








HD28
.M414
no.

$34^
-116

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

Identifying Controlling Features of

Engineering Design Iteration

Robert P. Smith
Steven D. Eppinger

Revised September 19S2
WP #3348-91-MS

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

M.l.T.UBtWt**





Next revision: January 1993.

Please write to address below after that date for reprints.

Identifying Controlling Features of
En^neering Design Iteration

Robert P. Smith
Steven D. Eppinger

Revised September 1992
WP #3348-91-MS

Ackno^i^edginent

This research is funded by General Motors and by the Leaders for Manufacturing

Progi-am, a partnership involving eleven major U.S. manufacturing firms and

M.I.T.'s schools of engineering and management. The authors are also grateful

to Dan Whitney, Marde Tyre, Karl Ulrich, and two anonymous reviewers from

Management Science who have provided helpful and insightful comments on

earlier versions of this paper.

Send correspondence to:

Prof. Steven D. Eppinger
M.I.T. Sloan School of Management

30 Wadsworth Street, E53-347
Cambridge, Mass. 02139



'OV 1 3 1992

Ktouvcu



Abstract

Engineering design generally involves a very complex set of relationships among
a large number of coupled elements. It is this complex coupling that leads to

iteration among the various engineering tasks in a large project. The Design
Structure Matrix (DSM) is useful in identifying where iteration is necessary. The
Work Transformation Model developed in this paper is a powerful extension of the
DSM method which can predict slow and rapid iteration within a project, and
predict those features of the design problem which will require many iterations to

reach a technical solution. This model is applied to an automotive brake system
development process in order to illustrate the model's utility in describing the

main features of an actual design process.

Introduction

The goal of this work is to develop a modeling framework which is useful

for describing engineering design iteration. The framework is applied to brake

system design to illustrate its utility in understanding the engineering design

process.

Engineering design is the process whereby a technical solution is created to

solve a given problem. There have been several attempts to give formal structure

to the design process, such as those of Sub [1990], Pahl and Beitz [1988] and

Alexander [1964]. This stream of research characterizes good design practice in

general terms, but does not describe what makes some design problems more

difficult than others. We intend to further the development of design process

modeling by providing richness to the descriptions of design procedures and

strategies which will enable a design organization to identify the difficult portions

of their particular design problem. Strategies can then be developed to facilitate

the effective execution of these difficult aspects.

The Design Structure Matrix (DSM) serves as the basis for our formal

analysis and will be briefly reviewed in this section. (For a more detailed overview

of the DSM method the reader is referred to Steward [1981] and Eppinger et al.



[1991].) The work herein extends the analytical method, and demonstrates the

utility of our framework for the management of engineering projects.

The philosophy of the DSM method is that the design project is divided into

individual tasks, and the relationships among these tasks can be analyzed to

identify the underlying structure of the project. It has been suggested that

studying the relationships between individual design tasks can improve the

overall design process, and is a powerful way to analyze alternative design

strategies [von Hippel 1990]. Earlier work developed a modeling formalism which

shows how different aspects of a design problem are related [Alexander 1964].

Alexander describes a graphical technique where the functional needs of the

technology are nodes, and interactions between tlie needs are arcs. His idea is to

segment the graph into subsections which have relatively few interactions which

cross boundaries. These graph segmentations give rise to technical subsystems

which should separate the technical needs into independently solvable problems.

The DSM method is similar to Alexander's technique, but the nodes are

now specific design tasks and the arcs are directed and indicate information flows

between tasks. The nodes in the graph are arranged in a square matrix where

each row and its corresponding colunm are identified with one of the tasks.

Along each row, the marks indicate from which other tasks the given task

requires input. Reading down each column indicates which other tasks receive

its output. Diagonal elements do not convey any meaning at this point, since a

task cannot depend upon its own completion. For example, in Figure 1 (based on

a simplified view of camera body design), task C requires input from tasks B, D, E

and F, task B requires input only fi"om task A, and task A needs no input to begin.



A Set Specifications

B Design Concept

C Design Shutter Mechanism

D Design Viewfinder

E Design Camera Body

F Design Film Mechanism

G Design Lens Optics

H Design Lens Housing

A B



reason, iteration is a typical feature of engineering design projects [Hubka 1980].

The sub-matrix in Figiare 1 depicts a design problem defined such that the tasks

are sufficiently complex and interrelated so that iteration will be necessary to

complete the tasks.

