

D28

^%1

MAR181S87

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

THE ECONOMICS OF SOFTV;'ARE QUALITY ASSURANCE<-

A SYSTEM DYNAMICS BASED SIMULATION APPROACH

Tarek K. Abdel-Hamid

Stuart E. Madnick

February 1987 #WP 1863-87

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

THE ECONOMICS OF SOFTVTARE QUALITY ASSURANCE-r

A SYSTEM DYNAMICS BASED SIMULATION APPROACH

Tarek K. Abdel-Hainid

Stuart E. Madnick

February 1987 #WP 1863-87

^BS^rxsr^rixs^'l^,

MAR 1 9 19S7.

THE ECONOMICS OF SOFTWARE QOALITY ASSORANCK:
A SYSTEM DYNAMICS BASED SIMULATION APPROACH

Abstract
The software quality assurance (QA) function has gained, in
recent years, the recognition of being a critical factor in the
successful development, deployment, and maintenance of software
systems. However, because the utilization of QA tools and
techniques does tend to add significantly to the cost of
developing software, the cost-effectiveness of QA has been a
pressing concern to the software quality manager. As of yet,
though, this concern has not been adequately addressed in the
literature.
Our objective in this paper is to investigate the tradeoffs
between the economic benefits and costs of QA efforts in terms
of a software project's total development cost. To do this, we
developed an integrative System Dynamics model of the software
development process. The model is comprehensive in that it
integrates the multiple functions of the software development
process, including both the management-type functions (e.g.,
planning, control, and staffing) as well as the software
production-type activities (e.g., design asid coding). The model
also captures the dynaunics of error generation as well as the
QA activities of error detection and correction.
An important utility of the model is to serve as a laboratory
vehicle to conduct controlled experiments on QA policy.
Experimental results pertaining to the economics of QA are
presented and discussed.

Introduction:

Software quality assurance (QA) is increasingly being perceived

as a most critical factor in the successful management of software

projects. This is happening because more and more software managers

are starting to realize that " QA not only holds the key to a

customer's satisfaction, but it also has a direct impact on the

cost and the scheduling of a project. Failure to pay attention to

QA has often resulted in budget overruns, schedule delays, and

failure to meet the needs of the customer" (Chow, 1985).

According to the IEEE standard P730, QA has been defined as "a

planned and systematic pattern of all actions necessary to provide

adequate confidence that the software conforms to established

technical requirements" (Buckley and Poston, 1984). This definition

encompasses two key ideas. First, the definition provides for a

comprehensive view of QA, rather than a restrictive one. In other

words, the message is that QA is not restricted to say a set of

technical methodologies, but rather it includes all the necessary

activities (including management techniques, organizational

approaches, and administrative procedures) that may contribute to

the quality of software during the entire lifecycle of the product.

Second, the definition emphasizes the importance of a plan for QA,

and of its systematic implementation to achieve an organization's

desired objectives of software quality.

In this paper, our focus is on the managerial (not the

technical) issues pertaining to the economics of the QA activity.

Specifically, we will investigate the tradeoffs between the

economic benefits and costs of the QA effort in terms of total

project cost. Such considerations obviously lie (implicitly if not

explicitly) at the heart of the QA planning process.

The utilization of QA tools and techniques adds significantly

to the cost of developing software. For example, roan-hours are

expended in developing test cases, running test cases, conducting

structured walkthroughs, etc. This added cost is

... a source of concern to everyone associated with the
program, particularly the program manager and the customer ...

A (more) pressing concern to the software quality manager is

how cost efficient are the QA operations during the development
cycle. The QA organization, just as all elements of the
development process, will and should be subject to detailed and
continuing scrutiny regarding the cost of doing business
(Knight, 1979).

This "pressing concern" has not, however, been adequately

addressed in the literature. That is, as of yet, there are no

published studies investigating the cost efficiency of QA

operations during the development cycle. Paraphrasing Lawler

(1985):

. . . the impact of software quality on development costs has not
been explored. Consquently, software costing models do not
account for the impact of software quality on development
costs

.

In stressing the importance of top management's commitment to

quality, Riggs (1983) offers an interesting suggestion to QA

managers in gaining this commitment. He suggests that the language

of top management is finance, or money, but that the language of

software production is "things" (e.g., quantity of output, number

of labor hours, and number of errors). The challenge to the QA

staff is to bridge the gap between these languages, to translate

the cost of quality and the opportunity for improved quality into

dollars and cents terms. Such reinterpretation of quality is an

important step in gaining the involvement and support of top

management in the business of improving quality.

In the remaining parts of this paper we propose a new research

approach to the study of the software development process in

general and the economics of QA in particular. An overview of our

integrative System Dynamics modeling approach of software

development is first presented in the section immediately following

this introduction. This is then followed by a more detailed

discussion of the model's QA section, and the model's experimental

results peirtaining to the economics of QA.

An Integrative System Dynamics Model of Software Development:

Our research work on the economics of QA is really only one

part of a much broader research effort to study the dynamics of the

software development process. The overall objective of this ongoing

research effort is to develop a scientific base, a theory if you

will, of the software project management process. Accomplishments

to date include the completion of an extensive series of field

interviews of software developers, a compilation of research

findings in a comprehensive database, and mostimportantly the

development of a System Dynamics computer model of software

development project management. The model is currently being used

in several research capacities, one of which is to serve as a

laboratory vehicle for conducting experimentation in the area of

QA, the topic of this paper. Our objective in this section is to

provide an overview of the model. A full description of the model's

structure, its mathematical formulation, and the validation

experiments performed on it are provided in other reports

[(Abdel-Hamid, 1984) and (Abdel-Hamid and Madnick, 1987)].

