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Abstract

A prototypical algorithm for solving integer programming problems

is presented The algorithm combines group theoretic methods for

finding integer solutions to systems of linear equations under the

control of heuristic supervisory procedures. The latter pre-structure

the overall problem and guide the search for an optimal solution by

organizing subproblems and selecting the appropriate analytical methods

to apply to them. Here there is a decided emphasis on the diagnostic

facility of the supervisor in order that the various analytic methods

may be adapted to the overall problem and to the particular subproblems

encounteredo

Throughout the paper, the variety and flexibility of the group

theoretic methods are emphasized, as well as the potential of heuristic

selection and control of these methods

o

531^00





Table of Contents

Page

Section 1. Introduction

1.1 Introductory Remarks 1

1.2 Statement of the Problem 3

1.3 Overview 10

Section 2, Analytic Methods

2.1 Introduction 11

2.2 Group Theoretic Analysis of Subproblems
(Static Analysis) 12

2.3 Dynamic Group Theoretic Analysis 31

Section 3. Supervisory Procedures

3.1 Introduction 41

3.2 Search Procedures 41

3.3 Subproblem Analysis 51

3.4 Pre-search Analysis 64

Section 4, Adaptive Group Theoretic Algorithm 69

Section 5. Conclusion 73

Appendices

Section 6, Computational Experience 74

Section 7, Linear Search Sub-Algorithm 74

Section 8, Static and Dynamic Algorithms 75

Section 9, Algorithm for the Zero-One Group Problem 74

Section 10, Control of Plausibility Analysis 78

Section 11. Group Representational Algorithm 74





1. INTRODUCTION

1.1 Introductory Remarks

The purpose of this paper is the construction of a prototypical

algorithm for solving integer programming (LP) problems which integrates

diverse analytical methods under the control of an "intelligent" supervisory

program. The original motivation for our work was the observed anomalous

behavior of different IP computer codes in solving test problems. It was

seen that there is a great disparity in the performance of existing codes

in solving a given problem. Moreover, the performance of a given code on

a given problem can depend in a non-trivial way upon the problem definition

and the problem solving strategy of the code. For example, the efficiency of

Gomory's cutting plane algorithm on a given IP problem depends on the

choice of cuts added to the linear programming (LP) problem at each iteration

[17].

Thus, it appeared to us that some problem diagnosis was desired in

order to fit the proper algorithm to a given problem, and also in order

to control certain strategies of the chosen algorithm to effect faster

convergence. Additional interest in this problem was derived from the

analogies between IP problem diagnosis and other diagnostic problems

which have been solved by computer [20,21,22]. A diagnostic model for

IP problems seems to have considerable potential as a basis for a flexible,

adaptive algorithm. We have also investigated the application of algebraic

group theory to the problem of characterizing integer solutions to systems
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of linear equations [35,36,37,38]. The plethora of algorithmic procedures

suggested by this theory implies that some diagnosis is required to fit

the proper procedures to a given problem.

The work presented here, then, was directed at the problem of

establishing a conceptual and theoretical framework within which a flexible

and adaptive IP algorithm could be developed. Our investigations have

convinced us that such an algorithm will combine both heuristic and

analytic methods. The latter will be used in the solution of subproblems

generated during the attempt to solve the given IP problem. The heuristic

methods will be used by a supervisory procedure which organizes and selects

subproblems and chooses the appropriate analytical methods to employ in

their solution. The manner in which the supervisory procedure structures

the IP problem and the way in which it exploits information gained from

the solution of subproblems are but two examples of several areas of

concern. Another is the diagnostic strategy employed by the supervisor

to ascertain the character of a given problem, perhaps opening it up to

the application of special purpose algorithms. Similarly, the algorithm

should attempt to utilize data from computation on previous IP problems

in diagnosing a given problem and updating program parameters.

Our goal, therefore, is to develop some of these heuristic methods as

well as to formulate new analytical methods which will facilitate the

In this paper, we use the term algorithm both to refer to

the overall procedure we develop as well as any of the various

sub-algorithms employed.
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solution of IP problems. Some important insights have been gained into

both of these areas, and they are indicated here. The overall problem,

however, is as yet unsolved. Our purpose in this paper is to present our

basic approach to the more general problem, and to show how our results

to date indicate the potential value of the approach. Certain sections

of this preliminary version are less developed than others. It is hoped

that the next version of this paper will treat the neglected topics in

fuller detail.

1.2 Statement of the Problem

The IP problem is written in initial canonical form

min z = cw (1.1a)

s.t. Aw = b° (1.1b)

w. = or 1 ieS (1.1c)
J

w. = 0,1,2,... jeS^ (l.ld)

where c is an (m+n) vector of integers, A is an mx(m+n) matrix of

integers, b*-* is an m-vector of integers. We assume A is originally of

the form A = (I, A') where I is an mxm identity matrix. The analysis

below remains valid even if A is not put into this form. We have done so

in order to simplify the discussion of the group theoretic methods in

Section 2. A generic column of A is denoted by a .

.
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The first step is to solve (X.l) as the LP problem

min z = cw (1.2a)

s.t. Aw = b , (1.2b)

w >_ 0, (1.2c)

w. ± 1, jeS (1.2d)

If S ^ (|), the upper bounding variant of the simplex algorithm [9] should

be used to take into account implicitly the constraints (1.2d).

Let B denote the optimal basis found by this algorithm and rearrange

the columns of A so that A = (R,B) ; similarly, the vector c = (c , c ).
R B

Let X denote the nonbasic variables and y denote the basic variables.

We use B to transform (1.1) to

min z = z + ex (1.3a)

s.t. y = b^ - Rx (1.3b)

X. = or l,jeS (1.3c)

X. = 0,1,2,... , jeS*^ (1.3d)

y. = or 1, ieS (1.3e)
1

y. = 0,1,2,..., ieS"- (1.3f)

where z. = c^B~"'"b°, b^ = B""'"b°, c = c^-c„b" R, and R = b" R. Note that
U B R B

the vectors b and c are non-negative since B is an optimal LP basis.

Moreover, b. < 1 for ieS.
1 —
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A permissible correction x is one for which the constraints (1.3c) and

(1.3d) hold. A feasible correction x is a permissible correction such that

the resulting y. from (1.3b) satisfy (1.3e) and (1.3f) hold. An optimal

correction x is a feasible correction which solves problem (1,3).

Problem (1.3) can be interpreted as: Find a feasible correction x so

that the additional cost ex to the optimal LP cost z is minimal. Hence-

forth, the constant z_ will be omitted from the objective function (1.3a).

We will attempt to solve (1.3) by implicitly testing all feasible

corrections in (1.3). The set of all permissible corrections is a tree

which can be simply described in a recursive fashion. Starting at K=0,

n
the corrections at level K are the corrections whose sum T. x . = K.

Let X be an arbitrary correction at level K and let j (x) , j (x) be

defined by

j (x) = max {j |x. > 0} (1.4a)

Jq(x) +1 if JQ(x)eS

j(x) = ^ (1.4b)

Jq(x) if JQ(x)eS'^

The correction x is connected to the level K+1 by continuing x to x+e

.

for j >_ j (x) , where e. is the jth unit vector in n-space.

It is convenient at this point to introduce some new notation and

terminology which we borrow from [11]. The best solution x(b ) found

Here we use the Form of an Optimal Correction Lemma from Section 3.2,
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thus far at any point in the implicitly exhaustive search is called the

incumbent . The incumbent cost is z(b ) = C'x(b ). We say a correction x

has been fathomed if it is possible either (1) to discover an optimal

continuation w >_ x, or (2) to ascertain that no feasible continuation of

X has a lower cost than the incumbent cost z(b ). If (1) obtains, then

x(b ) -<- w, z(b ) -^ cw only if cw -*- z(b ). If x is fathomed, then it is

clear that the entire subtree beneath x is implicitly tested and hence

X is not continued.

The procedure for searching through the tree of enumerated corrections

is particularized in Section 3. For our purposes here, it suffices to

recognize that any implicitly exhaustive search procedure will consider

k K
a sequence {x },_p. of (permissible) corrections (x = (0,...,0)) which

are tested by the algorithm. Unlike Balas' linear search method of implicit

enumeration [1,11], there will generally be more than one unfathomed

correction being considered by the algorithm at any given time. It is

true, however, that only one correction at a time is tested and hence the

k K
sequence {x }, ..

k=0

Consider an arbitrary x in the sequence and define the set F by

\ = (jCx'"), j(x^)+l n} (1.5)

1 k
F, is the set of free variables relative to x . An optimal continuation

k k
of X is X +u where u is an optimal solution to the subproblem

Strictly speaking, F, is the set of free non-basic variables. The

(original) basic variables y. = x ,. are always free even when they

become non-basic during analysis.
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k —
min z(b ) = Z c.x. (1.6a)

leF ^ ^

s.t. y = b - Z a.x. (1.6b)

X. = or 1, jeSHF, (1.6c)

X. = 0,1,2,..., jes'^ nF (1.6d)

y. = or 1, ieS (1.6e)

y. = 0,1,2,... .ies'^ (1.6f)

—k -Ik -1 k
where b = B b = B (b -Rx ). Note that (1.6) reduces to (1.3) when

k
X = X .

k.
J

k^ k.

Consider a sub-sequence {x ^ _n with the property that x =0 and x is

^i-1
a continuation of x , i=l,...,I; such a sub-sequence is called a path

of the tree of enumerated corrections. There is a corresponding (sub)

k.

sequence {b K_„ of integer m-vectors in m-space, and thus the path in the tree

corresponds to the path

^1 ^1 ^2 ^I-l \
p = (b^.b ^, (b \ h n,..., (b ^ \ b ')

in m-space. As we shall see in Section 2, the performance of the various
k.

analytical fathoming methods for each of the x depends upon certain

geometric properties of the path p. Moreover, decisions about the

procedures to be used in trying to fathom x are made partly on the

k.

basis of the information available from analyzing the x , i=0 I-l.
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In much of the analysis below, we will consider problem (1.6)

(and others) with a variable integer m-vector b(b=b ). From the

point of view of dynamic programming, b is the state vector, and it should

be clear to the reader that there is an intimate connection between

discrete dynamic programming and tree search. In Section 2, we discuss

briefly the IP problem from the dynamic programming point of view.

It is to be emphasized, however, that dynamic programming as it is

generally understood is not an efficient procedure for solving the

IP problem.