There is an established set of models which allow looping within a PERT

modeling framework. This set of models is known as GERT, for General

Evaluation and Review Technique. Direct analysis of any but a simple GERT

network rapidly becomes unwieldy, so simulation is typically used to evaluate a

project. (Taylor and Moore [1980] discuss the application of GERT to R&D

projects.) It is the intention of this modeling effort to provide an analytically

tractable model of the design iteration process, even for large projects. It is hoped

that by preserving tractability it will be possible to observe the relationship between

the structiu-e of the problem and the development time of the project. Because

GERT relies on simulation for large projects, it is difficult to discern this

relationship.

For our purposes, we assume that the tasks and interrelationships of a

design problem are known and unchangeable during the course of the project.

This assumption is reasonable for a firm is working on a design project in an

area in which they have a significant degree of familiarity (the example of brake

system design at General Motors, which serves as the basis for the application

described in this paper, fits this category). The assumption is less true for a

completely new or rapidly evolving technology.

There is evidence that some companies who are faced with the same design

problem choose differing design strategies, which implies a different underlying

design matrix. For example, to what extent they choose to work on tasks in series

or parallel affects development time significantly [Clark and Fujimoto 1991].



Development time is an important measure in engineering design

management. We believe that complex iteration is a major source of extended

development time. While the Design Structure Method is a useful tool to identify

the coupled blocks in which the complex iteration occurs, this work is intended to

characterize how such iteration occurs.

If we include task durations in the DSM, we can use this description to

estimate the total duration of the project. Series tasks can be evaluated by

summing their individual times, and parallel tasks can be evaluated by finding

the maximum of those task times. For the project characterized by the DSM in

Figure 1, if the task time are a, b, c, ... , h, the time of the camera design project

would be

a + b + max{ f(c,d.e,f)
,
g+h

}

where f(-) is a function, undefined as yet, corresponding to the development time

for the coupled block.

The model presented in this paper illustrates how iteration time can be

evaluated for such a coupled block of tasks, and shows that the critical features

controlling the iteration can be identified. Each critical feature is a group of

parameters of the design solution which are strongly dependent on each other;

they may require many iterations to converge, as a set, to conform to design

constraints. We illustrate these concepts using a brake system design example.

The critical features in brake system design are important determinants of

product qvudity, and we believe that critical features which are strongly related to

both time and quality are typical of engineering design.

OurApproach

We believe that it is possible to lessen development time by analyzing and

restructuring the design process. We have developed extensions to the DSM



framework which have allowed us to suggest ways that the design process can be

restructured. A previous interpretation of the quantitative DSM developed a

probabilistic model of engineering design which predicts development time for a

sequential design iteration process [Smith and Eppinger 1991], but that model has

proven difficult to apply to actual design projects. The model presented in this

paper is a different interpretation of quantitative information in the DSM, known

as the Work Transformation Matrix (WTM), and is described below.

Our field work is based on extended exposure to the brake system design

engineering organization the brake system design division of General Motors.

Our observations include informal discussions with systems and component

engineers, internal documentation, and interviews with engineers and their

managers. We have found the brake system to provide a good subject for modeling

of the design process because of the nature of the design problem. Brake system

design is stable in that the technology and the market are mature and the form of

the base product is not undergoing radical change. The brake system design

engineers have considerable experience with brake system design. These factors

suggest that the data contained within the brake system DSM is not changing

rapidly, and the knowledge which is represented within the DSM is well

developed.

Ours is a descriptive model, not an optimization model. The description

developed below can be used by the design manager to analyze the design problem,

and to estimate how long the design process will take, and what aspects of the

design problem contribute to iteration time.

The novelty in this model is in the application of matrix mathematics to

analyze development time of an iterative design process. The model relies on

standard linear algebra results. The interpretation of the relationship between

the matrix mathematics and development time is novel.



Design Iteration Model Development

For the purposes of our analysis, we assume that each task creates a

deterministic amount of rework for other tasks. Rework is the work which is

necessary because the task originally was attempted with imperfect information

(assumptions). The rework adapts the original solution to account for the

modified information. Rework is measured in percent of the time that it takes to

complete the task in the original iteration.

