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ASYMPTOTIC STABILITY , IDENTIFICATION , AND THE HORIZON PROBLEM

ABSTRACT: Recent literature in discrete adaptive control has emphasized the

importance of asymptotic stability of the adaptive controller in obtaining

convergence of system parameter estimates to their true values. This paper

studies the relationship between these results and the problem of the conver-

gence of first period decisions in planning models as the planning horizon time

increases. The primary results to date have been based on stationary and pure-

ly quadratic cost functions. This paper extends these results to cost func-

tions containing linear terms and to discounted cost functions. The main re-

sults are a set of sufficient conditions on the nature of cost and system par-

ameters under which first period decisions converge to a fixed value as the op-

timization time horizon increases. A characterization of the optimal asymptotic

controls is given for the discounted and undiscounted cases.

I. INTRODUCTION

Consider the following linear system.

(1.1) x^^^ = Ax^ + Du^ + v^

(1.2) y^ ^^^^.^

In (1.1), X, is a p-dimensional column vector which represents the state of

the system at time k; A is a pxp transition matrix; D is a pxr control matrix;

u, is an r-dimensional control vector; and v, represents a random disturbance.

In (1.2), y is a q-dimensional vector representing an observation made on

the system at time k; M is a qxp observation matrix; and w represents noise.

We will assume that v ,v^,,.. and w^,w„,... are independent sequences of zero

mean, independent and identically distributed random vectors with covariance

matrices V and W respectively and that x is independent of the v. s and w. s^ ^ o ^ 1 J

and has finite covariance matrix.
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Linear least squares prediction and filtering may be done for the system

(1.1)-(1.2) using the Kalman Filter [h], which yields the projections x
,

t |k

and
y^ij^

of x^ and y^ on the Hilbert subspace spanned by y^ .y^ , . . . .y^^. These

projections are given by

(1.3)

^|k = A \|k

^|k = "\|k' •^"^'

where I denotes the pxp identity matrix and x^|^=E[xJ. The weighting matrix

^^ in (1.3) is determined by

(1.4a) h^ = Sj^M'[MSj^M' + W]"^, k>l

(1.4b) S^ = APj^,_^A' + V, ^,^1

(1.4c) Pk = [I - A^MlSj^, k^l

where + denotes pseudo-inverse, ' denotes transpose, and P^ is the covariance

matrix of x .

o

Now consider the following optimization problem.

(1.3) Mi„ E, .1^ l^p^_^^ . ^-A,.-lVl - \.\ - S..-1V1) '

subject to (1.1), (1.2), k-O.l N-1, where for k.l,2,...,N, Q, , and Q

are symmetric positive semi-definite (psd) matrices and G , G are Ixp

and Ixr row vectors respectively, and one of the following conditions is sat-

isfied: (a) Cl2,k-1 ^^ positive definite (pd) ; (b) Q^ ^ is pd and rank(D) =

min(p,r). Either (a) or (b) is required to insure the existence of a finite

minimum of the performance criterion and to insure the existence of matrix in-

verses for the dynamic programming solution to the problem, (1.5).

In an extension of Gunckel and Franklin's result
[ 3 ] for the pure quad-

ratic loss function, it can be shown (see [ ?]) that the optimal controls, u^^,

in (1.5) are given by

(1.6) u^ = -C^x^^^^ - \\il/2) 0-k^N-l;





where C, and H^ are determined by

(1.7a) \Cj^ = D'(\+i + Ql.k+l>^

(l-^^> \ = Q2,k^°'(\+l + Ql,k+l>^

(1.7c) F^ = A'(F^^^ + Q^^^^^)A - C^H^Cj^, F^ =

(1.8b) \ = (G^^k^l + B^^^)A - Z^Cj^, B^ = 0,

where it is shown in the dynamic programming solution to the problem that

F,^ is psd and therefore, by the assumptions on ]. .

-i jQo u » ^^^^ D» ^ is

nonsingular and C, is determined uniquely from (1.7a).