Let X(b ) denote the set of feasible corrections to (1.6) when

X(b ) = {x: x.=0, jiF ; X., jeF satisfy (1.6c) and (1.6d);

y. satisfy (1.6b), (1.6e), and (1.6f)} (1.7)

k K
Thus, corresponding to the sequence {x } „ are the sequences of solution

sets {X(b ) }, _Q and the optimal costs {z(b )^v_q'

All of the analytical methods and algorithms discussed in Section 2

to be used in attempting to fathom enumerated corrections have the following

common feature. The algorithms do not attempt to solve (1.6) as it is

n _ k
stated. Instead, the minimize Z c.x. over some set YOX(b ) which

j=l J J

is more amenable to description and analysis. Solving the more general

problem has two possible benefits. First, if
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— k — '0
ex + min { Z c.x.: xeY} > z(b ),

1^

then it is clear that x is fathomed. On the other hand, if we can find

— k
a u* which is optimal in min { E c.x.: xeY} such that x + u* is a

^ k
k 'Ok

feasible correction, then x is fathomed. Moreover, x(b )
*- x + u*,

z(b )
-<- c(x + u*) since c(x + u*) ->- z(b ) by assumption.
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1.3 Overview

In Section 2, we will present the theoretical basis for a variety

of analytic methods for solving IP problems. These methods are derived

in large part from a group theoretic view of the problem. Section 3

is devoted to the problem-solving strategies employed by the supervisory

portion of our adaptive group theoretic (AGT) algorithm for IP problems.

The major topics of this section are: 1) the manner in which subproblems

are selected by the supervisor, and 2) the strategies which are used

to analyze a given subproblem. In Section 4, we present the basic

AGT algorithm. A discussion of our work with an emphasis on areas for

further research and extension is in Section 5. In the appendices to

the paper (Sections 6-11) we discuss a number of topics in more detail,

and present the details of some sub-algorithms used in the AGT algorithm.

In this preliminary version, some of these discussions are incomplete.
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2. ASALYTICAL KETHDDS

2.1 Introdi-ictlori

Thfe analytical mfetl-uids to be used in the elgcritha are baaed on the

group theoretic -^-r'".^? discuseexl in [17, 1^5,19, 36 ,37, 3?, 35] , The f-xrA^-

zj^ut&l idea that ve exploit Is the following: Tr^ set of integer solutions

to a gystean. of linear equations is effectively characterized by an

equivalent set consisting of the solutions to an equation of elements

from a finite abelian group. In [13] , Gomory exposed the importance

of this idea and specialized the approach to If problems for whi^

Cl) non-negative integer solutions are required, and ^2) a best ''optinal)

solution is chosen from the set of feasible solutions by a linear criterion

finiction.

We remark that the transformation of a combinatorial problem to a

prcbien over an abelian group is a classic technique of number theory.

Moreover, once the integer prcgrsESLxng problem Ls studied from this

perspective, a vide variety of n.Tjmber theoretic techniques are suggested.

The possibilities are, in fact, sufficiently large to make the selection

of the particular techniques to be t.i=ed in analyzing a given problem,

non-obvious. It is imdoubtedly true that as t'r.e application of number

theory to IP problems orogresses, insights vill be gained vhich will

lead to better procedures. Nevertheless, the selection of procedures to

be used in analyzing a given problsa must alvays depend to some degree

on orior assessments of 'uncertain characteristics of the problem. For
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this reason, it appears that a decision theoretic approach to problem

analysis is indispensible to the supervision of an efficient (adaptive)

algorithm. Our purpose in this section is to expose the variety of number

theoretic methods which appear promising for IP problem analysis. Space

and time limitations prevent us from treating in full detail all of the

topics to be mentioned below.

As we shall see, the group methods have a dynamic as well as a

static aspect. They are static in that they provide the fathoming tests

for a particular enumerated correction x . This is the concern of

Section 2.2. On the other hand, the group methods are dynamic because

there is interaction between the fathoming tests for each of the corrections

^k=l"

k K
in the sequence {x },_-,• These dynamics are discussed in Section 2.3.

2.2 Group Theoretic Analysis of Subproblems (Static Analysis )

We begin with a discussion of the methods as they are applied

statically to a subproblem of the form of (1.6). For ease of exposition,

all of the results in the beginning of this subsection are for the group

transformation relative to the optimal LP basis B which was used to

transform (1.1) to (1.2). It is easily seen that the same results hold

if the transformation is relative to any mxm non-singular matrix made

up of the columns a of A. For additional ease of exposition, we
J

assume a generic m-vector b.

The transformation of problem (1.1) into a group optimization

problem relative to B is accomplished as follows. Define

We use [a]=integer part of a, or [a] is the largest vector of integers

such that t < a.
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ci - L» (B'-'-a - [h~'^a ]'; ,j-l,...,n (2.1)

where D - |det B|. In addition, define

e - ij{B"'''b - [n'h]} (1.1)

Tl-ie set of elements {«,}, , with addition modulo D frenerates a finite

abelian group G of order D [17]. Tnis group can be n-ore compactly

represented as follows. Given a finite abelian group G, there exist

iqioe positive Integers q, q ,
such that q, |q2 1

• • • l^^r '^^i
^^'^^^^^

^i+l-*

r

D - TT q

i=l

un

and

where

G -- Z @ ... @Z (2.3j
"1 *^:

Z = re-. . , , , ,f the integers modulo q . .

^i
^

Thiis, G is uniquely and isomorphically represented by a collection

of D r-tuples of integers

(?,,,...,?. ) where - ;.. - g. - 1 for i=l,...,r. C2.4)
1' ' r — 1 — "1

These r-tuples are ordered lexicographica. : ,
the rule (d^,...,d^) <

(h h ) if d < h, where i, is the smallest index such that d ^^ h .

1' ' r i- i^ 1 ^ -^
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This imposes a linear ordering on the elements of G. Henceforth, we will

assiime that this isomorphic representation of G is being used and we say

G = {A } _, where X is the sth r-tuple and X„ = 9 , the identity element,
s s=0 s "^0 '

Finally, the original a. and 3 are now considered to be r-tuples of the

form (2.4) above.

The advantages of the representation (2.3) over other representations

are twofold. First, r never exceeds m and almost always is very small

relative to m. In fact, for the majority of integer programming problems

tested to date, r=l. Relative to other representations, (2.3) is a

minimal generating system in the sense that r is the minimal number of

cyclic subgroups of G which can be combined by direct summing to give

G [10, p. 47]. An algorithmic procedure for achieving (2.3) is programmed

and running on the IBM 360/65 at MIT. A second advantage of this representa-

tion is that it is unique to a given finite abelian group. It may be

possible, therefore, to categorize integer programming problems by their

induced group structure and thereby utilize experience gained on one

problem in solving a second. We point out, however, that (2.3) may not

be the best representation for a given problem. More is said about

this below.

A network representation of G is useful in exposing several insights

which we shall exploit. The network n involves only the non-basic

variables x. and the basic variables y. are related to the x by the

equations (1.3b). The network consists of D nodes, one for each of the

elements X . Directed arcs of the form (A - oi . , A ), j=l,...,n, are
8 s J s
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drawn to each node X , s=l,...,D. Note that arcs are not drawn to X e 9.
s

(It is convenient to add the node A^ = (q.,...,q ), and the arcs (X - a ,X )u 1 r D j D

j=l,...,n, to n- The significance of these additions to n is discussed

below.) A path y in n connecting G to X is backtracked to a solution

X = (x^,...,x ) where x. is set equal to the number of times an arc ofIn J

the form (X - a., X ) is used in u . The relationship between this group

network and a subproblem of the form (1.6) is the following. Every

feasible solution to (1.6) corresponds to a path in n connecting 9 to

e, in (2.2) for b = b^.
k

Henceforth, when we speak of the group structure of a particular

group, we shall mean the canonical representation (2.3) and the corresponding

network. The group structure is to be distinguished from various group

(optimization) problems which can be solved for a given group.

1 k k:

In the analysis below, subproblems (1.6) for b = b , b ,...,b , . . . ,b
,

are transformed into group optimization problems. In addition to the

group structure discussed above, there are two quantities which require

specification in order to formulate and solve the two group problems

derivable from a given subproblem. First, each right hand side b

is mapped into the group element

e, = D {B"^b^ - [b"V]}
k

which appears as the right hand side in the group constraint equation.

The number of distinct right hand sides cannot, of course, exceed D.
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Thus, we will formulate and solve the group problems for a generic group

element A as the right hand side in the group equation.

Second, for each subproblem there is the set F of free variables

which can be used in continuing the correction x . In terms of the

group problems, F, restricts to jeF, the types of arcs (X - a., A )

which can be used in spanning ct k. We let F denote a generic subset of

{l,2,...,n} corresponding to a set of free variables.

In particular, the constraints of a typical group problem are

Z a.x. = X (mod D) (2.6)

x.eS., jeF (2.7)
2 3

where the sets S. are to be specified in one of two ways. First, we let

S. = N E {0,1,2,...} jeF, and define the solution set

r (A ;F) = {x: x satisfies (2.6) and (2.7) with S. = {0},us J

j^F; S. = N, jeF} (2.8)

Second, we let S. = {0,1}, jeSPF, S. = N, jeS'^OF, and define the

r (A ;F) = {x: x satisfies (2.6) and (2.7) with S.={0},
V s J

j«iF; S. = {0,1}; jeSHF, S =N, jeS'^HF} (2.9)

With these definitions we can state

Notice that F may be restrictive to the point thatry(As;F) in (2.8)

and/or rv(As;F) in (2.9) are empty. This is to be desired because it

indicates that a particular problem has no solution, and hence is fathomed.
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LEMMA 2.1 For any subproblem (1.6) with b = b - PvX , the following

set inclusions hold:

^u^\' \)'='^^\' \)=^^(b^) (2.10)

Proof: Choose any solution xeX(b ). It sufficies to show that xeT (6, ;F, )
V k k

]^

since the proof that xeF (3, ;F, ) is almost the same. Since xeX(b ),^ u k k N ' »

we have from (1.6) that

Dy = Db^ - Z Da.x.

ieF -' -'

J k

X e{0,l}, jeSOFj^

x.eN, ieS^n F,
,

3 k'

and y is a vector of integers satisfying (1.6e) and (1.6f). We substitute

for Da. = DB'^^a. and Db'^ = DB~ b from (2.1) and (2.2), the result

Dy = e - D[B""''b] - Z {cx.-D[b" a ]} x.,

J^\

or,

'k -'"^k

x.e{0,l}, jeSPlF

D{y+[B b] + Z [B a.]x.} + Z a.x. = S, •IT ...-,11 k

2

x^eN, jes'^n Fj^

k
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Reducing both sides of the constraint equation modulo D yields

S a.x. = B,

^^\'' '

x.eN, jeS^nF,

which is what we wanted to show.

In words, lemma 2.1 states that each feasible solution to an IP

subproblem (1.6) corresponds to a path connecting 9 to 6, in the network n.
K.

