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Abstract

Consider a feedforward network of single-server stations populated by multiple job types.

Each job requires the connpletion of a number of tasks whose order of execution is determined

by a set of deterministic precedence constraints. The precedence requirements allow some tasks

to be done in parallel (in which case tasks would "fork") and require that others be processed

sequentially (where tasks may "join"). Jobs of a given type share tiie same precedence con-

straints, interarrival time distributions, and service time distributions, but these ciiaracteristics

may vary across different job types. We show that the heavy traffic limit of certain processes

associated with heterogeneous fork-join networks can be expressed as a semimartingale reflected

Brownian motion with polyhedral state space. The polyhedral region typically has many more

faces than its dimension, and the description of the state space becomes quite complicated in

this setting. One can interpret the proliferation of additional faces in heterogeneous fork-join

networks as (i) articulations of the fork and join constraints, and (ii) results of the disordering

effects that occur when jobs fork and join in their sojourns through the network.

KEYWORDS: ioxV-]o\n networks, heterogeneous customer populations, reflected Brownian motion.

non-simple polyhedral state space, diffusion approximations, heavy traffic analysis.

Contents:

1. Introduction and Summary

2. Model Description

3. Representations for Processes of Interest

4. A Sequence of Systems in Heavy Traffic

5. Additional Notation and Preliminaries

6. The Main Results

7. Proofs

8. Concluding Remarks

October, 1992



1 Introduction and Summary

We consider in this paper the class of feedforward fork-join networks with heterogeneous customer

populations. The network, which consists of d single-server stations, is populated by multiple job

types. Each job requires the completion of a number of tasks whose order of execution is determined

by a set of deterministic precedence constraints. The precedence requirements allow some tasks

to be performed in parallel (in which case tasks would fork) and require that others be processed

sequentially (where tasks may join). Jobs of a given type share the same precedence constraints,

interarrival time distributions, and service time distributions, but these characteristics may vary

across different job types. We restrict attention to the case where the network is feedforward: that

is, stations are numbered in such a way that jobs always flow from lower numbered stations to

higher numbered ones.

We present a heavy traffic analysis for processing networks of the type described above. It

was shown in Nguyen [18] that when the customer population is homogeneous — that is, when all

customers share the same precedence requirements, interarrival time distributions, and service time

distributions — the heavy traffic behavior of the network can be approximated by a d-dimensional

semimartingale reflected Brownian motion (.SRBM) whose state space is a non-simple convex poly-

hedral cone in the nonnegative orthant. Unlike the corresponding results for conventional queueing

networks (networks with strictly sequential processing) [11. 12, 13, 19, 20], the number of faces

in the polyhedral region is greater than d. One can interpret the presence of additional faces as

articulations of synchronization constraints embodied in the fork and join constructs.

In this paper, we show that the heavy traffic limit of certain processes associated with hetero-

geneous fork-join networks can also be expressed as c/-dimensional SRBM's with polyhedral state

space. However, the polyhedral region typically has many more faces than its homogeneous coun-

terpart, and the description of the state space becomes vastly more complicated in this setting.

This result is surprising when compared to those a.ssociated with conventional queueing networks,

where the form of the limiting process does not change with the presence of multiple customer

types (this is a result of the "state-space collapse" phenomenon) [19, 21]. One can interpret the

proliferation of additional faces in heterogeneous fork-join networks as results of the disordering

effects that occur when jobs fork and join in their sojourns through the network.

Processing systems that are characterized by parallel as well as sequential processing exist in

many industrial settings. Readers may refer to Baccelli and Makowski [5], Avi-Itzhak [16], and

Nguyen [18] for a survey of several interesting applications. The generalization of [18] to allow

multiple job types constitutes an important extension from the practical point of view. Most current

treatises of fork-join networks assume that all customers are statistically similar [5]. Baccelli and

Liu [4] consider a fork-join network in which a job may send batches of tasks (that may include

more than one task) to processing stations, and jobs of different types send batches of different

sizes. Baccelli and Liu still assume, however, that all jobs share the same feedforward deterministic



routing structure. Such a model can represent, for example, systems in which some processing

stations are capable of performing more than one kind of task; Baccelli and Liu are motivated by

multiprocessor systems running parallel programs.

The recent works by Adler, Mandelbaum, Nguyen, and Schwerer [1, 2. 3] propose a processing

network model for studying new product development. The model they describe, which they simply

call a "processing network model," is more encompassing than the class of fork-join networks

studied here. The key restriction in this paper, which is not assumed in [1, 2, 3]. is that jobs must

visit workstations in a feedforward manner. The possibility of feedback in the network is yet an

important generalization that must be considered in future work. However, as the work by Adler,

Mandelbaum, Nguyen, and Schwerer demonstrates, heterogeneity in the customer population is an

essential characteristic that must be captured.

The paper is organized as follows. We give a formal description of the model in Section 2 and

define the processes of interest Section 3. In order to state the heavy traffic limit results for these

processes, one must refer to a "sequence of systems." Section 4 defines such a sequence. Before

stating the heavy traffic limit theorems, we introduce some additional notation and preliminary

results in Section 5. The main theorems are then summarized in Section 6, where we also illustrate

the heavy traffic limit theorem for several special cases. The proof of these theorems are then given

in Section 7. Finally, some concluding remarks are given in Section 8.

We end this section with some technical preliminaries. The space D'^[0,cc) is the r-dimensional

product space of functions / : [0,oc) -~ W that are right continuous on [0, >c) and have left limits

on (0,oo). The space C^fO.oc) is endowed with the Skorohod topology [6]. For ,V" a sequence

of processes in D'"[0,oo) and A' G D''[0.oo), we write A'"^=>A' to mean A"" converges to X in

distribution.