The model is integrative in the sense that it integrates the

multiple functions of the software development process, including

both the management-type functions (e.g., planning, control, and

staffing) as well as the software production-type activities (e.g.,

design, coding, reviewing, and testing). Figure 1 depicts the

model's four major subsystems, namely: (1) The Human Resource

Management Subsystem; (2) The Software Production Subsystem; (3)

The Controlling Subsystem; and (4) The Planning Subsystem. The

figure also illustrates some of the interrelations between the four

subsystems

.

The Human Resource Management Subsystem captures the hiring,

training, assimilation, and transfer of the project's human

resource. Such actions are not carried out in vacuum, but, as

Figure 1 suggests, they are affected by the other subsystems. For

example, the project's hiring rate is a function of the workforce

level needed to complete the project on a certain planned

completion date. Similarly, what workforce is available has direct

bearing on the allocation of manpower among the different software

production activities in the Software Production Subsystem.

The four primary software production activities are:

development, quality assurance, rework, and testing. The

development activity comprises both the design and coding of the

software. As the software is developed, it is also reviewed, e.g.,

using structured walkthroughs, to detect any errors. Errors

PROGRESS
STATUS

HUMAN
RESOURCE

MANAGEMENT

{»)

WORKFORCE
AVAILABLE

\

SOFTWARE
PRODUCTION

(S)

I

/

\ WORKFORCE

^ NEEDED

\

/ \
/

\

/ /

' /tasks
t / COMPLETED

/ /

/
/

SCHEDULE \ ^

\ \

\ \

/
\
\

\

// \
J_

CONTROLLING

IC)

EFFORT
REMAINING

PLANNING

IP)

Figure (1)

detected through such quality assurance activities are then

reworked. Not all errors get detected and reworked at this phase,

however. Some "escape" detection until the end of development e.g.,

until the system testing phase.

As progress is made on the software production activities, it

is reported. A comparison of where the project is versus where it

should be (according to plan) is a control-type activity captured

within the Controlling Subsystem. Once an assessment of the

project's status is made (using available information), it becomes

an important input to the planning function.

In the Planning Subsystem, initial project estimates are made

at the initiation of the project, and then these estimates are

revised, when necessary, throughout the project's life. For

example, to handle a project that is perceived to be behind

schedule, plans can be revised to (among other things) hire more

people, extend the schedule, or do a little of both.

In addition to being integrative, our modeling approach has a

second characteristic feature that distinguishes it from most other

work in the software engineering field, namely, the use of the

System Dynamics methodology. "System Dynamics is the application of

feedback control systems principles and techniques to managerial,

organizational, and socioeconomic problems" (Roberts, 1981). As its

name implies, System Dynamics is a method of dealing with questions

8

about the dynamic tendencies of complex systems, that is, the

behavioral patterns they generate over time, e.g., whether the

system as a whole is stable or unstable, growing, declining, or in

equilibrium.

The System Dynamics philosophy is based on several premises

[Forrester (1961) and Roberts (1981)]:

1. The behavior (or time history) of an organizational

entity is principally caused by its structure. The

structure includes, not only the physical aspects, but

more importantly the policies and procedures, both

tangible and intangible, that dominate decision-making in

the organizational entity.

2. Managerial decision-making takes place in a framework

that belongs to the general class known as

information-feedback systems.

3. Our intuitive judgement is unreliable about how these

systems will change with time, even when we have good

knowledge of the individual parts of the system.

4. Model experimentation makes it possible to fill the gap

where our judgement and knowledge are weakest by

showing the way in which the known separate system parts

can interact to produce unexpected and troublesome overall

system results.

Based on these philosophical beliefs, two principal

9

foundations for operationalizing the System Dynamics technique were

established. These are:

1

.

The use of information-feedback systems to model and

understand system structure (premises 1 and 2).

2. The use of computer simulation to understand system

behavior (premises 3 and 4).

Consider, as an example, the simple feedback loop of

Figure 2. This feedback loop portrays some of the dynamic forces

that impact upon the QA activity in the software project

environment. The loop shows that the schedule pressures that often

arise as a software project falls behind schedule can lead to a

higher error generation rate. (More on this later.) As more and

more errors are committed, a larger and larger chunk of the

available manpower is diverted from development work and devoted

instead to error correction and rework duties. As this happens, the

project's progress rate drops further, leading to even higher

schedule pressures, and another pass around this "vicious cycle."

Happily, project managers do have "escape" mechanisms to break

loose from the grip of this positive feedback loop. For example, as

schedule pressures persist (e.g., after several passes around the

loop), project managers could, among other things, add more people,

extend the schedule, or do a combination of both.

10

Error Generation
Rate

Progre«« Rate Schedule Pressure

Figure (2)

11

In another paper (Abdel-Hamid and Madnick, 1986) we

discuss in detail the philosophical arguments for the applicability

of the feedback systems concepts of System Dynamics to software

project management and show how they do provide a powerful lens to

view and understand software project behavior.

Error Generation. Detection, and Correction :

Our objective in this section is to present in some detail the

model's structures pertaining to the QA activities of error

detection and correction, and which lie, as was mentioned above,

within the model's "Software Production Subsystem."

Software errors come in many different "flavors." Summarized

below are what Nelson (1974) delineated and described as the most

prominant software design and coding errors:

- Misinterpretation of specifications

- Errors in developing the logic to solve the problem

- Algorithm approximations that may provide insufficient

accuracy or erroneous results for certain input variables

- Data structure defects either in the data structure design

specifications or in the implementation of the specifications

- Singular or critical input values to a formula that may yield

an unexpected result not accounted for in the program code

- Misinterpretation of language constructions by the

programmer.

12

In any System Dynamics model it is quite feasible, and in fact

straight forward from a technical point of view, to disaggregate a

variable such as the error variable into more than one error type.

However, it is not always necessary or useful:

There are two (and only two) considerations for reformulating a
level (variable) as a sequence of two or more levels: policy
analysis and model behavior. First, is the disaggregation
required in order for the model to be able to address
particular policy issues? , .

.

