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Abstract

We study a problem that is the "inverse" of Merton (1971). For a given consumption-portfolio

policy, we provide necessary and sufficient conditions for it to be optimal for "some" agent with an

increasing, strictly concave, time-additive, and state independent utility function when the risky

asset price follows a general diffusion process. These conditions involve a set of consistency and state

independency conditions and a partial differential equation satisfied by the consumption-portfolio

policy. We also provide an integral formula which recovers the utility function that supports a

given optimal policy. The inverse optimal problem studied here should be viewed as a dynamic

recoverability problem in financial markets with continuous trading.
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1 Introduction

The study of an individual's optimal consumption-portfolio policy in continuous time under uncer-

tainty has been a central topic in financial economics; see, for example. Merton (1971), Cox and

Huang (1989, 1991), and He and Pearson (1991). The main question addressed in this literature is:

Does there exist an optimal consumption-portfolio policy for an economic agent represented by a

time-additive and state-independent utility function and what are the properties of his/her optimal

policy if it indeed exists?

In this paper we address the "inverse" of the above consumption-portfolio problem. For a

general specification of the asset price process, we investigate the necessary and sufficient conditions

for a given consumption-portfolio policy to be optimal for "some" increasing, strictly concave,

time-additive, and state independent utility function. A consumption-portfolio policy that can be

"supported" by such a utility function is called an efficient policy. We also provide an integral

formula which recovers the utility function that supports a given efficient policy.

The inverse problem studied here can be viewed as a dynamic recoverability problem in financial

markets with continuous trading; see Kurz (1969) and Chang (1988) for related problems. Our

objective here is to recover an economic agent's preferences from the observed consumption-portfolio

policy that has been specified for a given asset price process. Since our emphasis is in analyzing

an individual's consumption-portfolio policy in a continuous time securities market environment,

the inverse problem studied here and the solution method employed in this paper are very different

from those of Kurz (1969) and Chang (1988), who study an inverse problem in the theory of optimal

growth.

Cox and Leland (1982) are the first to characterize efficient consumption-portfolio policies when

the asset price follows a geometric Brownian motion; also see Black (1988). Our contribution in

this paper lies in giving a characterization of the efficient consumption-portfolio policies when the

asset price follows a general diffusion process. Since our characterization of efficient consumption-

portfolio policies is derived for a general specification of the price process, we can also use the same

approach to answer a related question: Can a given consumption-portfolio policy be optimal for a

given utility function and "some" diffusion price process or for "some" utility function and "some"

diffusion price process?

The motivation for studying the inverse optimal problem when the asset price follows a general

diffusion process is twofold. First, accumulating empirical evidence suggests that the stock price

processes, and especially the price processes for portfolios, are not best described by a geometric
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Brownian motion; see, for example, Black (1976) and Lo and MacKinlay (1988). As a result, for the

study of optimal consumption-portfolio policies one needs to consider price processes more general

than the geometric Brownian motion. Second, when the price process is not a geometric Brownian

motion, the calculation of an optimal consumption-portfolio policy is extremely complicated; see,

for example, Cox and Huang (1989) and He and Pearson (1991). As a result, in practice, certain

rules of thumb policies are usually followed. It is thus important to have the necessary and sufficient

conditions for a given policy to be consistent with utility maximization.

Our strategy to solve the inverse optimal problem consists of two steps. First, we take as given

two real-valued functions, the first of which gives the consumption and the second of which gives

the dollar amount invested in the single risky asset, for any given levels of the individual's wealth,

the risky asset price, and the time. These two functions completely specify the consumption-

portfolio policy of an individual. We then characterize the efficiency of this consumption-portfolio

policy through a set of necessary and sufficient conditions that are imposed solely on the given

consumption-portfolio policy. Second, we present an integration procedure that recovers the utility

function supporting an efficient consumption-portfolio policy.

Besides deriving the necessary and sufficient conditions for efficient consumption-portfolio poli-

cies, we also obtain some characterizations of an efficient policy that are of independent interest.

For example, it is shown that, when there is no intermediate consumption, an efficient policy must

make the risk tolerance of the indirect utility function in units of the riskless asset a martingale

(subject to some regularity conditions) under the so-called risk neutral probability (to be defined

formally later). As will be made clear later, this result turns out to be the most significant restric-

tion for a given consumption-portfolio policy to be efficient. It implies in particular that, when

the price process is a geometric Brownian motion and there is no intermediate consumption, the

present value of the dollar amount invested in the stock at any future date is equal to the dollar

amount currently in the stock. This holds true for all efficient consumption-portfolio policies.

Our paper is related to the characterization of efficient portfolios in a one-period setting due to

Peleg (1975), Peleg and Yaari (1975), Dybvig and Ross (1982), and Green and Srivastava (1985,

1986). Because of the single period setting, dynamic trading rules are not considered in this

literature. In contrast, the emphasis of this paper is to analyze efficiency of and to recover utility

functions from dynamic trading rules. Finally, our paper is related to the classical "integrability"

problem of revealed preference, which asks whether preferences are determined by the entire demand

correspondence; see, for example, Mas-Colell (1977) and Geanakoplos and Polemarchakis (1990).

The rest of this paper is organized as follows. Section 2 formulates a dynamic consumption-
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portfolio problem and derives necessary conditions satisfied by an indirect utility function. Section 3

shows how to express these necessary conditions solely in terms of the given consumption- portfolio

policy and presents the necessary conditions for efficiency. This section also gives some examples to

demonstrate how to use the necessary conditions for efficiency and provides some characterizations

of an optimal consumption-portfolio policy that are of independent interest. Section 4 shows that

the necessary conditions for efficiency are also sufficient under some regularity conditions. It is

then demonstrated how to recover the utility function that supports an efficient policy. Section 5

contains more examples illustrating our results and Section 6 presents some concluding remarks.

2 The Setup

Consider a securities market economy with a finite horizon [0, T] in which there is one stock and one

bond available for trading.
1 The bond price grows exponentially at a constant rate r, the riskless

interest rate. The stock does not pay dividends 2
, and its price follows a diffusion process whose

dynamics is described by the stochastic differential equation 3

dS(t) = n(S(t),t)S(t)dt + a(S(t),t)S(t)dw(t), t 6 [0,T],

where w is a standard Brownian motion defined on a complete probability space (SI,?, P). For

notational simplicity, we assume that starting from any x > and any time t G [0,T), the price pro-

cess can access any y > over any time interval [t, t + e] for however small e > 0, and zero is always

inaccessible.4 This assumption implies that the stock price is strictly positive with probability one. 5

Investors are assumed to have access only to the information contained in historical prices, that is,

the information the investors have at time t is the sigma-field generated by {5(5); < s < t}. For

brevity, we will sometimes simply use fi(t) and a(t) to denote fi(S(t),t) and cr(S(t),t), respectively.

We assume that there exists an equivalent martingale measure, or a risk neutral probability6 Q

for the price process. Given our current setup, this equivalent martingale measure must be uniquely

represented by

Q(A)= [ t(u,T)P(du) VAeF,
Ja

'in applications, one can take the risky asset to be an index portfolio.

Nothing will be affected if the stock pays dividends at rates that depend on the stock price only.
3
Implicit in this is the hypothesis that a solution to the stochastic differential equations exists.

'Otherwise, we have to qualify many statements to be made so that they are only valid over the range of the stock

price. This does not change the essence of the results but will complicate the notation, which is already heavy.
5We will use weak relations throughout. For example, positive means nonnegative, concave means weakly concave,

and so forth. For strict relations, we use, for example, strictly increasing, strictly concave, and so forth.
6
See Harrison and Kreps (1979) for the former and Cox and Ross (1976) for the latter.
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where

S{t) = exp{J\(S(s),s)dw(s)-±£\K(S(3),s)\ 2 ds} (1)

and

ww—*^-'
Under Q, the stock price dynamics becomes

dS(t) = rS(t)dt + <r(t)S(t)dw'(t), t e [0,T],

where w" is a standard Brownian motion under Q.

A consumption and portfolio policy (C,A) is a pair of functions, (C(W,S,t),A(W,S,t)), de-

noting the consumption rate and the dollar amount invested in the risky asset at time t G [0,T],

respectively, when the wealth is W and the price of the risky asset is S. For simplicity, we will often

use C(t) and A(t) to denote C(W, 5", t) and A(W, S, t), respectively. Let W(t) denote the wealth at

time t. From Merton (1971), the dynamic budget constraint a consumption-portfolio policy must

satisfy is, starting from any t £ [0,7],

dW(s)=[rW(s) + A(s)(
l
i(s)-r)-C{s)]ds + A(s)<r(s)dw(s), se[t,T). (2)

A policy (C, A) is admissible if

Al. the drift and the diffusion term of the wealth process satisfy a linear growth condition and a

local Lipschitz condition,7 and starting from any x > and any time t 6 [0,T), the wealth

process can access any y > over any time interval [t,t + e] for however small t > 0.