As Kalman has shown, there is a close relationship between equations

(1.4) and (1.7) which allows results obtained for the filter equations, (1.4),

to be applied to the optimization equations (1.7) and (1.8). In section II

of this paper we use this relationship and the uniform asymptotic stability

of the Kalman filter to show that the matrices C = C (N) and H~ Z'
o o o o

H (N)Z'(N) in (1.6) converge to a fixed point as the time horizon N increas-

es, when the costs in (1.5) are stationary. This result is extended in sec-

tion III to the case of discounted costs. In section IV we explore the im-

plications of these results for the aggregate planning problem in production

scheduling. Briefly, these results imply that when sales are generated by a

linear autoregressive system, then the first period decision rules approach

a fixed point as the time horizon is increased. Finally, generalizations to

the above results are discussed in the concluding remarks.

The above results for the undiscounted case with pure quadratic loss

function were originally proven by Kalman [ 5 ] , although his results on the

"separation theorem" were known earlier in another form as the certainty

equivalence theorem, see Simon [8]. Kalman's results were applied and ex-

tended to the problem of aggregate planning and information system design

I i





by G. B. Kleindorfer [6 1. Anderson et. al . extended Kleindorfer's work in

their study of the identification problem and they laid most of the ground-

work for the analytical methods to be used here. The present work extends

past results on the convergence of the first period decision rules to the case

where the objective function contains linear terms in the state and control

variables as well as extending known results to the discounted case.

II. THE UNDISCOimTED CASE

We begin by studying the asymptotic behavior of (1.4). We may combine

equations (1.4) to obtain

(2.1) S^^^ = A(Sj^ - Sj^M'[MSj^M' + W]%Sj^)A' + V, k>l.

Moreover, it is clear from (1.4) that the matrices {S^,S„,...} uniquely

determine the corresponding sequences {A ,A ,...} and {P^,P„,...}. We there-

fore restrict our attention to a study of (2,1) and note the following result

proven in Anderson £t . al^. [ 1 ] .

Theorem 1 : Let M=I and let V be pd and W psd; define $on the set T of pd ma-

trices by

(2.2) $(S) = AS(S + W)~"HjA' + V, SeT

so that S,= "5(5, ^), k^2. Then $ has a unique pd fixed point S , and

<I> (S)-*S uniformly on T as n-**", where $ denotes the nth iterate of $. More-
o ^

over, A, ^ A = S (S + W)~ , and P ->P =S -S(S + W)~ S as k-^^'.kooo Roooo o

This result was proven originally by Kalman [ 5 ] under the assumption that

the system (1.1) and (1.2) is completely observable and com.pletely controlla-

ble. His proof also allows for M, the observation matrix, to be non-square.

Results of a similar nature are also contained in some unpublished research
of Professor Lance Taylor of Harvard University.





Theorem 1 may also be easily generalized to include a non-square observation

matrix.

Corollary 1 : Let V and W be pd and let rank(M) = min(q,p); define <I> on the

set T of pd matrices by

(2.3) $(5) = A(S"-"- + M'w"-^l)"-'-A' + V, S eT.

Then for any S^ pd, S, = 'I>(S,_ ), k^2. Moreover, $ has a unique pd fixed

point, S , and $ (S) ^ S uniformly on T as n ^ <», where $ denotes the nth

iterate of $. Furthermore, h, ^ ^ = S M' [MS M' + W]~ , and p, ^- p =
k o o o ' k o

S - S M'[MS M' + W]~HlS as k ^ «>.
o o o o

Proof : We first verify that for any S pd, S = $(5 ), k^2. By (2.1) and

the fact that [MS^M' + W]t = [MS^^M' + W]"''" since W is pd, we only need to show

that

(2.4) (S"""^ + M'W"-^!)"-'- = S - SM'[MSM' + Wj'HlS, S eT.

To demonstrate the validity of (2.4) consider the following calculations.

(2.5) (S"""" + M'W"^M)(S - SM'[MSM' + W]""'"MS)

= I - M'[MSM' + W]~"SlS + M'W~"SlS - M'W"''>ISM'[MSM' + W]~"SlS

= I + M' (W""*" - [MSM' + W]"''" - w'^^ISMUMSM' + W]"''")MS

However,

(2.6) w'HlSM' [MSM' + W]"""" = W""'"(MSM' + W - W)[MSM' + W]"-"-

= W~"'"(I - W[MSM' + W]~^)

= W"""" - [MSM* + W]""*-,

so that substitution of (2.6) into (2.5) yields the desired result.

Corollary 1 now follows from theorem 1 since when M is of full rank, M'W "M

is invertible and

(2.7) (S"-"- + M'V:""^!)"-'- = S[S + (M 'w'-'t^)
""'"]"'"

(M'w" "Si)
"'

so that identifying (M't/'^I)" with W in (2.2) yields the desired result.