The second reason for disaggregating a level (variable)
involves the dynamics of the system. Does the disaggregation of
a level into two or more levels has the potential to change
significantly the behavior of the model? . .

.

The final arbiter should be model-based policy analysis. If the
change in behavior has the potential to alter policy
conclusions, then the disaggregation is essential (Richardson
and Pugh, 1981)

.

Since our model's policy focus is on the managerial-type

policies of software development, as opposed to the technological

issues of software reliability, an explicit disaggregation of

errors into more than one type is, on the basis of the policy

analysis criterion, clearly unnecessary. On the other hand, there

are significant behavioral differences among error types that must

be accounted for. For example, findings in the software engineering

literature indicate that, at different points in the lifecycle,

errors are generated at different rates, e.g., design errors are

generated at a higher rate than are coding errors (Martin, 1982).

Such a factor is obviously of dynamic significance, e.g., it could

have a direct bearing on the allocation of the manpower resource

13

for error correction activities, which in turn would affect the

software development rate and hence the project's progress.

Such differences are implicilty captured in the model. That is,

while errors are formulated as a single variable (ERRORS), the

generation, detection, and correction characteristics of ERRORS do

vary throughout the development lifecycle. For example, "ERRORS"

are generated at a higher rate in the earlier portions of the

lifecycle (as design errors do) and they are, on the average,

harder to detect and correct (as design errors are).

Figure 3 depicts the model's structure for the generation,

detection, and correction of errors. The figure demonstrates as

well the interrelationships between this part of the model and two

other sectors, namely, the "software development" and "system

testing" sectors. Also note that these three sectors together

constitute the "Software Production Subsystem" of Figure 1.

System Dynamics Modeling Conventions:

The schematic conventions used in Figure 3 are the standard

conventions used in System Dynamics models. From a System Dynamics

perspective all systems can be represented in terms of "level,"

"rate," and "auxiliary" variables.

A level is an accumulation, or an integration, over time of

flows or changes that come into and go out of the level. The term

"level" is intended to invoke the image of the level of a liquid

14

Figure (3)

15

accumulating in a container. The flows increasing and decreasing a

level are called rates . Thus, "DETECTED ERRORS" is a level of

errors that is increased by the "ERROR DETECTION RATE" and

decreased by the error "REWORK RATE."

Rates and levels are represented as stylized valves and tubs,

as shovm below, further emphasizing the analogy between

accumulation processes and the flow of a liquid.

-> LEVEL

RATE RATE

The flows that are controlled by the rates are usually

diagrammed differently, depending on the type of quantity involved.

We will use the two types of arrow designators shown below:
INFORMATION
FLOWS

OTHER FLOWS

(e.g. , PEOPLE)

All tangible variables are either levels or rates i.e., they

are either accumulations of previous flows or are presently

flowing. Auxiliary variables, on the other hand, are

information-type variables in the system, and capture things like

concepts (e.g., the concept of "ERROR DENSITY") and policies (e.g.,

the policy for allocating "DAILY MANPOWER FOR REWORK"). Auxiliary

16

variables are represented by a circular symbol

Finally, variables that are defined in other sectors of the

model are either shown as arcs emanating from their respective

sectors (e.g. the "SOFTWARE DEVELOPMENT RATE" variable from the

SOFTWARE DEVELOPMENT SECTOR) or are represented by enclosing the

variable name in parenthess as shown below.

VARIABLE FROM
ANOTHER SECTOR

Error Generation Factors:

Returning back to Figure 3, consider the variable "ERROR

GENERATION RATE." There are two sets of factors that affect the

error generation rate in a software project. The first set

includes: organizational factors [e.g., an organization's use of

structured techniques (Alberts, 1976), the overall quality of the

staff (Belford et al, 1977), etc.] and project-specific-type

factors [e.g., project complexity, system size, programming

17

language, etc.]. Notice that even though such factors can differ

from organization to organization and from one project to another,

they do, however, tend to remain invariant during the life of any

particular project. From our modeling viewpoint, this observation

is quite significant. It means that, in modeling the behavior of a

single software development project, most of the above variables

would remain constant and their effect could, therefore, be

captured by a single nominal variable, namely, the "NOMINAL NUMBER

OF ERRORS COMMITTED PER TASK." (Task is a measure of a unit of

work, e.g., a software module, a block of 30 lines of code, etc.)

Such a nominal variable would require modification only when

modeling different organizational settings or different projects,

but not when experimenting with policies (such as QA policy) for a

particular software project (which is the scenario in this paper).

Given a certain "NOMINAL NUMBER OF ERRORS COMMITTED PER TASK,"

the nominal error generation rate would then simply be the product

of the "SOFTWARE DEVELOPMENT RATE," i.e., how much tasks are

developed per unit of time, and the "NOMINAL NUMBER OF ERRORS

COMMITTED PER TASK." In order to capture the generation of

different error types, the "NOMINAL NUMBER OF ERRORS COMMITTED PER

TASK" is not formulated as a constant number, but rather as a

dynamic variable that changes over the project's life. (Project

phase is captured in the modelthrough the continuous variable "% OF

JOB WORKED.") The formulation of the "NOMINAL NUMBER OF ERRORS

COMMITTED PER TASK" therefore serves two purposes. First, its shape

18

over the project's life reflects the relative generation rates of

different error types throughout the life of a project. The second

purpose of the formulation (its absolute value) reflects the

different error generation characteristics of different project

situations (i.e., the software product's characteristics as well as

those of the organization in which it is developed). This,

obviously, would generally change when modeling different project

settings. (The parameter profile that characterizes the software

project (EXAMPLE) used in our experimentation, is presented in the

Appendix.

)

In addition to the organizational and project-specific factors

discussed above, there is a second set of factors which affect

error generation rates and which, unlike the previous set, do not

remain invariant during the life of a project, but rather do play a

dynamic role during software development. These include the

workforce-mix and schedule pressures.