The two group optimization problems induced from the above group structure

1
are

Unconstrained Group Problem:

min z (A ;F) = Z c.x. s.t. xeT (A ;F) (2.11)us .-p 3 2 us
2^\

Zero-One Group Problem:

min z (A ;F) = L c.x. s.t. xeT (A ;F) (2.12)
V s' . p J 3 V s

Both of these group problems are shortest route problems in the

network n if a cost (length) c. is associated with each arc of the form

(A - a., A ). In particular, the Unconstrained Group Problem is the

problem of finding an unconstrained shortest route path connecting 9 to 6, >

"'"If either of problems (2.11) or (2.12) has no feasible solution,

we take the objective function value to be +°°.
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using arcs of the form (A - a.., A ), jeF, . The Zero-One Group Problem

has the side constraints that arcs of the form (X - a., A ) for jeSflF

can be used at most once. The shortest route paths connecting 9 to A

are minimal cost circuits in n. The corrections backtracked from these

k —

k

circuits are used in attempting to fathom x in (1.6) such that b is

integer but a constraint either of the form (1.6c) or (1.6d) is violated.

Notice that the group problems viewed as shortest route problems

are special shortest route problems because the same types of arcs can be

shown to each node (save 9). Special algorithms were constructed in

[37] and [39] for exploiting this structure. In particular, the Unconstrained

Group Problem (2.11) can be solved by the algorithm GTIPl of [37] and

this algorithm is reproduced in Appendix A. Let u(A ;F) denote the

optimal solution to (2.11) found by AGIPl. In addition to solving (2.11)

GTIPl also finds u(A ;F), p=0,l,...,D for the given set F of free

variables. As we shall see, this property is very useful to the dynamic

workings of the AGT algorithm.

The Zero-One Group Problem (2.12) can be solved by the algorithm of

[39] which is reproduced in Appendix B. Let v(A ;F) denote the optimal

solution to (2,12) found by the algorithm of [39]. This algorithm also

has the property that it finds v(A ;F)
,
p=0,l,...,D, for the given set

F of free variables.

Alternative optima to (2.11) may be important and GTIPl can be

amended to find some of them (See [37]). For simplicity, we assume

GTIPl finds a unique solution to (2.10).
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The set inclusions in Lemma 2.1 imply

Corollary 2.1: Let x be an optimal solution to subproblem (1.6). Let

u(e, ;F, ) and v(3, ;F ) be optimal solutions with costs z (3 ;F ) and

z (B, ;F, ). Then
V k k

and

(i) ex >_ cv(3j^;Fj^) >_ cu(3j^;F^),

k k
(ii) If X + u(3, ;F, ) (x + v(3, ;F, )) is a feasible correction,

then it is an optimal correction.

The implication of Corollary 2.1 is that x is fathomed if one of

the four tests (2.13), (2.14), (2.15), (2.16) obtains. These tests are:

c(x^ + u(3j^;Fj^)) >_ z(b°) (2.13)

c(x^ + v(3j^;F^)) >_ z(b°), (2.14)

X + u(3, ;F, ) is a feasible correction in (1.3) (2.15)

X + v(3 ;F, ) is a feasible correction in (1.3) (2.16)
K. K.

If (2.15) (or (2.16)) obtains, then a new incumbent has been found and

x(b°)^ x^ + u(g^;F^) (i(b°)^ x^ + u(3j^;Fj^)) z(b°)-7x(b).
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It is important to remark at this point that if either of the group

k
problems with b = b and F^^ = F^ = {1,2 ,... ,nl yields a feasible correction

in (1.3), then this correction is optimal and no further analysis is

needed. In this case, of course, the tree search is not required. The

entire analysis and algorithmic construction below are predicated on

the assumption that a given integer programming problem (1.1) is a

difficult one to solve. By this we mean that the group algorithms

applied to (1.1) fail to yield optimal solutions. Moreover, we go further

and state that a difficult problem also has the property that the

subsequent search (after the algorithms fail) is extensive.

Before turning to a discussion of group transformations with respect

to arbitrary (dual feasible) bases, we mention that there are sufficient

conditions from [37] on the use of the group optimization algorithms in

finding an optimal continuation of a correction x . These conditions are

(i) P b > (D-1) (maximum a..) i=l m, (2.17a)
i " I.. > ^^

(ii) p.b^ < 1 + (D-1) (minimum a
.
^ ) , icS, (2.17b)

ij

i - I.. <
^J

where p. is the ith row of B , and a. is the ith component of a. =

-1 '
"

B a., j=l,...,n. The relations (2.17a) and (2.17b) depend upon the

existence of a cyclic unconstrained and zero-on shortest route paths in

n . Computational experience has shown that these sufficient conditions

-Ik k
are gross overestimates of the "fat" required in B b and 1-P^b for

the corrections from the group problems to be feasible. Hence, these
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conditions are of limited computational use. However, the deviation of

these conditions suggests some qualitative results which provide some

measure of IP problem characterization. This is discussed in Section 2.3.

As we have previously mentioned, a group transformation such as the

one discussed above can be effected with any mxm non-singular basis made

up of the coliomns a. of A. However, the group optimization algorithms

rely heavily on the assumption that the arc costs c. are non-negative

and therefore that there exists an acyclic shortest route path in n. For

this reason we will confine our attention to bases which are dual feasible.

It is important to recognize that a dual feasible basis B has a special

meaning in the context of solving a subproblem of the form (1.6) for

the correction x . We are confined to jeF, U {n+J , . . .
,n+m} for activities

a. from which to form B . If all of the activities a., i=l,2, . . . ,n+m
J t J.J.,,

were considered, then B would not necessarily remain dual feasible. Thus,

if o = {i,,...,i } is the set of indices of the column forming B^

,

t -"l -"m t'

t c
then we can meaningfully define a set F = (F U {n+1, , . . ,n-hn}) f\ o which

K K, t

contains the non-basic free variables relative to the basis B . These

are the variables that will be used in solving the group problems

derived from B .

Strictly speaking, then, the dependence of the matrix B on the

set of activities from which it was formed should be indicated. We will

omit such an explicit notation with the understanding that any dual

feasible basis and the ensuing group theoretic analysis will always be

relative to some set of free variables. Similarly, we let R^ be the
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matrix formed by the activities a., jeF, . The relative cost factors

are c = c - c B a >_ 0, jeF yj o . Finally, let P^ denote the ithJJ^^I-J K.L 1

row of B
t

The details of using a dual feasible basis in attempting to fathom a

correction x are given below. The interactions between dual feasible bases

and the resulting group problems for a sequence of subproblems are discussed

in Subsection 2.3. For convenience, we assume a generic b and a generic

k tset F or free variables (relative to x ) . The resulting set F of free

variables relative to B is F^ = (F U {n+1, . . . ,n+m}) C\ a^

.

The elements

^j = °t^\S ' ^^tS^^'^^^k
(2.18a)

where D = |det B |, generate the abelian group G of order D . (To

ensure that the full group of order D is spanned, temporarily augment

R with whatever unit vectors required to have it contain an mxm identity

matrix. These augmented unit vectors are omitted once the group

representation (2.3) is found.) The group right hand side element

corresponding to b is

i^ = D^lB^-'-b - [B^^b]} (2.18b)
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Using the canonical representation of G , we have G = {X } where
t t s s=0

each A^ is an r^-tuple. There is a group network n corresponding to

G , and as before, we augment n, by the node A^ = (q!^....,q^) and theL t u 1 r

^. t t ,y , . c ^

arcs (A^ "
°'i

• -^n "^
» J^<^t*

t -^ t

Again we are interested in certain paths in the group network

connecting 6 to 6 • Because we will be finding shortest route paths from

6 to A , s=l,...,D , we take A as a generic group right hand side.

The constraints of a typical group problem for group t are

I a.d. = A (mod D ) (2. 19)

d.eS., jGF^ (2.20)

where the sets S. are specified as before in one of two ways. First,

ijj*^(A^;f'^) = {d: d satisfies (2.19) and (2.20) with S. = {0},us 2

je(F'')''n o^i S_.=N, jeF^no^} ; (2.21)

and second,

>i'^(A*^;F*^) = {d: d satisfies (2.19) and (2.20) with S. = {0},

S.=N, jes"" n f" o^} (2.22)
J t
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In order to express all group solutions in common terms, for any

dt^li^iX^lF^) or deii<'^(A'^;F'^), define x byus V s '

d. if jeo

Xj =
^

(2.23)

p!^(b-R d) if i=j .£0
1 t -^ 1 t

where A = 6 for some b. Thus, the group solution sets in terms of the

X. can be defined as before. Let
J

T^(X^', F^) = (x: X satisfies (2.23) for some deij^'^ (A*^ ;f'^) } (2.24)

and

r^(A^; F^) = {x: x satisfies (2.23) for some dei(;'^(A'^ ;f'^) } (2.25)
V o V S

With this background, vje have

Corollary 2.2 For any subproblem (1.6) with b = b - I^ , the following

set inclusions hold:

«' ^k>=>^v(<'<>=>^^^')-

The group optimization problems induced from the above group structure

are:
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Unconstrained Group Problem t;

min z^(X^; F^) = Z c^d . s.t. deij'^Cx'^ ;F^) (2.26)us
J-

J J us
jeF

Zero-One Group Problem t:

min z*^(A^; F*^) = I c^d. s.t. deii)'^(A^ ;F^) (2.27)V S
,- J J V s

jeF

For each optimal solution d to (2.26), let the solution u (X ;F ) denote
s

the resulting correction derived from d by (2.23). Similarly, let v (X ;F )

denote the resulting correction derived from any optimal solution (2,27).

Thus, we have the following extension of Corollary 2.1

Corollary 2.3 Let x be an optimal solution to subproblem (1.6) and let B

be any dual feasible basis in (1.1). Let u (X ;F,) and v(X, ;F, ) be derived

from optimal solutions to the Unconstrained Group Problem t and the

Zero-One Group Problem t. Then

(i) 7x >_7u^e^;F^) > 7v''(eJ;F^),

and

(ii) if x^ + u^(B^;F^) (x^+v'^(6^;F^)) is a feasible correction,

then it is an optimal continuation of x .

T
Suppose now that there is a collection {B } ^^ of dual feasible
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bases (B =B) and the corresponding group optimization problems available

for attempting to fathom an enumerated correction x . It is clear by the

above analysis that x is fathomed if one of the following four tests

obtains

:

(i) max cu^(sf;Fh > z(b°) - cx^ (2.28)
t=l T

(ii) max cv (bSf ) >_ z(b ) - "ex (2.29)
t=l T

Ic t t t
(iii) x + u (6, ;F, ) is a feasible correction for some t (2.30)

k t t t
(iv) x + v (6 ;F ) is a feasible correction for some t (2.31)

If (iii) (or iv) holds for some t, then x(b )
-<- x + u (i3 ;F )

(x(b°) ^ x^ + v''(3^;F^)) and z(b°) ^ Hi(b°).

It is easy to show that additional group optimization problems can

be constructed as follows. Substitute the relative cost factors with

respect to any dual feasible basis in the objective functions of (2.26)

and (2.27) rather than the Ti relative to B for whic'i the sets
J ^

lii (X :F ) and ij^ (A ;F ) are derived. We omit further mention of theseus V s

problems but the computational usefulness of this idea will be explored

further.

