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Abstract

A specialized multivariate adaptive control model is developed.

Each of r control variables is to be set in each of a sequence of

time periods. The process being controlled has a response (profit)

function that is the sum of a constant plus linear and quadratic forms

in the control variables. The coefficients of the quadratic form

are assumed to be known constants, those of the linear form to

change \.'ith time as firjt order, autoregressive processes. Infor-

mation about the changing coefficients is collected by performing

r
a 2 factorial experiment on a subportion of the process being

controlled. Provision is also made for adding further information

from unspecified sources. Bayesian methods are used to update

distributions of the unknown coefficients. The values of the control

variables are set to maximise the sum of discounted future profits,

as arc the experimental design parameters. The probabilistic assump-

tions of the model are chosen so that all distributions are normal

v;ith knov;n variances and, for the most part, zero covariances between

variables. Partly as a result of this, optimal control turns out to

involve rather simple exponential smoothing rules.





1 . Introduction

Reference 1 presents an adaptive control model that has the following

characteristics.

(1) A process is to be controlled by setting a single control

variable in each of a sequence of time periods.

(2) The profit or response of the process is a quadratic function

of the control variable.

(3) The coefficient of the linear term of the response function

Is imperfectly known and changes with time as a first order,

autoregressive process. The coefficient of the quadratic

term is a known constant.

(4) An experiment is performed in each time period to gain

information about the linear coefficient.

(5) The optimal setting of the control variable is shown to be

given by an exponential smoothing process.

(6) The optimal experimental design parameters are relatively

easy to determine. They are chosen to minimize the sum of

two expected costs: the cost of operating with poor response

information and the cost of deliberate non-optimal operation

used in the experiment.

(7) The distributions of all random variables involved are normal

with known variances.

The present paper generalizes the work in the following ways:

(1) The number of control variables is increased from 1 to r.

(2) The profit function becomes the sum of linear and quadratic
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forms in the r variables. The coefficients of the linear

form change with time as a first order, autoregressive processj

those of the quadratic iorm are known constants.

(3) The experiment becomes a 2 factorial design.

(4) Provision is made for the introduction of information about

the process beyond that developed in the experiment.

As before, the optimal setting of the control variables and the optimal

experimental design parameters are found. Dynamic programming arguments

are used to justify the optimization results in somewhat more detail

than in [1].

2. Profit Model

T
Let x=[x. ,...,xl =a vector of control variables— ' l-" ^ r-"

p(x) = profit

Profit is a random variable. When we wish to emphasize that a quantity

is a ranHnm variable, we shall place a tilde (~) over it. We shall assume
rp rp

p(x) = a + £ X - xTx (2.1)

~ r ~ r r
= a + E. , p. X. - Z. ^Z, X.7 X,

J=l J J j=l k=l j'jk k

where

"v ~ "^ T
£ = [pj^, ..., p 1 = a vector of imperfectly known coefficients,

a = an imperfectly known constant,

r = [7- .] = a matrix of perfectly known constants

We presume that the conditions of the application dictate that (2.1)

has a maximum for some reasonable x. A mathematical assumption that

r
guarantees the existence of a maximum for x e R is that r be positive
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definite. We shall assume this, and further, without loss of generality,

that r is symmetric. Under these circumstances p exists and is also

positive definite symmetric. Let

0. . = ij element of r-

r
Necessary conditions for maximizing p(x) over x e R are

h =h- '^k=i ^jk\ = ° J - ^' '"> ^•

The unique solution to these equations is

i* = (1/2) r"^£ . (2.2)

(2.2) maximizes p as may be seen from the following. Let

i(x) = p(x*) - p(x) (2.3)

T -.. ^T, * T
= 1 (x" - x)

2i
rx + X rx

= (x - x) r (x - x)

T positive definite implies xT^'**^ f°^ ^^^ y ^ 0- Thus, ^(x) is

minimized with value zero when x =
2i

and, by (2.3), p(x) is maximized.

Notice that

i(2S) = (H* - 2S)^ r(x* - x) (2.4)

= loss relative to perfect information.

