

\Hsr. ^fCA

^1-EB 81988
V J

f«

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

ON THE PORTABILITY OF
QUANTITATIVE SOFTWARE

ESTIMATION MODELS

Tarek K. Abdel-Hamid

Stuart E. Madnick

January 1988 #WP 1977-88

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

ON THE PORTABILITY OF
QUANTITATIVE SOFTWARE

ESTIMATION MODELS

Tarek K. Abdel-Hamid

Stuart E. Madnick

January 1988 #WP 1977-88

ON THE PORTABILITY OF

QUANTITATIVE SOFTWARE ESTIMATION MODELS

By

Tarek K. Abdel-Hamid

Administrative Sciences Department

Naval Postgraduate School

Moterey, California 929^3

Stuart E. Madnick

Sloan Scnool of Managereni

Massachusetts Institute of Technology

50 Memorial Drive

Cambridge. Massacr'jset:s C2139

Paper Category: Research

vr^srrrTJSSTrrsrKTrr:^'

i: 11. :

>

FEB 8 1988

ON THE PORTABILITY OF

QUANTITATIVE SOFTWARE ESTIMATION MODELS

Abstract

Evidence in the literature indicates that the portability of currently

available quantitative software estimation models is poor. A primary

reason is that most models fail to account for managerial characteristics

of the software development environment; a set of factors that tend to

vary signinificantly from one organization to another. A major stumbling

block has been the inability to quantify the impact of managerial -type

factors on cost.

In this study, we take a first step towards rectifying this situation.

An extensive simulation model of the software development process is

developed and used to identify managerial factors that impact the cost of

software development, and to quantify the degree of that impact. Because

the areas identified are variables that the project manager can

objectively evaluate at the beginning of a software project, it should be

feasible to incorporate them in future cost estimation models. This, we

feel, would improve both their accuracy and portability.

Key Words : Software Estimation, Software Projects, Software Project

Management, System Dynamics, Simulation.

3

Introduction

Software development cost and schedule estimation continues to be a

major difficulty in the management of software development [4]. While

several quantitative software estimation models have been developed and

widely publicized in the literature (e.g., [27] and [7]), still "...almost

no model can estimate the true cost of software with any degree of

accuracy" [24]. Furthermore, the portability of such models (i.e., in

maintaining a good level of estimation accuracy when utilized in a

different organization) has proven to be quite poor [5]. As a result, many

software development organizations do not seem to trust any of the

available quantitative models. A recent study of 30 organizations showed

that the models were used only to "check manual estimates" [37],

The significance of the problem was stated as follows:

Unable to estimate accurately, the manager can know with certainty

neither what resources to commit to an effort nor, in retrospect, how

well these resources were used. The lack of a firm foundation for

these two judgements can reduce programming management to a random

process in that positive control is next to impossible. This situation

often results in the budget overruns and schedule slippages that are

al 1 too common ... [15]

.

The thesis of this paper is that both the accuracy as well as the

portability of software estimation models can be improved by taking into

consideration not only the technical variables (e.g., source language,
y

computer hardware characteristics, database size, ... eTcT') as in most of

the current models, but, in addition, expl ici t1

y

to incorporate the

managerial and organizational characteristics of the environment.

Specifically, we identify a number of managerial variables that most

current models fail to "acknowledge," but which significantly influence

the cost of software development.

Mohanty's Experiment

We first report on an interesting experiment by Mohanty [24], which

demonstrates the weaknesses in current models. His objective was to

examine the extent to which 12 available quantitative software estimation

models produce the same cost estimate for a given project. In order to

specify his hypothetical software project, it was necessary to identify

the full set of factors that are collectively incorporated in the 12

models. Forty-nine factors were identified. They involved system size,

database size, system complexity, type of program, documentation,

technical environment (e.g., requirements definition, security, and

computer access), and an "other" category that includes such items as

miles traveled, reliability, and growth requirements.