For / : [0,.Do) ^ >R, set

WfWt = sup |/(.)|,
0<J!<(

and for a vector-valued function / = (/i, /2, . /r
)'

: [0, oc) — 9?'", we let

|t = (ll/l||<,..-,||/r|lt)'.

A sequence of functions {/"} converges to a function / uniformly on compact .sets (u.o.c.) if for

each t > 0, ||/" - f\\t ^ as n — oc. For a sequence of functions {A'"} on D'"[0, >: ) and A a

process in D'"[0,oo), we write A'" — A' u.o.c if almost surely, .V" converges to A' uniformly on

compact sets.

In our heavy traffic limit theorems, the weak limit obtained is a .semimartingale reflected Brow-

nian motion whose state space is a polyhedral cone in the nonnegative orthant. A Brownian motion

process having drift vector d and covariance matrix P will be denoted as (0, r)BM; likewise, a semi-

martingale reflected Brownian motion with these drift and covariance parameters, reflection matrix

R, and state space is S is denoted as (5, ^, P, /?)SRBM.
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Figure 1: Tasks and Precedence Constraints of Two Job Types

2 Model Description

The network under consideration consists of d single-server stations and iiosts p types of jobs. Jobs

of type q arrive to the network at rate a,. Each type q job requires completion of a number of

activities. Hereafter, we refer to a job-type/activity pair as a task or a class interchangeably. Task

k receives service from station _;' = s{k), and we denote by r^ the mean service time for task k.

Letting Aq denote the set of tasks (or classes) in job type q, set

A = AiU.. .UAp - {1 A'}.

Our convention will be to index workstations by i.j = I. . . . ,d. job types by q.r — 1. . .. ,p, and

tasks by fc,/ = 1, . . .
, A'. For notational convenience, we define A^ = a, for all tasks k £ Aq and we

write q{k) to mean the job type q for which k £ Aq

The order in which tasks are executed is determined by a set of deterministic precedence con-

straints, which are articulated by way of a A' x A' precedence matrix P = (Pyt/) defined as follows:

'it;

_ j 1 if task k is an immediate predecessor for task /

otherwise.
(2.1)

(Because all elements of the precedence matrix P are zeros and ones, routing of tasks is clearly

deterministic within each job type.) We assume that there exists a column and row permutation

of P such that the resulting matrix is strictly upper triangular. In terms of the model, this means

that each tcisk is performed exactlly once and is never repeated. From the precedence matrix P,

we can now define the set of immediate predecessors as

V(i) = {keA Pki = 1}. (2.2)

From the modelling point of view, V{1) is the set of tasks that must be completed before task / can

begin.



Figure 2: Tasks and Precedence Constraints of Two Job Types

For the two job types depicted in Figure 1, A\ = {1,2,3,4}, ^2 = {5.6.7}, 'P(4) = {1.3}. and

the precedence matrix P is given by

^0001000
10
10

P= 0000000
1

1

We allow tasks to map to stations in a many-one-to fashion, implying that while each station

may be capable of performing several types of tasks, each task is performed at exactly one station.

We define the constitutency of station / = 1 . . . , r/ as the set of tasks tiiat are served at station i:

C(i) = {keA -.sik) = /}. (2.3)

We write c(i) to mean the cardinality of the constituency set Cii). Next, define the predecessor

and successor station mappings for station _; = 1 . . . , J as follows:

Tr(j) = {i = s{k):h<£V{l),l€C{j)}^

a(j) = {i = s{k) iev(k).tec(j)}.

(2.4)

(2.5)

That is, k{j) denotes the set of stations whose output feeds directly into station j, analogously,

a{j) is the set of stations that receive input from station j In conjuction with the predecessor and



successor station mappings, we now define a d x d 'routing'" matrix IP = IP,j whose elements are

given by
'

1 if/GT(j)
IPu =

i ,
(2.6)

otiierwise.

We assume that there is a column and row permutation of IP such that the resulting matrix is

strictly upper triangular; in terms of the model, this means that we assume jobs traverse the

network in such a way that jobs never return to a station it previously visited. In addition, this

condition implies that there are no precedence constraints among the tasks at each station. This

constitutes the feedforward routing assumption stated in Section 1.

It will be useful to think of new arrivals to the network as originating from a "dummy" station

0. With that interpretation in mind let us define for each job type q

A° = {i-G A, ; P/t = Ofor all /e A,} (2,7)

Al = {keA,:Pki = OkrMleA,}. (2.8)

Clearly, processing of a type q job begins with those tasks k G .4° and ends with the tasks k £ A^.

Next, set V{k) = iiV{k) = (or equivalently if t G >l°(<:)). let s(0) = 0, and redefine (2.4)-(2.5)

accordingly. Finally, we define

<T(0) = {/:^(i) = {0}}.

Thus, the stations in (t(0) receive only external arrivals and the feedforward assumption guarantees

that cr(0) ^ 0. Figure 2 shows how the two job types depicted in Figure 1 are processed in a network

consisting of four workstations. For this example, we have 7r( 1 ) = 7r(2) = {0}, 7r(3) = {0,2},

7r(4) = {1,3}, and a{0) = {1,2}.

A node j is said to be a fork node if it contains a task k G C{j) such that k G 'P(0 for more

than one task / . Similarly, station j is join node if 'P{k) contains more than one element for some

constituent task k G C{j). At a join node, a type k task is said to be complete, or a unit, if all of

its predecessors / G Vik) have completed their service.