There are two remarks to be made about the group problems (2.26) and

(2.27). First, as a rule only one of these problems will be used in
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attempting to fathom a given correction x • Limited computational experience

indicates that (2.27) requires approximately five times the computation

required by (2.26). On the other hand, a solution to (2.27) yields a

correction which is more likely to lead to a fathoming of x . A procedure

for choosing between the two group problems is discussed in section 3.3.

It suffices here to mention that the result of the decision process is a

correction h (B, ;F ) which equals either u (6 ;F, ) or v (6 ;F, ).

Second, the reader should note that not all group problems t are

equally useful in fathoming a given correction x . For an arbitrary sub-

problem, the most appropriate dual feasible basis to use in trying to

fathom the sub-problem is the one that is also optimal feasible; that is, the

most appropriate basis is B such that

B"-'"b^ >_ (2.32)

and

1-p^b^ >_ for ieS (2.33)

Our reasoning here is that the correction u (6 ;Fj^) or v (6j^;F^) is the

one most likely to be feasible in the subproblem x since 1) we begin with

feasibility in (2.32) and (2,33) and 2) the shortest route paths in n^

yielding these solutions tend to be short. Moreover, the relative cost

factors "c!' are the appropriate (at least in the LP sense) ones for the

given b . We remark in passing that the apparent correction between the

group theoric IP results and duality for IP [3] has been largely ignored.

Finally, we present a brief discussion of the application of group

theory to Gomory's cutting plane method. The cutting plane method begins
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with the LP solution (1.3) of (1.1). When this solution is not integer, it

is possible to deduce new constraints (cuts) to add to (1.3) with the

properties 1) the current optimal LP solution is infeasible in the augmented

problem and 2) every feasible integer solution is feasible in the augmented

problem. As demonstrated in [17], there are D distinct cuts (including the

mill cut) which can be deduced from an LP solution of the form (1.3). A

typical cut to be added is of the form

n

3=1 -^

where x.. and (ran), are the ith components of a. and a, n when the
ij b'^ 1

'^

J b^

representations (2.1) and (2.2) are used.

The collection of cuts forms the same abelian group G of order D

with addition (mod D) of the rows in (2.6) with X - a q and F = F = {l,2,...,n}

It has long been observed that not all of the D cuts have equal resolution

or strength. Only recently, however, has insight been gained about the

identification of strong cuts [19]. A strong cut can be described as

follows. Plot in n-space all the solutions xeP (b ;F_) and form the convex
'^ u

polyhedron which is the convex hull of these points. A cut is strong if

it is a face of this convex polyhedron, and such faces can be generated by

solving a problem similar to problem (2.11) with A = ct and F=Fq. The

reader is referred to [19] for further details.

Although the theoretical development In [19] may well be of great

algorithmic importance, we do not include the cutting plane algorithm as





- 30 -

an analytic method in this version of the AGT algorithm. Instead, we

await a more complete theoretical developmentof the relationship between

group theory and the cutting plane method.
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2.3 Dynamic Group Theoretic Analysis

This section is devoted to a discussion of the dynamic interactions

of the group theoretic methods of the previous Section. We shall attempt

to describe in a qualitative manner how the subproblems and the various

group structures and group problems change and interact as the AGT Algorithm

progresses. Alternatively, we can say that our goal is a description of

how the computational experience of the AGT Algorithm previous to the

analysis of a given subproblem can be related to that analysis. More-

over, we try to relate the analysis of a given subproblem to future

computation. A fully specified decision making procedure based on the

ideas to be presented here is given in Section 3.3.

There are two fundamental constructs which change as a sequence of

subproblems (1.6) are considered. These variable factors are the right

hand side b and the set of free variables F, . As we shall see, the
k

dynamics of the AGT Algorithm can be described and analyzed largely by

studying and exploiting the changes in b and F .

Consider, then, the analysis of a subproblem (1.6) derived from an

k k k
enumerated correction x . If x is such that y = b satisfies (1.6e)

and (1.6f), then x is fathomed. Otherwise, additional analysis is

needed. Before applying group theoretic methods, we make a cursory

real-space examination of b to ensure that feasibility is attainable.

In particular, if either

-J, —
b. + E max {0,a. } + Z max {0, a..,u.}<0

for some b^ < 0, (2.40)
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or

—

k

— —
b. + Z min {0, a..} + E min {0, a. ,u } > 1

for some b. > 1, y.cS (2.41)

where u. is an upper bound on x.^ then x is fathomed because feasibility

of some w >_ X is impossible. This type of fathoming test is the major

fathoming test of the algorithm in [11]. It should be clear that (2.40)

and (2.41) have weak resolution whenever F, and/or S are large. We

include these tests because 1) they provide a measure of real space

feasibility not provided by the group methods, and 2) they are computationally

cheap since they are additive from problem to problem.

Let us suppose that (2.40) and (2.41) do not lead to a fathoming

of X and therefore that more sophisticated analysis is in order.

Suppose further that (Unconstrained and Zero-one) Group Problems

corresponding to dual feasible bases B , t=l,...,T, have been formulated

and solved prior to the analysis of x , and retained. For each t we

associate the following:

1) The set o = {i,,...,i } of the indices of the activities in B^

;

t 1 m t

2) The set L = {jlc. - c„ B""''a. < 0} (2.42)

of indices of the infeasible dual rows with respect to B (B is dual

feasible with respect to L )

;

"^ D -1

3) The group G = {A } „ with the representation (2.3);
t s s=U
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4) An optimal group table for an Unconstrained Group Problem (2.21)

previously solved with the set of free variables F = U^ and U^ <= a^ C\l'^— t t'

and possibly

5) An optimal group table for a Zero-one Problem (2.22) where

previously solved with the set of free variables F = V and V a a QL

At this time it is important to state that the main fathoming tool

for subproblem analysis is considered to be the unconstrained Group problem

rather than the Zero-one Group Problem. By contrast, the Zero-one

Group Problem is used as a second effort method when the Unconstrained'

Group Problems are judged to be performing poorly as fathoming tests.

Of course, if a Zero-one Problem has been computed previous to the analysis

of X and this previous computation is relevant (in a sense to be explained

momentarily) , then the zero-one solution is preferred to the unconstrained

solution relative to the same set of free variables.

With this background, it can be seen that we attempt to fathom x

in one of three ways. First, we try to use the stored results described

above without recomputation. To do this, it is necessary to ascertain

which stored results can be used directly. The stored results which can

be used directly are left over from previous subproblem analysis for

corrections which dominate x in a manner to be described below.

Second, if the stored results do not lead to a fathoming of x , then we

dynamically re-optimize a selected set of unconstrained group problems.

Finally, if this fails, we may be willing to find a new dual feasible

basis and use the induced group structure and group problem to try to
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fathom X . As a secondary alternative, it may be worthwhile to resolve

a Zero-one Group Problem for a new group. The ensuing paragraphs are

a discussion of these considerations.

As stated above, our first concern when attempting to fathom x

is the application of relevant stored results without recomputation.

In particular, a group problem needs to be relevant in two ways. First,

the group structure G over which the group problem(s) are defined must

embe derived from a basis B which is dual feasible for the LP probl

(1.6). Specifically, if B is dual feasible with respect to L , then

G is a relevant group structure for subproblem x only if (F, U ^t) ^ ~'^'

U
Let T ^ T be the set of relevant group structures in this regard.

The second requirement is on the group problem itself. Given the

group structure G , a stored Unconstrained Group Problem solution

t t c c
(optimal group table) is relative to some set U , U C H L , of free

non-basic variables relative to the basis B . For the stored results

to be applicable to the analysis of subproblem x , it is necessary that

t c t '

F = (F 1)0 ) f) a CU . If this set inclusion holds, then the

Unconstrained Group Problem t relative to U is said to dominate the

same problem relative to F, . Let x^ ^ t, be the set of indices for which
k 2 1

(unconstrained) cominance holds. Similarly, a stored zero-one group

problem solution relative to V is said to dominate the same problem

relative to f5 if f5 cT-V^, Let t, ^^t„ be the set of indices for which
k k J- '^

(zero-one) dominance holds.

u
The usefulness of the stored group problem solutions for t e f^, or
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V
teT is embodied in

k k
Corollary 2.4 If for subproblem (1.6) with b = b - Rx and for some t

t c
we have F = (F,

\J
o )

f\
o c U*^ , then

'»'^ ^'»l^'

Similarly, if F^ <_ V , then

V k — V k k

As before, these set inclusions imply

Lemma 2.5 Let x be an optimal solution to subproblem (1.6) and let B

be any dual feasible basis such that F^ U . Let u (3, ;U ) and v (6, ;V )

be derived by (2.23) from optimal solutions to the Unconstrained and

Zero-one Group Problems (2.26) and (2.27). We can conclude

(i) ex > cu^6^;F^) >. cu^e^;u'')

(ii) 7x ^7v''(3^;F^) ^7v^(e^;V^)

(iii) if x^ + u^(&l;U^) or x + v^(e^;v'^) is a easible correction,

then it is an optimal continuation of x .

Thus, we can fathom x if one of the following four tests obtains





-se-

ll V
by backtracking in the stored solutions for tet or tex.:

(i) cu'^(6^;u'^) >_ cx^ - z(b) (2.43)

(ii) cv'^(e^;v'^) ^Ix*^ - z(b) (2.44)

k t t t
(ill) X + u (6. ;U ) is a feasible correction (2.45)

k t t t
(iv) X + V (3, ;V ) is a feasible correction (2.46)

IS.

Note that the Unconstrained and Zero-one Group Problems solved

k
at X =0 for t=l dominate every enumerated correction x .

If the efforts above to use the stored results without recomputation

fail, then the next option open to use is to update the Unconstrained

u
Optimal Group Tables for all tei, (we ignore for the moment the possibility

of updating or recomputing optimal solutions for Zero- ne Group Problems).

This updating can begin with the previous Unconstrained Optimal Group

Table and therefore the amount of recomputation can be quite small if

the commonality between U and F, is great (see Sdction 8). In any case,

the updating will require a non-trivial investment of computation time

and therefore it is important to make some prior assessment of the relative

u
value of optimal solutions to Unconstrained Group Problems t for tei^.

This value is due to the possible fathoming of x and also to the possible

fathoming of continuations of x if x is not fathomed. We point out that

we are most desirous of using B such that B^ 10 and p^b^ <_ 1 for

i =
i eSUo . If it can be ascertained that there is some tei for which
-"s t

B is such an optimal LP basis, then this group structure and Unconstrained
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Group Problem is given top ranking. More about this below.

In Section 3.3 we describe how the information collected to date

about the performance and relevance of Unconstrained Group Problems,

u
plus some overall problem diagnosis is used to rank that tet . It

sufficies here to give a qualitative description of the factors taken

into consideration in termining the ranking. First, there is the relative

and absolute performance of each of the Unconstrained Group Problems in

fathoming subproblems previously encountered.