We now consider the relationship between the control equations (1.7) and





the Kalman filter equations (1.4). In fact, equations (1.7) may be combined

to yield

(2.8) \ = ^'^\^i + <^i,^+l)^-

^'^Vl ^ Ql,k+l>°tQ2,k + °'^Vl + ^l,k+l)°]"'°'(\+l^l.k+l>^

^N = «

or letting R, = F + Q , k = 1,2,...,N, we obtain

(2.9) R^ = A'(R^^^ - ViD[Q2^^ + D ' R^^^D
] "

^D ' R^^^^ A + Q^^^. k=l,...,N-l;

Comparing (2.9) with (2.1) we see that these difference equations are of

precisely the same form if we identify Ro S, A <•+ A', D <-> M' , Q <-> W,
2 ,k

^1 k^"*"
^' ^'^'^ ^~^' '^"^' ^^^^ ^1 k " *^1' ^2 k " ^2 ^°^ ^^-^ ^' ^^ ^^ clear

that a study of the asymptotic behavior of F^ + Q = R = R (N) as N ->- oo may

be obtained from corollary 1. Indeed, corollary 1 and the above remarks imply

Theorem 2 : Let rank(D) = min(p,r) and let Q^ and Q„ be pd. Define y on the

set of pd matrices T by

(2.10) ^(R) = A'(R - RD[Q2 + D'RD]""'"D'R)A + Q^, ReT

,

N
so that R, = >}'(R^^). Then m has a unique pd fixed point R^ and y (R) -)- R^

N
uniformly on T as N ->- <», where y denotes the Nth iterate of m . Moreover,

H (N) = Qo + D'4'^"-'-(QjD ^ Q„ + D'R.D and C (N) = [Q. + D'>l'^"-'-(Q, )D]"-'-D'4'^""'"(Q, )AOZ iZ"OZ 1 1

->- C^ = [Q + D'R^D]~"''D'R^A as N -> «>.

Now let us consider the asymptotic behavior of B^ = B (N) in (1.8) which

is required for the computation of Z (N) , used with C (N) and H (N) in (1.6)
o o o

for the computation of the first period controls, u . From (1.8) we obtain

(2.11) Bj^ = \^^i^ - DCj^) + G^^j^_^j^(A - DC^) + G2^j^Cj^, k=l,2 , . . . ,N-1;

^N =

In order to show that B = B^ (N) converges to a fixed point as N ^- <», we

will need the following lemmas, the first of which is due to Stein and is proven





in [ ]. ]

.

Lemma 1 ; Let Y be a square matrix and let p(Y) be the spectral radius of Y.

If there exists a pd matrix L for which L - Y'LY is pd then p(Y) < 1.

Lemma 2 ; Let C^ = [Q + D'R^D] D'R^A, where R^ is the unique pd fixed point

of 4-. Then, p(A - DC^) < 1.

Proof ; By definition of C^^, we have

(2.12) A - DC^ = A - D[Q + D'R^D]~"'"D'R^A

= (I - D[Q2 + D'R^D]"-'-D'R,.)A

= R;^(R^ - R*D[Q2 + D'R^D]"^D'R^)A

Now a calculation similar to the proof of (2.4) in corollary 1 shows that

(2.13) R^ - R^D[Q2 + D ' R^^D
] "

""-D ' R^ = [R^""" + DQ'^D']'^

Therefore, we have from (2.12)

(2.14) A - DC^ = R'^LR^""" + DQ2^D']'"'"A

To prove the assertion it will suffice by lemma 1 to exhibit a pd matrix

L for which L - (A - DC^)'L(A - DC^^) is pd. But L = R^ is such a matrix, for

by definition, R^ = 4'(R^) , and therefore

(2.15) R^ - (A - DC^)'R^(A - DC^) = A* (R^ - R^DlQ^ + D'R^D]"-'d'R^)A +

Q^ - (A - DC^)'R^(A - DC^)

Now using (2.13) and (2.14) in (2.15) we obtain

(2.16) R^ - (A - DC^)'R^(A - DC^) = A' (R^ - R^D[Q2 + D'R^D]"-'-D'R^)A -

A'[R;^ + DQ2^D']"'^R^\r;;"^[R;^ + DQ2^D']"^A + Q^

= A'[R;^ + DQ^^D'l'-^d - R;^[R;^ + DQ2^D']""^)A + Q^

= A'fR^-"- + DQ^-'-D' ]""""{ I - (R^""" + DQ'-'-D' - DQ2"'"D')[R^^ + DO'^D' ] ~''"}A + Q^

= A^R^"*^ + DQ2"'"D']~"''DQ2"'"D'[R^^ + DQ^-'-D
']"''A + Q^ QED.