The hypothetical project was then defined in terms of the identified

parameters. The project was chosen to be 35,000 machine-language

executable instructions. The cost estimates for the project are exhibited

in Figure 1. As this illustrates, the estimated cost varied from a low of

$352,500 (the Farr and Zagorski Model) to a high of $2,755,657 (the

Kustanowitz Model)

.

Two sources for the variations between the cost estimates were

suggested. The first related to the quality of the final product. The

second is environmental:

... That is, each model was developed for a cost data base collected

in a given company environment. This data base thus embodies the

specific nature of the organizational problems, work patterns, and

management approaches and practices. Where this data base is regressed

to derive coefficients for use in a given model, the model reflects

that company's environment only [24].

M

o
o

o

CO

I ^

•8 (0

CD
u.

T- CM

C
o
r
«
>
o

CO

u.

k
o

o
9
O.
10

o

<
in

c
o

<
O
o

>

z
00

o o
• •

O) o

o
c
U

(0

Models

Figure 1

Cost estimates for a software project in Mohanty's Experiment

6

This view is supported by others in the literature {[12], [30], and

[5]).

An Integrated System Dynamics Model of Software Development

A major deficiency in much of the research to date on software project

management has been its inability to integrate our knowledge of the micro

components of the software development process such as scheduling,

progress measurement, and staffing to derive implications about the

behavior of the total socio-technical system in which the micro components

are embedded [31]. In the words of Jensen and Tonies [20]: "There is much

attention on individual phases and functions of the software development

sequence, but little on the whole lifecycle as an integral, continuous

process — a process that can and should be optimized."

The model we are presenting in this paper provides such an integrative

perspective. It integrates, as will be demonstrated in more detail later,

the multiple functions of the software development process, including both

the management-type functions (e.g., planning, control, staffing) as well

as the software production-type activities (e.g., design, coding,

reviewing, testing).

A second important feature of our modeling approach is the use of the

feedback principles of System Dynamics to structure and clarify the

complex web of dynamically interacting variables involved in the

development and management of software projects. Feedback is the process

in which an action taken by a person or thing will eventually affect that

person or thing. The significance and applicabilty of the feedback systems

concept to managerial systems has been substantiated by a large number of

7

studies [28]. For example, Weick [34] observes that,

The cause-effect relationships that exist in organizations are dense

and often circular. Sometimes these causal circuits cancel the

influences of one variable on another, and sometimes they amplify the

effects of one variable on another. It is the network of causal

relationships that impose many of the controls in organizations and

that stabilize or disrupt the organization. It is the patterns of

these causal links that account for much of what happens in

organizations. Though not directly visible, these causal patterns

account for more of what happens in organizations than do some of the

more visible elements such as machinery, timeclocks, ...

It is no wonder, then, that many software managers get into trouble

because they forget to think in circles. We mean this literally.

Managerial problems persist because managers continue to believe that

there are such things as unilateral causation, independent and dependent

variables, origins, and terminations.

The third distinctive aspect of our modeling approach is the

utilization of the computer simulation tools of System Dynamics to handle

the high complexity of the resulting integrative feedback model. The

behavior of systems of interconnected feedback loops often confounds

common intuition and analysis, even though the dynamic implications of

isolated loops may be reasonably obvious. The feedback structures of real

problems are often so complex that the behavior they generate over time

can usually be traced only by simulation.

Several authors (e.g.. [31]) have complained about the lack of tested

ideas in the software engineering field. Weiss [35] commented that in

software engineering it is remarkably easy to propose hypotheses and

remarkably difficult to test them. Accordingly, it is useful to seek

methods for testing software engineering hypotheses.

8

Unfortunately, controllecl experiments in the area of software

development tend to be costly and time consuming [25]. Furthermore, even

when it can be afforded the isolation of the effect and the evaluation of

the impact of any given practice within a large, complex and dynamic

project environment can be exceedingly difficult [18].

