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Abstract

Experiments have demonstrated that the mechanical stretching of bulk polyethylene
can increase its thermal conductivity by more than two orders of magnitude, from 0.35
W/mK to over 40W/mK, which is comparable to steel. This strong effect is believed to
arise from the increased alignment of the constituent polymer chains, which are thought
to have very high thermal conductivity. Although it is well established that bulk polymers
have low thermal conductivity, these experiments suggest that cheap, high thermal
conductivity polymer materials can be engineered. This type of advancement may
provide a much cheaper alternative to the conventional metal-based heat transfer
materials that are used today.

In order to quantify upper limits on the thermal conductivity of polyethylene, we
examine the underlying phonon (lattice wave) transport using molecular dynamics
simulations. We first show that the thermal conductivity of individual polyethylene
chains is high, and can actually diverge (approach infinity) in some cases. We then
discuss how the high thermal conductivity of individual chains is reduced by the presence
of additional chains, through van der Waals chain-chain interactions. These
intermolecular interactions give rise to both a 2D planar lattice structure and a 3D bulk
lattice structure, which allows for the observation of an interesting 1D-to-3D transition in
phonon transport. For most crystalline nanostructures, the thermal conductivity decreases
with decreasing crystal size from an enhanced boundary scattering of phonons. In the
case of polyethylene, however, the intermolecular chain-chain interactions increase
phonon-phonon scattering along each chain and actually result in the opposite trend,
where the thermal conductivity increases with decreasing crystal size. The results provide
important fundamental insight into phonon-phonon interactions and will also aid in the
design and structural optimization of high thermal conductivity polymers.

Thesis Supervisor: Gang Chen
Title: Warren and Towneley Rohsenow Professor of Mechanical Engineering
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Chapter 1: Introduction

High thermal conductivity materials play an important role in a wide range of heat

transfer-related applications throughout a variety of industries. For example, high thermal

conductivity materials are needed for efficient heat exchangers, which are employed in

applications such as space heating, refrigeration, air conditioning, power plants, chemical

plants, petroleum refineries and natural gas processing plants. High thermal conductivity

materials are also needed to make heat sinks, which are used in heat engines, cooling

electronic devices, lasers etc. These materials are usually based on metals, where

conduction electrons are responsible for a significant portion of the thermal transport.

Bulk polymers, on the other hand, are thermal insulators, but have the advantage of low

manufacturing costs [1]. One approach to making higher thermal conductivity materials

based on polymers has involved incorporation of additives [2-6], such as carbon

nanotubes (CNTs) which have very high thermal conductivity [7-17]. This approach,

however, has only resulted in marginal overall improvement [2-6]. An alternative

approach involves restructuring the polymer itself, where several experiments have

demonstrated that the thermal conductivity of polymer chain based materials can increase

dramatically from improved chain alignment, achieved through mechanical stretching

[18, 19]. Depending upon the extent to which bulk polymer's thermal conductivity can be

enhanced, these materials may be able to serve as cheap, lightweight thermal conductors

that may be able to replace metals in many of the fore mentioned applications. The

electrically insulating nature of polymers could also allow high thermal conductivity

polymers to open up an array of new applications, where metals cannot be used.

One such potential application where high thermal conductivity polymers could

be useful is in superconductor sheathing. Here the high thermal conductivity could enable

better heat removal from the cryogenic current carrying wires, while simultaneously

acting as an electrical insulation barrier. If the thermal conductivity can be raised high

enough, polymer chain-based materials may even be able to compete with conventional

heat transfer materials, which are used in a variety of heat transfer components such as



heat exchangers and heat sinks. If cheap manufacturing techniques can be developed,

these structurally engineered polymers could also serve as more efficient heat spreaders

in personal electronics applications, such as cell phone and laptop casings, where bulk

polymers are typically used. Increasing the thermal conductivity of polymers extends

their range of applicability. The first step towards stimulating more research into the

development of high thermal conductivity polymers lies in quantifying the maximum

thermal conductivity that can be achieved. Understanding the fundamental limitations on

heat conduction in polymer materials can motivate further research into experimental

characterization, structural optimization and large-scale manufacturing processes.