We assume that tasks are served at each station in a FIFO manner. At nodes that do not

involve a joining of tasks, this simply means that the tasks are served in the order of their arrival

to the station. At join nodes, the arrival time of a (complete) task is defined to be the time at

which its last predecessor completes service. Note that such a service discipline considers only

local, or station-level, information. For the special case of fork-join networks with homogeneous

customers, we argued in [18] that such a policy is equivalent to the global scheme of serving tasks

in the order of the arrival of their associated jobs. In this setting, where different customer types

traverse different routes through the network, one oiiserves a fundamentally different phenomenon.

In particular, a task corresponding to a later arrival may enter a downstream station before those

tasks associated with earlier jobs. For example, consider the scenario depicted in Figure 3, which

shows the status of five jobs in their intermediate stages of processing. The network contains three
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Figure 3: A Fork-Join Network with Jobs in Intermediate Stages of Processing

type 1 jobs and two type 2 jobs, which arrived to the network in the order 1, 1,2, 1,2. Each job

type follows the routing requirements described in Figure 2. We ask the reader to focus attention

on the buffer between stations 3 and 4, hereafter referred to as buffer (3,4). Note that the first type

2 job (the third job to arrive to the network) has overtaken the first two arrivals and is the first

job to reach buffer (3,4). Moreover, if server 1 completes his next task before server 3 can finish

his, the first job to be processed by server 4 will be the type 2 job. The policy of serving tasks in

the order of their arrival to a station may therefore result in serving jobs out of order. Moreover,

a downstream station may incur delays due to the need for resequencing tasks (for example, if the

station is a join node) that were overtaken by other tasks at upstream stations (for example, due to

forks). In Figure 3, for instance, server 4 must remain idle even though each of his incident buffers

is nonempty. In this paper we investigate how such a disordering is manifested in the heavy traffic

limit.

3 Representations for Processes of Interest

To construct the basic stochastic processes associated with the fork-join network, let us assume a

probability space (fi, J", P) on which are defined .sequences of unitized random variables {»,('), ' >

1} and {vk(i),i > 1}, q — l,...,p, k = 1 A', where u,(i) and i;jt(i) are strictly positive with

unit mean. As will be explained in the next section, we require very weak assumptions regarding

the joint distribution of these sequences of unitized variables. However, readers may find it iielpful

to think in terms of the concrete case where each is a sequence of i.i.d. random variables and



the sequences are mutually independent. From these sequences, the interarrival times and service

times for the network are constructed by setting the interarrival time for the / job of type q to

be a~^Ug(i). and the service time for task k of this job to be r;^- 1 7,- (
/

) . Recall that q\j is the average

arrival rate for new type q jobs and r^. is the mean service time for task k. Also recall that A;- = a,

for each k E Ag-

To construct the external arrival process for type q jobs, set Uq(0) = and define

Nq{t) = max{m : 2J a^ '"^(0 < i}

1=0

For k = 1, ... A', let \]:(t) be the partial sums process associated with the service times for tasks k,

[t]

Next, define for each k £ C{j) and j = 1, . . .
,
d,

L,Ut) = Vk(Ng^k)(t)) = u-n-( 1) + + nv^,{^\^,^(f)), k e C(j). (3.1)

The process Ljk(t) is called the class k total workload input process for station _;; it is the sum of

all task k service times associated with those jobs that enter the network during [0,/]. Note that

Ljk{t) includes service times corresponding to tasks that may not arrive to station j until after

time t. Set

\keCu) j

because t is the potential amount of work that can be processed in t units of time, ij{t) is the

difference between the workload input and the potential workload output, and for this reason it is

called the total workload netflow process at station j.

Let us choose an "external" station j G cr(0), fixing j until further notice. For each k G C{j),

set Ajk{t) = ^q{k){^)- Next let Mjk(t) = Ljk{t) and A'j(/) = <,j(t). Because station j hosts only

external arrivals, Ajk(t) is the number of task k that has actually arrived to station j by time t.

Similarly Mjk(t) is the amount of task k work that has arrived to station j in [0,/] and Xj[t) is the

corresponding immediate workload netflow process at this station.

From Section 2.2 of [10], we can verify that the processes Wj and Ij are uniquely defined by

the following three statements:

Wj(t) = Xj(t) + !j{t)>0 for all/ > 0; (3.3)

Ij{-) is continuous and nondecreasing with lj{0) = 0; (3.4)

Ij(-) increases only at times t when Wj(t) = 0; (3-5)



moreover, Ij is given by the continuous mapping

/,(/) = - 'nf{-V,(s)}-. (3.6)
0<s<t

One interprets Ij as the cumulative idleness process for server _;' and Wj as the immediate workload

process at station j. That is, Wj{t) corresponds to the sum of the impending service times for

(complete) tasks waiting at station j at time /, plus the remaining service time of any task that

may be in service. If we define Zj[t) to be the total amount of work for server j that is present

anywhere in the system at time t, then

Zj(t) = ^j(t) + I,(t), (3.7)

and Zj{t) = Wj{t) as a consequence of j G o'(O). Hereafter we refer to Zj{t) as the total workload

process for server _;'.

