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12.540 Principles of the Global
Positioning System

Lecture 10 

Prof. Thomas Herring 
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Estimation: Introduction 

– Basic concepts in estimation 
– Models: Mathematical and Statistical 
– Statistical concepts 

• Homework review 

• Overview
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Basic concepts 

estimation
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Basic estimation 

– Parametric estimation where the quantities to be

that express the observables 
–

formulated among the observations. Rarely used,
most common application is leveling where the sum
of the height differences around closed circuits
must be zero 

• Basic problem: We measure range and phase 
data that are related to the positions of the 
ground receiver, satellites and other quantities. 
How do we determine the “best” position for 
the receiver and other quantities. 

• What do we mean by “best” estimate? 

• Inferring parameters from measurements is 

• Two styles of estimation (appropriate for 
geodetic type measurements) 

estimated are the unknown variables in equations 

Condition estimation where conditions can be 
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Basics of parametric estimation 

– Observation equations: equations that relate the
parameters to be estimated to the observed

position, satellite position (implicit in r), clocks,
atmospheric and ionosphere delays 

– Stochastic model: Statistical description that
describes the random fluctuations in the 
measurements and maybe the parameters 

– Inversion that determines the parameters values
from the mathematical model consistent with the 
statistical model. 
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Observation model 

–
–

of equation 

• All parametric estimation methods can be 
broken into a few main steps: 

quantities (observables).  Mathematical model. 
• Example: Relationship between pseudorange, receiver

• Observation model are equations relating 
observables to parameters of model: 

Observable = function (parameters) 
Observables should not appear on right-hand-side 

• Often function is non-linear and most common 
method is linearization of function using Taylor 
series expansion. 

• Sometimes log linearization for f=a.b.c ie. 
Products fo parameters 
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Taylor series expansion 

• In most common Taylor series approach: 

• The estimation is made using the difference between

• The estimation returns adjustments to apriori 

y = f (x1,x2,x3,x4 )

y0 y = f (x)
x 0

+
∂f (x)

∂x
Dx x = (x1,x2,x3,x4 )

the observations and the expected values based on 
apriori values for the parameters. 

parameter values 

+ D
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Linearization

• Since the linearization is only an 
approximation, the estimation should be 
iterated until the adjustments to the parameter 
values are zero. 

• For GPS estimation: Convergence rate is 100-
1000:1 typically (ie., a 1 meter error in apriori 
coordinates could results in 1-10 mm of non-
linearity error). 
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• (Will return to statistical model shortly) 
•

minimize the sum of the squares of the differences

on parameter estimates. 
• For linear estimation problems, direct matrix

formulation for solution 
•

minimum value 
•

found (will not treat in this course) 

Estimation 

Most common estimation method is “least-squares” in 
which the parameter estimates are the values that 

between the observations and modeled values based 

For non-linear problems: Linearization or search 
technique where parameter space is searched for 

Care with search methods that local minimum is not 
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Least squares estimation 

D

observables; D

residual

Dy = ADx + v

minimize vT v( );
Dx = (ATA)-1ATDy

• Originally formulated by Gauss. 
• Basic equations: y is vector of observations; 

A is linear matrix relating parameters to 
x is vector of parameters; v is 

 superscript T means transpose 
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mean.

vT Wv( );
Dx = (ATWA)-1ATWDy
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Statistical approach to least squares 

Weighted Least Squares 

• In standard least squares, nothing is assumed 
about the residuals v except that they are zero 

• One often sees weight-least-squares in which 
a weight matrix is assigned to the residuals. 
Residuals with larger elements in W are given 
more weight. 

minimize 

• If the weight matrix used in weighted least 
squares is the inverse of the covariance matrix 
of the residuals, then weighted least squares 
is a maximum likelihood estimator for 
Gaussian distributed random errors. 

• This latter form of least-squares is most 
statistically rigorous version. 

• Sometimes weights are chosen empirically 
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Review of statistics

• Random errors in measurements are
expressed with probability density functions
that give the probability of values falling
between x and x+dx.

• Integrating the probability density function
gives the probability of value falling within a
finite interval

• Given a large enough sample of the random
variable, the density function can be deduced
from a histogram of residuals.
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Example of random variables
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Histograms of random variables 
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Characterization Random Variables 

Expected Value < h(x) > h(x) f (x)dxÚ
Expectation < x > xf (x)dx = mÚ

Variance < (x - m)2 > (x - m)2 f (x)dxÚ

• When the probability distribution is known, the 
following statistical descriptions are used for 
random variable x with density function f(x): 

Square root of variance is called standard deviation 
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Theorems for expectations 

– For a constant <c> = c 
– Linear operator <cH(x)> = c<H(x)> 
– Summation <g+h> = <g>+<h> 

xy

s xy =< (x - mx )(y - my ) >= (x - mx )(y - my ) fxy (x,y)dxdyÚ
rxy = s xy /s xs y

• For linear operations, the following theorems 
are used: 

• Covariance: The relationship between random 
variables f (x,y) is joint probability distribution: 

Correlation : 
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•
moments of a probability distribution 

• As N goes to infinity these expressions approach their
expectations. (Note the N-1 in form which uses mean) 

m̂x ª xn
n=1

N

Â /N ª
1
T

x(t)dtÚ

ŝ x
2 ª (x - mx

n=1

N

Â )2 /N ª (x - m̂x

n=1

N

Â )2 /(N -1) 

Estimation on moments 

Expectation and variance are the first and second 
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Probability distributions 

•

Gaussian f (x) =
1

s 2p
e-(x-m )2 s 2 )

f (x) =
1

(2p )n V
e

-
1

2
(x-m )T V -1 (x-m )

Chi - squared c r
2(x) =

xr / 2-1e-x / 2 

G(r / r / 2 

• While there are many probability distributions 
there are only a couple that are common used: 

/(2

Multivariant   

2)2
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Probability distributions 

•

and variance 1. 
• With the probability density function known, the

probability of events occurring can be determined.
For Gaussian distribution in 1-D; P(|x|<1s) = 0.68;
P(|x|<2s) = 0.955; P(|x|<3s) = 0.9974. 

• Conceptually, people thing of standard deviations in
terms of probability of events occurring (ie. 68% of
values should be within 1-sigma). 

The chi-squared distribution is the sum of the squares 
of r Gaussian random variables with expectation 0 
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Central Limit Theorem 

•
• “The distribution of the sum of a large number of

is approximately Gaussian”
• When the random errors in measurements are made 

up of many small contributing random errors, their
sum will be Gaussian. 

•
generate another Gaussian. Not the case for other 

density functions. 

Why is Gaussian distribution so common? 

independent, identically distributed random variables 

Any linear operation on Gaussian distribution will 

distributions which are derived by convolving the two 
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work

Summary 

• Examined simple least squares and weighted 
least squares 

• Examined probability distributions 

• Next we pose estimation in a statistical frame 
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