To address the fundamental limits on the thermal conductivity of polymers we

used molecular dynamics (MD) simulations to investigate the details of phonon transport

in polyethylene (PE), the simplest and most widely used polymer. Intuitively we know

that the highest possible thermal conductivity that can be obtained for any PE based nano

or macrostructure is bounded by the upper limit for a single molecular chain. We also

know that any macroscopic polymer material will consist of many interacting chains,

which will illicit different heat conduction behavior. In this introductory chapter we first

provide an overview of phonon heat conduction and discuss the behavior of thermal

conductivity in bulk solids. We proceed to a discussion of classical size effects on the

thermal conductivity and explain its connection to 3D, 2D and 1D phonon transport. We

then focus on 1D phonon transport by introducing the theoretical background associated

with anomalous heat conduction in iD lattices and we consider how it relates to phonon

transport in single polymer chains. Then we provide an overview of polymer chain

modeling and the effects of chain-chain interactions with neighboring molecules to lay

the foundation for the modeling procedure used in this work. We then proceed to a

discussion of the PE lattice structure and introduce the concept of a 1D-to-3D transition

in phonon transport, which is one of the primary phenomena we seek to highlight in this

thesis.

In chapter 2 we discuss the theory of MD simulations and we present the model

used in our investigation of polyethylene. In chapter 3 we derive the equations used to

analyze the simulation results, which allows us to calculate thermal conductivity and

analyze the detailed phonon transport mechanisms. Chapter 3 also includes a brief



discussion of the model implementation and the specific parameters that were used to

conduct the simulations. In chapter 4 we present the results of single chain simulations

and provide a detailed discussion on the anomalous transport phenomenon that was

observed. Here, we provide an explanation for the phenomenon based on theoretical

developments presented in chapter 3. Chapter 5 presents results from PE chain lattice

simulations and focuses on the effects of chain-chain interactions with an emphasis on

the 1D-to-3D transition effect. Chapter 5 also presents results for the chain-chain

conductance and discusses the interplay between anharmonicity and conductance as it

relates to the thermal conductivity. In chapter 6 we provide a summary of the findings

and discuss possible directions for future work.

1.1 Introduction to Phonon Transport and the Thermal
Conductivity of Crystalline Solids

All terrestrial materials are composed of atoms. Within every material, Coulombic

interactions between neighboring atoms give rise to specific bonding characteristics,

which lead to different classifications of materials, such as noble gases, metals, non-

metals, halogens, semiconductors, semi-metals etc [20, 21]. The atoms in crystalline

solids form a periodic arrangement with long range order as shown in Fig. 1.1.1, which

shows a high resolution tunneling electron microscope image of a Nb205 nanoparticle

[22]. The position of each atom in a crystalline solid is localized to its lattice site as a

result of the potential well created by the Coulombic interactions with the neighboring

atoms [20, 23]. Since each atom is surrounded by other atoms, it experiences a restoring

force whenever it is perturbed away from its equilibrium lattice site [20, 23]. If we think

classically and imagine starting with all atoms at rest, we can perturb the position of one

atom and eventually all other atoms will begin to move, because the atoms are coupled

together. From this classical picture it becomes evident that at finite temperature all

atoms are constantly in motion and vibrate about their respective lattice sites [23].



Figure 1.1.1 HRTEM image of Nb 2 05 nanoparticles [22]

For a large bulk crystal, which contains long range order, the atomic vibrations

can be approximately decomposed into periodic wave solutions. These vibrations usually

comprise the most significant portion of the crystal's thermal energy (thermodynamic

internal energy) and the lattice vibrational waves can carry energy over large distances.

The transportation of this vibrational energy throughout the crystal, from one region of

the material where the atoms have higher average kinetic energy, to another region of the

crystal, where the atoms have lower average kinetic energy, is the fundamental physics

that underlies the science of heat conduction [20, 24, 25]. Regions where the average

kinetic energy is higher correspond to higher temperature while regions where the

average kinetic energy is lower correspond to lower temperature. It is the coupling

between neighboring atom vibrations, via the interatomic forces (potential energy), that

allows the energy to conduct from high to low temperature. The key property most often

used to describe how efficiently a material can conduct heat is the thermal conductivity.