Next, let r]j[t) be the arrival time of the customer in service at station j at time t if Wj(t) > 0.

and set r]j{t) = t otherwise, letting Yjkit) be the amount of time server _;' has spent serving tasks

k in [0,t], it follows from the FIFO service discipline at each station that

YMt) = MMnAi)) + en{t), (3.8)

where eijfe(0 's the amount of service the current task has received if that task is of class k and

€ik(t) = otherwise. As a matter of definition, qj(t) is bounded by the immediate workload process

as follows:

Wjirjjit)) < t - n,{t) < \V,{r^J(t)) + e2j{t). (3.9)

where e2j(0 = if Wj{T]j(t)) = and otherwise e2j(0 's the service time of the customer currently

occupying server j. Letting Sk = {Sk(i)J > 0} be the renewal process associated with the task k

service times {T^Vkil), TkVk(2), . . .}, the number of tasks k to have departed from station j by time

t, denoted as Djk(t), is then given by

Djkit) = Sk{Yjk(t)). (3.10)

Finally, defining Ujk(t) to be the the total amount of partial work associated with tasks k that is

present anywhere in the system at time t, it follows from the previous definitions that

Ujk(t) = Ljk(t)-yjk{t). (3.11)

Moreover, it is a trivial consequence that Zj{t) =
II;.p(^'( )

Ujk{t)-

In an inductive manner, these definitions can be extended to all stations in the network. Con-

sider a station _;' such that all immediate predeces.sor stations have been "treated", that is, if j € ^(j)

then for each / e C(j) the processes A',(<), W,(t). l,{t). Z,{t), D,i{t), and U,t(t) have been defined.

For each task k £ C(j) one defines its arrival process to be;

A,k{t)= {
''^' '''^'

(3 12)
I m\n,^p^^.^D,^l),(t) otherwise.



One can interpret Aj^it) as the number of complete tasks k that have arrived to station j by time t.

(We take the convention that work is associated with complete tasks, so incomplete tasks present

no work to the server.) The immediate workload input process and immediate netflow process for

station j are defined, respectively, via

Mjkit) = VkiAjkit)) = rt [(^.(1) + . . . + r;.(.4j;..(0)] (3.13)

and

-v,(o =
(

\

\keC{j) J

The workload process Wj, the idleness process Ij, the total workload process Zj. the departure

process Djk, and the partial workload process Ujk are then defined exactly as in (3.3)-(3.11). The

vector processes A'^, V^. L, .4, .U, A', W , /, Z, D, and U are then defined in the obvious manner.

The throughput time of a job is the length of time between the job's arrival and its subsequent

departure from the system. Let Tg(t) be the throughput time of the next type <] job to enter the

network after time t. The intermediate process Tfjf.(t), k 6 Aq, is defined to be the "throughput

time through task t," which is the amount of elapsed time until task k is completed. As a matter

of definition, we have the relationship

Tq{t)= max{T,i(0}.

To define the intermediate processes Tgk(t), we first define for each job type q the process

%{t) = a;' u{l) + + a-'u(\{t)) + a;'u{Nq(t) + I),

interpreted as the arrival epoch of the next type q job to enter the network after time t. For each

task k G A°, let

$,fc(f) = 4>,(0 and

Because a type q job begins immediately with tasks k G >^°, ^qk(i) 's the arrival time of this task

to station s{k). Furthermore, because tasks are served in a first-in-first-out manner, the amount

of time this task must spend at station s{k) is precisely the amount of work found at station s(k)

immediately after its arrival (which includes the service time associated with the new arrival). Thus

Tqk{t) is the total sojourn time of the job through task k.

For other stations in the network, the random processes 4>,i.(0 and T,a.(0 are inductively defined

as follows. Suppose that k is a task such that T,/(/) has been defined for each / 6 V{k), and .set

$,/,(«) = <!',(<)+ max 7^^,(0 (3.15)
l€V[k)

Tqkit) = ^nmxTqi{t) + W,(k^{^qk{t))- (3-16)



Recall that the arrival time of a task is the time at which its last precedessor task is completed. (If

task it requires a join, there could be a gap between completion times of its multiple predecessor

tasks.) Thus, maXi^-p,i^.Tgi{t) is the amount of time that elapses until task k •arrives" at station

s(k), ^qk{t) is precisely its time of arrival, and Tgk{t) is the throughput time through task k.

4 A Sequence of Systems in Heavy Traffic

The limit theorems stated here apply to systems that satisfy conditions of "heavy traffic." For

it G C{j), let pjk — AfcTt be the workload factor at station j associated with tasks k, and define the

total traffic intensity at station j to be

keC(j) keC(j]

The system is said to be stable if pj < 1 for j' = 1, . . . , J, and it is said to be in heavy traffic if pj is

"approximately" 1 for each j. The precise formulation of our heavy traffic limit theorem requires

the construction of a "sequence of systems," indexed by n, whose corresponding traffic intensities

pj converge to 1 for all j.

Recall that the interarrival times and service times for the network are defined in terms of

the basic sequences of unitized random variables {uq(i) : / > 1}, {('/;(/) : ' > 1}, 9 = 1. . ,p,

k = 1, . . . , A'. To construct a sequence of fork-join networks we further require sequences of positive

constants {oiq , " ^ l}i {'"t
,n>l},q = \,...,p,k — l,..,K. In the n system of the sequence,

the interarrival times and service times are taken to be Uq (i) = ii,(!)/ag and i^" (') = ^ ^fc(')'

respectively. For the n*^^ system, a, is the arrival rate of type q jobs and r^." is the mean service

time for task k. Setting AJ." = a, for k £ Aq, define the traffic intensities p'" as in (4.1) using

X]^ and ^ in place of Xk and Tj.