In addition to permitting less costly and less time-consuming

experimentation, simulation models make "perfectly" controlled

experimenation possible. Indeed:

The effects of different assumptions and environmental factors can be

tested. In the model system, unlike real systems, the effect of

changing one factor can be observed while all other factors are held

unchanged... Internally, the model provides complete control of the

system's organizational structure, its policies, and its sensitivities

to various events [17]

.

Overview of Model Structure

The model was developed on the basis of a battery of 27 field

interviews of software project managers in five software producing

organizations, supplemented by extensive empirical findings from the

literature. Figure 2 depicts the model's four subsystems, namely: (I) The

Human Resource Management Subsystem; (2) The Software Production

Subsystem; (3) The Control Subsystem; and (4) The Planning Subsystem. It

also shows some of the interrelatedness of the four subsystems. The model

integrates our knowledge of micro components (e.g., scheduling,

programming, productivity) into a more continuous view of the software

development process.

The Human Resource Management Subsystem captures the hiring, training,

assimilation, and transfer of the human resource. Such actions are not

carried out in vacuum, but are affected by the other subsystems; e.g., the

10

hiring rate is a function of the workforce level needed to complete the

project by a given date. Similarly available workforce has direct bearing

on the allocation of manpower among the different production activities.

The four main software production activities are: development, quality

assurance, rework, and testing. The development activity comprises both

the design and coding of the software. As it is developed, it is also

reviewed to detect any errors; e.g., with structured walkthroughs. Errors

detected through such activities are then reworked. But not all errors are

detected, some "escape" detection until the testing phase.

As progress is made, it is reported. A comparison of degree completed

to planned schedule is captured within the Control Subsystem. Once an

assessment of the project's status is made, it becomes an important input

to the planning function.

In the Planning Subsystem, initial project estimates are made and then

revised, when necessary, throughout the project's life. For example, to

handle a project that is perceived to be behind schedule, plans can be

revised to (among other things) hire more people, extend the schedule, or

do both.

A full description of the model and of its validation are provided

elsewhere ([1] and [3]). And in [2], we demonstrate the model's accuracy

in reproducing the dynamic behavior of a real software project.

Model Experimentation :

In a series of experiments, we tested and quantified the impact of

four-managerial type variables on the cost of software development. Two

address manpower acquisition and staffing considerations, while the other

two concern managerial judgement on the distribution of effort among the

software development activities. The four variables were selected with two

criteria in mind. The two criteria were proposed in [8]: objectivity and

11

prospectiveness. According to these authors, software cost estimation

models should only include objective variables; this avoids allocating

variance to poorly calibrated subjective factors. Thus it is harder to

manipulate the model to obtain wanted results. Secondly, a model should

avoid the use of variables that cannot be quantified until the project is

complete.

Manpower-Acouisition and Staffing Variables :

The two model variables that address manpower-acquisition policy

issues are: (1) fractional time on job; and (2) the willingness to change

workforce level

.

Field interviews revealed differences in project staffing policies. In

some organizations project members were assigned full-time to a single

project, whereas at others, software developers were assigned to more than

one (usually two) [21]. In the model, this issue is captured by the

variable "Fractional Time on Job." For example, when project members are

assigned full-time to a project, the value of the "Fractional Time on Job"

would be set to 1 i.e., each project member contributes 1 man-day every

(working) day to the project. On the other hand, if project members

allocate, on the average, only 50% of their time to the project, the value

of the "Fractional Time on Job" would be set to 0.5.