This condition ensures that there exists a unique solution to the stochastic differential equation

(2).

The policy (C, A) is said to be efficient, if it is admissible and there exist a utility function for

intermediate consumption and a utility function for final wealth, u(x,t) : 3ft+ x [0,T] -+SU {-oo}

and V{x) : 9?+ -» Su { — oo}, respectively, which are twice continuously differentiable, increasing

and concave in x, and either u(x,t) for almost all t or V(x) is strictly concave in x such that (C,A)

7A function / : 9i
N

x [0, T\ —> 3? is said to satisfy a linear growth condition if \f(x, t)\ < K(l + |z|) for all x and t,

where |i| denotes the Euclidean norm of x and A' is a strictly positive scalar. A function / : 9?" x [0,T] —* 5R satisfies

a local Lipschitz condition if for any M > there is a constant Km such that for all y,z € SR
n with |y| < M and

\z\ < M and i £ [0,T], we have \f(y, t) — f(z,t)\ < K\i\y — z\, where \y\ denotes the Euclidean norm.
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is the solution to the following dynamic consumption and portfolio problem:8

supc>cM E?
y [llu(C(s),s)dt + V(W{T))

s.t. (2) holds,

(A.C) is admissible,
(3)

W{s)>0 se[t,T],

W(t) = x,

S(t) = y,

for any x > 0, y > 0, and t 6 [0, T], where E*y
[-] is the expectation at time t conditional on

W(t) = x and S(t) — y. The third condition is a positive wealth constraint that rules out the

possibility of creating something out of nothing; see Dybvig and Huang (1988).

Note also that there is a vast literature on the existence and the characterization of an optimal

consumption-portfolio policy for a given pair of utility functions (u,V); see Merton (1971), Cox

and Huang (1989, 1991), and He and Pearson (1991), for example. Our purpose here is different

from that of this literature. We take a consumption-portfolio policy (C, A) as given and ask:

What are the necessary and sufficient conditions for it to be an optimal policy for some pair of

utility functions (u,V)1 As we don't know the utility functions to begin with, these necessary and

sufficient conditions can only involve the given policy (C, A).

Now suppose that (C, A) is efficient. Then there exists (u, V) so that (C, A) solves (3) for any

x > 0, y > 0, and t 6 [0,T]. Let J(W,S,t) be the value of the objective function of (3), or the

indirect utility function, given that the wealth and the risky asset price at time t are W and S,

respectively. By the monotonicity and the strict concavity of either u(x,t) for almost all t or V(x)

in x, J must be increasing and strictly concave in W . We will restrict our attention to efficient

policies (C, A) such that the following conditions hold:

A2. A(W, S, t) is continuous and C(W, S,t) is continuously differentiable in W and S for W > 0,

S > 0, and for all t G [0,T], and C(W,S,t) is such that

E t \C(W(t),S(t),t)\2dt
Jo

for the wealth process defined by (C,A);

A3, far (WW) € [0,oo)x(0,oo)x[0, T],R(W,S,t) = - f^wA) ^dH(W,S,t) = - %$$%%
and for (W,S,t) € (0,oo) x (0,oo) x [0,T], N(W,S,t) =

fyjwffl are well-defined; and for

< oo

'imposing strict concavity on u ensures that the consumption function is continuous in W , which we will assume

later.
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(W,S,t) e (0,oo) x (0,oo) x [0,T), R and 7/ are twice continuously differentiable in (W,S)

and continuously differentiable in t, and N is continuously differentiable in (W, 5), where the

subscripts denote partial derivatives;

A4. J satisfies a polynomial growth condition9 and for any feasible policy (C, A) and its associated

wealth process defined by (2)

J
\CJ(s) + Jt (s)\ds < oo, r€[0,T)

where

£J = -JwwA 2 o2 + JwsAa 2S + -Jss<>
2S 2 + Jw {tW + A(ji - r) - C] + JSfiS

and

A5. the wealth never reaches zero before time T.

The interpretation of the terms defined in A3 will be given later. Henceforth, subscripts denote

partial derivatives unless mentioned otherwise.

Condition A2 requires the policy (C, A) to be sufficiently smooth and C to be square-integrable.

Condition A3 implies that J is continuous on its domain and allows us to work with many derivatives

of J. Condition A4 enables us to work with the Bellman's equation. Condition A5 needs some

explanation. Cox and Huang (1989, proposition 3.1) have shown that the optimally invested wealth

for any (u,V) must not reach zero before T when the stock price follows a geometric Brownian

motion. Merton (1990, theorem 16.2) generalizes this result to any diffusion price process obeying

two regularity conditions satisfied by most of the processes with which financial economists have

worked. Thus Condition A5 can be viewed as a necessary condition for (C, A) to be efficient.

Later in this section, we will add another regularity condition A6 that (C, A) must satisfy. Until

then, an efficient (C, A) will be understood to satisfy Conditions A1-A5.

Now let (C, A) be efficient with corresponding utility functions (u, V). By Conditions A3 and

A4, J satisfies the Bellman's equation (see, for example, Fleming and Soner (1992, chapter 3)):
10

0= max \ u{C,t) + Jt + [rW + A(p - r) - C]JW + nSJs + -<r
2A2Jww + <J

2SAJWS + -<r
2S2JSs\

c>o,a I, 2 2 J

9A function / : St^ x [0,T] — 5? is said to satisfy a polynomial growth condition if |/(r,t)| < K(\ + lip) for all

i and (, where |i| denotes the Euclidean norm of x and K and 7 are two strictly positive scalars.
10

It is certainly not necessary for an indirect utility function to satisfy the Bellman's equation and a polynomial

growth condition. For the former see Cox and Huang (1989) and for the latter see Footnote 20.
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for all (W, S, t) (E (0,oo) x (0, oo) x (0,T), with the boundary conditions

J(W,S,T) =V(W),
J(0,S,t) = tfu(0,s)ds + V(0),

[)

where we have suppressed the arguments of J, C, and A.

Note that the second boundary condition is a consequence of the positive wealth constraint and

it necessitates immediately that

C(0,5,0 = 0, and (5)

A{0,S,t) = 0. (6)

The first order necessary conditions for the dynamic consumption and portfolio problem (3)

are, for all (W,S,t) € (0,oo) x (0,oo) x (0,T),

u c(C(W,S,t),t) <Jw(W,S,t), [{C(W,S,t) = 0,

u c(C{W,S,t),t) =Jw (W,S,t), \iC{W,S,t)>0;

A(W,S,t) =
(
^'

(g f)

r

)
R(W,S,t) + SH(W,S,t), (8)

where we have used the notation defined in Condition A3. Note that R(W, S, t) on the right-hand

side of (8) is the inverse of the Arrow-Pratt measure of the absolute risk aversion of the indirect

utility function, henceforth the risk tolerance, and the second term is the "hedging demand against

adverse changes in the consumption/investment opportunity set".
11 By Condition A3, A must be

twice continuously differentiate in (W,S) € (0,oo) x (0,oo) and is continuously differentiate in

te(0.T).

Fivtbermore, (7) and the chain rule of differentiation imply that uccCw = Jww when C > 0.

Since Jww < 0> we must have C\y > when C > 0. That is, strictly positive consumption can

only r ccur when the marginal propensity to consume is strictly positive.

The first order necessary conditions and the Bellman equation place strong restrictions on

(C, j4' But these restrictions are expressed in terms of the partial derivatives of J, which is not

know; (as u and V are unknown). However, it will be shown in the next section that these necessary

condi' ons can be transformed so that they can be expressed solely in terms of (C,A). Therefore,

one c n directly check whether a given pair (C, /4) is a candidate for an efficient policy without any

other iformation. Furthermore, with some regularity conditions, we will show that the necessary

cond' Jits for (C, A) to be efficient are also sufficient.