The convention here is to denote a parameter or a process a.ssociated with the n"* system by

the superscript "(")"• For example, Nq refers to the external arrival process for type 7 jobs in

the n system. Define the centered processes

ir\t)



It is assumed that the following conditions hold for the uiput processes of the network. First,

fc
- ^/c and r^.the arrival rates and mean service times converge to finite constants, Aj. —• Xf. and n" — r^.

In)
k = 1, . . .

,
A'. This implies that p -^ p^ —

Z];.pC( )
'^*'"''*-- Furtiiermore, it is assumed that there

exists a d- vector 9 = {dx , ... ,64) such that for each j — 1, .... d, — cc' < 0j < >c and

ni/2(p(")_l) —-Oj as n - oc. (4.2)

Condition (4.2) is called the heavy traffic condition. It requires not only that p^ = 1 at each station,

but also that the rate of convergence is "'sufficiently fast" and is uniform for all stations. Finally,

it is assumed that there is a d x d covariance matrix Q such that the following functional central

limit theorem holds as n ^ cxd:

(iV",l/",L")=>(,VM'*,L*),where L' is a (0,^) Brownian motion

and jV*, V are also Brownian motions with zero drift. (4.3)

To explore the implications and restrictions of assumption (4.3), write the scaled netflow process

(3.2) as

^;(<)- E i,\.«) + n'/'(p;"'-i)/.

fceC'(0

It follows from (3.1)-(3.2) and a.ssumptions (4.2), (43) that

i;;-(0 = V:{\ki) + TkN;^^p), and (4.4)

Cj{t) = Yl ^Jfc(0 + ^j<. (4.5)

keCij)

Defining the d x c constituency matrix C with elements

/ 1 ifkec(i)
C,k = S ,,

,

(4-6)

(_
IJ otherwise

and setting

r = CQC, (4.7)

one can conclude that

(Ar",K",L",,e")^(^*>'*,L',r). vvherer is (^.r)BM. i^-^)

Next, recall that Sk is the counting process associated with the partial sums process I4. From

Theorem 1 of [14], (4.3) implies that

S]:^-T-^^h'^. (4.9)

Finally, consider the special case in which {uq{i),i > 1} and {vk{i},i > 1}, are mutually

independent sequences of i.i.d. random variables such that Ug(i) and Vk{i) have squared coefficients

11



of variation c^. and c^^^ respectively (the squared coefficient of variation of a random variable is

defined to be its variance divided by the square of its mean). Then A'," is a renewal process with

rate A, , and a simple application of the functional central limit theorem for renewal processes [6]

proves that Ng =^N^, where A^^' is {0, Xc^g)BM.. Because L ^ is a compound renewal process, L"

converges to (0,n)BM by Theorem 2.1 of [23]. In particular, the covariance matrix is of the form

Qu

^fc^'(d- + <(t))



.1 \\. . ;. -1 ./././'-2where /i = 1, . . . , c(/); I2 — 1 c(s(x'( )); . . .; //,_i = 1 c[s[x^~^
^ _ )), and we take the

convention that c(0) = 0. For a station i with depth greater than or equal to h and x ^'T (/), we

define the set of indices

C\x) = {/ = (/, lk)-h = l c(0;/2 = l c(s(r,\)) : ...;

In addition, let

r^'-tx) = {/ = (/i, ...,/,) e £''(x) : s(xf, i^ ) = j}. (5.5)

Taking the network in Figure 2 as an example, we have d(4) = 2 and T (4) = (w.x.y,:) where

w^ = (1,5) w'i = (0,0) u^^ = (0,0)

x^ = (1,6) 2-? = (2,0) x] = (0,0)

y' = (3,5) y? = (0,0) y| = (2.0)

zi = (3,6) z? = (2,0) -I
= (2,0)

For the moment, consider x £ T (4), for which we have

(5.6)

£2(1.) = {(1,1), (1,2), (2,1), (2,2)}

Cjix) = {(1,1)}.

One may think of each element x £T ''*(/') as describing a "path" of tasks traversed by the various

job types on their sojourns towards station )'. Moreover, Cj(x) identifies the particular "branch(es)"

in the path i that would include a visit to station _;'. Using the notation established above, the

following lemma can be verified directly.

Lemma 5.1 For each station i =,. . . ,d and 6/^; a sequence of numbers associated with tasks kj,

= max ^ b^.V max bki

6 The Ma,in Results

Theorem 6.1 Suppose thai assumptions (^.2) and (^.3) hold. Then

(C ir
, z" , M/" , r )=>[C , v , z' , w ,

r ),

where for each i = I, . . . ,d and k G C{i): U^ = 0,

^'' is a {d,r) Browman motion; (61)

13



'- s{l)l

U'k = P,k Z' + max max
U'

teV(k) Ps{l)i ^n, . \neP[m) P,[n)n

/* is continuous and non decreasing with /'(O) — 0,"

/' increases only at times t with W'(t) = 0.

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

Set

if i- = or / = 0, otherwise

7fc/ =
I

l-Ps(k)k- 'fi--/. (6.8)

-Ps{t)h if i- 1^ I

For notational convenience, we henceforth write s'" to mean six]"- , ). Denoting bv h the depth

of a station i, define for each x £ T (i) and ji' = 1 . . .
, d the following factors:

+ E (6.9)

We then define the convex polyhedral cone S to be

d

^ = n <;
-- = ( '1

, ,
^d)' -'. - E ^u(-^-)-i ^ (6.10)

lev (i)

It is eeisily verified that 2 > if r € 5. For each / = 1, . . . , cf, we also define the boundary set

d 1

Theorem 6.2 For each i — 1 d,

F'= (J ce5:r, -^/i„(x)r, =0
d(.). . I J = i

(6 II)

^' is a (5, F) Brownian motion;

W: = Z:- max \'^l3„(x)Z'];

/* is continuous and nondecreasmg with /,'(0) = 0.'