To examine the impact of these two different staffing policies on

project cost, we defined the EXAMPLE software project for the simulation

experiment, and then conducted two simulation runs. (In the Appendix, a

parameter profile of the EXAMPLE software project is presented together

with its base case simulation run.) In the first, the value of the

"Fractional Time on Job" was set to 1, and in the second it was set to

0.5. The measure of the project cost we will use is the value of the total

number of man-days expended to complete the project. The results were as

12

follows:

Fractional Time on Job Man-Davs

1.0 3,795

0.5 4,641

In other words, the policy of allocating project members half-time to

the project results in a 22% higher cost. The reason for this increase is

two-fold. First, there is a loss in productivity due to the increase in

the communication overhead. This factor accounts for approximately 90% of

the increase. The average staffing level of a project (in terms of

full-time equivalent employees) is typically determined by dividing the

estimated size of the project in man-days by the project's estimated

development time [7]. When the "Fractional Time on Job" is less than 1, an

upward adjustment is obvoiusly needed. For example, if a project's size is

1000 man-days and its scheduled duration is 200 days, the average staffing

level for full-time equivalent employees would be 5. But if employees are

assigned only half-time, then the staffing level would be raised to 10.

This increases the time lost on human communication, e.g., to resolve

questions [30]. In addition, the amount of project work itself usually

increases; e.g., in the form of more documentation, more modules, and more

interfaces [13]. The result is a decrease in productivity.

The second reason why the cost increases is because of an increase in

the training overhead. This factor accounts for the remaining 10% of the

increase. When new project members are recruited (from within the

organization or from the outside), they often pass through a project

orientation period. This training of newcomers is usually carried out by

the "old timers" ([29] and [36]). This overhead is, of course, costly,

because while (the oldti^er) is helping the new employee learn the job,

his own productivity on his other work is reduced [11]. This training

overhead is a function of the number of newcomers, not of the number of

equivalent full-time newcomers. In [19], when project members were

13

assigned half-time on the project, the team size was doubled, which indeed

doubled the training overhead incurred on the project.

The second manpower-acquisition variable tested is the "Willingness to

Change Workforce." When deciding upon changes in the workforce level

(because the project is falling behind schedule) software project managers

typically consider a number of factors. One is the scheduled completion

date. As part of the continuous planning function management determines

the workforce level necessary to complete the project within the scheduled

time. In addition, consideration is given to the stability of the

workforce. Thus, before hiring new project members, management tries to

decide how long it will utilize the new members. Different firms weigh

this factor to various extents. In general, however, the relative weights

change with the stage of the project. Toward the end of the project there

is usually considerable reluctance to bring in new people, even though the

time and effort remaining might imply that more are needed. It would take

too much of the remaining project time to acquaint new people with the

mechanics of the project, integrate them into the team, and train them in

the necessary technical areas.

These managerial considerations are entered into the model with a

weight factor termed "Willingness to Change Workforce" (WCWF). It is a

variable that could assume values from to 1. When WCWF = 1, the

"Workforce Level Sought" would simply be set equal to the "Workforce Level

Perceived Needed;" i.e., management would be adjusting its workforce level

to finish on schedule, determined by dividing the amount of effort that

management perceives is still remaining by the time remaining to complete

the project. As WCWF moves towards 0, more and more weight would be given

to the stability of the workforce. And when WCWF is 0, the "Workforce

Level Sought" becomes equal to the "Current Workforce" i.e., management

attempts to maintain the workforce at its current level. A WCWF value

14

between and 1, on the other hand, represents a situation where

management responds to schedule slippages by partially increasing the

workforce level (workforce level sought would be set to a value less than,

not equal to the workforce level perceived needed to complete the project

on the current schedule) and partially extending the current schedule to a

new date. Thus,

Workforce Level Sought = (Workforce Level Perceived Needed)*(WCWF) +

(Current Workforce)*(l-WCWF)

Note : The above formulation only applies when the value of the

"Workforce Level Perceived Needed" is larger than "Current Workforce,"

indicating a need for hiring more people. In cases where this is not true,

the "Workforce Level Sought" would be set to the lower value, and any

excessive employees transferred out of the project.

It is important to realize that the variable "Willingness to Change

Workforce" (WCWF) is an expression of a pol icy for managing projects. For

any specific project environment, the WCWF function can be derived on the

basis of interviews with project managers as well reviews of historical

project records.