Se Breeden (1984) and Merton (1973).
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Clearly, for all (W,S,t) € (0,oo) x (0,oo) x [0,T), the assumed differentiability of J implies that

d /1\ d (E"

dS\Rj dW\Rj' (9)

dN d f H \

Js = ai {a)' (10)

on j_or
dw r 2 dt

' (11)

Now, for all W > 0, S > 0, and t € [0,T], define three functions

0(W,S,t) = f
1—dz, (12)

Jw_ R[z,S,t)

vl „ s [
s H(W,Tj,t)

, , tX(5'" s
4 -mSF* (13)

K(l) = [' N(W,S,r)dT, (14)

where V^ and 5 are two arbitrary strictly positive constants, and where we have used the convention

that fa =— f£ when a > b. In addition, define a function U,

hiU(W,S,t)= -0(W,S,t) + X(S,t) + Y{t). (15)

Note that, for all W > 0, 5 > 0, t € [0,T), by the continuity of fl, #, and N;

\nU{W,S,t) = lnJvv(^,5,f)-lnJw(li:,5:,0)

J
= In u c(C(W,S,t),t)-\nJw(K,S,0), \{ C(\V,S,t) > 0; (16)

\ >lnu c(0,0-ln Jw(K,S,0), if 6(W,S,t) = 0.

where we have used the first order conditions (7). For t < T, since Cw > for all C > 0, we can

write, for all x > in the range of C(W,S, t):
(

ln^C- 1^,^),^') = lnu c(x,f)-ln./w(ii:, J£,0), (17)

<

where C_1
denotes the inverse of C with respect to its first argument. From this relation, we

conclude that its left-hand side must be independent of S when C(W, S,t) > as the utility

function is state independent. Furthermore, by the concavity of u(x, t) in x and-
(J),

we must have,

for all W > 0, S > 0, and t € (0,T) so that C(W,S,t) = 0, ,

i3

U(W,S,t)>]imU(C-\x,S,t),S,t) V5 > 0. (18)
r i° - • -,

Relations ( 16)— ( 18) involve J and its derivatives in the interior of their domain We now proceed

to derive some conditions at the boundary of their domain. For this purpose*," \ € use a result of
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Cox and Huang (1989, section 2.3), which states that, under the square-integrability assumption

of Condition A2, along the optimally invested wealth process, there exists a scalar A > so that 12

where the inequality holds as an equality when W(T) > 0. Note that the A above is a Lagrangian

multiplier and £(t)e~ Tt
is the Arrow-Debreu state price at time for time t consumption per unit

of probability P. Since W, S, and £ are processes with continuous paths, if the optimally invested

wealth reaches zero at T, (19) implies that Jw is continuous except possibly when W = at T and

Wm Jw {W,S,t)> Jw (0,S,T) = V'(0), VS > 0, (20)

ttr

where the equality follows from (4).
13

Given the above discussion, we now impose one more regularity condition on (C, A):

A6. R(W,S,t), H(W,S,t), N(W,S,t), and their derivatives are continuous functions of t at t = T

except possibly for W = 0.

This condition together with Condition A3 accomplishes two things. First, (16)— ( 18) can be

extended to t = T for W > and S > 0, and we have

\nU{W,S,T) =\nV'{W)-\nJw (W,S,Q), W > 0,5 > 0,

l\mw io U(W,S,t) >\nV'(0)-lnJw (W,S.,0) = l\mwiolnU{W,S,T), VS>0,S>0, (
21

)

IfT

where we note that the first relation indicates that lnU(W, 5, T) is a function of W only, and

the equality in the second relation follows from the fact that V is continuously differentiate. In

addition, Q, X , and N are twice continuously differentiate in (W,S) and continuously differentiate

in t for W > 0, S > 0, and t € [0,T].

Second, we conclude by continuity and H(W,S,T) = that

HmH(W,S,t) = Q, W>0, 5 > 0, (22)
(IT

and

A(W,S,T) (^l^)"
1

= UmtTT (/WS,0 + SH(W,S,t) (^f)~
= R(W,S,T) = -$$j, W>0, 5>0,

(23)

12The conditions stated below and henceforth implicitly assume that the optimization problem starts at t = 0.

Similar conditions hold for other starting times t and other starting states W(t) = x and S(t) = y.
13The possible discontinuity of Jw at T when W = is the reason that in Condition A3 N is not assumed to be

well-defined there.
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which is a function of W only.

We will term relations (9)-(ll) consistency conditions, since they basically require that high

order derivatives of the indirect utility function J exist and that J can be differentiated consistently

with respect to any ordering of W, S and t. Relations (17), (18), (21), (22) and (23) will be termed

state independency conditions, as they follow from our assumption that u and V are both state-

independent. Note that if we defined efficiency more broadly to include state-dependent utility

functions, then obviously the state independency conditions need not be satisfied. We will denote

henceforth the set of efficient policies satisfying Conditions A1-A6 by £. For brevity, (C, A) is said

to be efficient if it is an element of £.

Before leaving this section, we record one well-known fact about (C, A) € £, namely, that the

current wealth plus the cumulative past consumption, both in units of the bond, is a martingale

under Q.

Proposition 1 Let (C, A) G £ . Then W(t)e~ Tt + f C(W(s),S(s),s)e~ Tads is a martingale under

Q.

Proof. See, for example, Dybvig and Huang (1988). I

3 Necessary Conditions for Efficiency

In this section we derive necessary conditions for a given (C, A) to be efficient. Our derivation

proceeds as follows. First, we use the first order conditions to express the function N in terms of

R, H , C, A, and the derivatives of R and H . Second, we write R and H in terms of C, A and their

derivatives. As a result, R, H and N are explicit functions of C, A and their derivatives. Necessary

conditions derived in Section 2 about R, H , and N are then brought to bear on the given functions

C and A.

In this process, we also derive some characterizations of (C, A) £ £ that are of independent

interest. For example, we show that when there is no intermediate consumption, the risk tolerance

process along the optimally invested wealth in units of the riskless asset must be a local martingale

under the risk neutral probability. This implies that when the hedging demand normalized by

the bond price is a decreasing process and the risk premium per unit of variance is positive and

increasing over time, one expects an efficient portfolio policy to invest less in the stock over time

in present value terms normalized by the risk premium per unit of variance. When the hedging

demand normalized by the bond price is increasing and the risk premium per unit of variance is

decreasing over time, the opposite is true under an additional condition.
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Hereafter, we will use k(S, t), or simply k(() to denote (n(S, t) - r)/a2 (S,t), which is the risk

premium on the stock per unit of the variance on its rate of return. Assume k(S, t) / except

possibly on a set of S and t that is of Lebesgue (product) measure zero.

We begin by giving a lemma and a proposition. The lemma expresses the function N in terms

of R, H, C, A, and the derivatives of R and H . Then we show in the proposition that R must

satisfy a linear partial differential equation.

Lemma 1 Let(C,A)eS. Then, for (W,S,t) 6 (0,oo) x (0,oo) x [0,T],

l J>Aifl.\ ,^Acf}.\ lJri^N = r'A\R)w^AS
{R) 5 -r'

s
\-R) s

MrW + A(p-r)~ C)~ - ^5~ - ^j- - r. (24)

That is, N can be expressed in terms of R, H, C, A, and the derivatives of R and H.

Proof. We will prove (24) for (W,S,t) G (0,oo) x (0,oo) x [0,T). The assertion for t = T then

follows from continuity.

Differentiating the Bellman's equation with respect to W and simplifying the resulting equation

using the first order conditions (7) and (8), we get

= Jwt + rJw + Jww(rW + A{ii-r)-C) + JwsnS + -a A Jwww + Aa SJwws + ^o- S Jwss,

where we have used the fact that Cw = on the set {(W, S, t) : C(W, 5, t) = 0}. This equation

implies that the drift of dJw is -rJw- Since (8) implies that the diffusion term of dJw is —aaJw,

we conclude that

dJw = —rJwdt — noJwdw. (25)

2 2

Hence, the drift of din Jw must be equal to — r - :Lj—- However, the drift of din Jw is

1 2A2 (JWW\ +(,2AS
(JWW\

+ 1JS*({WS\ +{rW + A(n-r)-C)
2 \ Jw )w V Jw J s & \ Jw ) s

JWW
Jw

, q Jws Jwt

Jw Jw

- -V* (j)w - °2AS
(3).

+ r'
s2
(i)s-

trW+ Ai"
~ r) " C)* + "4 + *

We get (24) and this completes our proof. I
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Proposition 2 For (W,S,t) 6 (0,oo) x (0,oo) x [0,T], the function R must satisfy the following

partial differential equation:

-a2A 2Rww + Ao-
2SRws + -^o

2S2RSs + (rW - C)RW + rSRs + Rt + CWR -rR = 0. (26)

Consequently, R(W(t),S(t),t)e~ rt + fQCw(^)R(s)e~ r3 ds (along the optimally invested wealth) is a

positive local martingale14
, and thus a supermartingale15 , under the equivalent martingale measure

Q on[0,T}.