We use a transformed version of a fully coupled Design Structure Matrix

which we call the Work Transformation Matrix (WTM). There are two types of

information in a Work Transformation Matrix. The off-diagonal elements

represent strength-of-dependence measures (defined in next section). (See Figure

2a.) The diagonal elements in the WTM represent the time that it takes to

complete each task during the first iteration stage. (See Figure 2b.) It is assumed

that there will be multiple iteration stages, and that the time for each stage is a

function of the amount of time spent working in the previous stage. We wish to

find the sum of the times of all stages.



we illustrate the analytical process using a simple example. Finally, we present

and analyze the WTM which describes brake system design.

A: Work Transformation Model Assxunptions

The assumptions in this model are:

• All tasks are done in every stage - fully parallel iteration

• Rework is created based on a linear rule - as a % of work done in

previous iteration stage

• The parameters in the matrix describing work transformation behavior

do not vary with time

These assumptions allow us to use a linear algebraic analytical method on the

WTM.

To develop the model, we first introduce the concept of the work vector u..

This is an n-vector, where n is the number of design tasks to be completed. Each

element of the work vector contains the amount of work to be done on each task

after iteration stage t. The initial work vector Ug is a vector of ones, which

indicates that all of the work remains to be completed on every task at the

beginning of the iteration process.

During each iteration stage all work is completed on all of the design tasks.

(For a relaxation of this assumption, where a fraction of the work is completed in

every stage see Appendix 4.A.) However, work on a task will cause some rework

to be created for all other tasks which are dependent on that task for information.

We determine which tasks those are fi-om the design structure matrix. Every

iteration stage produces a change in the work vector according to:

Ut+1 = Au,

where each of the entries a-, in A implies that doing one unit of work on design

task j creates a units of rework for design task i. The matrix A is then the



strength of dependencies portion of the WTM (Figure 2a). The diagonal entries

are set to zero. The work vector u can be also be expressed by:

u, = a'uq

The sum of each of the work vectors is the total work vector U, the total

number of times that each of the tasks is attempted during the total of T iteration

stages of design process:

T

u = X^t
t=o

or:

U = j^A\
t=o

which can be rewritten as:

^'(1+
The model output U is therefore in units of the original amount of work

done on each task in the first iteration stage. (If element i in vector U is 1.6, then j
the design organization will have done 60% rework on task i in subsequent

stages.) For a time-based interpretation of the matrix A see Appendix 4.B. For

now, we scale U by the task durations to obtain units of task times. IfW is a

matrix which contains the task times along its diagonal (See Figure 2b), then WU

is a vector which contains the amount of time (in engineer-hours) that each task

will require during the first T iteration stages.

B: Eligenvalue Deoompositioii

If A has linearly independent eigenvectors (the eigenvector matrix S is

invertible) then we can decompose A into:

10



A = SAS"""

where A is a diagonal matrix of the eigenvalues of A, and S is the corresponding

eigenvector matrix. (For S to be inveri;ible it is sufficient, but not necessary, that

none of the eigenvalues be repeated.) The powers of A can be found by:

a' = sa's"''

The total work vector U can therefore be expressed as:

U = S >•
vt=o y

S-'uo

If the magnitude of the maximum eigenvalue is less than one, then the

design process will converge (i.e. as T increases to infinity the total work vector U

remains bounded.) An eigenvalue greater than one corresponds to a design

process where doing one unit of work at some task during an iteration stage will

create more than one imit of work for itself at some future stage. Such a system is

unstable and the vector U will not converge, instead growing without bound as T

increases. (It is a sufficient, but not necessary, condition for stability that the

entries in every row sum to less than one.)

A design process which does not converge would be one where there is no

technically feasible solution to the given specifications, or one where the designers

are not willing to compromise to find the technical solution. This situation is not

likely in the design environments we are modeling, that is, routine design where

the designers are responsible for bringing out a new variation of a known,

technically successful product. The remainder of the discussion on Work

Transformation Matrices is limited to problems where a technical solution exists

and can be found in finite time (i.e. eigenvalues are less than 1.)

11



C: Interpreting the E^genstructure

The eigenvalues and eigenvectors of matrix A determine the rate and

nature of the convergence of the design process. Much can be learned about what

controls the iteration by looking at the eigenvalues and eigenvectors as opposed to

looking at the sequence of work vectors.

A design mode is defined as a group of design tasks which are very closely

related, and working on any one of them creates significant work, directly or

indirectly, for each of the other tasks within the mode. We use the eigenvalues

and eigenvectors of matrix A to identify the design modes.