All the variables and constants so far^ with exception of f will

change with time. Time periods will be indexed by t. When we wish to

make the time dependence explicit we shall write x(t), £(t), etc.,

but oftentimes we shall omit C to reduce clutter.
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3. Information Changes

The principal hindrance to making good decisions is imperfect

knowledge of 8(t). We shall first preview the information changes

that take place for ^(t) and establish notation for them.

Let z rt f(-)

stand for "the random variable z has the probability density function

f(-)." Let

f ( • I n , h) = normal density function with vector of means ^

and precision matrix h.

£ = (a, pj, ..., pj.).

Notice that we have added g to the £ vector. This will be done in the

present section only . The value of a does not directly affect optimal

decision making since it is the constant of the profit function. However,

a is involved in the statistics because information about a usually

implies information about the p. and vice versa.

Let

b = [a
, h^ , ..., b^ '^] = a vector of statistics about ^

at the i step of information

change within a time period.

h = [h. . ] = a matrix of precisions at the
3-J

th
i step

V = [v.. j = [h ] = covariance matrix corresponding
ij

to h

Like £,^ b , h , and v will have an extra dimension corresponding

to a in this section but not elsewhere.
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The cycle of information stages for a time period is:

(1) Start . At the beginning of t, just before making the

decision on x(t), the knowledge of £(t) will be represented by

l(t) A fj^(-| r (t), h' '(t))

(2) Experiment . During t an experiment will be run that

retrospectively will provide information about £(t) . Sufficient

statistics for the experimental results will be;

b. and h

(3) Update . After the experimental results are absorbed^ the

(posterior) distribution of £(t) will be:

2(t) n f/-l b^'^ h<3))

(4) Change . A change^ partially unpredictable, takes place in

£ between t and t + 1. This will be governed by a first order, auto-

regressive process mechanism with parameterization

k, b<^) , and h<^>

(5) Update . The change leaves us with information about

£(t+l) summarized in

|(t+l) n f^Cl h}^\ h^^h

(6) Further Information . Various activities not individually

modeled may tell us in advance something about ^(t+1) . This will be

summarized in sufficient statistics

b and h
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(7) Update . Assimilation of the outside information gives

|(t+l) o f^(-l b^^^
, h^^^)

Identifying

we are ready to recycle.

The steps are next traced in detail,

3.1 Start . At the beginning of t^ certain prior information

about £(t) is available. This will be the information used to decide

the value of x(t). We shall assume that £(t) has a multivariate

normal density with mean vector b (t) and known precision matrix

h (t) and that h (t) is diagonal.

~ (1) (1)

(1)
E[aJ = b

.
(1)

1
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3,2 Experiment . Since £ is imperfectly known and subject to

unpredictable changes, its value will be monitored over time. The

r
method of doing this will be a 2 factorial experiment conducted

each period. The experiment is presumed to be conducted on a portion

of the actual process being controlled. Thus, if the process occupies

an area (as in agriculture or marketing) a number of subareas might be

split off for experimental treatment. For flow processes (as in

chemical operations), the basic time period might be subdivided

so that, for certain intervals, given experimental treatments are

run. We shall assume that

N = total number of experimental units into which the
process can be divided

r
n = number of experimental units devoted to the 2

factorial experiment

The experiment will be designed in terms of deviati. ons from the

"normal" operations conducted in the N-n non-experimental units.

Each control variable will have levels designated "high" and "low".

t" v»

If normal operations call for setting the j control variable to

X., the experimental levels will be;

high; X . + L\./2 and
J J

low: x. - Aj/2.

In a complete factorial design, each possible combination of experi-

mental levels is applied to some experimental unit.
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T
Let 6. = [5^1 J •''} ^ir^ = ^^® vector of deviations for experimental

unit i (thus, 6.. equals either -fA./2 or -A./2 as
' ij J J

appropriate for i)

.

X = X + 6 = the vector of control variables applied to
—i — —X

experimental unit i.

th
The statistical model for the profit observation from the i

experimental unit is

P(Xi) = [1. l^i)l
- x^ rx^ + €. , i = 1,,.., n,

where £ is fixed for the given t but imperfectly known and

2
The variance, a , for the experimental units will be assumed known.

Since r ^nd x are known, we can simplify notation by defining

~ -- T
y. =:p(x.) +x. px.