Proof. Differentiating (24) with respect to W yields

R/ww \RJws 2 v/i/ws
wm + *As(r\ -^s'(f)

+(rW + A(fl -r)-C) (1) - nS
(j£)

+ a 2AAw (I)

+o-
2
5/l Vv (-) + (t + Aw (fi - r) - Cw)-

w

s

Using (9) and (11), we can rewrite the above equation as

R2 2 \R)ww \R/ws 2 \RJ ss

+{rW + A(/x -r)-C) (1) + M5 (i) + a2/!^
(^)

+a 25Aw
(-J

+(r-Cw
)-ji

+ Aw(n-r)-

w

Since

MJxy~
for A", V = W, 5, we obtain

(:

-<r
2A2Rww + Aa2SRws + ^

2S 2
iiIss + (rW - C)RW + rSRs + R t + CW R - rR

= a-iAiXk + 2a 2AS^ + a 2 S 2 ^- + (r - »)SRSK K R

+A(n-r)R2

(j)
++a2AAwR 2^ +a2SAw R2

(j) + Aw(^-r)R2

^
2

= ^{ARW + SRs)2 + (r - n)SRs + {n~ r)(Aw R - ARW )

-a 2Aw{ARw + SRs). {'

14The process X is a local martingale under Q if there exists a sequence of stopping times r„ with rn —
• T Q-a.s.,

so that {X(t Ar„), t g [0 T]} is a martingale under Q for all n. For the definition of a stopping time see, for example,

Liptser and Shiryayev (1977, p. 25).
15The process X is a supermartingale under Q if E*[.Y(s)|^"t ] < X(t) Q-a.s. for s > t.
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It remains to show that the right-hand side of the above equation is zero. We note by (8) and (9),

A _ff— = K + b—.
R R

Hence,

\Rj\y V R J w R2

which implies

Aw = (SRS + ARW )/R. (28)

Substituting this expression into the right-hand side of (27), we confirm that the right-hand side is

indeed zero.

For the second assertion, we first show that R being a local martingale is implied by (26). From

Condition A5, we know that the wealth never reaches zero before T. For any t 6 [0,T), apply Ito's

lemma to R(t)e~ ri and use (26) to get

R(W(t),S(t),t)e- Tt
+ f Cw (s)R(s)e-

rs
ds

Jo

= R(W{0),S{0),0)+ I e-
TS (Rw (s)A(s)a(s) + Rs (s)(T(s)S(s))dw*(s), te[0,T).

Jo

Since R > for all W > and Cw > 0, the left-hand side is strictly positive. The right-hand

side is a local martingale under Q on [0,T) since it is an Ito integral. By the definition of a local

martingale (see Footnote 14), a local martingale on [0,7") is automatically a local martingale on

[0, T], In addition, it is well-known that a positive local martingale is a supermartingale; see, for

example, Dybvig and Huang (1988, lemma 2). Thus R(W(t), S(t), t)e~
Tt + JQCw {s)R{s)e- T3 ds is

a supermartingale on [0,T]. I

Cox and Leland (1982) are the first to point out this local martingale property of the risk

tolerance process in the context where the stock price process is a geometric Brownian motion.

Proposition 2 shows that this is in fact a general property of an efficient policy. In the case with

no intermediate consumption, it states that the risk tolerance implied by an optimal policy must

be a local martingale under the risk neutral probability measure. This is certainly true for the

utility functions that have constant relative risk aversion, since the risk tolerance in this case is a

linear function of the wealth and the optimally invested wealth in units of the bond is a martingale

under the risk neutral probability. In general, given Cw > 0, the above proposition states that an

efficient (C, A) must make the risk tolerance in units of the bond a supermartingale under Q on

[0,T] - one expects the risk tolerance in units of the bond, on the average according to Q, to go

down in the future.
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Remark 1 In Proposition 2 we have stated the local martingale result on the whole o/[0, T). This

implicitly assumes that the dynamic consumption-portfolio problem of (3) starts att = 0. This local

martingale result is of course true starting from any t € [0,T), W(t) = x and S(t) = y and the

proof is identical. Our implicit hypothesis is for notational simplicity and will be made henceforth

unless otherwise noted.

We record an immediate corollary of Proposition 2.

Corollary 1 Let {C,A) € €. Then

K(t) ~
• l Cwis)

n(t)

is a positive local martingale and thus is a supermartingale under Q on [0,T].

Proof. The assertion follows directly from (8) and Proposition 2. I

Several implications of Corollary 1 deserve attention. First, consider the special case of a

geometric Brownian motion stock price with /x > r. Note that in this case the hedging demand is

zero as H = 0, k is a constant, A = kR > when W > 0, and Condition A5 is satisfied. Corollary 1

implies that

A{t)e~
rt + [ Cw (s)A(s)e-

r3
ds

Jo

is alocal martingale under Q on [0,T]. In addition, by Proposition 2, for all (W,t) £ (0,oo)x [0,T],

-a2A2Aww + {rW - C)AW -rA + CW A + A t = 0.

This is just proposition 3 of Cox and Leland (1982).
16 Since Cw > 0, these imply that A(t)e~ rt

is

a positive supermartingale. That is, the present value of the dollar amount invested in stock in the

future is less than the current amount invested in the stock. This, however, does not necessarily

mean that one expects to shift value over time from the stock to the bond. To see this we recall

from Proposition 1 that

W(t)e- Tt + / C(s)e-r
'ds t € [0,T]

Jo

is a martingale under Q. This implies that

(W(t) - A(t))e~
rt + f\c(s) - Cw (s)A(s))e-

TS
ds t € [0, T)

Jo

16The reader familiar with Cox and Leland will note a difference between the result reported here and that in Cox
and Leland. Here A(t)e~

rt + J
Cw{3)A(s)e~ r

'ds is shown to be a supermartingale under Q instead of a martingale.

Indeed, with additional regularity conditions, A(t)e~
r> + f Cw(s)A(s)e~ r

' ds becomes a martingale; see Corollary 2

below.
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is a submartingale under Q. Note that the difference between W(t) and A(t) is the dollar amount

invested in the bond. If C - Cw A < 0, (W - A)e~ Tt
is also a submartingale under Q on [0,T],

and the optimal policy shifts value away from the stock to the bond and to consumption. When

C - CwA > 0, however, {W(t) - A(t))e~ Tt can indeed be a supermartingale under Q. In such a

case, the policy shifts value away from both the stock and the bond to consumption.

The interpretation of Corollary 1 in the general case is a bit more complicated as there is

now hedging demand. Assume for example that n{t) is a positive increasing process; that is, the

risk premium per unit of variance increases over time, and Cw = 0. When the hedging demand

normalized by the bond price, H • Se~ Tt
, is a decreasing process (given that H(W,S,T) = and S

is strictly positive, this implies that the hedging demand is positive), Ae~ rt
/k is a supermartingale

under Q. The present value of one's optimal investment in the stock in the future, per unit of k,

is lower than one's current investment in the stock, per unit of k. Interpretations similar to the

special case above can be made when Cw ^ but with everything normalized by k.

Under certain regularity conditions, Proposition 2 can be strengthened so that R(t)e~ Tt +

L Cw(s)R(s)e~ r3 ds is not only a local martingale but is indeed a martingale under Q. We record

this result below in the second corollary of the proposition:

Corollary 2 Suppose that W(T) > a.s. and R and Cw satisfy a polynomial growth condition.
17

Then R(t)e~ rt +

/

' CV(s).ft(.s)e
-rJds is a martingale on [0,T] under Q.

Proof. The assertion is a consequence of the Feyman-Kac representation; see, for example, Karatzas

and Shreve (1988, theorem 5.7.6). I

With the conditions of Corollary 2, we have a sharper interpretation of the intertemporal

behavior of R as well A. For example, in the geometric Brownian motion case discussed above,

when Cw — and W(T) > a.s., A(t)e~ Tt becomes a martingale under Q, and thus there is

no shift of value over time away from or into the stock. This is the Cox-Leland result. Other

interpretations are left to the reader. We now proceed to complete our derivation of the necessary

conditions for (C, A) to be efficient.

First, consider the special case that C(W,S,t) > for all (W,S,t) € (0,oo) x (0,oo) x (0,T).

Since the first order condition (7) holds as an equality, the chain rule of differentiation and Condi-

tions A2 and A3 imply that

(?cCW 9 t)

H(W,S,t) =- ^ ,wg',; VW>0,S><M€[0,r). (29)

See Footnote 9.
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Conditions A2 and A6 immediately necessitate that

CclW 9 t\

E(W,S,Ti. 1^-5^1 = 0, W>0. (30)

Note that (30) places nontrivial restrictions on consumption policies. For example, any consumption

policy that is time separable, in that C(W,S,t) - c(W,S)f(t) for all W > 0, S > 0, and t 6 (0,T)

for some functions c and /, can never be an efficient consumption policy unless it is independent

of the stock price.

Now substituting (29) into (8) and using Conditions A2, A3, and A6 give

Cs
R = A + S /k, VH' > 0,5 > 0,t€ [0,T]. (31)

We have thus expressed R and H solely in terms of C, A and their derivatives. Define N by (24).

The R, H , and N so defined must satisfy the necessary conditions stipulated in Proposition 2 and

the consistency conditions and the state-independency conditions derived in Section 2.

The following theorem summarizes the above discussion.