Second, there is the relevance of any given Unconstrained Group

Problem to the subproblem x . To gain some insight about this, we note

k Ok
that b is the end of a path in m-space connecting b to b bv a sequence

h \ \ h-1 \
of arcs (b ,b ), (B , b ''),..., (b , b ) where k = k. If B

k. i

is an optimal LP basis for subproblem b , then the movement in m-space

^ -1 k
is through a sequence of cones K ={b:B b^O} in reaching b .

k. k._ "^i

Since b = b + a for some i , , the movement can be considered
-^1-1 t.

to be fairly smooth and hopefully the path lingers in the cone K for several

corrections before moving to a new cone. As for analysis of (1.6)

k 'l
with b , it is clear that we are most interested in the cone K and

those cones which are adjacent to it. Thus, we can argue qualitatively

that the ranking should depend upon the most recent cones penetrated

k
and possibly repenetrated in reaching (1.6) with b . The sequence of

k
cones (when they are ascertained) leading to b can be recorded easily

and the ranking procedure in Section 3.3 depends heavily on inference
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from this sequence.

Finally, the ranking procedure considers the potential usefulness

of updated group solutions to future subproblem analyses by evaluating

the position of x in the tree of enumerated solutions.

As a result of the ranking procedure, we assume there is a set t- ex

such that the Unconstrained Group Problems are to be updated in some

specified order for teT„. In particular, the Unconstrained Group Problem

is solved dynamically in the sense that the new solution is derived

t c
from the previous one by setting U to (F, IJ O-,)

pi
o (see Section 8).

The results of the dynamic reoptimization of the Unconstrained Group

u k
Problems for tex. are used as before in attempting to fathom x (see

k
(2.28) and (2.30)). If x is still not fathomed, we may choose to find

a new group and solve a new group problem. In any event , if x is

u

continued the new Unconstrained Group Problem solutions for tex- will

be useful in attempting to fathom its descendants.

Suppose now that the analysis of subproblem x has not led to a

fathoming of x . If it is known that a group problem over the group

structure induced by an optimal LP basis for the subproblem has been

solved, then the group theoretic analysis is terminated and x is continued,

Otherwise, we may choose to find this basis and probably solve a new

Unconstrained Group Problem derived from it. The details for making this

decision are given in Section 3.3. We will consider here the implications

of the decision to find an optimal LP basis for (1.6), on the assumption

that it is not known whether group analysis with respect to this basis





- 39 -

has been previously performed.

Thus, let B be an optimal LP basis for (1.6) which is found by

the dual simplex method where the initial dual feasible basis is B .

If (1.6) is an infeasible LP problem, then x is fathomed. Problem

(1.6) cannot have an unbounded LP solution because we assume there are

upper bounds on each of the variables. Once B is found, we compare

to a , t=l,...,T. If a = a for some t, then B is not a newSt St s

]^
dual feasible basis and the only recourse open is to continue x .

Suppose that o ^ o , t=l,...,T; in this case, let B ^
= B , o = o

and derive the group G , with the representation (2.3). Solve the

T+1
Unconstrained Group Problem (2.26) for B ^ with respect to U =

c k
iFAJo^)f)a , , and attempt to fathom x with the tests (2.28) for

t=T+l or (2.30).

We comment briefly on the rationale for finding a new group

structure G ^ when the conditions of the previous paragraph obtain.

In add-tion to the obvious benefit of the resulting Unconstrained Group

Problem in fathoming x , the creation of a new group problem is useful

to the fathoming of the possible descendants of x . These ideas are

2
illustrated in Figure 1. The cone K is penetrated first by the

^1
vector b at which time G and (2.26) with respect to G are formulated

and solved. This did not lead to a fathoming of x but the results

^2 S
for G„ are useful when attempting to fathom x and x which are continua-

tions of X

If all attempts at fathoming x fail, then we consider continuing
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k k
X to X + e for j >_ j (x) where j (x) is defined by (1.4) Not all

continuations will actually be made for the following reason. For

each X + e. we associate a lower bound value from the relevant group

problems. In particular, the lower bound value for x+e is
j

max {max {ex + c . + cu (6 - a ;U )},

tet^ ^
^

max {ex +c.+cv(3, -ct.:U)},
tet- J ^ J

- h _^
- _^-T+l,^T+l T+1 „T+1., ^^ ,^^ex + c. + cu (6, - a. ; U )} (2.47)

where the third term is omitted if a new group T was not generated.

k k
The correction x is continued to x +e . only if this lower bound value

J
' 0. k' k

is strictly less than the incumbent value z(b )> If x = x +e . is a
3

continuation which is allowed by this rule, then we associate the

maximal lower bound value with t for use in plausibility analysis

(Section 3.2).

Finally, if it was discovered that B was an optimal LP basis for

-1 k -1 k -1
(1.6), then we calculate B (b -a.) = B b - B a.. The basis B

t J t L J L

is a feasible and therefore optimal LP basis (1.6) with b -a. if

-1 k -1 t k -1 •

B b - B a > and P (b -B a.'< 1 for i = i eSno . If so, then we
t tj- 1 tj- s't

k'
set A =t. Notice that the above test and the group identities for all

k k
G can be updated from x to x +e . by addition or subtraction.
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3. SEARCH AND FATHOMING PROCEDURES

3.1 Introduction

The AGT algorithm which is presented in Section 4 of this paper

employs two basic types of methods in solving a given IP problem.

Methods of the first type are called analytical methods, and they are

designed for the solution of subproblems generated during the course of

solving the given problem. Methods of the second type are heuristic or

supervisory methods, and they are used to control the order in which

subproblems are attacked as well as the analytic methods which are applied

to them. Decisions about subproblem selection and testing are influenced

by information obtained from the solution of previous subproblems. There-

fore, among the supervisory methods are ones which are directed at diagnostic

problems which are encountered during a search for an optimal correction.

In section 2, the analytical methods were discussed. In Sections

3.2 and 3.3, we discuss the supervisory methods associated with subproblem

selection and subproblem analysis respectively. Finally, in Section 3.4,

we discuss some methods by which the supervisor can structure the IP problem

prior to beginning the search. These methods collectively are called

pre-search analysis .

3.2 Search Procedures

In this section, we will investigate several search procedures which
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implicitly test all corrections to (1.3) for optimality. First we will

contrast two fundamentally different algorithms for searching the tree of

corrections. These algorithms are a breadth-first algorithm and a depth-

first algorithm. Then we will demonstrate the limitations of both these

rigid search procedures, and argue for a more flexible strategy. Finally,

we will describe the basic search procedure we have developed for our AGT

algorithm.

The breadth-first search procedure is so named because an attempt is

made to fathom all corrections at level K before any corrections at level

n
K+1 are considered where K = I x.. The breadth-first procedure

discussed here incorporates two basic results from [38]:

1) Form of an Optimal Correction Lemma ;

Suppose a correction x is not fathomed. Without loss of optimality, we

can continue x by the corrections x + e. for j=j(x), j(x)+l,...,n (See (1.4))

n .

2) The search can be confined to levels K = I x. < K*(z(b ))

where K*(z(b )) is retrieved from the solution of the knapsack problem:

n
K*(z(b )) = max Z V. (3.1a)

subject to
^ - -

I (D-c.)V. < D.z(b ) (3.1b)

J=l ^ J
-

V. non-negative integer (3.1c)
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This problem can be solved once for all right hand sides 0,1,..., D«z(b)

by the algorithm of [35].

With these two results in hand, we can describe the breadth-first

search procedure as follows. Starting with K=0 , attempt to fathom all
n

non-negative integer corrections x such that I x. = K. If a correction

j = l
^

X is not fathomed, then the Form of an Optimal Correction Lemma is used

to continue x, and all corrections of the form x + e. for j=j(x),...,n

are placed on the (K+l)-list. When all corrections on the K-list have

been tested (fathomed or continued), K is indexed to K+1 and the procedure

is repeated. If at any level K, the K-list is empty or if K > K*(z(b )),

then the procedure is terminated with the optimal correction x(b ). The

exact formulation of this procedure is presented in [38].

Before exploring the breadth-first search in more detail, we turn

our attention to a depth-first search procedure to describe its basic

operation. As does the breadth-first search described above, the depth-

first search employs both the Form of an Optimal Correction Lemma and

K*(z(b)) to restrict the domain of the search for an optimal correction.

The basic operation of the depth-first search proceeds as follows.

The correction x (beginning with x=0) is tested. If x is not

fathomed, choose as a new correction to be tested x + e. where

f(x+e. ) = min {f (x+e . )
|x+e . has not been fathomed} (3.3)

^* j(x)<j<n -^ -"

for some selection function f. The correction x is fathomed when all
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continuations of the form x + e. for je(j(x),n) have been fathomed. When

x=0 has been fathomed, the optimal correction x(b ) has been found. Again

if the level of a correction x exceeds K*(z(b )), x is fathomed.

The selection function determines the order in which continuations

of a correction x are tested in the event that x is not fathomed directly.

The simplest choice for f is f(x+e.) = j. As will be discussed below,

a different choice for f can result in more efficient search procedures.

The implicit enumeration algorithms of Balas [1] employ such a depth-first

search with a selection function which minimizes the total infeasibility

in the selected continuation, x' = x+e . . Observe that such selection

functions are equally valid for the ordering of corrections on a K-list

in the breadth-first search. Also, in contrast to the breadth-first search,

this search may investigate many continuations of a K-level correction before

testing another K-level correction.

The introduction of group bounds into the fathoming procedures can

improve the efficiency of both the breadth-first and the depth-first

search procedures. In spite of this improvement, both procedures remain

quite inflexible, each performing a search in a rigidly prescribed manner.

In general terms, the efficiency of a search procedure to obtain

an optimal correction to (1.3) can be related to the number of corrections

explicitly considered. The use of bounding procedures permits some

(hopefully large) fraction of the corrections to be considered implicitly .

This, of course, is the motivation for improved bounding procedures.

Notice, however, that a fundamental determinant in the extent of pruning
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in the tree (implicitly eliminating corrections) is the value of the

incumbent z(b ). The maximum amount of pruning results when the

incumbent is optimal. In general, the closer z(b ) is to the optimal

value, the greater the pruning will be. A graphic example of this

effect is presented in [34].

Neither the breadth-first search nor the depth-first search

discussed above incorporates sufficient means for exploiting this effect.

Only a limited (if any) attempt is made to identify paths in the tree which

lead to optimal or near optimal corrections. Such corrections are

considered only when they are generated by the fixed sequence used by the

procedure. The breadth-first search tests all corrections at level K,

although one of these corrections may merit investigation in depth first.

The depth-first search, on the other hand, pursues a given path to a depth

required to find a correction which can be fathomed with only slight

regard to potential improvements in the incumbent to be realized on other

paths in the tree.