/' increases only at times t with Z'{t) G F'

.

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

14



That IS, the process Z' as defined in Theorem 6 1 is a d-diinensional SRBM whose state space is

a convex polyhedral cone S- The SRBM Z' has drift 6, covariance matrix F, and reflection matrix

R = I where I is the d-dimensional identity matrix.

Remark: The results of Nguyen [17] may be applied to show that such an SRBM is well defined

in the strong sense.

To interpret Theorem 6.2, note that statements (6.13) and (6. 15) are reiterations of the charac-

terizations given in (37) and (3.4), respectively. Moreover, the approximation (6 12) of the netflow

process by a Brownian motion was justified in Section 4 under assumptions (4.2) and (4.3). Next,

recall that each element x £ T '''(/) describes a ''path" of tasks traversed by the various con-

stituent jobs on their way to station /. Equation (6. 15) states that the immediate workload at

station i is the minimum amount of work found among all the "paths" leading up to station i.

In other words, (6.15) articulate the constraint that a task at station i cannot be processed until

all of its precedessor tasks have been completed (this is the definition of a join node). With this

interpretation in mind, statement (6.16) is then equivalent to (35). Thus, each idleness process

is associated with potentially multiple boundaries on the state space 5. In Nguyen [18], it was

argued that the additional faces correspond to the fork and join constraints in the network. As we

will demonstrate in an example, the polyhedral state space associated with heterogeneous fork-join

networks typically has many more faces than its homogeneous counterpart. These additional faces

may be interpreted as results of the disordering effects that occur when jobs fork and join in their

sojourns through the network.

Example 1: The Sample Fork-Join Network

The heavy traffic limit of the network pictured in Figure 2 is given by

4' is a (^,r) Brownian motion;

/* is continuous and nondecreasing with /*(0) = 0;

/* increases only at times t with Z'{t) = 0, / = 1,2;

I^ increases only at times t with Z^{t) — p33Z2{t) — 0;

I^ increases only at times t such that one of the following conditions hold:

Z;it) - Zj (0 = 0, OR

Z;{t) - (p^,p:ie - P47P33)Z2it) - Zlit) = 0, OR

Zlit) - P44Z:(t) + P47P33ZUt) - P47Z^(t) = 0, OR

^4(0 - P47Z'(i) - P44P36Z2{t) - P44^3(0 = 0.

15
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Example 2: Multiple Customer Types with Common Routing Structure

Consider a fork-join network in which all customers share the same routing constraints, but the

interarrival times and service times may be different across job types. This class of networks

correspond to a particularly simple case of the networks considered in this paper. For stations

j G cr(0), it follows from (6.5) that U'f. = pikZ* - By induction on the depth of stations, one can

verify that equation (6 5) becomes

U'k - PikZ' + Ptk niax 2",,, - /3,fc 51 ^"" "iP' ^'m- (6-26)

meC(i)

Because all customer types share the same the same routing structure, the sets {s[n) : n G V(rn)}

are identical for each task m G C{i)- Hence the last term on the right side of (6.26) is equal to

-Pik

and equation (6.26) reduces to

/

\meC{i)j

p,m max Z* = -p,k max Z'

U:k = P.kZ:

Hence, for z = 1, . . . , d and k G C{i),

^* is a (0, F) Brownian motion;

W' = Z' — max Z';

U'k = PikZ'\

/' is continuous and nondecreasing with /'(O) = 0;

/' increases only at times t with [V'(t) = 0.

Fork-join networks with one customer type (that is, homogeneous fork-join networks) are clearly

a special subset of the networks discussed in this section. It is straightforward to verify that the

results above agree with those given in Nguyen [18]. I

Example 3: Feedforward Multi-Class Queueing Networks

Consider now the feedforward multi-class queueing network studied by Peterson [19]. The networks

described in Peterson [19] are essentially similar to those considered here with one important

exception: The networks in [19] require that Vlk) contains at most one element for each task k\

that is, there are no join nodes. (Peterson's work does not explicitly consider the case in which

17



tasks may fork, but the inclusion of the forking structure would not pose much hardship to his

analysis.) Recall that Z'{t) = YlkeCii) '-''fcO- hence equations (6.2)-(6.5) imply

Pik W' + max
^%)i

leV(k) Ps(i)i

z' = \v:{t)+ Y. "^^-^ p'^

k^C[x)

f'Tt/,/

i^Vik) Ps(l)l

(6.27)

(6.28)

We denote by p(/t) the one predecessor task of task k, and efine p(0) = 0. Setting p^(k) = p(t).

we recursively define p^{k) = p(p''-i(fc)). Letting Uqq = IV'J = 0, equations (6.27)-(6.28) thus

reduce to

u:. Pxk W' + ^^'<P'"^))P'(^)

Ps(p'{k)]p'(k)

z: = w:{t)+ Y. ^-

^'
s(pHk))p^ ik)

Similarly to the previous example, we can use induction to show that for a station ;' of depth /i,

h

9= 1

z: = w:{t) + Yl E M-in'(p«(.))-

Readers can verify that this agrees with the result obtained by Peterson [19]. I

Theorem 6.3 Under assumptions (4.2) and (4.3), {T^, . . . ,T^)=^(T{ , . . . .Tp) where

r;(<) = maxr;,(<),
keAl

T;,{t) = max T,'(0 + tV-,), T;o(/) = 0.

ieV{k)

If we denote by /, the PERT/CPM "longest path operator'" for type q jobs. Theorem 6 3 implies

the representation

^;(0 = ',(w;,,),teA)- (6-29)

As discussed in Nguyen [18], expression (6. 29) is an example of Reiman's "snapshot" principle [20].