Theorem 1 Let (C,A) € £ with C(W,S,t) > for all W > 0, S > 0, and t 6 (0,T). Dearie R,

H, N as in (31), (29), (30), and (24), respectively, and Q, X, Y, and U as in (12), (13), (14),

and (15), respectively. We must have

(1) A(0,S,t) = C(0,S,t) = 0, S > 0, t e [0,T];

(2) R(W,S,t) >0 forW >0;

(3) Cw {W,S,t) > 0, and Cw (W,S,t) > for W > 0;

(4) the state-independency conditions hold: U(C~ x

{x, S,t),S, t) is independent of S for all x >

in the range of C(W,S,t) and t < T, U(W,S,T) is independent of S for all W > 0,

]imwioU(W,S,t) > Kmwioli(W,S,T) for all S > and S > 0, limt|r Cwtwf}) = °> and

A(W,S,T)/k(S,T) is a function ofW only for all W > 0;

(5) the consistency conditions (9), (10), and (11) hold; and

(6) {C,A) satisfies the PDE (26).

Second, consider the general case that C can be zero at strictly positive wealth levels. For example,

when u = 0, then C = for all wealth levels. In this case H cannot be expressed in terms of C

and A directly using (7) in the region where C - 0. The following proposition is instrumental for

expressing R and H in terms of C, A, and their derivatives generally.
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Proposition 3 Let (C,A) € £. For W > 0, S > 0, and t € [0,T],

T
X R + T 2H = oK{W,S,t),

where

Ti = -- ksso-
2S2 + 2ksfiS + 2kt \ ,

(32)

r 2 = -
2
s vsso S + 2ctso-'S + 2asrS + 2a t

K(W,SJ) = \a2A2AWw + o2SAAws + \o2S2ASS + (vsaSA + rW)Aw

+(asaS
2 + Sr)As + -{ass^S2 + 2rasS/cr - 2r + 2atja)A

+A t + (CwA-CAw ) + SCs .

Proof. We will prove the assertion for t € (0,T). At t = and T, the assertion follows from

Conditions A2, A3, and A6 by continuity.

For any function / of W , 5 and t that is twice continuously differentiable in (W, S) and con-

tinuously differentiable in i, define the differential generator C under Q:

d 2
f d2

f 1

£(/) = -a2A 2—J
-r + a 2SA—-£- + -<J

2 S2^r + (rW - C)
ds 2dW 2 dWdS ' 2

Direct computation shows, for W > 0, S > 0, and t £ (0,T),

dW dS dt'

£ (i)= -[.•**, (i) +•»*,* (i) + (,_cw)(i); (33)

£
(!) «*-* (s) -' (fH<-

2^ (*l+<^ (sL-s^ (I),• ™
where we have used the fact that

aAwR = Rs<?S + RwAa,

which is a consequence of (28), and (26) for (33), and (8), (10), (11), and (24) for (34). Following

the definition of A", we have

Since z£ = -K + a5^,

C{oA) = oK + raA - oACw — oSCs-

['£)-£(*> + *(*!)

(35)
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Applying C(XY) = YC(X) + XC(Y) + a 2A 2XwYw + a 2AS(XsYw + XWYS ) + a2S2XsYs and

substituting (33), (34) and (35) into the above equation, we get (32). I

Proposition 3 plays an important role. It allows us to express the unknown functions R and H

in terms of A and C and their derivatives. This is done as follows. If Y\crS + Y 2 k i=- 0, we can solve

from (8) and (32) for R and H as functions of A and its derivatives, except when W = at T:

a2SK-aAT 2 , sR = cr r^r '

36
aSVi + ki 2

_ oATx + koK
H „ST r. r • I

37 )

aol 1 + k1 2

Once this is done, (26) becomes a PDE in A and C. In addition, substituting (36) and (37) into

(24) expresses N solely in terms of C and A and their derivatives.

If Y\oS -\-Yik = 0, we cannot solve for R, H, and N in terms of C and A. Nevertheless, we still

get a PDE that C and A must satisfy. We take two cases. First, Ti = T 2 = except possibly when

k = 0. (Here we note that if k / 0, Tj = only if T 2 = 0. In addition, T 2 = implies Ti = 0.)

Then we have K = except possibly when k = 0. Second, Ti / and T 2 ^ except possibly

when k = 0. Then (8) and (32) imply that

41-A-? (38,
k aS A

except possibly when k = 0. In both cases, we have an equation solely in terms of A and C to

verify. We now collect all the necessary conditions any (C, A) € £ has to satisfy:

Theorem 2 For (C, A) € £, we must have

(1) A(0,S,t) = C(0,S,t) = 0, S > and t e [0,T]; and C\y(W,S,t) > when C > 0, W > 0,

5>0, te[0,T\;

(2) Suppose T\aS + T 2 k ^ 0. Define R, H , and N as in (36), (37), and (24), respectively; and

define Q, X , and Y as in (12), (13), and (14), respectively. Then

(a) R(W,S,t) >0 forW > 0;

(b) the state-independency conditions hold: U(C~ l (x,S,t),S,t) is independent of S for all

x>0andt<T, U{W,S,t) > \imx[0 U(C- 1 (x,S,t),S,t) for all W > 0, 5 > 0, and

te [0,T) such that C(W, 5,0 = and all S > 0, limwio U(W,S,t) > ]imwl0 U(W,S,T)

for all S > and S > 0, H(W,S,T) = for all (W,S), and A(W,S,T)/k{S,T) is a

function of W only;
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(c) the consistency conditions (9), (10), and (11) hold; and

(d) (C,A) satisfies the PDE (26);

(3) Suppose that Y\ = ^ = except possibly when k = 0. Then K = except possibly when

k = 0; and

(4) Suppose that T\o-S + ^k = and T\ / and r 2 ^ except possibly when k = 0. Then (38)

holds except possibly when k — 0.

Note that in Theorems 1 and 2, (26) is the most substantive necessary condition. Other conditions

are either consistency conditions or the state-independency conditions.

We now present two examples, one to demonstrate the necessary condition for efficiency and

another to demonstrate a price process where TicrS + I^k = 0. More examples can be found in

Section 5.

Example 1 It has been asserted in the literature that the pair

C(W,S,t) = f(t)W,

A(W,S,t) = ^f'^ W,

with f(t) > 0, is the optimal consumption-portfolio policy for the log utility function with certain

time preferences captured by f(t); see Merton (1973).
18 Since C > for all W > and S > 0, this

policy must satisfy the conditions of Theorem 1.

First, the consumption policy implies that H(W,S,t) = and thus the portfolio policy implies

R(W, S,t) = W. Direct computation using (24) gives N(t) = —/(<)• One can then easily verify

that all the conditions of Theorem 1 are satisfied.

Next we turn our attention to Theorem 2. Note that this theorem applies generally independently

of whether C > for all W > 0. Direct computation shows that K{W,S,t) = Ti(S,t)W/<r(S,t) .

We take cases.

Case 1. Suppose that YxO~S + I^k ^ 0. By (36) and (37), we have

R . «*r,/>
t
M-,

aSTi + «r2

H =
-*r

i + *»ri/aw = Q
crSri + kT-2

18This assertion was supported by the fact that J(W, S, t) = g(S, t) + h(t) In W solves the Bellman's equation for

some functions g and h. However, this J function fails to satisfy the polynomial growth condition, which is sufficient

to derive the Bellman's equation. Thus, to our knowledge, it has not been actually shown that an optimal policy

exists for the log utility function using dynamic programming. However, this policy can be verified to be optimal

using other arguments such as those of Cox and Huang (1989, 1991).
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These are consistent with our calculation above while using Theorem 1. Then it is straightforward

to verify that (2a)-(2d) of Theorem 2 are satisfied.

Case 2. Suppose that T\ - T? = 0. Then K - and (3) of Theorem 2 is satisfied.

Case 3. Suppose that Y\o~S + I^k = and T\ / and Yz / 0. Then KjA — -Ti/k and (4) of

Theorem 2 is satisfied.

The following example gives a scenario where T\ — Yi — 0.

Example 2 Suppose that T\aS + I^k = and a is a constant. Then 1^ = 0. This implies that

Ti = 0. Note that T\ is the drift term of dk. Thus k must be a local martingale. Since a and r are

constant, this implies that n is a local martingale.

Conversely, given that a is a constant and p. is a local martingale, T\ = ^ = 0. In this case,

K = -a2A2AWw + a2SAAWs +^2S2ASs + rWAw + rSAs -rA + A t + CwA + SCS - CAW = 0.

Using the same arguments as in the proof of Proposition 2 we have that

A(t)e- rt + f\cw (s)A(s) + S(s)Cs (s) - C(s)Aw (s))ds, t € [0, T)
Jo

is a local martingale under Q and is a martingale under Q with similar regularity conditions as in

Corollary 2. In particular, ifC = 0, W(T) > a.s., and A satisfies the growth condition stipulated

in Corollary 2, we know A(t)e~ rt must be a martingale under Q. Thus the present value of the

future investment in the stock must be equal to the current investment, a property obeyed by any

optimal policy satisfying the same regularity conditions in the geometric Brownian motion case.