The "Willingness to Change Workforce" (WCWF) curve depicted in

Figure 3 characterizes the workforce acquisition policy in one

organization studied, a large American minicomputer manufacturer. In the

early stages of the project when "Time Remaining" would generally be much

larger than the sum of the hiring and assimilation delays (the latter

being the time needed for a new team member to become fully productive),

WCWF is one; i.e., there is total willingness to adjust the size of the

workforce to whatever level is necessary to suit the scheduled completion

date. This inclination to respond to any schedule slippages in the early

phases of the project through adjustments in the workforce level rather

than adjustments in the schedule is mainly a result of political

WCWF

15

1.0 -J

.8-

.6.

.4-

.2-

ol
.3

(Time Remaining)

(Hiring Delay+Av. Assimilation Delay)

Figure 3

Willingness to Change Workforce (base case)

16

pressures:

Once an original estimate is made, it's all too tempting to pass up

subsequent opportunities to estimate by simply sticking with your

previous numbers. This often happens even when you know your old

estimates are substantially off. There are a few different possible

explanations for this effect: 'It's too early to show slip' ... 'If I

re-estimate now, I risk having to do it again later (and looking bad

twice)' [14].

As the number of days perceived remaining drops below 1.5*(Hiring

Delay + Assimilation Delay), though, there is reluctance to increase the

workforce level. For example, if the "Hiring Delay" is 40 working days

(i.e., eight calendar weeks) and the "Assimilation Delay" is 80 working

days, then as "Time Remaining" drops below 180 working days, management

becomes reluctant to add new people, even though the effort remaining

might imply (at that point in the project) that more people are needed.

This reluctance, as mentioned above, stems from the realization that most

of these remaining days would be "wasted." When the "Time Remaining" drops

below 0.3*(Hiring Dalay + Assimilation Delay), the particular policy curve

of Figure 3 suggests that no more additions would be made to the project's

workforce. Thus, if the project is behind schedule, project management

would cope with project slippage through adjustment to the completion

date. We term this policy the base case.

One other manpower acquisition policy that we shall term policy (A),

can be defined as follows: At the initiation of the project, estimates are

made of the total effort in man-days (MD) and development time (TDEV).

Based on these, the staffing level is determined; i.e., by dividing MD by

TDEV. People are hired, usually to complement the core project team on

hand at the initiation of the project, until the desired staffing level is

17

reached. Then, the workforce is maintained at that level, with new people

hired only to replace those who quit or are transferred. Such a policy was

also reported by Devenny [15] in his study of software cost estimation.

The simulation results of this policy, together with that of the base

run, are:

Manpower Acquisition Policy Man-Days Duration (Days)

Base Case 3,795 430

A 3,559 488

As the figures indicate, policy (A) leads to a 6% drop in cost.

However, this is achieved at the cost of a larger schedule slip, because

the project takes 13.5% more time to complete. Whether this tradeoff is

made consciously is not clear. However, by foregoing the flexibility of

adjusting the workforce level, this staffing policy leaves little room in

handling any project delays beyond translating them into completion

si ippages.

Under a third manpower acquisition policy we examined, policy (B),

project management is not only willing to adjust the workforce level

(e.g., to account for any initial underestimation error), but is willing

to continue making such adjustments further into the project life cycle

(that is, further than in the base case). This policy is adopted by one

growing software consulting company. The WCWF curve for policy (B) is

shown in Figure 4. The major difference between this and the base policy

of Figure 3 is that the denominator of the X-axis variable is simply the

"Hiring Delay" rather than the sum of the "Hiring Delay" and the

"Assimilation Delay." This, of course, means that policy (B) is a more

aggressive policy in terms of acquiring people. While in the base case

policy management is reluctant to increase the workforce level when the

perceived number of days reT^aining to complete the project drops below 1.5

*(Hiring Delay + Assimilation Delay), under policy (B) this happens much

18

A WCWF

0.3 0.6 0.9 1.2 1.5 Time Remaining

Hiring Delay

Figure 4

Willingness to Change Workforce (Policy B]

19

later in the project's lifecycle (i.e., when only 1.5*40=60 working days

are perceived remaining). This policy is justified, we were told, because

the firm is experiencing an impressive growth rate, fueled by a sizable

backlog of client assignments. Hiring new people into a project that is

"winding down" is, therefore, not inhibited by management since securing

the future utilization of the new people is almost always guaranteed.

