the annotation provided by the team from Hong Kong. This example
assumes that the MIT registry indeed provides an RDF “view” of their parts. See below.

5

BBF RFC 30 PoBoL architecture

5.3 Rolling standardization of the data model

Extensions that are popular or deemed useful by several labs SHOULD be
submitted for standardization. The authors SHOULD describe their exten-
sion in a short BBF RFC. The RFC SHOULD provide a brief motivation,
and describe or point to example data that are using the extension. The
RFC MUST contain a link to the permanent definition of the extension and
it is RECOMMENDED that the actual RDF document is also appended to
the RFC, preferably, in a more human-readable format like N3/Turtle.

Depending on the popularity and scope of the extension, the BBF MAY
include it directly into a revised version of their core standard or they MAY
choose to host it in a separate RDF document. In any case, owl:sameAs
links SHOULD connect the new standard back to the RDF document of the
original proposal.

5.4 Exchange and publication of data

Synthetic Biology data SHOULD be published in RDF documents that are
importing concepts and properties (fields and types) from the BBF core stan-
dard and, as needed, from standard or non-standard extensions. The data
documents SHOULD be serialized to XML but, depending on the situation,
other formats, like Turtle/N3 or JSON MAY be preferred.

Data MAY be exchanged in freely floating “unbound” documents that
are copied back and forth, attached to e-mails etc. However, unbound data
cannot be referenced by third parties, are subject to version problems, re-
dundancy and inconsistencies. Whenever possible, RDF data documents
SHOULD thus be hosted at permanent immutable locations. In particular,
data associated to published articles MUST be made available at a perma-
nent immutable location on the web. Different institutions like, for example,
part registries, journals, or specialized databases MAY offer to host the RDF
data on behalf of the authors.

Third party data stores MAY chose to import partial or full copies of
these data into their own system. Copies of these data MAY then be meshed
up and re-published as RDF but MUST always refer back to the original
location.

6

BBF RFC 30 PoBoL architecture

Example

The Hong Kong University team from the example above decides to host their BioBrick
data on their own server at the address http://hkust.edu.hk/sb/rdf/parts. The MIT
parts registry may nevertheless choose to re-publish the new part “HK1000”. However,
the MIT registry uses a classic relational database back-end and doesn’t know how to deal
with the new “description” property. So it simply leaves it out. Note, that the copy of
the BioBrick is pointing back to the original description. Instead of a local “:HK1000” it
is identified by a full address “hkpart:HK1000” which translates to http://hkust.edu.

hk/sb/rdf/parts#HK1000, the original location in Hong Kong.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix bbf: <http://www.biobricks.org/rdf/core/v1#> .

@prefix hkpart: <http://hkust.edu.hk/sb/rdf/parts#> .

hkpart:HK1000

rdf:type bbf:BioBrick;

bbf:dnaSequence "AGGAGGTGG".

5.4.1 Legal issues

In cases, where data are covered by legal terms and conditions of any sort,
these terms MUST NOT put any restrictions whatsoever on modification,
mesh up and re-publication. The original data MAY contain references to
a certain license. The obligatory back-link ensures automatically that this
license remains accessible also from copies of the data. Note, Creative Com-
mons (CC) are using RDF to embed license information in documents [5].
The CC RDF terms can probably be re-used and adapted into a Synthetic
Biology license data model. Preferably though, and following good scientific
practise, data should not be encumbered by any legal terms.

5.5 Interlinking and synchronization of data

Third parties can link to and extend the data of others. Examples are already
given above in section 5.2. The mesh up SHOULD again be published in RDF
documents at permanent locations. Centralized data stores MAY consolidate
certain types of data, for example, about BioBrick parts. This MAY include
a review process and quality control measures, perhaps at the cost of leaving
out less standardized types of information.

Data stores MAY use RSS feeds to synchronize data among each other.
The RSS format (another W3C standard) is based on RDF and can be di-
rectly imported. This strategy is simple and avoids any kind of write access.

7

BBF RFC 30 PoBoL architecture

The receiving data store MAY read and import part or all of the new infor-
mation at its own discretion.

Example

The Hong Kong BioBrick server offers a RSS feed that announces each new BioBrick.
The parts registry server at the MIT has subscribed to this RSS feed and automatically
imports every new part as soon as it is announced. The MIT registry’s own RSS feed
could then announce the new part to other data stores that were not aware of the server
in Hong Kong.