The magnitude of each eigenvalue of A identifies the rate of convergence of

each design mode. The eigenvector corresponding to each eigenvalue

characterizes the relative contribution of each of the various tasks to the body of

work which converges, as a group, at a given rate.^

By the Perron-Frobenius Theorem (a fundamental result of matrix theory)

we know that the largest magnitude eigenvalue of a coupled non-negative matrix

will be real and positive [Marcus and Mine 1964]. Also, the eigenvector associated

with this eigenvalue will have positive elements.

The slowest design mode (largest eigenvalue) will therefore have an

eigenvector which is strictly positive. This design mode gives us little problem

with interpretation. Other design modes are, however, less obvious. Also by the

Perron-Frobenius Theorem, there is only one eigenvector which is strictly

positive. We must be able to interpret negative and complex nimibers in the

eigenvectors as well as negative and complex eigenvalues.

^ The interpretation of the eigenvalues and eigenvectors for design problems is similar to

the eigenstructure analysis used to examine the dynamic motion of a physical system. In the

discrete time description of linear dynamic systems, each eigenvalue corresponds to a rate of

convergence of one of the modes of the system (a natural frequency.) The eigenvectors identify the

mode shapes of natural motion, quantifying the participation of each of the state variables in each

mode [Ogata 1967].
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Recalling that the total work vector U is calculated by:

U = S X^' S'''uo
vt=o y

we will look at each of the elements in the above formula for U to see how the

eigenstructure of matrix A can be used to interpret the design modes. If we take

the limit as T approaches infinity we can use the formula:

T

lim Xa' = (I-A)'^

If the maximum eigenvalue is not close to one, then the limit will be approached

within relatively few iterations. For the remainder of this discussion the limit

will be used, although the analysis can also be completed for finitely many

iterations.

This limit is also a diagonal matrix, where each entry along the diagonal

corresponds to one eigenvalue and has the form:

1

1 -X

where X is an eigenvalue.

In the next two subsections, both real and complex eigenvalues are

discussed. In subsection 4.2.3.3 the interpretation of eigenvectors is considered.

Real Eigenvalues

The function:

1

1 -X

is strictly increasing over (-1,1). The graph of this function is shown in Figure 3.

13



-0.8 -0.6 -0.4 -0.2

X

0.2 0.4 0.6 0.8

Figure 3. Graph ofMagnitude vs. X for Real Eligenvalues

We see that all positive eigenvalues have the greater contribution to the series

sum than do negative eigenvalues. Therefore, as we consider which are the more

important design modes, we restrict our attention among real eigenvalues to the

positive eigenvalues.

Complex Eigenvalues

For complex eigenvalues we also wish to find the magnitude of the limit of

the sum of the infinite series. For a complex eigenvalue a + pi the magnitude of

the limit is:

1

Or, alternatively:

1 - (a -H pi)

1

1

V(1-a)^ + P^

1 -(a-^po
'J~r^2a7oF7^

Which, using the fact that:

14



allows us to find an upper bound on the limit:

1

1 -(a + pi) 1 -a

Also, we can find a lower bound using the fact that:

a^ + p^ < 1

to show:

1

1 - (a + pi)

1

V2-2a

The graph of the upper and lower bounds is shown in Figure 4.

-1 -0.8 -0.6 -0.4 -0.2

a

0.2 0.4 0.6 0.8

Figure 4 Graph ofBounds on Magnitude vs. a for Complex Eigenvalues

We see that the real part of complex eigenvalues gives bounds on the magnitude of

the siun of the infinite series corresponding to that eigenvalue. We also see that

complex eigenvalues with negative real part are not going to contribute

significantly to the sum, and can therefore be ignored.

15



By the previous argviment we need only consider those real eigenvalues

which are positive. We therefore need to consider only those eigenvalues which

have a positive real component, whether they are real or complex.

The Eligenvectors

This section discusses how the relative importance of each task within an

eigenvectors is interpreted, given that we know the eigenvalue corresponding to

that eigenvector. We want to be able to interpret the eigenvectors so that we can

distinguish which of the tasks are importsmt contributors to each design mode.

Again, consider the formula:

f T \

I-'u = s S-'uo
Vt=0 J

We see that the final two terms in this formula:

S-^Uo

give a weight for each eigenvector which is both a magnitude and a direction.

The eigenvector corresponding to real eigenvalues is real. Each weight for

a real eigenvector is also real. Therefore, the direction is either positive or

negative. The important quantities in a real eigenvector are therefore the large

positive values if the weight is positive, and large negative values if the weight is

negative.