The workforce level in the model is disaggregated into two

types of employees, newly hired and experienced. Newly hired

project members (from outside the organization or from within it)

typically pass through a project orientation phase during which

they are less than fully productive. The orientation process brings

them up to speed through training that covers both the social as

well as the technical environments of the project (Couger and

Zawacki, 1980). While not yet fully trained (during this

19

orientation period) newly hired employees are not only, on the

average, less productive, they also tend to be more error-prone

than their experienced counterparts [(Endres, 1975) and (Myers,

1976)]. The effect of this factor is captured by the "MULTIPLIER TO

ERROR GENERATION DUE TO WORKFORCE MIX." (In Figure 3, this

multiplier is represented by the arc from "% OF WORKFORCE

EXPERIENCED" to "ERROR GENERATION RATE.") It is a variable that

varies, by as much as 100%, as a function of the "% OF WORKFORCE

EXPERIENCED." That is, it is assumed in the model [based on the

research findings reported in (Abdel-Hamid, 1984) and (Abdel-Hamid

and Madnick, 1987)] that a newly hired employee is, on the average,

twice as error-prone as an experienced employee would be.

The second factor that can drive error generation up is

schedule pressure [(Mills, 1983), (Putnam and Fitzsimmons, 1979),

and (Radice, 1982)]. Paraphrasing DeMarco (1982):

People under time pressure don't work better, they just work
faster . .

.

In the struggle to deliver any software at all, the first
casuality has been consideration of the quality of the software
delivered.

Two explanations have been proposed in the literature for why

schedule pressures cause more errors to be generated. First,

Schneiderman (1980) suggests that the schedule pressures increase

the "anxiety levels" of programmers. A high anxiety level, then

... interfaces (with performance), probably by reducing the
size of the short-term memory available. When programmers

20

become more anxious as deadlines approach, they (therefore)
tend to make even more errors . .

.

Another explanation was provided by Thibodeau and Dodson

(1980). They suggest that schedule pressures often result in the

overlapping of activities that would have been accomplished better

sequentially, and that this can significantly increase the chance

of errors. For example.

When coding has begun before the completion of design, the
designers are required to communicate their results to the
programmers in a raw, unqualified state, hence significantly
increasing the chance of design errors . .

.

This is not to suggest that systems cannot be developed with
overlapping activities. Many systems have distinct parts that
can be coded before the entire design is completed ... We are
concerned here with the situation where the press of the
development schedule or the slippage of preceding activities
results in overlapping activities that would have been
accomplished better sequentially (Thibodeau and Dodson, 1980).

The effect of schedule pressure on error generation is captured

in the model through the "MULTIPLIER TO SCHEDULE PRESSURE." (In

Figure 3, this multiplier is represented by the arc from "SCHEDULE

PRESSURE" to "ERROR GENERATION RATE.") Under nominal conditions

where there are no schedule pressures (e.g., when the project is

perceived to be on schedule), the multiplier assumes a neutral

value. As schedule pressures increase in a project (e.g., as

deadlines are approached), the multiplier increases exponentially

leading to higher error generation rates, which our field studies

revealed could (under severe schedule pressures) be as much as 50%

higher than nominal.

21

Thus, as software tasks are developed, errors are conimitted

within those tasks. Errors within a developed task remain as

"POTENTIALLY DETECTABLE ERRORS" until the task is reviewed and

tested, at which point some of the errors do get detected, and

these are then reworked. Usually, though, not all errors will be

detected, some will "escape" and pass undetected into the

subsequent phases of software development, where they might then be

caught, albeit at a relatively much higher cost.

Error Detection Factors :

The detection of errors is the objective of the software

quality assurance (QA) activities. The "QA RATE" shown in Figure 3,

has a rather non-characteristic mathematical formulation (with its

special schematic representation), namely, that of an exponential

delay. [A delay is essentially a conversion process that accepts a

given inflow rate and delivers a resulting flow rate at the output.

The outflow may differ instant by instant from the inflow rate

under dynamic circumstances where the rates are changing in value.

This necessarily implies that the delay contains a variable amount

of the quantity in transit, e.g., software to be QA'ed. For a more

detailed discussion of the mathematical formulation and behavior

characteristics of exponential delays in System Dynamics models see

Forrester (1961) .]

The "characteristic" way to formulate a rate of accomplishing

something such as the rate of developing software or correcting

22

errors, is to formulate it as a product of the effort allocated to

the activity and the productivity at which this effort is utilized.

However, what our field studies uncovered (and what the exponential

delay formulation captures) is that the QA rate tends to be

independent of the allocated QA effort and its productivity! What

we found happening in the organizations we studied is this: QA

effort is planned and allocated, usually in the form of a fixed

schedule of periodic group-type functions. For example, a two-hour

walkthrough for project members would be scheduled once a week.

During these periodic "QA windows," all tasks developed since the

previous one are supposed to be processed. And what we were

surprised to find was that irrespective of how many tasks needed to

be processed within the particular "QA window," they almost always

were "processed." No backlogs, therefore, develop in the QA

pipeline. Even when QA activities are relaxed or suspended

temporarily because of schedule pressure, no backlogs develop. For

example, when walkthroughs are suspended for a while on a project,

the requirement to review the affected tasks is bypassed, not

postponed. [This behavior was also reported by others in the

literature e.g., (Hart, 1982) and (Mitchell, 1980).]

We can propose an explanation for how and why this happens.

Since the objective of the QA activity is to detect invisible

errors (invisible that is until they are detected), it becomes

almost impossible to tell whether the QA job was completely done

(i.e., that all these invisible errors were in fact detected). By

23

the same token, it is as difficult to tell that the job has not

been completely done (except much later in the lifecycle). Under

such circumstances it becomes quite easy to rationalize both to

oneself and to management that the QA job that was "convenient" to

do, was not insufficient. Furthermore, the QA effort that is

convenient to expend (i.e., in terms of available time and effort),

is usually what is actually expended and not more (e.g., even if

more is called for due to a larger than expected workload of

developed tasks) because there seems to be no significant

incentives to do otherwise. Firstly, at a psychological level,

there are actually dis-incentives for working harder at QA, since

it only "exposes" more of one's mistakes (Weinberg, 1971). And

secondly, at the organizational level, there are seldom any real

reward mechanisms in place to really promote quality or

quality-related activities (Cooper and Fisher, 1979).