5.6 Data import and export

Synthetic Biology data MUST be available as RDF documents with a simple
read access from the unique address of the data. That means a simple HTTP

GET MUST serve the document just as it would serve an html formatted
web page about it. That also means data access SHALL NOT require the
initialization of web services or any other kind of remote procedure calls.

Software that consumes Synthetic Biology data records MUST be able
to open, parse and interpret RDF documents. Depending on its purpose,
the software is NOT REQUIRED to interpret every single (standard or non-
standard) statement in the document. However, it MUST make a best ef-
fort to gracefully ignore any non-standard statement in order to allow for
the expansion of the data model. The software SHOULD, at least, parse
XML-formatted RDF documents. Support of more specialized and readable
formats like Turtle/N3 is RECOMMENDED. It is RECOMMENDED that
the software be able to also directly read remote RDF documents via http.

Larger data stores are RECOMMENDED to serve only part of the RDF
document when a particular data item is requested with the standard syntax
http://address/document#item. At least in the long term, data stores are
also RECOMMENDED to support the SPARQL W3C standard for more
complex queries.

Example

The Hong Kong team publishes their only 10 or 15 BioBrick records in a single RDF doc-
ument which is served statically through their web server at http://hkust.edu.hk/sb/

rdf/parts.xml. By contrast, the MIT registry uses a database backed server and gener-
ates RDF documents dynamically. Accessing the address http://partsregistry.org/

rdf/parts would return a long RDF document containing all registered BioBricks. A re-

8

BBF RFC 30 PoBoL architecture

quest of http://partsregistry.org/rdf/parts#P1010 returns a short RDF containing
only a single BioBrick entry, for example:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix bbf: <http://www.biobricks.org/rdf/core/v1#> .

:P1010

rdf:type bbf:BioBrick;

bbf:dnaSequence "AAGTCCTAAAT....".

A Python programmer could access this BioBrick remotely using standard RDF li-
braries. For example:

from rdflib.Graph import Graph

g = Graph()

g.parse("http://partsregistry.org/rdf/parts#P1010")

Preferably though, the Synthetic Biology community should develop libraries that
encapsulate the RDF data into more customized objects.

6 Discussion

6.1 Advantages of the RDF architecture

The classic approach to data standardization is adapted to the classic means
of storing these data, namely in relational databases. It requires the design
of tables, fields within tables, and relations between tables before the first
data can be entered. For this reason, data standardization efforts like the
Systems Biology Markup Language (SBML) [6] aim to work out a detailed
data model which suits all needs. This data model is then serialized to a
common exchange format, typically XML, and recommended as a standard.
However, the process is difficult and it often takes years before a first standard
is available and even longer for software to catch up on it.

I here try to make the point that we should choose a different, more incre-
mental approach. We SHOULD base our data exchange efforts on RDF and
this Request For Comments tries to sketch how this COULD look in detail.
RDF “solves” our immediate issues of openness, extension, distribution and
scalability of data and data models. Obviously, it doesn’t make these prob-
lems disappear but it offers a clear strategy for handling them. Moreover,
this architecture has several additional advantages:

9

BBF RFC 30 PoBoL architecture

1. It avoids any custom-made protocols or formats and is based on existing
standards.

2. The architecture adheres to “REST” principles [7], that means it trans-
mits data directly over HTTP without an additional messaging layer
[8]. Data are fully uncoupled from software. There is no need for web
services, Soap or other remote procedure calls which makes it simple,
lean, less error prone, and more flexible.

3. Synthetic biologists will automatically benefit from the ongoing, and
right now accelerating, development of RDF tools and infrastructure.
By adopting RDF, we are effectively outsourcing our data integration
issues to expert computer scientists and enterprises.

4. The RESTful interconnection of data will, in the long run, lead to
mesh-up applications and services that are otherwise simply impossi-
ble. Examples are search engines that crawl distributed data sets for
suitable biological parts; social networks that connect biological engi-
neers through the parts or protocols they are using; and many more.