The result of adopting such a policy in project EXAMPLE is shown

below, together (for the reader's convenience) with the results of both

the base case and policy (A).

Manpower Acquisition Policy Man-Days Duration (Days)

Base-Case 3,795 430

A 3,559 488

B 4,322 373

As the figures indicate, cost in using policy (B) is 14% higher than

the base case and 21% higher than that of policy (A). On the other hand,

under policy (B) the project takes 13% less time to complete than the base

case, and almost 25% less time than when policy (A) is used. Both the

increase in the cost and the decrease in the duration can be attributed to

a single cause, namely, a higher workforce level that results from the

increased willingness to add people to the project.

Effort Distribution Variables :

In planning a software project, management not only provides estimates

for the project's total expenditure, it also plans the distribution of

this effort among the project's phases. Numerous authors have presented

figures indicating lifecycle resource distributions. A comparison of

several by McKeen [22], indicated that substantial differences do exist,

particularly in the coding and testing phases. Commenting on the

situation, he says: "A major conclusion ... is that we do not possess an

20

adequate understanding of resource consumption behavior over the life

cycle development phases." He studied 32 software development projects,

and found no real support for typical or dominant development profiles at

all.

We now examine the impact of the distribution of effort among the

project's phases in our prototype on project cost. The model has two

effort distribution parameters. The first concerns the allocation of the

project's estimated man-days among the model's two major phases:

development (design and coding) and system testing. In the base case, 80%

of the effort is allocated to development and 20% to testing. The second

parameter is the "Planned Fraction of Manpower for Quality Assurance." In

the base case this is set to 15% i.e., 15% of the development effort is

allocated (in the project's plan) for QA activities during the design and

coding stages.

For our simulation, we selected a second effort distribution profile

that was used in a major auto manufacturer, the 40-20-40 effort

distribution profile i.e., 40% for preliminary and detailed design, 20%

for coding, and 40% for testing. We should note that this 40-20-40 rule is

perhaps the most widely touted rule-of-thumb on the distribution of effort

([20], [10], and [26]). As for QA, the particular organization's software

project teams allocated, on average, 20% of the development effort to

quality assurance.

The result of running project EXAMPLE with this new effort

distribution profile, termed (C), were:

Effort Distribution Profile Man-Days

Base Case 3,795

C 4,443

21

Thus, a change in the effort distribution profile from the base case

to profile (C) leads to a 17% increase in cost. Several factors

contributed to this. The most significant factor is the increase in the

cost of the development phase.

Consider the sequence of steps in planning a project's various

activities (e.g., [7]). First, total man-days is estimated. Based on this,

the schedule is calculated. The two estimes are then used to determine the ^

average staff size. And allocations are then made to the project's various

lifecycle activities. Effort distribution decisions typically come after,

not before, the project's schedule is made. Thus if two different project

managers were to run the same software project and if the only thing that

differentiates the two is their policies on distributing the effort, both

would still initiate their project with the same global estimates. It is

exactly this type of scenario that we attempted to capture in our

simulation. Thus, in both runs the project's total man-day estimate as

well as the scheduled completion date remain the same. But since in

profile C a lower fraction of the manpower is devoted to development work

(because of the increased allocation to QA), a larger team will be

required to meet the schedule. A larger team means larger training and

communication overheads, and hence the larger development cost.

A Final Experiment

In the final experiment, we examined the combined effect of the four

variables on project cost. This is achieved by the following four

adjustments:

1. Setting the value of the "Fractional Time on Job" to 0.5. (The

base case value is I
.