Besides checking whether a given policy (C, A) satisfies the necessary conditions for efficiency

for a fixed stock price process, Theorems 1 and 2 can also be used to answer a more general

question: For a given policy to satisfy the necessary conditions for efficiency, what should be the

price process? The following familiar example demonstrates this.

Before presenting our example, we note that when the stock price follows a geometric Brownian

motion, and when the (direct) utility function exhibits a constant Arrow-Pratt measure of relative

risk aversion, the optimal portfolio policy is a constant mix policy; that is, A{t) = aW for some

a, and the optimal consumption policy is a linear policy C(t) = f{t)W for some strictly positive

function f(t).
20

19 He and Leland (1992) show that when a is a constant and /i is a local martingale, £ is path-independent. Hence,

any optimal policy must be path-independent.

The astute reader will question whether one needs to restrict the coefficient of relative risk aversion to be less

than one since otherwise the indirect utility function fails to satisfy a polynomial growth condition. The linear policy

can however be shown to be optimal using a different technique; see Cox and Huang (1989).
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On the other hand, it seems quite likely that for this pair of linear policies to be optimal, it

would be necessary that the stock price process be a geometric Brownian motion, and the utility

function exhibit a constant Arrow- Pratt measure of relative risk aversion. Using Theorem 1, we

show in the following example that this pair of linear policies only necessitates that k be a constant,

and p. and a be independent of S, except in the case where a = k (which is Example 1).

Example 3 Let C(W,S,t) = f{t)W and A(W,S, t) = aW , where f(t) > and a / 0. Since the

consumption policy is independent of S, H = 0. This implies that R(W, S, t) = aW/n(S,t) and

N = (n- r)—— + f{t)--r + a2 Sns .

2 a a

Thus

\nU(x/f(t),S,t) = ^^[-\n(i/f(t)) + \nW) + Y(S,t). (39)
Q

By the state-independence of the utility function, the right-hand side must be independent of S.

Thus k is a function only oft, and hence, N = (/i - r)(* - a)/2 + (r — f(t))n/a — r.

Assume without loss of generality that n(t) ^ 0. Then R(W,S,t) = aW/K(t) must satisfy (26).

This implies K'(t)aW = for all W > 0, and n(t) must be independent oft and is a constant.

Relation (39) thus shows that the utility function exhibits a constant relative risk aversion equal to

fc/a.

The fact that k is a constant does not necessarily mean that fi and a are constants. Now note

that the consistency condition (10) implies that

k — a
Ns = Us—— = 0.

Suppose k ^ a. Then p.s = and p. is independent of S. Consequently, a is independent of S.

In summary, for (C, A) to be efficient, it is necessary that k is a constant, and the utility

function must exhibit a relative risk aversion k/q. In addition, p. and a are functions of time if

4 Sufficient Conditions for Efficiency and Recoverability

In this section we first show that with some minor regularity conditions, the necessary conditions

derived in the previous section are also sufficient. We then discuss how one can recover the utility

function that supports a given efficient policy. Specifically, we provide an integral formula to recover

the utility function.
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We give two sets of sufficient conditions for a given (C, A) that satisfies Conditions Al, A2, and

A5 of Section 2 to be efficient. First, for a C such that C(W,S, t) > for all W > and S > 0, the

necessary conditions recorded in Theorem 1 together with the hypothesis that the R, H, and JV

defined in (31), (29), and (24), respectively, satisfy Conditions A3 and A6 are sufficient for (C, A)

to be efficient. Second, in the case where consumption is not always strictly positive for strictly

positive wealth and where TioS + Tjk ^ 0, the necessary conditions of Theorem 2 together with

the same conditions on R, H , and N are also sufficient. Our proof for these two sets of sufficient

conditions are through construction; we construct a pair of utility functions (u, V) so that the

policy (C, A) solves (3).

Since any efficient policy must be such that C(0,S, t) = and A(0, S, t) = 0, that is, whenever

the wealth reaches zero there will be neither investment nor consumption afterwards, we will restrict

our attention to this kind of policies. For any one of these policies, it follows from Dybvig and

Huang (1988) that we must have

"

r
T

E* / C(W(t),S(t),t)e-
rt
dt + W(T)e

Jo
»e-

rT
> < W(0), (40)

that is, the present value of future consumption and final wealth must be less than the current

wealth. By concavity of the utility functions, sufficient conditions for (C, A) to be a solution to (3)

are that (40) holds with equality and there exists a strictly positive scalar A > so that, for all

*€[o,rj,

where we recall the definition of £(f) in (1) and its interpretation as the Arrow-Debreu price at

time for time t consumption per unit of probability P. 21 The following is our first set of sufficient

conditions:

Theorem 3 Let So satisfy a linear growth condition and let (C, A) satisfy Conditions A I, .4-', and

A5, andC > for all W > and S > 0. Define R, H, N as in (31), (29), and (24), respectively,

andQ, X, Y, and U as in (12), (13), (14), o.nd (15) respectively. Suppose that

(1) R, H, N satisfy the continuity and differentiability conditions of Conditions A3 and A6; and

Here we remind the reader of our implicit hypothesis that the starting date of the optimization is t = but our

arguments apply to other starting dates t with arbitrary starting states W(i) and S(t).
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(2) conditions (l)-(6) of Theorem I are satisfied.

Then (C, A) € S and the utility functions correspond to (C, A) are

{
U(C-l (x,S,t),S,t) x>0,M ,J

\ ]imziQ U{C-\z, S,t),S,t) x = 0;

hV(.) = r "}r
S
sr\

X>
°c

Proof. See Appendix. I

When C is not always strictly positive for strictly positive wealth, R cannot be defined through

(31), and we have the second set of sufficient conditions. Note however that this set of conditions

applies generally whenever VictS + T2K / 0, independently of whether C(W,S, t) > for all W > 0.

Theorem 4 Let So satisfy a linear growth condition and let (C, A) satisfy Conditions At, A2,

and A5, and T^aS + I^k / 0. Define R, H , and N as in (36), (37), and (24), respectively; and

define Q, X, Y, and U as in (12), (13), (14), and (15), respectively. Suppose that

(1) R, H , and N satisfy Conditions A3 and A6; and

(2) conditions (I) and (2a)-(2d) of Theorem 2 are satisfied.

Then (C, A) € £ and the utility functions that correspond to (C, A) are

,

, ,, _ j U(C- l (z,S,t),S,t) x>0,
M,J " \ lim,io W(C-

1 (*,5,0,S,t) * = 0;

I hm z ioU(z,$,T) i = 0.

Proof. See Appendix. I

Using Theorem 3 one easily shows that the linear policies in Example 3 are indeed optimal for

the stock price process identified there and the utility function exhibiting a constant relative risk

aversion equal to k/q. Of course, this result is well-known from solving the dynamic consumption

and portfolio problem using dynamic programming.

The general procedure to recover the utility function should be obvious from the proofs of

Theorems 3 and 4. First, define R, H , N as in Theorems 3 and 4. Second, define Q, X, Y, and U

as in (12), (13), (14), and (15), respectively. Now, define \J(x,t) and V such that

U(C- l {x,S,t),S,t) x > 0,

mzl0 ZV(C-
1 (^,5",t),5

,

,0 x = 0;
lnU(x,0

InV,x) = (.. «(•*.£ •>«
1 hm z[0 U(z,S,T) x = 0.
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Then, the utility functions that support (C, A) must be

u(x,t) — \ U(x,t)dx,

V(x) = [
X

V(x)dx.

These are the integral formulae which recover the utility functions that support a given efficient

policy (C,A).

Before leaving this section, we point out that the necessary and sufficient conditions established

in Sections 3 and 4 can be readily extended to infinite horizon problems, i.e., T = oo and V = 0. In

this case, in Theorems 1 and 2, all conditions relating to time T should be removed. In addition, in

Theorems 3 and 4, one needs to add that the present value of the future wealth goes to zero when

the future extends to infinity; that is, E*[M/(<)e
_r(

]
— as t — oo.

22

5 Further Examples

In this section we present two more examples to demonstrate our results.

Example 4 Consider a pair of consumption and investment functions

c(w,s,t) = fttywMs1-*®

V (j(S,t)2p a(t) )

where f is a strictly positive deterministic function, a and are deterministic functions with

values between and 1 satisfying \\m t->T Q(0 — 1> and ^n^ P ls a strictly positive constant. The

parameters of the wealth process generated by (C,A) may not satisfy a linear growth and a local

Lipschitz condition for some functions a and (3. We will ignore this problem for now and proceed

with other necessary conditions.

We will show that for this pair of policies to be efficient, it is necessary that a = (3 = 1 for all

t, and either p = 1 or (p. - r)/a is independent of S.