Therefore, we introduce the concept of a plausibility analysis [34]

which is intended to increase the likelihood that promising paths in the

tree (i.e. those which may lead to an improved incumbent) are explored

first by the search procedure. Here we introduce some definitions which

we will need for our discussion of plausibility analysis:

The use of a selection function corresponds to a limited and local

attempt to discover good paths. This is an improvement, but the search

still remains quite myopic.
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1) A frontal node is a node of the tree of corrections which

a) has been assigned a value by plausibility analysis

b) has not been fathomed

c) has no unfathomed descendants.

Another way to characterize a frontal node is to say that it corresponds

to a subproblem which was considered by the supervisor, but has not yet

been solved. We will examine this view in more detail below.

2) At any stage in the search, the front is the collection of all

the frontal nodes in the tree, and the subproblem list is the collection

of all subproblems corresponding to frontal nodes.

3) The select node is the frontal node chosen by plausibility analysis

for testing. This amounts to a decision to attempt to solve the corres-

ponding subproblem.

Basically, plausibility analysis operates in the following manner.

The nodes in the front are analyzed and the most promising node is des-

ignated as the select node. An attempt is made to solve the subproblem

corresponding to the select node by fathoming the correction. If the

current correction is not fathomed, it is continued as in the breadth-

first search. The resulting nodes are added to the front. Their cor-

responding subproblems are assigned a plausibility value (the measure

The select node and its subproblem are deleted from the front and

the subproblem list respectively.
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of promise) and are added to the subproblem list. In any event, a new

select node is chosen and the process is repeated. If the front (or the

subproblem list) becomes empty, the search terminates with the optimal

x(b°).

In general, the sprouting of the ^ree from the select node increases

the number of frontal nodes. The application of the plausibility analysis

to these new frontal nodes may result in a number of decisions. First,

the new subproblems may appear less promising than one of those temporarily

abandoned at an earlier stage in the search. In this event, the focus

of the search will move to a new select node in a different region of the

tree. If, on the other hand, one of the new frontal nodes is chosen as

the select node, the search continues in the current region of the tree.

Finally, during the plausibility analysis of the new frontal node, a new

incumbent may be discovered. The new incumbent may obviate the necessity

of Solving some of the subproblems put aside earlier. In this case, the

subproblems in question are removed from the front.

Thus, this multiple-path plausibility analysis can be thought of as

developing many subproblems simultaneously. At each stage in the search,

plausibility analysis selects the subproblem which it considers the most

likely to lead to an improved incumbent. Through the use of plausibility

analysis, the supervisor controls the search in an effort to maximize

the amount of subproblem pruning which is attained.

"^As will be seen below, plausibility analysis may prune some of

these subproblems directly.

Because there is a cost associated with moving from one region of the

tree to another, we require the plausibility value of the select node in the new

region to exceed those of the local frontal nodes by some minimal value.





- 48 -

It is important to note that the plausibility analysis employed by

the supervisor is a hazard-free heuristic. The analysis is heuristic

because the measure used to assess the potential value of a given subproblem

cannot guarantee an optimal ordering of the subproblems in the search.

Indeed, if it could, it would be a direct means for obtaining an optimal

correction. At best, it is designed to improve the likelihood tl at on the

average paths leading to good incumbents are explored early in the

search. The heuristic is hazard-free, however, in the sense that it will

prune an optimal correction only if the incumbent is optimal. It will never

prune solutions which are better than the incumbent.

The particular plausibility value assigned to a correction x in the

search procedure of the AGT algorithm is the greatest lower bound on an

optimal continuation of x obtained from the group problems . Thus, if

bounds have been obtained from relevant group problems 1,...,T with

t k
corresponding right hand sides g, , then the plausibility value of x is

and

J^ = cx^ + max {ch^CB^;?^)} (3.4)

t=l,.. .
,T

h*" is either u" or v^ (see (2.26), (2.27)). (3.5)

Clearly if at any time J ^ z(b ), then x is fathomed.

As indicated in Section 2, a number of ways are available for bounding

a given correction x . In the following discussion of subproblem analysis,

we will investigate the manner in which bounding procedures are chosen
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for a particular subproblem.

Several comments about the effect of plausibility analysis are

relevant here. Notice that the subproblem selection procedure employed

means that the search is in a sense intermediate between a depth-first

and a breadth-first search. A very promising path (as indicated by the

plausibility analysis) may be explored in depth immediately. If the

current path appears less promising than some other path in the tree,

attention is switched to the new path. This helps avoid the "single-

mindedness" of the strictly depth-first search. Also note, that sub-

problems which are not solved at one stage in the search may be pruned

without further analysis later if a new incumbent is found.

Plausibility analysis is really of use only when it is believed that

the incumbent can be improved. If it is believed that the incumbent is

optimal, then plausibility analysis should be abandoned in favor of the

linear search described in Section 12 . Therefore, the supervisor should

monitor the progress of the search and attempt to estimate the potential

improvement in the incumbent. At some point, when it is determined that

little improvement in the incumbent can be expected, plausibility

analysis should be suppressed. A more extensive discussion of this point

is presented in Section 10.

One final point should be made about the plausibility value used in

our search procedure. It uses only a bound from the group problem as

a measure of the promise of a given subproblem. A better measure might

be one which incorporated the number of free variables for the correction
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as well as the bound. Whether any additional benefit can be derived

from such a modification is a matter for further investigation.
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3.3 Subproblem Analysis

We now turn to a discussion of the manner in which a selected problem

is tested. The collection of methods employed by the supervisor in an

attempt to fathom a given subproblem is called subproblem analysis . At

the heart of subproblem analysis is the processes which marshall informa-

tion gleaned from the analysis of past subproblems and integrate it

into the analysis of the current subproblem. Also incorporated in this

part of the supervisor is information obtained from the analysis of

other IP problems. In this section we will discuss the information-

gathering or diagnostic function of the supervisor. The foundation for

the particular diagnostic function described here is the theoretical

analysis presentedin Section 2.3.

The correction x is the last in a series

P(x ) = {x } p^Q (3^6)

Notice that |P(x )| = K(x )+l. Much of the information which is relevant

to the analysis of x is associated with P(x^). Of major importance is

the sequence of cones penetrated and repenetrated by P(x ). Recall

that the cones in this sequences are of the form

K = {b|B -""b >^ 0} (3.7)

where the condition 1 - pS ^ for ieS is understood to hold implicitly.

(See Section 2.3.) Therefore, the determination of a dual feasible
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-10 k
basis B^ such that B^ (b -Rx ) identifies the cone of primary interest

in fathoming x • The AGT Algorithm does not necessarily obtain a basis

B^ for each correction x . As a result the identity of certain cones

corresponding to corrections in P(x ) may not be known. If, however,

a correction x is such that b - Rx e B for some previously determined

B , this fact will be noted by the algorithm. The supervisor may or may

not decide to determine an optimal LP basis for a right hand side

k k
b = b - Rx • The considerations involved in this decision will be

discussed below.

Therefore we define

C(xS = {tp}^fj >
. (3.8)

as the index set for the cones penetrated and repenetrated by the

P(x ) with the provision that t =0 whenever the cone (basis) corresponding

P k
to X at level P in P(x ) either has not been identified or has been

erased by the supervisor as will be discussed below.

The set C(x ) is an important factor in determining fathoming

k k
strategies at x . If, for example, C(x ) = {..., l,...l, 2,.. .,2,

3,..., 3} , then it is clear that the group solutions preferred for

bounding x are those for group 3 followed by those for group 2 and so

forth. If, on the other hand, C(x ) is a more random sequence, the

preference ordering is less clear.

k
Another consideration is the number of cones in C(x ). If this

number is large in some sense and the sequence C(x ) is somewhat random,
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then solving the group problems for the subproblem x may be relatively

ineffective. If the number of cones penetrated is small, the group

problems may be more useful. Our reasoning here is the following. If

b - Rx represents the end of a long path in m-space starting at b
,

which has penetrated just a few cones of the form (3.7), then the majority

of the activities a. are such that B a. is an order of magnitude less
J 2

than B b for bases B and right hand sides b encountered in the path

from b to b - Rx . Thus, there is a greater likelihood that group

corrections fathom enumerated corrections by providing feasible, and

hence optimal continuations.

Another good source of information derives from the dominance

relations developed in Section 2.3. In general, we observe that the

solution of a group problem t is relevant to the analysis of x provided

that (F o^) L = (+1 where L = {a.jc.--T a. < 0}. In addition, we noteK.1 t t jjl^j
c t

that if this condition holds and (F. O °i) /q "f — ^ ' ^^^ solution to

k
group problem t can be simply retained for use in the analysis of x .

This provides us with a very simple fathoming test. In the event that

the retrieved group solutions fail to fathom x , we can dynamically

resolve any or all of these group problems for the group structures

G^, t=l,...,T.

If we cannot fathom x using this approach, we still have the

. . ^0 „ k ,

option of obtaining a new basis for the cone containing b - Rx , and

solving the corresponding Unconstrained Group Problem. Below we will

incorporate these alternatives into our procedure for subproblem analysis.

With these considerations in mind, we can turn to the development
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of a diagnostic procedure which the supervisor can use as in subproblem

analysis. There are a number of options available to the supervisor in

this regard. First, recall that any dual feasible basis for (1.1) can

be used to obtain a group structure over which a group problem can be

solved in attempting to fathom subproblem x . If more than one such

group structure is available, the supervisor must have some means for

If

ranking them in terns of their potential value for fathoming x . Once

a basis with its corresponding group structure has been selected, the

choice of solving group problems (2.26) or (2.27) must be made. Both

the choice of a group structure as well as the choice of a group

optimization problem can be based on information from two sources:

1) diagnosis of the status of the IP proble- at hand, and 2) historical

experience with other IP problems. Here we will present one relatively

simple scheme for incorporating information of both kinds into subproblem

analysis. This scheme is undoubtedly incomplete. Hopefully it will be

improved as a result of computational experience on the one hand and

deeper insights into the structure of I? problems on the other.

First, we focus on the choice of a group optimization problem

((2.26) or (2.27)) given a group structure. Our initial computational

experience with our algorithms for solving the Unconstrained and the

Zero-one Group Optimization Problems respectively indicates that the

Note that both night be solved. If solving (2.26) fails to fathom x" ,

there still remains the possibility that solving (2.27) may succeed.
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computational cost of the latter is about 5 times that of the former

for the same group structure. Ln addition, the dynamic version of the

algorithm for the Unconstrained Problem permits this problem to be

k k k
solved at each x (i.e. for right hand side b = b - Rx ) at essentially

zero set-up cost. In order to see this, notice that each new correction

k i i
X is a continuation x + e. of some previously enumerated correction x .

Thus, the optimal group table for the Unconstrained Problem can be up-

dated by deleting only one arc and reoptimizing (see Section 8).

Hence with regard to computation alone, the Unconstrained Problem is

far more easily solved than the Zero-one Problem.