That is, in the heavy traffic scaling, the fluctuation in workload levels is insignificantly small relative

to the length of time that a job spends in the system, hence a "snapshot" of the system at the time

of a job's arrival remains representative throughout the job's sojourn in the network. Equation

(6.29) expresses the remarkable result that sojourn time analysis of a fork-join network may be

phrjised in terms of the familiar longest path analysis of PERT/CPM methods, where traditional

task times are now replaced by waiting times at stations corresponding to the tasks.

18



/ Proofs

By Skorohod's representation theorem and the continuity of Brownian motions, we can and will

assume that the convergence in (4.3) is almost surely uniform on compact sets: that is, we henceforth

assume

{N',V',L') - (N',V',r) u.o.c. (7.1)

We begin the proof of Theorem 6.1 with a few preliminary results. The first lemma is an immediate

consequence of assumptions (4.2) and (7.1).

Lemma 7.1 ^" ^ ^' u.o.c. where ^' is a (^, F) Brownian motion where F = CClC

Lemma 7.2 For fc = 1, . .
. , A', j = 1 d, let €^i^{t) = n-^^^e['l\nt) and €^j{t) = n-^/^€^^]\nt).

Then f"^ —«• and €2, ~^ u.o.c.

Proof. Note that

and

0<fll.'(O< max r<"'ufc(/)

0< 4'^*(*) < max max r|."'(.;i(;)

The lemma follows directly from assumption (7.1) and Lemma 3.3 of Iglehart and Whitt [15]. I

Let r7j(f) = ^-^'"'("0 and r]'^(t) = n'^l'^int - rjj"'(nf)).

Lemma 7.3 If Wf — W* u.o.c, then rj" — e u.o.c where e(i) = /.

Proof. Because r7"(f) < t, it follows from equation (3.9) that for each / > 0,

l|e(-)-'7;(-)||* < n-'/'||tV;(r?-(-))l|t + "-'/'lk5(')llt

< n-i/2||VV7(.)||, + n-'/'||£5(.)||t.

From Lemma 7.2 and the assumption that l-V'" — W' u.o.c, it follows that ||e() - »7"()||( ^ 0. I

Lemma 7.4 If W^ — W' u.o.c, then r]^ -- Wj' u.o.c.

Proof. It follows from equation (3.9) that for each t > 0,

\\ri;(') - w;n\\t < \\w;{-) - py;(-)||« + W^(n^{-)) - K(-)\\t + Mi-)\\t- (7.2)
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As a result of Lemma 7.3 and the continuity of W' , the first two terms on the right side of (7.2)

converges to zero. Invoking Lemma 7 2, one concludes that rj^ -~ IVJ u.o.c. I

The proof of Theorem 6.1 proceeds by induction on the depth of stations. \Ve begin with the

following result for stations of depth 0.

Lemma 7.5 Theorem 6.1 holds for all stations of depth 0. namely, stations j £ cr{0).

Proof. Note that V(k) = for each task k £ C(j) when j 6 cr(0). Because A'^" = ^^ for

j G ''(0), it follows from Lemma 7.1, equations (3.3), (3.6), (3.7), and the continuous mapping

theorem that {Xf, W]", q, Z^) — (X', WJ,I^,ZJ) u.o.c. where XJ = ^;, i;{t) = - info<,<( A';(s),

W;{t) = X;{t) + /;(0, and Z;(0 = ^;(t) + I-{t). Because

U^,[t) = L^,{t) - L;,(»7;«)) + P%^r,j(t) - e^i)^

it follows from Lemma 7.2, Lemma 7.4, and the continuity of L'f. that
('J^.

— U'). u.o.c. where

U\{t) = pjk^'{t) = pjkZ'At). Joint convergence of the processes of interest is a natural conse-

quence of their continuity. I

Proof of Theorem 6.1: Define

Y^l(t) = n-i/2(r;;'(n0-p;:'0 and y;,(0 = r,-iy;';*(n<),

and note that as a consequence of (3.11),

y,",(0 = L,",(0 - (7,(0. (7.3)

With Lemma 7.5 we may assume inductively that the convergence in Theorem 61 has been estab-

lished for all stations with depth h or less. Consider a station j with d(j) = h -\- \. For each task

it G C(j), it follows from (3.12) that

AU^) =
{

Mfc)(t) if^(t) = 0,

^"/eT'tfc) \s:(,),iy:(,),it)) + ^;on(/)/(o| otherwise.

(Note that A*; = A, for all / G Vik).) Setting ^"^.(t) = n-M^2*("0. equation (3. 13) gives
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Because d(s(/)) < h for all tasks / G V(k), it follows from (73) and the induction hypothesis that

^s(l)i
-^

K{l)l "oc- where V;,,),!*) = Ll^yit) - t7,,);(i). and YJ^^^^ - p,,,,, e u.o.c. where that

e{t) = t. Consequently, if V{lc) ^ 0, M^f. — MJf. u.o.c. with

M;,(t) = K;(A,.0+r, mm {-i",-'^' V','
(P.(0/0 + ^r' i:(/)/(0 - rr^f'^OiiO}

;e7'(Jt)

n*(^fcO+ ^fc nim {-r-H7(A,/) + rf^ (r,'(A,/) + rjAT*;)!/)) - ^r'

^

's'/He)}

= V:{Xkt) + ^fciVV)(f) - Tfc nnax ^^n^, (7.4)

where the last equality follows because q(k) — q(l) for / G Vik). On the other hand, if P(A-) = 0.

we have M"^ —* M*;. u.o.c. with

M;; = V';(A,/)+rtA-,)(f).