Complex eigenvalues have complex eigenvectors and complex weights.

Determining how the direction of the weight and the direction of the eigenvector

interact is difficult. The best way to look at the interaction is to calculate the

contribution of the mode to the total work vector U and see which the tasks give

large contribution to the total work.

Positive eigenvalues correspond to non-oscillatory design modes. Negative

and complex eigenvalues describe damped oscillations. Oscillatory design modes

16



indicate that the work is not decreasing for all of the tasks in the mode at the same

rate, but that the work is shifting from task to task during iteration process.

The magnitude of the variability in the amount of work between separate

work vectors is not as important as the total magnitude of work completed. The

specifics of the variability would be useful if we were tracking the individual task

work information. Instead we are looking at aggregate information, so the

individual variability (as indicated by the non-positivity of the eigenvector or

eigenvalue) is less important. As we interpret the modes of the design process we

must therefore concentrate on those modes with large positive real eigenvalues,

or imaginary eigenvalues with a large positive real part.

An illustration of the interpretation of the eigenvalues and eigenvectors is

given in the next section, where an example problem is fully worked.

A Simple Example

As an illustration of the above discussion, let us consider the following 4x4

Work Transformation Matrix. This is a quantitative version of the coupled block

(tasks C-F) in the camera design matrix as shown in Figure 1. The tasks in this

matrix are, in order: Design Shutter Mechanism, Design Viewfinder, Design

Camera Body, and Design Film Mechanism. The numbers can be interpreted as

follows: if the shutter is completely redesigned, then 30% of the viewfinder design

work must be redone (entry in row 2, column 1 is 0.3), and so forth.

A =

0.1 0.2 0.3

0.3 0.4 0.2

0.1 0.3 0.5

0.1 0.1 0.2

The eigenvalue (A) and eigenvector (S) matrices are:

17



A =

0.674

-0.392

-0.141 +0.060i

S =

0.410 -0.067 0.657

0.624 -0.613 0.060-0.5701

0.580 0.758 -0.395 + 0.073i

L 0.326 -0.213 -0.065 + 0.2741

-0. 141-0.0601

0.657

0.060 + 0.570i

-0.395 - 0.073i

-0.065 - 0.274i

'1



(I - A)-^ =

3.065
0.718

0.874+0.0461

0. 874-0. 046iJ

The term used to see how each of the modes is represented in the original state

vector is:

S-^Uo =

2.125

-0.310

0.082- 0.461 i

L 0.082 + 0.461 i

Multiplying this weighting vector by the sum of the eigenvalue matrix we find the

total weight on the eigenvector matrix:

(l-A)-^S-^Uo =

6.513

-0.223

0.093 - 0.399i

0.093 + 0.399i J

Note that the weight on the first eigenvector is significantly larger in magnitude

than the other weights. Most of the work in this iteration process is described by

the primary design mode.

We are now able to calculate the total work vector:

U = S(l-A)'^S-^Uo =

2.807

3.755

3.595

L 2.375 J

There has been more work completed during the process by the middle two tasks,

just as the preliminary analysis of the eigenvectors and eigenvalues indicated.

Brake Systran Desi^

In order to verify the utility of the Work Transformation technique, we will

demonstrate the analysis of an actual design process and show the insights

gained. A design structure matrix for the brake system was reported previously

[Black 1990, Black et al. 1990.] The work described here applied the Work

Transformation Matrix method to the brake system design process. In preparing

19



this analysis, the first author spent several months doing field work at the brake

system design facility of General Motors. That work included interviews with

brake system engineers at several sites.

There are four questions which must be answered in constructing the

Design Structure Matrix. We must first determine all of the various steps or

tasks in the design process. Second, we must determine all of the information

flows between the various tasks. Third, we must determine the relative

importance of each of the information flows (quantifying the off-diagonal elements

in the matrix). Fourth, we must estimate the time it takes to complete each task.

The brake system data presented in this paper includes data of the first

three types, but does not include any explicit time data. Many of the observations

about the controlling features of the design process can be made without having

the time data available. In particular, we are able to identify the total number of

iterations taken on each task.

The brake system DSM from Black et al. [1990] is shown in Figure 5a. The

matrix demonstrates a problem which can be divided into a block of complex,

coupled design parameters at the center of the matrix, preceded by and followed

by a group of sequential and parallel parameters. The coupled block is expanded

in Figure 5b. (We realize that Figure 5a is too small to see the details of the

matrix; it is included to demonstrate the overall structure of the DSM, which

includes over 100 design parameters.)