Then data point i can be represented by the linear model

yi = [1. 4 ^ ^ ^ ^i
^^-^-^^

Equation (3.2,1) may be regarded as a multiple regression with

a and p. as the unknown coefficients. The Bayesian analysis of a normal

regression with known variance is given by Raiffa and Schlaifer [3]

(p. 334 ff). Let

T
1 = [vi, -, y^]
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X =

1 T

1 x''^
—

n

Sufficient statistics for the experiment are;

(2) 2 T (2) -1
h^ ^ = (1/a ) X X = (v*-

'^)

(2) ,2 (2) T
b^ £ (1/a ) y^ ^X^^

Because of the special form of the x. ^^ the factorial design,
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where

l"*" = (i
I 6. . = + A./2)

l" = {i
I

6. . = - A./2}

(2)
The components of b are the classical estimates of the regression

(2)
coefficients for this data. Notice in v that the covariance matrix

(2)
for the b is diagonal so that information we collect about an

J

individual p. in the experiment is independent of the other p.'s

and, subject to possible operational restrictions, is of independently

controllable accuracy through A.-

3.3 Update . The experimental information on p(t) is summarized

(2) (2)
in b and h and will be combined with prior information in the

manner shown in [3]. Denoting the posterior distribution by

we have

Adding (3.1.1) and (3.2.2) and neglecting the term in 1/M compared

(3)
to 1, we get h . Taking its inverse gives:
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(3)

(cr /n) + eJ_^
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slowly or abruptly. We model them all as a random change in 6 between

t and t + 1. The result is a deterioration of information, although

we shall later give the controller an opportunity to perceive the new

P, if perhaps imperfectly.

The model of change will be a first order, autoregressive process.

Given that p(t) = p(t)

:

(3.4.1)i(t+l) = k Ji(t) + (I - k)b^ +e„(t+l)
= = = p

where
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3.5 Update . The next step is to find the distribution of j;(t+l)

.

Since it is a linear combination of multivariate normal random variables,

_C(t+l) is itself multivariate normal. Therefore, it suffices to find

its mean vector, b and its covariance matrix, v in order to

specify its distribution.

•J

From (3.4.1), [}(t+l) has mean and variance;

b(5) = k ^(^) ^ (I . k)b(^>

= [a , kj^b^ + (l-k^)bj^
,

,(5) ,
.(3),T

. (4)

., l<b^^) + (l-k)b^^>]^
' r r r r

M,

,2 (3)^ 2

Vu -^ ^1

,2 (3) ^ 2
k V + a
r rr r

3.6 Further Information . We may suppose that the controller of

the process learns about it in more ways than the experiment, parti-

cularly since the controller himself may be making some of the changes.

We shall model the new information as a multinormal process of the same

form used earlier to treat the experimental information. The perceived

value of £(t+l), given that in fact ^(t+1) = p(t+l), will be denoted

(6)
Its likelihood function will be assumed normal:
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k^^^n ^nC-i £(t+l), h^^^

We shall take

.(6)

1/M.

} M^ large,

Thus we assume that no new information is gained about a and that the

new information does not interconnect the S..

3.7 Update . The updating is done as in the case of the experiment,

The posterior for ^(t+1) has precision matrix and mean vector:

(7)
h<^) + h(^>

"

V^/k

=1 + ^11

• • •

b<'>=v<'>[h<'>b<^)+h'V^'l

The components of b are

r rr

a^ -. [M^a^ + M2a^ ]/(M]i + M2)

b/'^ = [h(^>/h(7)jb(^> +[h(5)/h(7)]b(^)
J jj jj J JJ JJ J

j = 1,..., r

We are now ready to recycle. We set b (t+1) = b and h (t+1) = h

Since p(t+l) is multivariate normal with a diagonal precision matrix and
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a small precision for a, the starting condition assumptions have been

preserved.