We now show that B (N) converges to a given finite vector, B^. For con-

venience, we reverse the time index in (2.11) so that k «^ N-k. and

(2.17) B^^^ = B^(A - DC^^^) + G^(A - DC^^^) + G^C^^^, B^ = .





Theorem 3: Let B be defined by (2.17). Then B converges to B. given by
t t *

(2.18) B^ = [G^(A - DC^) + G^C^ILI - A + DC^]"-""

where C. is given in lemma 2. Consequently, B (N) converges to B. as N -> ».

Proof: Define the matrices 5 and Q. by
t t -^

(2.19) E^ = A - DC^^^

(2.20) Q^ = G^(A - DC^^j^) + G2Cj.^^

so that (2.17) becomes

(2.21) B^^^ = B^E^ + ^^ , B^ = .

Now since C ->-C^, 5 ->-E^ = A- DC , and by lemma 2, p(E^) < 1, so that

(2.21) is asymptotically stable. From (2.21) we obtain

(2.22) B^^, = B n^ =, + z5 a (nj ,_Li5.)t+1 o j=o j k=o \ j=k+l J

We now remark that since p(H^) < 1, I - E^ is invertible, and

(2.23) (I - E^-^ = Z^^^E^ ,

so that letting B = Z:^^ fi^(n^^j^_^^E^) .where Q^ = G^(A - DC^) + G2C^, we have

A it

B -> B.. Thus it suffices to show that Ib - B |-> 0, where
I

•
I is the Euclidi-

t " t t

an norm. To show this, we note that p(E^) < 1 implies (see Varga [10], p. 67)

the existence of an integer r^l for which \bA <1, and since E ->• E^, there

exist p < 1 and an integer k > 1 for which

(2.24) Max [ 1 n^^J E .
| , |E^|] < p^ ,

k>k^.

Since Q, is a convergent sequence, there exists a uniform upper bound, U^ , such

that |fi, I^U for all k. Moreover, (2.24) implies for s^l, and k^k that

(2.25) Max l\jl]__^^^ E .
| , | Hr""' 1

1^ P^Max [ |
nj^,^,^^^ E^

| , | Er""'- | ]

In particular, £im llT. . E.l= for every j ^0, so that

o .

(2.26) ^im^ sup Ib^^, - B^^J ^ «,im^ supU^df |n^,^iS.| + |n^,_^,E*l}
t->«' ' t+1 t+1' t^<» 1 k=o' j=k+l j' ' j=k+l *'

= 4im^_ sup U,{z5 .|n^ T,.iH.| + IH^"^"""-!}t^oo ^ 1 k=j ' j=k+l J
'

' * '

-so-! s ,, ,_ t
I

t -
I J. I

_t-k-l-rs
I

,

t-Ko ^ '^o 1 k=j j=k+l+rs j' ' * '
-"o oo





But (2.25) implies for i > k and for iS
^ -^o o

t t Po Jo +i+r 3o+i+k
(2.27) E

I

n 5.| ^ E { Z
I

n E.jlpP
k=j j=k+i ^ p=o k=j +i i=j +i ' °

where p is the largest integer less than or equal to (t-j -i)/r. Therefore,

(2.28) lim^_ sup E^^ .
I

nj^^^^ H . |

- U^/d-P^)

Then (2.26) and (2.28) imply

(2.29) iim^_ sup |b^_^^ - B*^J ^ 2p^ U^U2/(l-p^)

which may be made arbitrarily small by proper choice of s. This completes the

proof of theorem 2.

We may summarize the results of this section as follov7s. Let u (N) be the

optimal first period controls given by (1.6) as

(2.30) u (N) = -C (N)x
I

- 1/2 h"-'-(N)z' (N) .

o o o
I

o o o

Let D be of full rank and let Q, and Q„ be pd. Then u (N) converges to
L A o

(2.31) u^ = -c^x^i^ - 1/2 h;^ z;

as N -> ». The values of the parameters in (2.31) are given below and x i is
o|o

the linear least squares estimate of the system at the present time.