20
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leads to pulsation, and elevated lining temperature leads to rapid wear of the

brake linings. More specific causes remain unknown. Detailed analysis of these

problems continues, and some progress is being made. The sentiment among

engineers is that none of these problems will be solved' in the near future.

Specifically, brake systems cannot be designed so that nfl customers ever

complain about these three problems. These problems are believed to be inherent

consequences of using dry friction to stop a vehicle.

These three problems (noise, pulsation and wear) have been identified by

designers and their managers as the controlling features' of the

design/test/redesign iteration problem they experience. As shown below, the

WTM analysis confirms that these are indeed controlling issues in design

iteration, and details the specific contributing parameters for each. The match

between designer perception and analytical identification lends credence to both

approaches.

Using the Work Transformation Method to Identify Iteration Drivers

Using the analjrtical tools described previously, we can more rigorously

identify the parameters within the large coupled block which compose the most

interrelated sets of parameters. The original DSM analysis of the brake system

identified parameters within the large block [Black 1990]. This work furthers the

analysis by recognizing that some of the parameters exhibit stronger

interdependence than others, and that tightly coupled parameters consequently

require more iteration during the design process. The dominant design modes

would be interpreted as controlling features' or design drivers', in that they

require more engineering time during the design process sind they are likely to be

on the critical path of the design project.

To perform this analysis, we translate the binary DSM (Figure 5b) into a

Work Transformation Matrix. In lieu of precise numerical values in the Work

22



Transformation Matrix for the brake system, the individual cells were estimated

to be of either weak, medium, or strong dependence. (See Figure 6.) Each ofF-

diagonal values is an estimate of the amoimt of work (as a percent of the amount

of time that it took to complete the task during the original iteration) that the

upstream task creates for the downstream task. The engineers in the design

organization were asked to describe why each piece of information was necessary

and the relative importance of each of the pieces of input information. Each of

these information flows were classified by the authors as either a strong, medium

or weak dependency. We then assigned numerical values to the dependencies

which were described by the engineers. We have used the values 0.5, 0.25, 0.05 for

strong, medium, and weak dependence, respectively. Our experience shows that

the identification of the design drivers is robust against minor changes in the

values entered in the matrix.^

2 This robustness can be demonstrated in two ways: (1) If we scale all of the values in A by a

constant factor, the eigenvectors will be unchanged. The eigenvalues will simply scale, and our

interpretation of the analysis will not change. (2) If we scale only one set of values (say strong

dependence becomes 0.6 instead of 0.5), then there would be no significant changes to the resulting

eigenstructure. More details on sensitivity of the eigenvectors to the weights are given in [Smith

1992].
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The first design mode is primarily composed of (52) Vehicle Deceleration

Rate and (59) Pedal Force Required, with lesser input from (34) Pressure at Rear

Wheel Lockup, (35) Brake Torque vs. Skidpoint, (58) Dash Deflection, (61) Pedal

Mechanical Advantage, (63) Front Lining Material and (64) Booster Reaction

Ratio.

What this design mode shows is that the group of design parameters which

requires the greatest number of design iterations before convergence on the final

acceptable design is the stopping distance problem, represented by the first

column in Table 1. Solving this problem assures that the brake system is going to

stop the car without creating uncontrollable skidding. A performance simulation

for this problem has been developed, and it is a good predictor of actual

performance. These iterations can therefore occur quickly. Because of this

analytical tool, the large number of iterations on the first design mode no longer

strongly affects the total time of the development process. This model

nevertheless confirms that the stopping performance problem is the fundamental

controlling feature which affects design iteration.

The second design mode is composed of primarily (40) Splash Shield

Geometry, (48) Airflow under Wheel Space, (54) Rotor Cooling Coefficient and (56)

Rotor Width, with lesser input from (53) Temperature at Components and (104)

Rotor Material. All of these factors are technical parameters corresponding to

overheating and cooling. This second design mode, which is composed of the

cooling coefficient/rotor material problem, is related to the problems of lining life,

noise generation, and pulsation problems. For these thermal' problems, there

are few analytical or simulation tools available to the designer. Many iterations

are required to converge upon a design solution, but there is no guarantee that

those iterations can be rapid. Field or laboratory testing must be used to

27



eventually converge on a solution which meets the criteria at a relatively high cost

in time.