The formulation of the "QA RATE" as an exponential delay

provides, we feel, a good approximation of this "Parkinsonian

execution" of the QA activity. That is, software tasks that are

developed will always be QA'ed (or, more accurately, considered

QA'ed) after a certain delay, which is independent of the actual QA

effort allocated.

Therefore, the rate at which tasks are considered QA'ed can,

under such currently adopted QA practices, proceed independently of

the actual QA effort allocated. However, the effectiveness of QA

24

will, obviously, depend on that effort. That is, the amount of

errors detected will be a function of how much QA effort is

allocated for error detection.

What are the determinants of the "QA MANPOWER NEEDED TO DETECT

AN ERROR?" As was the case with the "ERROR GENERATION RATE," there

are organizational-type factors such as the overall quality of the

staff, as well as project-specific-type factors such as project

complexity and programming language. And as was explained before,

all such factors do tend to remain invariant during the life of any

particular software project and are, therefore, captured in the

model as a single nominal variable, namely, the "NOMINAL QA

MANPOWER NEEDED PER ERROR." Because different error types do differ

in how costly they are to detect, this nominal variable is not a

constant number, but rather it is a dynamic variable that assumes

different values as the project progresses through its lifecycle.

(See the Appendix.) Specifically, design-type errors are not only

generated at a higher rate, as was discussed above, but they are

also more costly to detect than coding-type errors [(Alberts,

1976), (Boehm et al, 1975), and (Myers, 1976)].

The actual QA manpower needed to detect an error, in addition

to being a function of error-type, must also depend on the

efficiency of how people work. A full-time employee's 8-hour work

day does not typically translate into a fully productive 8-hour

contribution to the project. Man-hours are lost on communication

25

and other non-project activities (e.g., personal business, coffee

breaks, etc.). These types of losses are captured in the model's

"MULTIPLIER TO PRODUCTIVITY DUE TO COMMUNICATION AND MOTIVATION

LOSSES," which simply represents the average productive fraction of

a man-day. In other words, if the communication and motivation

losses amount to a 4 roan-hour loss per day (for the average project

member) , which would be half of the nominal 8-hour value, then the

value of the multiplier would be 0.5. Under such circumstances, the

actual QA manpower needed to detect an error becomes twice what is

nominaly needed. That is, if a design error requires, under nominal

conditions (i.e., under conditions of no losses), 0.4 man-days of

effort to be detected, it would actually require (in the above

case) 0.4 / 0.5 = 0.8 man-days.

Finally, evidence suggests that "In any sizable program, it is

impossible to remove all errors" (Shooman, 1983). Thus, even when

generous effort allocations are made to QA, it would still be

unlikely that all errors will be detected (Boehm, 1981). One

reason, for example, is that some errors manifest themselves, and

can be exhibited only after system integration (Shooman, 1983). At

any point in time one could, therefore, view the set of

"POTENTIALLY DETECTABLE ERRORS" as constituting a hierarchy of

errors, in which some are more subtle, and therefore more expensive

to detect than others. Empirical results reported by Basili and

Weiss (1982) suggest that the distribution is pyramid like, with

the majority of errors requiring approximately a few hours to

26

detect, a few errors requiring approximately a day to detect, and

still fewer errors requiring more than a day to detect. (Notice

that the results show that these few subtle errors are an order of

magnitude more expensive to detect.

)

We assume in the model that as QA activities are performed, the

more obvious errors will be detected first. As these are detected,

it then becomes more and more expensive to uncover the remaining

more subtle (although less pervasive) errors. This is achieved in

the model through the formulation of the "MULTIPLIER TO

DETECTION-EFFORT DUE TO ERROR DENSITY." (In Figure 3, this

multiplier is captured by the arc from "ERROR DENSITY" to "QA

MANPOWER NEEDED TO DETECT AN ERROR.") At moderate-to-large error

densities, the multiplier assumes a neutral value. But as the

"obvious" errors are detected, the multiplier increases in an

exponential fashion, such that the remaining few subtle errors are

an order of magnitude more expensive to detect.

To recapitulate, the "QA MANPOWER NEEDED TO DETECT AN ERROR" is

a function of error-type, work efficiency, and error density. As

the value of this needed effort increases, e.g., due to a decrease

in error density, the number of errors that can be detected, at

some level of QA effort, decreases. At any point in time, the

"POTENTIAL ERROR DETECTION RATE" (determined simply by dividing the

QA effort allocated by the value of the "QA MANPOWER NEEDED TO

DETECT AN ERROR"), represents the maximum possible number of errors

27

that could be detected. Because manpower allocations to QA are

often modest, this maximum value is seldom large enough to ensure

the detection of all errors generated. And even when effort is

allocated generously to QA, a few subtle errors will just be too

prohibitaviley expensive to detect. As a result, some errors

inevitably will "escape" and pass undetected into subsequent phases

of software development, as is shown in Figure 3.

Error Generation Factors:

Those errors that do get detected through QA are then reworked.

The rework rate is a function of how much effort is allocated to

rework activities, and the rework manpower needed per error. For

example, if the project members commit 10 man-days per week to

rework detected errors, and the "ACTUAL REWORK MANPOWER NEEDED PER

ERROR" is, on the average, 1 man-day, then errors will be reworked

at the rate of 10 per week.

The "ACTUAL REWORK MANPOWER NEEDED PER ERROR" has two

components. The first is the "NOMINAL REWORK MANPOWER NEEDED PER

ERROR. " As in the case of error detection, this nominal component

is a function of error-type i.e., design versus coding errors.