To begin, the consumption policy determines the hedging demand function

"W**)- Cw(W,S,t) a(t) 5'

which in turn determines the risk tolerance function

R(W,S,t) = ±wW>Sl-W>.
P

2
See Huang and Pages (1992).
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Since a(t) — 1 as t —> T, we have H(W,S,t) — as t ] T, which is (30) and is part of the

state-independency condition.

Next, for (9) to be satisfied, we need

p(/3(t) - ^W-^S^- 2 = -/>(/?(*) - i)iz^|2w-/»W5/»(«)-».

This implies that f3(t) — 1 for all t and thus

p \ o{S,typ a(t) J

Now, define N according to (24):

N = WU].^^ 1^^
2 V W 2

J 2 V o(0 / S 2

HrW + A(p - r) - C(t)W^S 1-^)^ + p.S (~j^|) -^ - r.

5mce ^w = Rt/R2 = 6y (//,), u;e deduce that

-f(t)p(a{t) - l)W(0-l5»-«W -

/or a// iy > 0, 5 > 0, and f € [0,7]. T/iz's cannot be true unless a(t) = 1 for all t. Consequently,

the hedging demand must be zero and

Equation (10) then implies that

Ns

=

K 1

")
(k2cj2)5 = {H/R)t = °'

and we must either have p — 1 or (n2a 2
)s = 0. Note that in the former case the parameters of

the wealth process satisfy a local Lipschitz and a growth condition if (p. — r)
2 /a2 also satisfies these

conditions, and in the latter case the parameters of the wealth process are purely deterministic.

In summary, in order for the pair of policies to be efficient for some stock price process, it must

be the case that a and (3 be constant and equal to one, and either p = 1 or (p - r)/a is independent

of S. Indeed, when p — 1, the log utility function supports (C, A), and when k2
o~

2
is independent of

S , the utility function that exhibits a constant coefficient of relative risk aversion equal to p supports

(C,A).

Note that in the case where n2a 2
is independent of S, k is independent of S. From Cox and

Huang (1989), there will be no hedging demand. The optimal consumption policy will be a function
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only of wealth, and the optimal portfolio policy can be calculated as an explicit integral and can be

represented generally as

A(W,S,t) = ——g(W(t),t)

for some function g.

Example 5 Consider a pair of consumption and investment functions for an infinite horizon prob-

lem,

C{W,S,t) = rsw,

A(W,Sj) = f(S)W,

where f(S) = A3 - r/(aa 2
) - y/A\ + A 2 S, where a > 0, 7 > 0, a > 0, A\ > 0, A 2 > 0, and A3

are constants. Note that the marginal propensity to consume is proportional to the stock price, and

the proportion of the wealth invested in the stock is a decreasing function of the stock price. Note

also that with (C, A) defined above, the parameters of the wealth dynamics may not satisfy a linear

growth condition and the consumption policy may not satisfy the integral condition of Condition

A2. We will ignore this problem and proceed with other necessary conditions. We ask: Can (C, A)

be a pair of optimal policy for some utility function and for some stock price process? We will see

that the answer is affirmative for the following price process:

dS{t) = aa2 (A3 + 1 - ^Ai + A 2 S(t))S(t)dt + aS(t)dw(t),

provided that 1) there exists a solution to this stochastic differential equation, 2) the equivalent

martingale measure exists for this price process on any finite interval [0,t], 3) the parameters of

the price process satisfy certain restrictions, and 4) the wealth never reaches zero.
23

Clearly, the consumption policy implies that H = -W/S. Thus

R= A-SH_
= L±lw= l_w

k k a

Using relation (24) we. write

ao~2
f r n. 7—z\

2
!~-^A 1 +A 2 S) --1N = -^ A3 -^-r-VM + A 2 S) -Ua 2

23We ignore the condition that the expected discounted wealth under the equivalent martingale measure goes to

zero. This condition may be checked by simulation. Also, using the boundary conditions discussed in Chapter 5,

Gihman and Skorohod (1972), one can check that zero is inaccessible for this price process.
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+q (r + aa2 \A3 - -~ - s[Ax + A 2s) \A3 - -^ - jA x + A 2 S + l\ - -ys\

+a 2a2 (a3 + 1 - v^ + A 2 s) - ?-£- (a3 - -^ + 1 - ^Aj + A 2s) - r.

-a^S - -aa 2 + 2ar - r.

We now choose 7 and a as follows.

7 = -A2 <r
2(a- 1),

A3 + r/a2 + s/(A3 + r/a'y - 4(A3 + l)r/o*
a

2(^3 + 1)

5mce 7 /ias £0 6e strictly positive, we choose A3 so that a > 1. Tats can 6e achieved if r/a2
is large,

or if A3 + 1 is positive and sufficiently small. For the 7 and a defined above, N is independent of

5 and is a constant. The consistency and the state-independency conditions are easily seen to be

satisfied.

Next, one verifies that (26) is satisfied and, by Theorem 3, (C, A) is efficient provided that

all the regularity conditions stated above can be verified. The utility function that supports (C,A)

exhibits a constant coefficient of relative risk aversion equal to a, which is strictly greater than one.

Note that if A3 > r/(ao 2
) + \/A~\, then the proportion of the wealth invested in the stock is

positive when the stock price is low and is negative when the stock price is high. By Ito's lemma.

din 5(<) = aa2 (a3 + 1 - \]

A

x + A 2S(t)j dt + adw{t).

Thus the log price process follows a mean reversion process if A3 + 1 — l/2a - y/A~\ > 0.

6 Concluding Remarks

We have studied the "inverse" of the classical optimal consumption- portfolio problem of Merton

(1971). This inverse optimal problem should be viewed as a dynamic recoverability problem in

financial markets with continuous trading. We have derived the necessary and sufficient conditions

for a given consumption-portfolio policy to be optimal for some agent with an increasing, concave,

time-additive, and state independent utility function in an economy with one risky and one riskless

asset. The risky asset price follows a general diffusion process, and the riskless interest rate is a

constant. Using identical arguments, we can generalize the results reported to cases where there
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are more than one risky asset, and the interest rate is stochastic. We leave this generalization to

the interested reader. We can also generalize our results to allow state-dependent utility functions

by simply removing all the state-independency conditions. The technique we have exploited to

derive our results is dynamic programming. It seems plausible that our method might also be

generalized to allow for non-time-additive utility functions as long as the optimal consumption-

portfolio problem for these utility functions can be analyzed by dynamic programming. This may

be a fruitful direction for future research given the increasing interest in non-time-additive utility

functions.



7 REFERENCES 29

7 References

1. F. Black, Studies of Stock Prices Volatility Changes, in Proceedings of the 1976 meetings of

the American Statistical Association, Business and Economic Statistics Section, 1976.

2. F. Black, Individual Investment and Consumption Under Uncertainty, in Portfolio Insurance:

A Guide to Dynamic Hedging, Donald L. Luskin, Ed., Wiley, 1988.

3. D. Breeden, Futures Markets and Commodity Options: Hedging and Optimality in Incom-

plete Markets, Journal of Economic Theory 32 (1984), 275-300.

4. F. Chang, The Inverse Optimal Problem: A Dynamic Programming Approach, Econometrica

56 (1988), 147-172.

5. J. Cox and H. Leland, Notes on Dynamic Investment Strategies, Proceedings of Seminar on

the Analysis of Security Prices, Center for Research in Security Prices (CRSP), Graduate

School of Business, University of Chicago, 1982

6. J. Cox and C. Huang, Optimal Consumption and Portfolio Policies When Asset Prices Follow

a Diffusion Process, Journal of Economic Theory 49 (1989), 33-83.

7. J. Cox and C. Huang, A Variational Problem Arising in Financial Economics, Journal of

Mathematical Economics 20 (1991), 465-487.

8. J. Cox and S. Ross, The Valuation of Options for Alternative Stochastic Processes, Journal

of Financial Economics 3 (1976), 145-166.

9. P. Dybvig, Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars

in the Stock Market, Review of Financial Studies 1 (1988), 67-88.

10. P. Dybvig and C. Huang, Nonnegative Wealth, Absence of Arbitrage, and Feasible Consump-

tion Plans, The Review of Financial Studies 1 (1988), 377-401.

11. P. Dybvig and S. Ross, Portfolio Efficient Sets, Econometrica 50 (1982), 1525-1546.

12. W. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, preprint,

1992.



7 REFERENCES 30

13. A. Friedman, Stochastic Differential Equations and Applications, Vol. 1, Academic Press,

New York, 1975.

14. J. Geanakoplos and H. Polemarchakis, Observability and Optimality, Journal of Mathematical

Economics 19 (1990), 153-165.

15. I. Gihman and A.V. Skorohod, Stochastic Differential Equations, Springer- Verlag, New York,

1972.

16. R. Green and S. Srivastava, Risk Aversion and Arbitrage, Journal of Finance XL (1985),

257-268.