It may be well to recapitulate and summarize in preparation for

the next section. We have moved from a prior on £(t) characterized by

(1) (1)
b (t) and diagonal h (t) to a prior on ^(t+1) characterized by

b (t+1) and diagonal h (t+1) . The diagonal terms of h ^(t+1)

may be written in terms of h (t) as follows;

h^J\t+l) =(1/M^) + (l/M^)

(1)
'

h;/(t+l) = i + -2 2 J = ^' '' ^ (3-7.1)
''

-^ ctT + k
J 2 2 J (1)

(nAj/4a ) + hj^^t)

All the constants in this recursion are known in advance: ^ . is a precision
J

2
in the "further information" process; a. is a variance from the change

J
2 2 2

process; k. is a smoothing constant from the change process; and (4o /nA.)

is an experimental variance.

The recursion for b (t+1) in terms of b (t) is;

J JJ JJ J JJ JJ

,^ u ^^('^> ^ i, rr (3), (2), ^(2) ^ . (3) (1) (1)
(l-k.)b. + k,{[v.. /v.. Jb . + [v.. h.. (t)Jb. (t)}}

J J J JJ JJ J ^ JJ JJ J
"

j = 1, . .
.

, r (3.7.2)

Thus, b. (t+1) is a linear combination of various b. . Of these
J J

(4)
b. is a fixed constant, the long term average p. in the change process.
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(2)
The others are developed during the cycle of information changes: b.

(6)
is the experimental observation and b . is the "further information"

data. The weighting factors are various combinations of variances

and precisions^ all known constants.

Of critical importance in the next section is the fact that neither

h (t+1) nor b (t+1) depend on x(t)

.

4. Optimization

There are two decision problems : how to set the control variables

and how to determine the experimental design parameters. We shall

proceed by dynamic programming to solve these problems. The objective

function will be the discounted value of the expected loss compared to

perfect information. As mentioned earlier, we drop the a con^jonents in

^, b , and h now that we are out of Section 3.

4.1 Forimlation . As shown earlier the loss relative to perfect

information in any time period, t, is:

i(x) = (X - x* ) r (X - X*)

where

X* = (l/2)c"^ i(t) (4.1.1)

Each time period is entered with information about ^(t) summarized

in b (t) and h (t). These statistics will be the state variables

of the dynamic program. The superscript (1) will be dropped for brevity.
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Also, following dynamic programming convention, time will be indexed

backward. To take note of the change, we index with s instead of t.

Let

f (b(s), h(s)) = mininHjm expected loss over the last s periods.

fQ(b(0), h(0)) =

The loss over the last s+1 periods will be made up of (1) losses

in period s+1 and (2) the loss in the remaining s periods. The losses

in s+1 consist of a loss attributable to imperfect choice of x, an

operating loss from using part of the process to experiment on, and

possibly an out-of-pocket cost of experimentation. Let

c = out-of-pocket cost per experimental unit (e.g. special

data collection costs)

p = discount factor

The dynamic programming recursion is:

fg^2^(b(s+l), h(s+l)) = min min E[ (N-n) (x-x*)^r(x-i*)
n,A, , . . . ,Ar x

n . ~ju T ~*
+ Z^_^ (il

+ ii - x ) r(x + &^ - X ) + nc

+ pfg(b(s), h(s)] (4.1.2)

The b(s) and h(s) are related to b(s+l) and h(s+l) and to the experimental

constants by (3-7.1) and (3.7.2) after change of indexing.

Several simplifications can be made. Because of the symmetries of

the experimental design
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ii^- "^^i " -* ^^ E<^ *"
^i

''*>

= n(x - x*)'^ r(x - X*) + (n/4)Ej^i 7^^^ •

Furthermore, making use of (4.1,1), we can obtain

E[(x - x*)*^ r(x - X*)] = (X - E(x*))^ C(iS
- E(x*))

+ E [(X* - E(x*))^C(x* - E(r ))]

= (X - E(i*))^ r(x - E(x*)) + (1/4) Ej^i ^jj/^^jj

Both 7.. > and 0.. > for all j. This follows from r positive
JJ JJ

definite, for if any y.. < 0, we could choose x > and x, = 0,
' -^ JJ

-
J k '

k ^ j , and contradict the definition of positive definite. Since

r is positive definite too, the same remark holds for its diagonal

elements Q .
.