(2.32) R^ = A'(R^ - R*D[Q2 + D' R^D]"-'-D'R^)A + Q^

(2.33) C^ = [Q2 + D'R^D]"-'"D'R^A

(2. 34) H^ = Q^ = D'R^D

(2.35) Z^ = G^D + G2 + B^D

(2.36) B^ = [G^(A - DC^) + G^C^]!! - A + DC^]"''-

It should be remarked that in practice one would determine R^ by iteration

of (2.9) with k ^ N-k until successive values of R, and R. ,-, were within a de-

sired tolerance. In this process it should be recalled that convergence of R,

to R^ is uniform. In fact, it can easily be shown on the basis of the proof of

the above theorem 1 in Anderson et. al. [1], that (with k > N-k)
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(2.37) R^ = 4'^(Q3^):£ f^CA' [DQ^^D' ]"^A + Q^):^A' [DQ^^D' ] ^A + Q^

where X^Y in (2.37) if Y - X is psd. Thus, since both ^^(Q.) and

N -1 -1
^ (A' [DQ„ D' ] A + Q^) are converging to the fixed point R^, one can use the

(some convenient) norm of the difference of these two quantities to obtain a

I
N

Iprecise bound on If (Q. ) - R. |

.

III. THE DISCOUNTED CASE

Let a be a given discount factor, 0<a<l, and consider the minimization

(1.5) with

^^•^^ ^i,k " ''''

^i' ^i,k = "^
^i'

i=1.2; k>0.

In this case equations (1.7) and (1.8) yield

(3.2) R^ = A'(Rj^_^^ - Rj^_^^D[D'R^_^^D + a^Q2]'-^D'R^_^j^)A + a^Q^ , 1-k^N-l;

k+1 k
(3.3) Bj^ = Bj^_|_^(A - DCj^) + a 'g^(A - DC^^) + a''G2Cj^ , B^^ = 0, O^k^N-1;

where C, is determined by (1.7) and where

(3.4) \ = \ +
^''Qi ' ^j =

""Qi-

We now show that, by redefining the system parameters, (3.2) can be put

in the form of (2.9) with stationary parameters, so that the desired asymptotic

properties follow from theorem 2. We begin by defining the parameters

(3.5) A = BA, ^^ = Q^, D = D, ^^ = (l/a)Q2, 3^ = a.

-k
Then letting R^ = °' R, , we have from (3.2)

(3.6) 4 = A'(a-\^^ - «-V,D[D'R^^^D + a\]-^D'R^^^)A + Q^

= (eA)'(a~''"\^^ - a"^"\^^D[D'(a"''"\^^)I>+a"\]"^D'a"''"\_^^)(BA)

or, using (3.5),

(3.7) R^ = A' (R^^^ -4^i^tD'R,^^D + ^^fh^^^^U + S,

Thus, (3.7) is precisely of the same form as (2.9) and theorem 2 therefore

implies that R, (N) = aR, (N) converges uniformly to a fixed point,oiR^, as N ^ «>.

This also implies the convergence of C (N) and H (N) to C. = H. D'ctR.A and
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H^ = Q- + D' R^D, respectively.

Similarly, the equation (2.11) for B becomes for the discounted case

k+1 k
(3.8) Bj^ = Bj^^^(A - DC^) + a G^(A - DC^^) + a G2C^, B^^ = 0.

-k
Let \ = a. B . Then (3.8) implies

(3.9) B^ = \+l"^^
"

"^S^
"'' ^iCt^A - DCj^) + G^C^ .

If we identify E, = a(A - DC ) and ft = G a(A - DC ) + G C , then we may pro-

ceed as in theorem 3 to prove the convergence of B^^ (N) to a finite vector B^^^

provided that p(a[A - DC^]) < 1, where C^ is the fixed point of C (N) defined

above. To show this we note that

(3.10) C^ = [Q^ + D'aR^D]"-'-D'aR^A

= [a~"'"Q2 + D'R^D]"-'-D'R^A

= 6[^2 "^ 5.'R*R3~V^*^

and therefore, using (3.5), we obtain

(3.11) a(A - DC^) = 6(A - DC^)

where C^^ is the fixed point of the stationary system with parameters. A, £, ^ ,

and 0„, corresponding to C (N) . But p(e[A - DC.]) = 6p(A - DC.) and
Z —

o

— — ** — —^

p(A - DC^) < 1 by lemma 2, so that the desired result follows as in the proof

of theorem 3. We may summarize the results of this section in the following man-

ner.