6.2 Software support

The RDF standard has been set 10 years ago and there is now a plethora of
software development tools available [2]. Libraries for the low-level reading
and writing of RDF documents abound and pretty much every program-
ming language is supported. Some packages also offer API bindings for
several programming languages. For instance, the Redland RDF libraries
(http://librdf.org) are written in C but can be used from Python, Ruby,
PHP and Perl.

By comparison, tools dealing with the classic relational database model
are, nevertheless, more mature and better known. After all, this model of
data handling has been around since more than 40 years. In fact, this RFC
is not pitching one model against the other. After decades of optimization,
relational databases are very efficient at handling large sets of local and
homogeneous data. This RFC assumes a mixed landscape, where local data
are often handled by relational databases but data exchange is based on RDF.
In fact, the underlying technology becomes irrelevant as long as data are
published as RDF. A software application would, in this scenario, not even

10

BBF RFC 30 PoBoL architecture

notice whether the data it imports were generated by a relational database,
a semantic triple store, or are coming from a plain static file.

In the near term, the scene will probably be dominated by classic database
servers and software parsers emitting and consuming a certain file format
(which happens to be RDF). Rolling standardization keeps this format in
sync and helps database or application developers to manually adapt their
static data models. In theory, there should be only little overhead involved –
developers may need to abandon their favorite XML parser because it doesn’t
support RDF (although in most cases it probably will) and data base admins
will need to ensure that the data they export are passing an RDF validator
and are pointing to the right ontology.

In the mid term, as more and more RDF data come online, this will
motivate developers to play with the additional possibilities of RDF. This, in
turn, should lead to increasingly advanced applications which can integrate
data from different sources automatically. In the long term, synthetic biology
data will more and more blend into a larger web of data that is weaved by
scientific and non-scientific communities. Well curated parts registries may,
in fact, turn into hubs and nucleation points for such data webs. But then,
as J.M. Keynes put it, “In the long term we are all dead.” So let’s focus on
the next steps.

7 Further developments of this RFC

This RFC is primarily meant as a basis for discussion. It could be developed
into a new master RFC that would be complemented by additional standards
on:

• definition of the core data model

• description of a versioning strategy

• guidelines for software / server developers

8 Authors’ Contact Information

Raik Grünberg: raik.gruenberg@crg.es

11

BBF RFC 30 PoBoL architecture

References

[1] The World Wide Web Consortium. Resource description framework
(RDF) / W3C semantic web activity. http://www.w3.org/RDF/, 2004.
Available from World Wide Web: http://www.w3.org/RDF/.

[2] W3C. SemanticWebTools - ESW wiki.
http://esw.w3.org/topic/SemanticWebTools. Available from World
Wide Web: http://esw.w3.org/topic/SemanticWebTools#

head-142cfa85b3be9cef7dc46bff5bba70bf03e3e7cf.

[3] The Sequence Ontology Project. The sequence ontology.
http://www.sequenceontology.org/. Available from World Wide
Web: http://www.sequenceontology.org/.

[4] The FOAF project. FOAF vocabulary specification.
http://xmlns.com/foaf/spec/. Available from World Wide Web:
http://xmlns.com/foaf/spec/.

[5] Creative Commons. Describing copyright in RDF.
http://creativecommons.org/ns. Available from World Wide Web:
http://creativecommons.org/ns.

[6] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Ki-
tano, , the rest of the SBML Forum:, A. P. Arkin, B. J. Bornstein,
D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles,
M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J.-
H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling,
U. Kummer, N. Le Novere, L. M. Loew, D. Lucio, P. Mendes, E. Minch,
E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada,
J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling,
K. Takahashi, M. Tomita, J. Wagner, and J. Wang. The systems biology
markup language (SBML): a medium for representation and exchange
of biochemical network models. Bioinformatics, 19(4):524–531, March
2003. Available from World Wide Web: http://bioinformatics.

oxfordjournals.org/cgi/content/abstract/19/4/524.

[7] R. T. Fielding. Architectural styles and the design of network-based soft-

ware architectures. PhD thesis, University of California, 2000.

12

BBF RFC 30 PoBoL architecture

[8] the free encyclopedia Wikipedia. Representational state transfer.
http://en.wikipedia.org/wiki/Representational State Transfer. Avail-
able from World Wide Web: http://en.wikipedia.org/wiki/

Representational_State_Transfer.

13