Design-type errors, in addition both to being generated at a higher

rate and to being more costly to detect, are also more costly to

rework [(Alberts, 1976), (Boehm et al, 1975), and (Myers, 1976)].

(See the Appendix.

)

28

The actual rework man-power needed to correct an error, in *

addition to being a function of error-type, must also depend on the

efficiency of how people work. That is, we need to account for the

communication and motivation losses incurred. For example, if the

"MULTIPLIER TO PRODUCTIVITY DUE TO COMMUNICATION AND MOTIVATION

LOSSES," which represents the average productive fraction of a

man-day, is 0.5, then the actual rework manpower needed to correct

an error becomes twice what is nominally needed.

To recapitulate, as errors are detected through the QA

activities, they are reworked. The rate at which errors are

reworked is a function of the manpower committed to the rework

activity and the rework effort needed per error. The "ACTUAL REWORK

MANPOWER NEEDED PER ERROR" is, in turn, a function of two things,

error-type and work efficiency.

The reworking of software errors is not, itself, an errorless

activity:

Human tendency is to consider the 'fix,' or correction, to a

problem to be error-free itself. Unfortunately, this is all too
frequently untrue in the case of fixes to errors found by
inspections and by testing (Fagan, 1976).

The problem of bad-fixes is widely documented in the literature

[e.g., (Endres, 1975), (Fagan, 1976), (Jones, 1978), (Myers, 1976),

and (Shooman, 1983)]. Shooman and Natarajan (1977) suggested some

of the ways in which bad-fixes may be generated:

29

1. The correction is based upon faulty analysis, thus complete

bug removal is not accomplished.

2. The corrections of a bug may work locally only (i.e., the

global aspects of the error still remain).

3. The correction is accomplished, however, it is accomplished

by the creation of a new error.

Thus, as detected errors are reworked, some fraction of the

corrections will be bad-fixes. The detection and correction of such

bad-fixes, together with that of errors that escape QA detection

during the project's development phases, are activities that are

captured in other sections of the model (the "System Testing

Sector")

.

For further details on the model's mathematical formulations,

the parameter values, and the research findings supporting both,

the reader is refered to Abdel-Hamid (1984) and Abdel-Hamid and

Madnick (1987).

Model Experimentation:

The above discussion of the model's error generation,

detection, and correction structures (which is only one of the

three sectors of the "Software Production Subsystem," which in turn

is only one of four major subsystems in the model) should

30

demonstrate the high complexity of such an integrative System

Dynamics model. The behavior of such dynamic models is complex

beyond the capacity of human intuition (Roberts, 1981). To handle

this high complexity, system dynamicists rely on a powerful set of

computer simulation tools.

Simulation's particular advantage is its greater fidelity in

modeling processes, making possible both more complex models and

models of more complex systems. It also allows for less costly and

less time-consuming experimentation. Because "... in software

engineering it is remarkably easy to propose hypotheses and

remarkably difficult to test them" (Weiss, 1979), several authors

have argued for the desirability of having such a laboratory tool

for testing ideas and hypotheses (Thayer, 1979). Paraphrasing

Forrester (1961):

The effects of different assumptions and environmental factors
can be tested. In the model system, unlike the real systems,
the effect of changing one factor can be observed while all
other factors are held unchanged. Such experimentation will
yield new insights into the characteristics of the system that
the model represents. By using a model of a complex system,
more can be learned about internal interactions than would ever
be possible through manipulation of the real system.
Internally, the model provides complete control of the system's
organizational structure, its policies, and its sensitivities
to various events.

In the remaining part of this section we will utilize the model

to conduct a series of simulation experiments to investigate the

tradeoffs between the economic costs and benefits of QA. The

31

prototype software project used in the simulation experiments,

called project EXAMPLE, is 64,000 delivered source instructions in

size (with the QA parameter profile provided in the Appendix).

An important relationship to investigate, obviously, is the one

between the QA effort expended in a software project and the

percentage of errors detected during development. Several studies

have established the significant cost savings gained by the early

detection and correction of errors. For example, in a study by

Shooman reported in McClure (1981), it was determined that

detecting and correcting a design error during the design phase

(i.e., through the QA activities) is one-tenth the effort that

would be needed to detect and correct it later during the system

testing phase because of the additional inventory of

specifications, code, user and maintenance manuals, etc., that

would require correction in the later case. A primary goal of QA,

therefore, is "that errors be detected and corrected as early as

possible and only a minimal amount of problems be allowed to slip

from one phase of the development to the next" (Tsui and Priven,

1976).

The relationship between QA effort expended and the percentage

of errors detected obtained from model experimentation is shown in

Figure 4. The significant feature of this result is the

"diminishing returns" of QA exhibited as QA expenditures extend

beyond 20-30% of development effort. This type of behavior has been

32

% of Errors Detected

10 20 30 40
QA Effort as a % of

Development Effort

Figure (4)

33

observed by others in the literature [e.g., (Shooman, 1983) and

(Boehm, 1981)].

What the results of Figure 4 suggest is that the savings in the

cost of processing errors that result from the application of QA,

flattens out as QA expenditures extend beyond 20-305i of development

effort. This is evident from the cost patterns of Figure 5. As can

be seen, the combined costs of rework (i.e., correcting errors

during development) and system testing (at the end of development)

flatten out as QA expenditures exceed 20%. On the other hand,

notice that increasing QA as a percentage of the development effort

results in an exponential (not a linear) increase in QA's absolute

cost (in man-days). The reason this happens is that as a larger

fraction of the development effort is allocated to QA, the

development effort itself increases. To see why, consider the

sequence of steps typically followed in planning a project's

various activities. First, total man-days is estimated. Based on

this global value, the project's schedule is calculated. The two

estimates are then used to determine the project's average staff

size. Allocations are then made to the project's various lifecycle

activities (including the QA activity). Notice that effort

distribution decisions typically come after, not before, the

project's schedule is made (Boehm, 1981). Thus if two different

project managers were to run the same software project (e.g.,

project EXAMPLE), and if the only thing that differentiates them is

their policies on the percentage of the development effort to

34

Cost in Man-Days

3000

2500-

2000

1500-

1000-

500

Rework & Testing Cost

QA Cost

10 20 30 40

QA Effort as a % of

Development Effort

Figure (5)

35

allocate to QA, both managers would still initiate their respective

projects with the same global estimates, i.e., the total man-days

and the overall project schedule. It is exactly this type of

scenario that our simulation experiment is designed to capture.