If, however, there are zero-one constraints in (1.3), the corrections

and bounds obtained from the Zero-one Problem may be better than those

from the unconstrained problem. This difference may be significant in

pruning subproblems from the tree. Our current feeling, however, is

that on the whole the Unconstrained Problem is to be favored. The Zero-

one Problem should be used only when the performance of the unconstrained

algorithm falls below some prescribed level. In this way, the mesa

phenomenon discussed by Minksy |41] and widely observed in IP [42]

hopefully can be avoided. This term refers to the situation in which

a search procedure encounters a relatively wide region (mesa) in the

solution space for which no significant improvement in the objective

function is obtained. Our version of the mesa phenomenon is the failure

of the Unconstrained Group Problem to provide significant improvements

in bounds or the completion of a path in the tree as the path is developed.
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In such a case, we may turn to the Zero-one Group problem (only if it is

relevant, of course) in the hope that solving this problem (at greater

computational cost) will provide us with a marked improvement in the

bound which will fathom the current subproblem.

In what follows we will assume the above strategy for employing

the Zero-one Group Problem. It is important to note at this point that

we will not solve dynamically the Zero-one Group Problem. Instead we

employ the dominance relations between group problems discussed in

Section 2.3. The Zero-One Group Problem will always be solved at x =0.

It will be solved at other corrections only if the supervisor deems the

value of the Unconstrained Group Problems to be sufficiently small as

to merit it. Whenever a new group structure is found, the Unconstrained

Group Problem corresponding to it will always be solved.

Let the supervisor maintain a diagnostic table with an entry for

each active basis. An active basis is a dual feasible basis for (1.1)

which has been generated and retained during the search to date. An

entry in the diagnostic table consists of the basis (and a and L) the

corresponding group structure and unconstrained problem solution, the

set U and a counter 6.

Because of storage limitations, the number of entries in the

diagnostic table is limited. As a result, after the table has been

filled, entries are purged whenever the supervisor considers them to be

of little use. This permits new (hopefully more useful) entries to be

created.
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A counter 6- is maintained for the diagnostic table and it is

incremented by one every time any entry in the table is used by the

fathoming procedures. Each entry t in the table contains a counter 6

which is the value of 6„ at the time this entry was last successfully

used in fathoming a correction, or if the entry has never been so used,

6 is the value of 6q at the time the entry was created. A performance

measure, e , is defined as follows

e = (3.9)

1+6^-6^

The longer an entry remains without a successful use in fathoming, the

lowerthe value of £ will be. As will be indicated below, e is used

both in preference ordering the table entries for a given correction x

as well as in controlling the use of the Zero-one Group Problem and the

purging of entries from the diagnostic table.

Whenever the supervisor through plausibility analysis selects a

subproblem for testing, it invokes subproblem analysis. The purpose of

subproblem analysis is to use its resources to the extent indicated by

the supervisor in an attempt to fathom the subproblem. The supervisor

controls the expenditure of effort in subproblem analysis, because at

certain points in the search, some methods available for subproblem

analysis may be deemed to be of relatively little value.

As noted, the value of alternative strategies for subproblem analysis
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may vary during the search. Consider, for example, obtaining a new basis

k n
for a correction x . If the basis will appear in many C(x ), then,

determining it may have both a long range as well as a short range value.

Whether a particular basis will appear in other C(x^), then, should

influence the decision to create and save it. One simple measure of the

potential usefulness of a given basis is the number of free variables

in F for the x in question. If this number is relatively large, the

basis is of potential value in many fathoming tests (all the tests of

descendants of x )

.

On the other hand, if a path P(x ) is very long (i.e. F, contains

few elements), then the value of obtaining a basis for x probably is

much less.

k k
Similarly, if we consider the continuation of x of the form x +e

.

for j=j (x) , . . . ,n, we see that the number of descendants of x +e. is
^1

greater than that of x +e. if j < j„ . (Recall the Form of the Optimal

Correction Lemma.) Hence we are less inclined to permit the creation

k , ^ k
of new diagnostic table entries for x +e . than we are for x +e

In keeping with these considerations, we propose the following

simple scheme for controlling the computational effort expended in

subproblem analysis as a function of depth and lateral position in the

tree. Define the threshold vector , oj
=

^^-^-^i
where u^ i ^i+i

^°

be a vector of constants. Let the threshold C of a subproblem be

defined recursively as follows: 1) ^(x ) = 5 = 1 and 2) Assume that

k k
we continue the correction x with threshold g and that the set of
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1q

continuations {x +e . } has been ordered (by plausibility analysis for
-^i

example) . Then the threshold of the ith correction in the list of

k k
continuations is given by E,(x +e. ) = E. •to..

-'i

As will be seen below, the threshold of a node is used to control

the extent of subproblem analysis devoted to that node. As more

computational experience with the algorithm is obtained, we will be

able to improve on this simple control mechanism.

The first tests applied by subproblem analysis to a correction x

k k
are real space feasibility tests. The first tests y = b - Rx for

k k
feasibility. If y is feasible, x is fathomed. The second test is

directed at proving that x has no feasible completion better than the

incumbent (See Section 2.3.). If these two tests fail to fathom x
,

the entries in the diagnostic table are employed.

u
First, the set x is determined by

T^ = {t|F^U 0^)0 Lt = *^' (3.10)

u k
The set t is the set of entries relevant to the correction x . The

scan of the table also yields a second set t (^x ) defined by

x^ = {t|t £ x" and (Fj^y 0^) fl «t - "^

The set t" contains the indices of all the table entries from which

k ^,
the group solution can simply be retrieved for use in testing x . it
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u k
no entry t e t„ provides a bound which fathoms x , the dynamic version of

the algorithm for the Unconstrained Group Problem mav be used. Its

use is determined by a threshold test 5 >i^ for the threshold E, .

That is, if the condition E, > ^ holds, then subproblem analysis is

I,

permitted to update certain group tables and to attempt to fathom x

with the resulting bounds. If the condition does not hold, however,

then attempts to fathom x directly are abandoned. We do this because

the portion of the tree below the node x is judged to be too small to

warrant the use of these methods.

The value of C-i is determined from computational experience.

k u k
If 5 ^

?i
> ^^^ s®t ^9 i^ ordered in accordance with C(x ) as

follows. The last (most recent) £„ elements of C(x ) are used to

generate a ranking for each entry t e t„. The rank of entry t is given

by

^t =
^, , ^t ° (3.12a)

p£Q(t)

where

Q(t) = {p|p>_£„ and t =t for some t eC(x )} (3.12b)

k 3
For example if C(x ) = {...,1,2,1,1} and £q = 4, we have E^ = 1 + C-,^ +^^

2
and E2 = ?2-

The entries t et are ranked in terms of decreasing E . Then the

dynamic version of the algorithm for the Unconstrained Group Problem is
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u
used to update the group solution indicated by the first t e f^. If

the solution fails to fathom x , the second t e „ is used. This

continues until E < E . for some supervisor-controlled threshold
t — min

E . < 1. Therefore at least one (but not necessarily all) the entriesmm — ^

in T„ will be used. If none of the selected elements in T lead to

the fathoming of x , the next stage of subproblem analysis is entered.

This stage is concerned with the identification of the relevant

cone for x and the possible inclusion in the diagnostic table of a

]^

corresponding entry. First the indicator A is checked. (See Section 2.3.)

k k
If A ^0, then A is an index t in the diagnostic table. This index

k k
was set when x was generated as a correction in the path P(x ), and

k k
indicates the relevant cone for x . Therefore, when A ^ 0, no further

identification of the cone for x is required.

V k k
If A =0, the cone for the immediate predecessor of x in P(x )

was not determined when x was generated. Subproblem analysis seeks to

k
establish an entry for the new cone. If, however, ? 1 ^9' ^^^ supervisor

will not permit a new entry in the diagnostic table, and hence the analysis

t€

that 5 > 5„, the dual simplex method is used to obtain a primal feasible

basis for (1.1) with a right hand side b . The resulting basic variables

a are tested against a for each entry in the diagnostic table.

If a = a for some entry in the table, no new entry need be created.
T+1 t

If not match is found, a new table entry is created, replacing the current

of X terminates with a failure to fathom the correction. In the case
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above can easily be adapted for use here.

While this discussion is incomplete, it hopefully provides some

insights into the diagnostic procedure designed for the AGT Algorithm.

This procedure undoubtedly will be refined as computational experience

is obtained.
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3.4 Pre-Search Analysis

In this Section , we consider procedures to be used before the

implicit search through the tree of feasible corrections is performed.

Specifically, we will consider the following topics:

1) Ordering or ranking schemes for the columns and rows of (1.3);

2) Procedures to handle problems when D = |det b| is too large

for any optimal LP basis B for (1.1);

3) Procedures for finding an initial feasible solution.

It has been observed that the performance of existing IP codes

can depend significantly on the ordering of the columns and rows. To

a certain extent, the supervisory procedures discussed above tend to

reduce this sensitivity to the columns and rows. However, it appears

to us that the ordering can still be important. At this time, we will

not develop a rigorous algorithm for re-ordering, but rather, we will

discuss qualitatively some of the relevant factors we have perceived.

The reader may have noticed that the continuation rule implied

by the Form of an Optimal Path Lemma is a basic tool of all our

algorithms. With this rule, variables of higher index tend to be used

more often than variables of lower index, and the ordering choice

should be influenced by this consideration. Thus, when solving

unconstrained group problems, reordering the non-basics x.,

c ~t
3s(F \J a,) r\a by decreasing relative cost factors c. appears to

rC J. t J

promote efficiency. Moreover, we assume that the non-basics x,,...,x

relative to B^ are ordered so that c, > c„ > ... > c .

1 1 — z — — n
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Computational experience with the algorithm for the zero-one group

problem is as yet fairly limited, but the indications are that a

favorable ordering is to place the non-zero-one non-basics first,

followed by the zero-one basics.

For a brief discussion of the problem of choosing an optimal

ordering for the knapsack problem, see [36; p. 331]. Balas also

discusses the problems of an optimal ordering in [2]. As we shall see,

the ordering of the rows is important only if the groups induced by

optimal LP bases are too large. We turn our attention to this problem.

One of the initial drawbacks of the group theoretic analysis of

IP problems is the possibility that the groups encountered will be too

large, or equivalently , that the basis determinants will be too large.

Computational experience indicates that group problems of order 5000

or less can be easily handled by the existing group algorithms.

Nevertheless, the algorithms are coded to handle groups with orders

as high as 50,000. For a further discussion of computational experience,

along these lines, see Section 10.

Our purpose in the paragraphs below is to describe a method for

handling problems for which the optimal LP basis determinant D is too

large. Of course, it is possible for D to be too small for meaningful

combinatorial resolution from the group theoretic methods. However,

we ignore in this Section the possibility that D may be too small.

Suppose that we set an upper bound D on the size of groups with which

we would like to work.
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For simplicity, let us consider problem (1.1) with an empty set

S of zero-one variables. The argument can be easily adapted when S # $.