JJ

The recursion (4.1.2) now becomes

"*ss'^„/ T,r~*>fg^j(b(s+l), b(s+l)) = min min {n(x - E(x')) E(x " E(x ))
n, Aj^, • . . ,Z\j, X

+ (n/4) Ej^i 7jjAj + (N/4) sJ^iSj j/hj j (s+1) + nc

+ pE[fg(b(s), h(s))]} (4.1.3)

4.2 Optimal Setting of Control Variables . As noted earlier, neither

b(s) nor h(s) depends on x, nor does any term on the right of (4.1.3) except

the first. Since r is positive definite, the optimal x(s+l) is
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x(s+l) = E(x*) = (1/2) r'^H'^(s+l)) = (1/2) r"^ b(s+l)

or, in terms of earlier notation:

x(t) . (1/2) r"^b^^\t). (4.2.1)

This solves the problem of how to set the control variables at t.

Substitution of this x into (4,1.3) removes the first term and the

min over x. Observe next that, since f„ = 0, f is not a function of

b(l) , and, by induction, f is not a function of b(s). Therefore, we

drop b(s) from the state description. Furthermore, since f contains

no random variables the expectation operator can be dropped. The

recursion becomes

f (h(s+l)) = min {(1/4) l] , 7.,^] + (N/4)E^ ,
e../h..(s+l)

^^^ - n,A , ...,A J^-^ JJ J J=^ JJ JJ

+ nc + pfg(h(s))} (4.2.2)

where h(s) is related to h(s+l) by (3.7.1), or, in the present notation

hjj(s) = ij + —2 2 (4.2.3)

a . + k^

2
nA.
—4 + h (s+1)

4? JJ

4.3 Optimal Experimental Design . In finding the experimental

design parameters, two cases may be distinguished: c = and c > 0,

according as the cost of the experimental units is negligible or not.
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We shall confine most of our attention to the c = case and make a few

remarks about the effect of c > at the end. In addition, we shall

restrict our attention to the situation where the parameters of the

problem make it optimal to experiment on each variable in each time

period, except possibly for the last few. This will not always be the

case, since, for example, "further information" could be so good that

no experimentation is necessary.

2When c = 0, n and A. appear only in the combination nA. , as may

2
be seen in (4.2.2) and (4.2,3). Therefore, the quantities nA. may be

regarded as the decision variables. The exact values of n and A. can

then be partly determined by other conditions, e.g., n must be some

r
multiple of 2 to have a complete factorial design.

Next we observe that, since f = 0, f (h(l)) will be a sum of

terms each involving variables and parameters in j alone. The mini-

mization separates into a minimization for each j. By induction the

same will be true for any s. Therefore we can write

fs(h(s)) = z^^;^ ggj (hjj(s)) (4.3.1)

where

^s+1 i

(h=.(s+l)) =min((7 /4) nA + NS /4h (s+1) + pg (h (s))}
'J J -I nA J-' J JJjJ SJJJnA.

J

(4.3.2)

^Oj = ° '

2
and (4.2.3) gives h..(s) in terms of h..(s+l) and nA . All other

quantities are known constants.
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The dynamic programming problem (4.3.2) has been solved by Hurst [2]

in the case £ = 0. Our work will be based on his but we shall here

deduce only some of his results. First define a new decision variable

z (s+1) = (nA^) / (4o^) + h..(s+l)
J J JJ

(4.3.3)

Operationally, z. is the precision of p. after the experiment has been
J -J

performed. Since the starting precision h..(s+l) is known, z. determines
JJ J

2
nA.. If an experiment is to be performed on variable j, z.(s+l) > h..(s+l)

Next (4.3.2) is rewritten in terms of z. and, in addition, two
J

time periods of the recursion are displayed. Thus

g-,1 .(h (s+l))= min { 7 [

^^''^ JJ z.(s+l)> h..(s+l) JJ

J - JJ

- h..(s+l)]