Thus, in the different runs of the model, the project's total

man-day estimate as well as the scheduled completion date remain

the same. But since increases in the QA-effort allocation mean that

less manpower effort will be available for development work (e.g.,

design and coding), a larger team will be required to meet the

given schedule. A larger team means larger training and

communication overheads, and hence the larger development cost.

The final, and perhaps more interesting, issue we addressed in

our QA experiments concerns the "optimal" QA-effort expenditure.

For our prototype project EXAMPLE, the answer is shown in Figure 6,

which plots EXAMPLE'S total cost (in man-days) against QA-effort

expenditures (defined in terms of percentage of development

man-days). As can be seen, the optimal QA effort expenditure for

this project is 16% of total development effort (in man-days).

Two important conclusions can be drawn from Figure 6. The

first, more generalizable conclusion, is that QA policy does have a

significant impact on total project cost. As can be seen from the

figure, project EXAMPLE'S cost ranges from a low of 3,770 man-days,

to values in the range of 5,000 man-days i.e., values that are 33%

higher. At low values of QA expenditures, this increase in cost

36

Project Cost In Man-Days

6000-

5000-

4000

3000

10

—I

—

20 30 40

QA Effort as a % of

Development Effort

Figure (6)

37

results from the large cost of the testing phase. On the other

hand, at high values of QA expenditures, the excessive QA

expenditures (and which at high values are less productive because

of the diminishing returns phenomenon) are themselves the culprit.

The second result is, of course, deriving the optimal QA

expenditure level of 16%. What, in our opinion, is really

significant about this result is not its particular value, since

this cannot be generalized beyond this experiment's EXAMPLE

software project, but rather the process of deriving it, namely,

this paper's integrative System Dynamics simulation approach.

Beyond controlled experimentation (which would be too costly and

time consuming to be practically feasible), as far as we know, this

model provides the first capability to quantitatively analyze the

costs/benefits of QA policy for software production. And this, it

is encouraging to note, is generalizable, in the sense that one can

customize models for different software development environments to

derive environment-specific optimality conditions.

Summary:

The QA function has, in recent years, gained the recognition of

being a critical factor in the successful development of software

systems. However, because the utilization of QA tools and

techniques does tend to add significantly to the cost of developing

software, the cost-effectiveness of QA has been a pressing concern

to the software quality manager. As of yet, though, this concern

38

has not been adequately addressed in the literature.

Our objective in this paper was to investigate the tradeoffs

between the economic benefits and costs of QA efforts in terms of a

software project's total development cost. To do this, we developed

an integrative System Dynamics model of the software devlopment

process. The model is comprehensive in that it integrates the

multiple functions of the software development process, including

both the management-type functions (e.g., planning, control, and

staffing) as well as the software production-type activities (e.g.,

design and coding) . The model also captures the dynamics of error

generation as well as the QA activities of error detection and

correction.

An important utility of the model is to serve as a laboratory

vehicle to conduct controlled experiments on QA policy.

Experimental results pertaining to the economics of QA reported in

this paper show how QA policy impacts total project costs. For the

specific example analyzed, the optimal QA effort was shown to be

16% of the total development effort. Although that particular value

only applies to the example project, the analysis process using

system dynamics is generalizable.

39

APPENDIX

QA Parameter Profile for Software Pro.lect EXAMPLE

Table equations represent a simple way of expressing
relationships, particularly nonlinear relations, between variables
in a System Dynamics model. Table equations have the following
format:

Y-variable = TABLE (Table-name , X-variable , L , H , I)

The above equation indicates a functional relationship between
an independent X-variable and a dependent Y-variable. L, H, and I

describe the low end L, high end H, and interval between points in
a set of values of the independent X-variable. Table-name is the
name of an associated table, or set of constant values, of the
dependent Y-variable that correspond to each of the values of the
X-variable. Thus,

Y = TABLE { Table-1 , X , , 5 , 1)

Table-1 =3/7/9/11/13/14
would represent the following functional relationship:

X 12 3 4 5

Y 3 7 9 11 13 14

Such table functions are used, as is shown below, to
characterize the QA parameter profile of project EXAMPLE:

1. NOMINAL NUMBER OF ERRORS COMMITTED PER TASK (NERPK)

NERPK = TABLE (Table-1, "% OF JOB WORKED", , 100 , 20)
Table-1 = 25/23.86/21.59/15.9/13.6/12.5 ERRORS/KDSI

2. NOMINAL QA MANPOWER NEEDED PER ERROR (NQAMPE)

NQAMPE = TABLE (Table-2, "% OF JOB WORKED", , 100 , 10)
Table-2 =

. 4/. 4/. 39/. 375/. 35/. 3/. 25/. 225/. 21/. 2/.

2

Man-Days/ERROR

3. NOMINAL REWORK MANPOWER NEEDED PER ERROR (NRWMPE)

NRWMPE = TABLE (Table-3, "% OF JOB WORKED", , 100 , 20)
Table-3 = . 6/ . 575/ . 5/. 4/. 325/. 3 Man -Days /ERROR

40

Bibliography:

1. Abdel-Hamid, T.K. "The Dynamics of Software Development Project
Management: An Integrative System Dynamics Perspective."
Unpublished Ph.D. dissertation, Sloan School of
Management, MIT, January, 1984.