17. R. Green and S. Srivastava, Expected Utility Maximization and Demand Behavior, Journal

of Economic Theory 38 (1986), 313-323.

18. M. Harrison and D. Kreps, Martingales and Multiperiod Securities Markets, Journal of Eco-

nomic Theory 20 (1979), 381-408.

19. H. He and N. Pearson, Consumption and Portfolio Policies with Incomplete Markets and

Short-Sale Constraints, Journal of Economic Theory 54 (1991), 259-304.

20. H. He and H. Leland, Equilibrium Asset Price Processes, Working paper, UC Berkeley, 1992

21. C. Huang and H. Pages, Optimal Consumption and Portfolio Policies with an Infinite Horizon:

Existence and Convergence, Annals of Applied Probability 2 (1992), 36-64.

22. I. Karatzas, and S. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New

York, 1988.

23. M. Kurz, On the Inverse Optimal Problem, Mathematical Systems Theory and Economics,

H. W. Kuhn and G. P. Szego eds., Springer- Verlag, Berlin, 1969.

24. H. Leland, Who Should Buy Portfolio Insurance, Journai of Finance 35 (1980), 581-594.

25. R. Liptser and A. Shiryayev, Statistics of Random Processes I: General Theory, Springer-

Verlag, New York, 1977.

26. A. Lo and C. MacKinlay, Stock Market Prices Do Not Follow Random Walk: Evidence from

a Simple Specification Test, Review of Financial Studies 1 (1988), 41-66.



7 REFERENCES 31

27. A. Mas-Colell, The Recoverability of Consumers' Preferences from Market Demand Behavior,

Econometrics 45 (1977), 1409-1430.

28. R. Merton, Optimal Consumption and Portfolio Rules in a Continuous Time Model, Journal

of Economic Theory 3 (1971), 373-413.

29. R. Merton, An Intertemporal Capital Asset Pricing Model, Econometrica 41 (1973), 867-887.

30. R. Merton, Continuous Time Finance, Basil Blackwell, New York, 1990.

31. B. Peleg, Efficient Random Variables, Journal of Mathematical Economics 2 (1975), 243-252.

32. B. Peleg and M. Yaari, A Price Characterization of Efficient Random Variables, Econometrica

43 (1975), 283-292.



8 APPENDIX 32

8 Appendix

Proof of Theorem 3. Without loss of generality, we assume that the optimization starts from

t = with W(0) = W_ and 5(0) = 5. First we show that (40) holds as an equality. Under Q, the

discounted wealth process and the discounted stock price process become

d{W{t)e- Tt
) = -C(t)e- rt

dt + A(t)(T{t)e-
rt
dw'(t), 1 6 [0,T],

d(S(t)e-
Tt

) = S(t)e~
rt
a(t)dw'(t),

where we recall that w* is a Brownian motion under Q. By the hypothesis that Aa and So

satisfy a linear growth condition (see Condition Al for the former), Friedman (1975, theorem 5.2.3)

shows that there exist constants Lm so that E*[|W(f)|2m ] < (1 + \W\ 2m )e
Lmt and E*[|5(<)|

2m
]
<

(1 + \S\
2m

)e
Lmt

, for all integers m = 1,2,...,. Given this, we can easily show that

E* / \A{t)a{t)e-
Tt

\

2
dt

Jo
< 00.

Hence W(t)e~ rt + /
(

C(s)e~ rs ds is a square integrable martingale under Q; see, for example, Liptser

and Shiryayev (1977, §4.2). Consequently, (40) holds as an equality.

Next, by condition (4) of Theorem 1, u and V are well-defined and are state-independent; and

by condition (2) of Theorem 1, u and V are strictly increasing concave. We remain to verify that

there exists a A > such that the first order conditions (41) and (42) hold. For any function /,

define the operator C:

an - ia 2A2^L + , 2SA-^L +
l
. (T

2 S2^1 + (rW _ C)
df_

+ rS dl + dl
L{1) -

2
a A dw

2+a bA
dwds +

2
a b

es2+(
C)dw + rb

ds
+

dt

-rf + Cwf-

Condition (5) of Theorem 1 can be written as C(R) = 0. This implies that

C{
R ] ~

aA
-R^

+ 2aSA-^- + aS W-l + -R-
o2 A\v 2r 2CW

~ ~R~~~R +
~R~'

(43)

where the second equality follows from (28), which is a consequence of the definition of R and // in

(31) and (29), respectively, and the consistency condition (9). By Condition A5, the wealth never
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reaches zero before T. For any t 6 [0,T), Ito's lemma implies that

dO{W(t),S(t),t) = (C(0) + O t
)dt + ——1— aAdw(t)

+ (C (wium) s

d^Si,)dwm '

where C is the differential generator of W and S under P. 3y the consistency condition (9), the

diffusion term of dO becomes

1
. ( f

W{t)
f H(z,S,t) \ \

R(W(t),S,t)
aA ~ [L \R(z,S,t)J ,

dZ
)
ab

1 H(W(t),S,t) H(W,S,t)
-aA—„,„,., , „

—r<Jo + „, Twr „—7&S
R(W(t),S,t) R(W(t),S,t) R(W,S,t)

The drift of dO is

rW{t) /
i

L„l C2 f
W{t)

(
1 \ , ,

lj ,2 f
1

+
2
ffi i U(*,5,*)^s5 2 U(W(*),5,t)

+ *M5(™ro) s
+i <™»^rW(«)

,R( Jw

Using integration by parts, we have

W(t) / \ r w(t)

R(z,S,t)J ss

f
w(t)

l
rWit) i _ . / i \

+ 1 \*A\wjd)j* +L °*AA
-(t(im).

d°

Ay \R(z,S,t)J zS
^ Jw \R(z,S,t)J s

f
w(t) / i \

where

hi(S,t) = (rW + A(W,S,t){n-r)-C(W,S,t))-
R(K,S,t)
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Using the definition of £, we get

rW(t) _/
J

N ,W(t) /
x

f
W(t) / ! \ ,w(t)

i

+ /
(/*~ rM q< cm )

dz+
/ (A*- rK -p7 c ,^z

7vv \R(z,S,t)J , Av R(z,S,t)

tW / i \ /-W(0 / i \

+ /
g2^ U; cm )

d2+
/

g2^ 5
( ff r c,J d*

7vv \R(z,S,t)J z Jw_ \R(z,S,t)J s

Av R(z,S,t) Jw R(z,S,t)

= / <J
2A2__}__dz+ a 2AA (

1

) dz
Jw *R(z,S,t) Jw

z
\R{z,S,t))

z

/ VV C) / 1 \

+ 4 •Mse^),*-'-*^
= h,(S,t)

where both the second and the third equalities follow from (28), which as we mentioned before

is a consequence of the definition of R and H in (31) and (29), respectively, and the consistency

condition (9). We can thus write

dO(W(t),S{t),t) = fci(5(t),*)* - piw'c^wl 7^)^') " kdwW-

Similarly, Ito's lemma implies that

dX(S(t),t)= "^ S
ll\'%S(t)dw(t) + h 2(S(t),t)dt,

R(W,S(t),t)

where

Using the consistency condition (10) and the definition of N in (24), we have

-h x {S,t) + h2 (S,t) = -N(W,S,t) - ^^- - r.

Finally, since dY(t) = N{W,£_,i)dt,

\nlt(W(t),S(t),t) = -0(W(t),S(t),t) + X(S{t),t) + Y(t) =]n£(t)-rt.

Since C(W, S, t) > for all W > 0, and the wealth never reaches zero before T by the hypothesis,

we thus have

\nu c(C(W(t),S{t),t),t) = lnA + ln£(0-r«, a.s. t <E [0,T)
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with X = 1. At T, on the set where W(T) > 0, by the continuity of \nU(W,S,t) except when

W = at T, we have

ln£(T) -rT = Wmln U(W(t),S(t),t) = \nU{W(T),S(T),T) = \nV'(W(T)).

On the other hand, on the set where W(T) = 0, we have

ln£(T) -rT = Wm\nU{W(t),S(t),t) > lim \nU(W,S(T),T) = V'(0).

We have thus shown that (C, A) is efficient. I

Proof of Theorem 4. Again take 5(0) = S and W(0) = W and start from t = 0. The only

thing different in this case is that the consumption may not be strictly positive at nonzero wealth

levels. But we still have

In U(W(t),S(t),t) =lnA + ln^(0- rt, a.s. t € [0,T)

with A = 1. Naturally, if C > 0, In u c{C(W(t),S(t),t),t) = lnf(t) - rt. IfC = 0, condition (2b)

shows that

\nuc(0,t) < ln£(<) - rt.

Finally, arguments identical to those used in the proof of Theorem 3 show that

\nV'(W(T)) < ln£(T)-rT

with equality holding for W{T) > 0. These prove the assertion. I
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