The design modes analysis has been able to identify the dominant

controlling features correctly. This success is made evident by the engineers' a

priori prediction that noise, pulsation and wear would be found to be the

fundamental design issues. We not only confirmed this, but also described these

problems more precisely and showed how coupled these issues are.

Discussion and Conclusion

The goal of developing this type of model of engineering design is to be able

to provide engineering managers information which will help to shorten the

design cycle. Knowledge of the critical sets of interrelated tasks which lead to

iteration enables a manger to concentrate resources on these tasks so that the

iterations can occur as rapidly as possible.

The example of brake system design given above showed that the Work

Transformation Model is able to match the observed behavior concerning which

design tasks are responsible for the bulk of the iteration. The model is able to

identify the features in the brake system design problem which control the total

amount of time taken in the iteration process. The question remains open

whether it is possible to identify the matrix data for a problem with which the

design organization has less familiarity.

Applying the model to a new problem would provide new knowledge to the

organization. The organization would be able to identify the critical issues prior to

beginning the design process. There is the problem of whether or not the

information required to construct the Work Transformation Model can be

generated reliably on a new problem. We hypothesize that there is an important

class of problems which are sufficiently well understood such that the engineers
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involved can identify the tasks and the information dependencies (the information

necessary to construct the matrix), without being able to identify the controlling

features of the overall problem. This is the class of problems for which this type of

analysis is relevant and useful.

This paper has developed the Work Transformation Model, which is an

analytical extension to the Design Structure Matrix, and applied it to an actual

design process. The analysis demonstrates the utility of eigenvalues and

eigenvectors of the Work Transformation Matrix in interpreting the amount of

work which must be completed during the design iteration process. The

eigenvectors can be used to identify the 'controlling features', those elements of a

coupled design problem which require the greatest number of iterations to reach a

technical solution.

The Work Transformation Matrix can serve as a useful diagnostic tool in

analyzing coupled design problems. We believe that this analytical method can

lead to improvements in design processes by focusing attention on the slowly

converging design iteration modes. For the brake system design process we

suggest that improved simulation of the thermal and vibrational aspects of the

design problem may accelerate solution development. In general, the

identification of the controlling features provides a crucial piece of information

which enables a manager to allocate resources in order to lessen development

time.
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AppendixA

In these appendices are two extensions to the Work Transformation Model.

It is shown here that the two extensions add generahty to the original model, but

are only slight modifications. The primary insight obtained from the analysis is

that the eigenvalues and eigenvectors of A are still the most important analytical

features, even with a more general model.

In the original model all of the work is executed during every iteration

stage. We term this a control rule, since this is a work load policy. We can

generalize the control rule. Instead of doing all of the work in every stage, we do a

proportion p of all work on every task in each stage. The work which is not

attempted during the current stage remains to be completed in future stages.

Work which is attempted creates work for other tasks as in the original model.

The new control rule becomes

u,+i =[(1-p)l + pA]Ut 0<P^1

We define a modified work transformation matrix A* such that

A* = [(l-p)| + pA]

We can find the eigenvectors and eigenvalues of the matrix A*:

A*=[(1-p)l + pSAS"^]

A*=S[(1-p)l + pA]S-''

The matrix [(1-p)l + pA] must be the eigenvalue matrix of A* since it is diagonal. It

is seen that the eigenvector matrix S of A* is the same as that of A. The

eigenvalues of A* are a convex combination of A and I. Since the eigenvalues have

been increased, the convergence has been slowed (which is to be expected since we
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are only doing a proportion of the work in each stage.) The shape of the

convergence remains unchanged.

Appendix B

The second extension treats time in a more explicit manner. It is shown

below that this is, in fact, identical to the original way in which time was

considered. The basis for the new formulation uses the vector u as a work time

vector.

u?.i = A\^

The initial work time vector is the initial work vector weighted by the time for each

task:

u J = Wuo

where W is a diagonal matrix of the task times Wj.

Each element in the work time transformation matrix A is the amount of work

time that one hour of task j creates for task i, or

t_ Wi

The new work time transformation matrix is written compactly as

A^ = WAW~^

Repeating the analysis done for the original system, the total work time vector can

be found by

it_

t=o

Substituting for the initial work time vector

S"^W-''uJ
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u^ = ws
t=o

S-iyV^Wuo

U^ = WS I-'
t=o

S"'Ur

which reduces to

which is the expression originally given for weighting the total work vector by the

task times.
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