2. Abdel-Hamid, T.K. and Madnick, S.E. Software Project
Management . Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., to be published in 1987,

3. Abdel-Hamid and Madnick, S.E. "An Integrative System Dynamics
Perspective to Software Project Management: Arguments for
an Alternative Research Paradigm." Submitted for
publication to the MIS Quarterly . December, 1986.

4. Alberts, D.S. "The Economics of Software Quality Assurance."
National Computer Conference . 1976.

5. Belford, P.C, et al. "An Evaluation of the Effectiveness of
Software Engineering Techniques." IEEE COMPCON . Fall,
1977.

6. Boehm, B.W. Software Engineering Economics . Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1981.

7. Boehm, B.W., et al . "Some Experiences with Automated Aids to
the Design of Large-Scale Reliable Software." Proceedings
of the International Conference on Reliable Software .

April, 1975.

8. Buckley, F. and Poston, R. "Software Quality Assurance." IEEE
Trans, on Software Engineering . (January, 1984), 36-41.

9

.

Chow , T . S . (ed .) Software Quality Assurance: A Practical
Approach . Silver Spring, MD: IEEE Computer Society Press,
1985.

10. Cooper, J.D. and Fisher, M.J., (eds.) Software Quality
Management . New York: Petrocelli Book, Inc., 1979.

11. Cougar, J.D. and Zawacki, R.A. Motivating and Managing Computer
Personnel . New york: John Wiley & Sons, 1980.

12. DeMarco, T. Controlling Software Projects . New York: Yourdon
Press, Inc. , 1982.

41

13. Endres, A.B. "An Analysis of Errors and their Causes in System
Programs." IEEE Transactions on Software Engineering .

June, 1975, 140-149.

14. Fagan, M.E. "Design and Code Inspections to Reduce Errors in
Program Development." IBM Systems Journal . Vol. 15, No. 3,

1976.

15. Forrester, J.W. Industrial Dynamics . Cambridge, Mass: The
MIT Press, 1961.

16. Hart, J.J. "The Effectiveness of Design and Code Walkthroughs."
The Sixth International Computer Software and Applications
Conference (COMPSAC) . November, 1982.

17. Jones, T.C. "Measuring Programming Quality and Productivity."
IBM Systems Journal . Vol. 17, No. 1, 1978, 39-63.

18. Knight, B.M. "Organizational Planning for Software Quality."
In Software Quality Management . Edited by J.D. Cooper and
M.J. Fisher. New York: Petrocelli Books, Inc., 1979.

19. Lawler, R.W. "System Perspective on Software Quality." In
Software Quality Assurance: A Practical Approach . Edited
by T.S. Chow. Silver Spring, MD: IEEE Computer Society
Press, 1985.

20. McClure, C.L. Managing Software Development and Maintenance .

New York: Van Nostrand Reinhold Company, 1981.

21. Mitchell, J.R. "Observations on the Use of Seven Structured
Programming Techniques." IEEE . 1980.

22. Myers, G.J. Software Reliability: Principles and Practices . New
York: John Wiley & Sons, Inc., 1976.

23. Nelson, E.C. "Software Reliability, Verification and
Validation." Proceedings of the TRW Synposium on Reliable
Cost Effective . Secure Software . Redondo Beach, CA: TRW,
Inc., 1974.

24. Putnam, L.H. and Fitzsimmons, A. "Estimating Software Costs,"
Parts I, II, and III. Datamation . Sept., Oct., and Nov.,
1979.

25. Radice, A. "Productivity Measures in Software." The Economics
of Information Processing Volume (2): Operations.
Programming and Software Models. Edited by R. Goldgerg and
H. Lorin. New York: John Wiley & Sons, Inc., 1982.

42

26. Richardson, Q.P. and Pugh, G.L. III. Introduction to System
Dynamics Modeling with Dvnamo . Cambridge, Mass: The MIT
Press, 1981.

27. Riggs, H.E. Managing High-Technology Companies. Belmont, CA:

Lifetime Learning Publications, 1983.

28. Roberts, E.B. (ed.). Managerial Applications of System
Dynamics . Cambridge, Mass: The MIT Press, 1981.

29. Shneiderman, B. Software Psychology - Human Factors in Computer
and Information Systems . Cambridge, MA: Winthrop
Publishers, Inc., 1980.

30. Shooman, M.L. Software Engineering - Design. Reliabil ity and
Management . New York: McGraw-Hill, Inc., 1983.

31. Shooman, M.L. and Natarajan, S. "Effect of Manpower Development
and Bug Generation on Software Error Models." Rome Air
Development Center, RADC-TR-76-400 , Jan., 1977.

32. Thayer, R.H. "Modeling a Software Engineering Project
Managaement System." Unpublished Ph.D. dissertation,
University of California, Santa Barbara, 1979.

33. Thibodeau, R. and Dodson, E.N. "Life Cycle Phase
Interrelationships." Journal of Systems and Software . Vol.

1, 1980, 203-211.

34. Tsui, F. and Priven, L. "Implementation of Quality Control in
Software Development." National Compute r Conference. 1976.

35. Weinberg, G.M. The Psychology of Computer Programming. New
York: Litton Educational Publishing, Inc., 1971.

36. Weiss, D.M. "Evaluating Software Development by Error
Analysis." Journal of Systems and Software . Vol. 1, 1979,
57-70.

37. Weiss, D.M. A Comparison of Errors in Different Software
Development Environments . A Report for the Naval Research
Lab, Washington, D.C., July, 1982.

'^953 055
',.,

Date Due

SEP 123^

HOW '88

MAR 1 7
'

Lt l ^

^m • «^'

v0. , Ol9«^

Lib-26-67

l|j||||i|||| ||lin|||iiii III iNi|i|i|ii|

3 TDflD DO 4 ?31 lb