)

22

2. The "Willingness to Change Workforce" is formulated in terms of

the "Hiring Delay," yielding a more aggressive manpower

acquisition policy. [In the base case it is formulated in terms

of the (Hiring Delay + Assimilation Delay).]

3. Allocation of effort among the development and testing phases is

set at 60% development (design and coding) and 40% testing. (In

the base case it is 80-20.)

4. The "Planned Fraction of Manpower for QA" is set at 20%. (In the

base case 15%.

)

The result of this different set of managerial policies is a total

cost of 7,316 man-days. That is, a cost that is almost double the base

case cost of 3,795 man-days.

Conclusion

The implication of the results is clear: because managerial policies

vary from software development organization to another and because they

impact the cost of software development, the portability of software cost

estimation models would be improved if such variables are expl icitly

incorporated in the models' formulations.

Heretofore, the impact that a company's managerial environment can

have on its software development costs has not been quantified. We feel

that our work produced three useful results. First, we have established

that the impact is significant; specifically, we have shown that the

combined effect of four managerial variables can increase the cost of a

software project by at least a factor of 2. Secondly, by quantifying the

23

individual variables' impacts, we have taken a first step towards the

incorporation of such mangerial variables in the formulation of software

estimation models. Such an enhancement would undoubtedly improve the

portability of the models. Finally, we have identified four aspects of the

managerial environment of software development that are significant

determinants of software development cost, and which are, therefore,

deserving of further research.

24

APPENDIX

Software Project EXAMPLE

1. Project Size = 64,000 DSI

2.

25

^^

26

Bibi ioqraphy

[1] T.K. Abdel -Hamid. "The Dynamics of Software Development Project

Management: An Integrative System Dynamics Perspective."

Unpublished Ph.D. dissertation, Sloan School of Management,

MIT, January, 1984.

[2] T.K. Abdel -Hamid. "The Dynamics of Software Project Staffing: A

System Dynamics Based Simulation Approach." Accepted for

publication in IEEE Transactions on Software Engineering . 1987.

[3] T.K. Abdel-Hamid and S.E. Madnick. Software Project Management .

Englewood Cliffs, New Jersey: Prentice-Hall, Inc., to be

published in 1987.

[4] M.R. Barbacci, A.N. Habermann, and M. Shaw. "The Software Engineering

Institute: Bridging Practice and Potential."

IEEE Software . November 1985, 4-21.

[5] K.M. Bartol and D.C. Martin. "Managing Information Systems

Personnel: A Review of the literature and Manaherial

Implications." MIS Quarterly . Dec. 1982, 49-70.

[6] I. Benbasat and I. Vessey. "Programmer and Analyst Time/Cost

Estimation." MIS Quarterly . June, 1980, 31-44.

[7] B.W. Boehm. Software Engineering Economics . Englewood Cliffs,

N.J.: Prentice-Hall, Inc., 1981.

27

[8] B.W. Boehm and R.W. Wolverton. "Software Cost Modeling: Some

Lessons Learned." J. of Systems and Software . Vol 1,

No. 3, 1980.

[9] F.P. Brooks. The Mythical Man Month . Reading, Mass: Addison-Wesley

Publishing Co., 1975.

[10] P. Bruce and S.M. Pederson. The Software Development Pro.iect :

Planning and Management . New York: John Wiley & Sons, Inc.,

1982.

[11] R.G. Canning. "Managing Staff retention and Turnover."

EDP Analyzer . Aug., 1977, 1-13.

[12] J. A. Clapp. "A Review of Software Cost Estimation Methods."

MITRE Technical Report . June 1976, 1-55.

[13] M.E. Conway. "How do Committees Invent." Datamation . April,

1958, 28-31.

[14] T. DeMarco. Controlling Software Pro.jects . New York: Yourdon

Press, Inc., 1982.

[15] T.J. Devenny. "An Exploration Study of Software Cost

Estimating at the Electronic Systems Division." NTIS,

U.S. Dept. of Co.Tmerce, July, 1976.