+ Ne . ./4h. .(s+1) + p min i

'-' ^' z.(s)>h..(s)
J

I
JJ

{7. .0 [z .(s)
JJ J

Ne. ./4h. .(s)
JJ JJ

+ P ^s-l^^'jj^""^^)^^

2 2
where h..(s) = £. + z

, (s+l)/(a .z ^(s+1) + k.)
JJ J J ^ J J J

h..(s)
JJ

(4.3.4)

(4.3.5)

All the terms in (4.3.4) that depend on z.(s+l) have been boxed,

provided that z (s) is not affected by the constraint z
.
(s) > h . .

(s)

,

J J - JJ

i.e. provided that an experiment is performed at s under optimal operation.

This is just the case we are considering. Observe that none of the boxed

terms are affected by z.(s) so that the minimization over z.(s) will not
J J
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be affected by our choice of z.(s+l), i.e. future decisions will not be

affected by the present one. Under these circumstances we can split off

the z.(s+l) decision. We proceed by solving

2
min {7., a [z (s+1) - Ph (s)] + PNe

.

,/4h (s)) (4.3.6)
z.(s+l) > -'-' -^

-'-' JJ JJ

J

where h (s) is given by (4.3.5). This is a relatively simple one-dimensional
JJ

minimization problem involving the ratio of polynomials. Notice that

z.(s+l) is determined in terms of the constants of the process and is

good for any s (except for the last few, where the recursion (4,3.2)

becomes somewhat special). Therefore we shall denote the solution of

(4.3.6) simply as z . . Substitution of z. into (4.3.5) gives the next

period's starting h..(s) which again will be the same for all large s

and so will be denoted h...
JJ

2
To recapitulate, the optimal experiment parameter nA. is found as

follows. Suppose we are at time s+1 with precision h..(s+l). We

2
solve (4.3.6) for z., and set nA. for s+1 to

J J

2 2
nA. = 4a [z . - h. .(s+1)].

Use of this z . ensures that in s we will have the h found by putting
J JJ

2
z. into (4.3.5). Thereafter, for all large s, nA. will be constant at
J J

2 2
nA. = 4a [z .

- h .
.

J

.

J ^ J JJ

If z < h (s+1) or z < h , we have uncovered a case where it is not
J ~ JJ J - JJ

optimal to experiment in every time period.
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This takes care of choosing the design parameters when c = and

it is optimal to experiment. When c > and it is optimal to experiment,

the smallest feasible n > is best with the given cost structure. This

2
is because i\. can always be set to achieve the optimal nA.. In some

situations, however, there may be practical constraints on n or A..

5. Discussion

Certain assumptions bear further comment. We have assumed that

the quadratic constants of the profit function, r, are known. This

r
seems to be a very strong assumption. Notice, however, that the 2

factorial experiment actually gathers information about r through the

second order interaction terms. Thus, even if r were poorly known

at the start, one would expect to learn it over a period of time.

It has been assumed that a has high period to period variance.

Although a does not directly enter the setting of the control variables,

good knowledge of it would provide a way to learn 6 better. Our

assumption dismisses this possibility and thereby gains for us con-

siderable mathematical simplification. In some processes a probably

does have high variance. The virtue of cross section analyses, for

example, is to eliminate this source of variability. In classical

experimental design it is often desirable to run different treatments

in the same time period because absolute response (i.e. a) is subject

to changes with time that may quite obscure relative response (i.e. S)
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In summary, a rather complex^ r-variable adaptive control model

has been solved. Optimal control involves setting control variables

by linear combinations of observed quantities and known constants.

The measurement process in the control procedure involves an experi-

ment whose parameters are determined largely through simple one

dimensional minimizations.

To a considerable degree, the simplicity of the optimal solution

is the result of careful selection of assumptions. Nevertheless, we

suggest that the idealized model offers insight into the nature of

good Solutions for situations where the assumptions do not exactly

hold. Sensitivity analyses of the one-variable model in [1] indicate

that this may often be the case.
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