Applying the continuous mapping theorem to equation (3.14), A'" — A'* u.o.c. where

^'(i) = E (^fc'(^/cO + r,A^;,)(o)- E %a-^ 7f';m/(^) + ^/

= Cj{^) - E ^j*^ "^-'*^

and we use the convention that max = 0. That (WJ'.P.Z") — (\V' , I' . Z') u.o.c. is again a

consequence of the continuous mapping theorem by virtue of equations (33), (3.6), and (3.7). All

that remains is to prove the convergence of U^ . From Lemma 73 and Lemma 7.4, we have 17" -~ e

u.o.c. and t)" — W* u.o.c. Consequently, it follows from (3.8) that

YJ'it) = M;,(;7;(0) - P%''v]{t) + e-,,{t),

from which we can conclude V" — Y* u.o.c. where

Y;(t) = M;,(t)-pjkW;{t). (7.5)

Because U^^i^) = L'Jf.{t) - YJl{t), it follows from (7.4) and (7.5) that
[/J\.

— U'^. u.o.c. and

u;,{t) = L',(t)-T;,[t)

= L]f,(t) - (v;r(A,0 + rkN'^,^{t)) + Tk max -^^^^^ + PjkWJit)

= PjkZ (t) + Pjk max pjk > Pjm max .

leV{k) Ps(l)l p, . neV(m) Ps{n)n
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Proof of Theorenj 6.2: Define fki as in (6.8), and rewrite equation (6.5) as

U'k = P,k
rym , V^

I
s{n)n

Z, + 2^ 1km [
max

^p, . \yieP(m) Ps{n)n
met(i)

7.6)

Recall that a], I = 1. . . . .c(i). enumerate the elements of C{i). Applying Lemma 5.1 to (76). we

obtain

U:, = p^k Z:+ max 1^^ -ii£iifi|
. (7.7)

X6T(0 \ ;^j
' Ps{x,)T,

Similarly, equation (6.3) is equivalent to the following expression as a result of Lemma 5.1,

A, =^, - max l^P^a'.-
r€7(.) \^,= l

' Ps{iu)i-i
J

Substituting (6.2) and (6.3) in (6.4) and applying (7.8), we have

(7.8)

W' = Z' - max ^ p,^.
s(xt)n

Substituting (7.7) in the above expression, we obtain

W' = Z' — max > p,„i Z', i , + max > 7 „ ^1

c(.)

= z- max
r=(xl,x2)eT (

c(.) "^(^(^Ii u:,.

E ^.a;7 .u;. ;'^"'-'^'"M (7.9)

For notational convenience, we henceforth write s"* to mean s{x"^
^ ). Substituting (7.7) in

(7.9) recursively, one can verify that for a station of depth h

c(.) c(0 c(.')

(»•) cis"-')

£• E P< T. ,. ••7,h-,

w- = Z--
x€7

c(.) cis"-')

z;, + • •
•

^-1 Z'/, 7.10)

It is straightforward to verify that (7.10) is equivalent to equation (615) and the theorem is thus

proved. I
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Remark: Substituting (6.2)-(6.4) in equation (6.5), we obtain

U'k = Pxk W' + max
'-s{l]l

leV(k) Psii)t

Because Z'{t) = YikeCu) ^^'fcC)' '^ follows that

max p,k-

'- s{l)l

ceCo'^'^*'' /'.(O'

7.11)

Proceeding in the same manner as in the proof of Theorem 6.2, we can show that for a station ;' of

depth /i, (7.11) can be written as

z: = w: + max J2 Pxai K^ ++ E Pxai
fv-;. (7.12)

Readers may recognize that equation (7.12) is an "inverse" formulation of the relationship described

in (6.15). It states that the amount of total work in the system for station i is the maximum of the

amount of immediate work destined for station i found along each path to that station.

-i^(")/ -i^(")/Proof of Theorem 6.3: Define <I>^(0 = n'^^ '{nt) and <I>^;.(<) = n-'$y^'(nt). In addition, note

that

t <^lp\i) <t+ max Uk{i)/\[^\

hence by Lemma 3. .3 of Iglehart and Whitt [15],

$^ — e u.o.c. 7,13)

We begin with tasks k G ^°, for which

^^,{t) = .1^(0 and

It follows from (7.13) and Theorem 6.1 that ^^^ — e u.o.c. and TJ'^.
— T'^ where T^^ = W*^^^{t]

The theorem is then proved by applying induction on (3.15)-(3.16). I

8 Concluding Remark,s

We presented in this paper a heavy traffic analysis of feedforward fork-join networks with heteroge-

neous customers. We made several assumptions to simplify the exposition, but the results proved

here apply for more general networks as well. For example, we assumed that each station is staffed a
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single server. Using the machinery developed by Chen and Shanthikumar [7], one can extend these

results to fork-join networks of multi-server queues. Secondly, whereas we assumed that all servers

are reliable, it is possible to analyze networks in which stations may experience server breakdown

[13, 8]. Lastly, batch arrivals can be accommodated within the framework presented here [20]. (The

model discussed by Baccelli and Liu [4] is an example of such networks would thus become a special

case of Example 2). In this case, the issue reduces to calculating Q, the covariance matrix of the

total workload input process [20].
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