28

[15] J. A. Farquhar. A Preliminary Inquiry into the Software

Estimation Process . Technical Report, AD F12 052,

Defence Documentation Center, Alexandria, Va.,

Aug., 1970.

[17] J.W. Forrester. Industrial Dynamics . Cambridge, Mass: The

MIT Press, 1961.

[18] R.L. Glass. Modern Proqramminq Practices: A Report from

Industry . Englewood Cliffs, N.J.: Prentice-Hall, Inc.,

1982.

[19] R.L. Gordon and J.C. Lamb. "A Close look at Brooks' Law."

Datamation . June, 1977, 81-85.

[20] R.W. Jensen and C.C. Tonies. Software Enqineerinq . Englewood

Cliffs, N.J.: Prentice-Hall, Inc., 1979.

[21] J. Knutson. "Developing the Project Plan." In Advances in

Computer Proqramminq Management . Edited by T.A. Rullo.

Philadelphia: Heyden & Sons, Inc., 1980.

[22] J.D. McKeen. "An Imperical Investigation of the process and

Product of Application System Development." Unpublished

Ph.D. dissertation, University of Minnesota, 1981.

[23] J.D. McKeen. "Successful Devel opTient Strategies for Business

Application Systems." MIS Quarterly . Sept., 1983.

29

[24] S.N. Mohanty. "Software Cost Estimation: Present amd Future."

Software---Practice and Experience . 1981, 103-121.

[25] G.J. Myers. "A Controlled Experiment in Program Testing and

Code Walkthroughs/Inspections." Comm. of the ACM.

Sept., 1978, 760-768.

[26] P. Oliver. "Estimating the Cost of Software." In Computer

Programming Management . Edited by J. Hannan. Pennsauken,

New Jersey: Auerbach Publishers, Inc., 1982.

[27] L.H. Putnam. "A General Empirical Solution to the Macro

Software Sizing and Estimating Problem." IEEE Jr. on

Software Engineering . July, 1978.

[28] E.B. Roberts (ed.). Managerial Applications of System Dynamics .

Cambridge, Massachusetts: The MIT Press, 1981.

[29] M.R. Tanniru et al . "Causes of Turnover among DP professionals."

Proc. of the 8th Annual Computer Personnel Research Conf..

Miami, Florida, June, 1981.

[30] R.C. Tausworthe. Standardized Development of Computer Science .

Englewood cl iffs, N.J.: Prentice-Hall, Inc., 1977.

[31] R.H. Thayer. "Modeling of a Software Engineering Project Management

System." Unpublished Ph.D. dissertation, University of

California, Santa Barbara, 1979.

30

[32] R.H. Thayer and J.H. Lehman. Software Engineering Pro.ject Management :

A Survey Concerning U.S. Aerospace Industry Management of

Software Development Projects . Sacramento Air Logistics Center,

McClellan Air Force Base, California, November, 1977.

[33] R. Thibodeau and E.N. Dodson. "Life Cycle Phase Interrelationships."

Journal of Systems and Software . Vol. 1, 1980, 203-211.

[34] K.E. Weick. The Social Psychology of Organization. Second Edition.

Reading, Massachusetts: Addison-Wesley Publishing Co., Inc.,

1979.

[35] D.M. Weiss. "Evaluating Software Development by Error Analysis."

Journal of Systems and Software , Vol. 1, 1979, 57-70.

[36] Winrow. "Acquiring Entry-Level Programmers." In Computer

Programming Management . Edited by J. Hannan. Pennsauken,

New Jersey: Auerbach Publishers, Inc., 1982.

[37] M.V. Zelkowitz et al . "Software Engineering Practices in the

US and Japan." Computer , June, 1984, 57-56.

t^53t^
r

03G

Date Due

MAR
1 7 lyau

^ov 28 ms

Lib-26-67

!«"?.

I
c^O&O

00^ 130 7M2