Theorem 4 : Let u (N) be the optimal first period controls given by

(3.12) u (N) = -C (N)x
I

- 1/2 h"-^(N)Z'(N) .

o o o
I

o o o

Let D be of full rank and let Q, and Q_ be pd. Then u (N) converges to u. given
i z o "

by

(3.13) u^ = -C^x
I

- 1/2 h"^!
o o * "*

as N ^ «>. In (3.13) x i is the linear least squares estimate of the system state

at the present time and the parameters C^, H^, and Z^ are determined by

(3.14) R^ = A'(R^ - R^[Q2 + D'R^]"-'-D'R^)A + ^^
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(3.15) C^ = [Q2 + D'aR^D]~-'"D'aR^A

(3.16) H^ = Q2 + D'aR^D

(3.17) Z^ = aG^D + G^ + aB^D

(3.18) B^ = [G^a(A - DC^) + G2C^][I - a(A - DC^)]"-*-

where A,D, ^^ , and ^^ ^'^^ given in (3.5).

IV. APPLICATIONS AND EXTENSIONS

Although the results of the preceding sections have wider applicability,

we restrict ourselves to a brief exploration of their implications for the ag-

gregate planning of production and work force (see Holt et^. al. [2]). This

discussion will serve to highlight as well the limitations of the above analysis,

Following Holt et^. aj^. [ 2 ] , we first assume the following model for the

aggregate planning problem.

(4.1) mnE[Ll^^f^a^^^,V^,^^^,U^)}

subject to

<^-2) \+l -\^\-\
^^•3) Vi = \^\
(4.4) I , W given,

where f is a quadratic-linear cost function in its arguments and represents
ilv

period k costs. I, is the inventory at the beginning of period k, P is the

aggregate production in period k, S, is the sales in period k, W is the work

force at the beginning of period k, and U, is the change in work force during

period k.

In order to reduce the above problem to the form of (1.1) and (1.2), we

must assume that the sales are generated by a first order autoregressive scheme

of the form





(4.6) A^ =>^\"k

13

where ?/ = (S, , S , ..., S,_ ). Then (4.5) and (4.6) could be incorporated

into (4.2) to yield a system of the form of (1.1) and (1.2). Besides only be-

ing able to consider sales generated by an autoregressive scheme , the present

results are also limited to costs which are separable in the state and control

variables. This would rule out, for example, costs of the form (see [ 2])

2
Cost of Overtime, = c^ (P, - c„W ) + c_P + c.W , c^ , c„> 0,

since such costs lead to terms of the form -2c,c„P, W, . For the above reasons
1 2 k k

it seems appropriate to generalize the fundamental model (1.1) -(1.2) to the form

(4.7) x^^^ = Axj^ + Du^ + Sj^ + Vj^

(4.8) y^ = Mx^ + w^

where all quantities above are defined as in (1.1)-(1.2) except s, which is a

deterministic p-vector.

Recent work (see [9]) in Kalman filter techniques has generalized the

underlying model to which the Kalman filter is applicable to the form of (4.7)-

(4.8). The fundamental filter equations (1.4) remain unchanged in this case

and therefore the results on their asymptotic behavior are still applicable.

Moreover, (4.7) and (4.8) are clearly directly related to the form of the aggre-

gate planning problem (4.1)-(4.4). It remains to be determined whether the

essential properties of equations (1.6)-(1.8) will hold for the system (4.7)-

(4.8). It is my conjecture that the results of theorems 2, 3, and 4 hold for the

system (4.7)-(4.8) whenever the cost function in (1.5) is a quadratic-linear

function (including state-control cross-product terms) provided that the cost

function is convex and strictly convex in the controls, u, , and when, in addi-

tion, the terms, s, , are bounded by a stationary linear system. Verification





Hi

of this conjecture involves first resolving the dynamic program leading to

(1.6)-(1.8) with added cross product terms in u^ and x^^ and subject to (4.7)

and (4.8) instead of (1.1) and (1.2). The present work and that reported in

[ 1] and [ 7 ] provides a foundation for further studies in this direction.
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