Without loss of generality, we can assume that c. ^0, j=l,...,m+n

in (1.1). To see that this is so, let u. be an upper bound on x.
J J

with c. < and make the substitution x! = u. - x in (1.1).
J J J J

Henceforth, we assume (1.1) has the desired form. Reorder the rows of

(1.1) so that the constraint judged most important is first, the second

most important constraint is second, etc. In this context we mean

by an important constraint that the constraint can be used to yield

significant combinatorial resolution. As an example of this, consider

the IP formulation of the traveling salesman problem stated in [7;p. 547].

In addition to an imbedded assignment problem, this formulation

contains sub-tour breaking constraints. If the problem was solved

first as an assignment problem, and then the sub-tour breaking constraints

afterwards, the important constraints would be those that break up the

sub-tours present in the assignment problem solution, A synthesis of

group theoretic and branch and bound method for the travelling salesman

problem is being considered in [5].

We proceed to solve (1.1) as an LP problem using the Dual Simplex

algorithm. Since c > , we can take the surplus solution with basis - I

J
-

as the initial dual feasible basis. Suppose now that we are at

iteration k of the following modified dual simplex procedure. Let

y , . .
. ,y denote the basic variables and x , . . .

,x^ denote the non-basics.

We have min z subject to
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z = z^ + Z c .X

.

IT

y. =b. - E a..x., i=l, . . . .m
1 1 j=l

ij J

c., y. non-negative integer.

Define i, by
k

i, = min {i b. < 0}

We are interested in eliminating the infeasibility on row i . Let

X, be the non-basic variable chosen to enter the basis. It can easily

be shown that the determinant of the new basis will be Dp . a where p.

^k
' \

is row i of the current basis (with |det| = D) . Thus we make the change
K.

of basis only if Dp . a ^ D„' If the change is made, the above procedure

k

is repeated.

On the other hand, if Dp . a > D„, we do not make the Indicated
' 1, r 0'

k

change of basis. We can either choose to eliminate the infeasibility

on a different row, or convert (1.1) to group optimization problems

with respect to the current basis. If these problems yield a feasible

solution to (1.1), then it is optimal. If the group optimization

problems fail, then we begin again with the dual feasible basis-I and

repeat the above procedure with the following exception. Reorder the

rows so that the first k rows were dual feasible for the basis just
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obtained. Successively eliminate the infeasibilities on the rows k +1,,

until either all infeasibilities have been eliminated or the deter-

minant becomes too large. In the latter event, extract a new basis

and repeat the group analysis.

The solution of dual feasible bases should continue until

allocated storage is exceeded or all the (important) constraints are

covered in the sense that there is at least one extracted dual feasible

basis such that any given constraint is feasible with respect to that

basis.

We remark in passing that it may be worthwhile to solve the group

problems derived above as one multi-dimensional group problem. For

example, if two groups G, and G are found, then we form the two

1 2
dimensional group {(A , A ): s=0 ,1, . .

.
,D^-1; t=0 ,1 , . . .

,D„-1} and look

1 2
for an unconstrained shortest route path connecting (6 , 6 ) to

12 12 —1
(3f^,

Bp.) where the arcs are of the form (ct., a.) with arc costs c..

As for the procedures for finding an initial feasible solution,

we suggest two. The first is the backtracking algorithm of [39].

An adaptation of this algorithm may be useful to the implied procedures

of Tlieorem 1 of [19] for generating good cuts. A second method for

finding an initial feasible solution is Balas' algorithm in [1] or [11].

,m
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3) If the subproblem list is empty, terminate,

4) If plausibility analysis is active, use it tc rencve a new

subproblen fron the subprobler: list. Go to Step 6 , vith this

subproblen x .

5) Remove the first subproblem fron the subproblem list. Use linear

search subalgorithm to solve this subproblem. Go to Step 2. (Section 7)

V
6) Determine the set t of the Zerc-or.e GrouD Problems from which

retrievals can be used ir. attempting tc fathom x . (Section 3.3)

V
7) If T is empty, go to Step 9,

8) For each t£T^, attempt to lathom x vit." a retrieval, ^z x is

fathomed for some t, go to Step 2. (Section 2.3)

9) Determine the set t^ of che Unconstrained Group Problems from which

retrievals can be used in attemoting tc fathcm x . (Section 3.3)

10) If T„ is empty, go tc Step 13

u '-
- - . , , - k .

11) For each t£T.^, attempt tc rathom x witn a retrieva.. -- x is

fathomed for some t, go to Step 2. (Section 2.3)
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12) Rank the problems in t. in accordance vith the aeasure E. Let

u, , - u ._ _u- _,u,
T- be the set -.t t£;T. and t > l .

.- . it t, is entity, go to

Step 1.4. (Section 3.3)

13) For each tet., update the indicated Unconstrained Group Problem

solution and attempt to fathom x" . If x" is fathomed, go to Step 2,

(Section 8)

14) If the updating of Zero-one Group Problems is not permitted, go

to Step 17.

15) Rank the problems in -^ in accordance with the measure c Let

T^ be the set 't't£-„ and Z > e"" . } . If - is emotv, go to Step
3 2 t min 3 . . =

17. (Section 3.3)

16) For each t£~-, update the indicated Zero-one Group Problem solution

and attempt to fathotz x . If x'^ is fathcced, go to Step 2. (Section 9)

17) If no new entr\' is permitted in the diagnostic table, go to Step 23.

18) Determine the relevant cone for x""" either from L""^(A"#0) or from

the use of the Dual Simplex method (l'^=0). If L" ==0
, go to step 23.

(Section 2.3)
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19) Let r_ be the set cf basic variables f^r the basis fovrad in Ste-3 18

k.
(for L =0). If r = r_ f:r s:r£ z ir. ;-e diagnostic table, s**- ' =t

add the appropriate elenent tc c 'x'"y , azd gc tc Step 23.

(20) Create a nev er.try, r*, fcr the diagnostic table (perhaps

deleting an old e-tr;.-) . Set 1"" = t* and add aptrcpriate elerent to

c(x ). Use the scluticn to the Unconstrained Grcup rrcblen fcr the

new entr%- in an attenpt tc fathcn x"*". If x" is fathered, go to Step 2.

(Section 3.3)

21) If a Zero-one Problen is net cemitted fcr the nev grc-^p str'jcture

gc tc Step 23.

22) Solve the Zero-one C-rcup Prcblec: fcr the nev grcup structure and

23) Generate continuaticns x""'-e^ fcr ;=j ,x' , . . . ,n. Add x"-e^ tc the

k
z^b ). Associate vith each x'-e^ added tc the sucprobler _c5t:

A , c(x ), ^"^, and a plausibility value. Gc tc Step -. Seccicn 2.3)
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Section 6. Appendix A - Computational Experience

Omitted in preliminary version: see [38], [39] for partial

results.

Section 7. Appendix B - Linear Search Sub-algorithm

Omitted in preliminary version: see [39] for a linear search,

group theoretic IP algorithm.

Section 9. Appendix D - Algorithm for the Zero-one Group Problem

Omitted in preliminary version: see [39].

Section 11. Appendix F - Group Representational Algorithm

Omitted in preliminary version: see [37].
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8. APPENDIX C

STATIC AND DYNAMIC ALGORITHMS FOR THE UNCONSTRAINED GROUP PROBLEM

This appendix begins with a statement of the algorithm from [37] for

solving the Unconstrained Group Problem (2.11). We call this algorithm

GTIPl (Static). The algorithm is stated for the generic Group G = (X } }.

s s=0

(with the added element X ) and the generic set F = {f ,...,f }. There

follows an adaptation of GTIPl to be used when F has changed to some

set F' such that F F' =^ <p . This algorithm is called GTIPl (Dynamic).

GTIPl (Static)

STEP 1 (Initialization) Set Z(X ) = Z(D+1) for s=l D, where

Z = max c ;

feF

set Z(0) = 0. Also, set j (>. ) = for s = 0,1,2 D. For all feF and

a ^ e, set Z(a ) = c , j (a ) = f, and a =2 only if c < Z(a^). For

SeF and a = G, set Z(X ) = c^, j (X^) = f only if c^ < Z(Xj^). For all

nodes Xs for which a, is not specified set a = 1. Go to Step 2 with

s s

x^ = e.

STEP 2 (Stop if a = 1 for s = 0,1 D. Then Zy(X ;F) = Z(X ) for
A ^
s

s=0,l,...,D, and the optimal group solutions can be found by backtracking.
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Otherwise (1) if there is a s' > s such that a =2, index s to s
'

, or
s'

(2) if there is no s' > s such that a, =2, index s to the smallest
's'

s"(<s)with a. =2. Go to Step 3.

STEP 3 For feF and f ^ j (X ) , and A + a, 7^ 9, set Z(X + a^) = c"^ + Z(A )

,

s s r s f f s

j(>^g + a^) = f, and a^
_^^

=2 only if c^ + Z(X ) < Z(X + a ). For feF
s f _

and f >_ j(A^), and X^ + ot^ = 6, set Z(X^) = c^ + Z(X^) and j (X ) = f only

if c^ + Z(X ) < Z(X^). Return to Step 2.
f s D

In order to adapt this algorithm to changing F, note that GTIPl

(Static) finds a tree of shortest route paths connecting 9 to X , s=l,...,D.

These paths and their values are recorded in the optimal group table which

has three columns: X , i(X ), Z(X ). If F has changed to F' and F' is
s s s

not substantially different from F, then part or most of the shortest route

tree relative to F can be retained and used in finding the tree relative

to F' . To this end, let Q E F H F;, R E F*^ fl F' , W = F (F')'^.

An intuitive explanation of GTIPl (Dynamic) is the following. First,

go through the optimal group table and for each X such that j (X ) = f

for feW, set j (X ) =0 and Z(X ) = (EH-1) min c . In other words, remove
^ ^

feF' *

the discarded arcs. Second, after ordering Q and R as desired, reorder

F' so that F' = {Q,R} . Thus, the new activities are placed last. Then

set a, =2 for s = 1,...,D and use GTIPl (Static) to reoptimize.
A
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10. A?rZi:ZZJ. Z
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The second factor is the number of subproblems fathomed by a given

incumbent. The heuristic argument here is that the more subproblems

fathomed by an incumbent, the more likely the incumbent is to be optimal.

In a sense, this measures the stability of the incumbent. The predictive

function of the supervisor assumes that the closer the incumbent value

is to the optimal value, the greater the number of fathomed subproblems

will be. As above, this factor is developed so as to reflect historical

experience. The function employed by the supervisor is as follows:

AZ. = -(Z.-Z._ ) where Z. is the value of the ith incumbent

f. = the number of subproblems fathomed by the ith incumbent

AZ. = a AZ. + (1-ct )AZ^_i
1 z 1 z 1 -

7. = a^f . + (l-a^)f,.,

where AZi and f. are predicted values and a^, and a„ are constants,
X f Z

Let

"z,i

"f,!

if Z^ >_ 0^

1 if Zi < 0^

if f. < 0^
1 — f

1 if 7. > 0.
1 f

where and are constants determined by the problem in question.
^ t
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