Thermal conductivity was first defined in reference to Fourier's law for heat conduction,

where the thermal conductivity K is the ratio of the heat flux to the temperature gradient

= -Q/VT.

If we approximately model the atomic interactions in a crystalline solid with

linear springs satisfying Hooke's law F = -K x, we could solve for the atomic

displacements analytically using a Fourier series to describe the different normal modes



of vibration [23]. In this limiting case, the solutions are orthogonal, such that a single

lattice wave is able to carry energy indefinitely. This would cause the thermal

conductivity to be infinite, because the system would not be able to support a temperature

gradient [26]. In reality, the interactions between atoms are nonlinear and do not obey

Hooke's law exactly. It is this deviation from the harmonic limit that actually gives rise to

thermal resistance and finite thermal conductivity [25, 27]. One way to understand the

effects of nonlinearity would be to consider the system as containing the same normal

modes obtained from the harmonic approximation [23]. However since the interactions

are nonlinear, the normal mode solutions can interact (scatter) and exchange energy with

each other [25]. This effect of nonlinearity is often termed anharmonicity, since it is

conceived based on the deviation from the harmonic limit. Studying the effects of mode-

mode interactions, which are induced by the anharmonicity in real materials, then

becomes challenging, because quantifying nonlinearity in different materials with

different bond chemistries can be difficult. Nonetheless, recent advances in numerical

techniques such as ab initio calculations of 3-phonon scattering rates [28] and normal

mode analysis via molecular dynamics simulations [29, 30] have opened up new

possibilities for quantitative study of the thermal conductivity at the atomic scale.

Thus far, we have restricted our discussion to the classical picture of atomic

vibrations in crystals, while in reality the atomic motion is governed by quantum

mechanics. To understand the quantum picture of lattice wave transport in crystals, let us

first consider the classical behavior of a linear chain of harmonic oscillators. For a

classical chain of oscillators, we can solve for the atomic displacements with a Fourier

series, indexed by different wave vectors k=2c / based on the normal mode

wavelength X [23]. We can then consider the quantum analog of the system by recasting

the classical system's energetic description as a quantum mechanical Hamiltonian

operator [21],

2f 
) 

m,02 2

E= 1 m(2X2 + 2 )  H =(1.1.1)
2 2m 2

where x and i represent the classical particle's displacement and velocity respectively,

while x and fi represent the quantum displacement and momentum operators

respectively,



^= x (1.1.2)

S= ih d(1.1.3)
dx

where h is Planck's constant divided by 2r . Each normal mode in the classical system

is a solution to the coupled equations of motion. We can find corresponding solutions 0,

to the coupled quantum oscillator system based on the Schr6dinger equation [21],

E0, = H¢n (1.1.4)

where E is the mode energy. When solving the system of coupled quantum oscillators

we obtain the same wave vectors as the classical system, but the quantum normal mode

amplitudes and energy states are quantized as shown in Fig. 1.1.2. As a result, we can

draw an analogy between the quantum and classical systems through a quantum quasi-

particle description of the normal mode transport in the classical system. In this

transformation we define each step (quanta) in energy, n, for the quantum solution as a

phonon particle [21, 25].

Classical Harmonic Oscillator Quantum Harmonic Oscillator
n=3

E(X) = m(w2x2 + 2) E(n) = h(n+ )
2 n=2

cc
, w n=l

n=O

x x
Figure 1.1.2 Classical and quantum harmonic oscillators. In the classical harmonic
oscillator problem, the solutions for the atomic displacement consist of sine and cosine
functions, which allow the vibrational amplitude x and total energy E to take on any
value. The quantum harmonic oscillator solutions are the product of a Gaussian and an nth
order Hermite polynomial. Each solution, indexed by the quantum number n corresponds
to a particular amplitude and total energy. Each discrete step in n signifies a different
solution. The difference in energy between successive solutions is hA and each discrete
energy quanta AE = ho is carried by a phonon quasi-particle.

When a particular normal mode's energy shifts by an amount hco, it corresponds to the

addition of one phonon to the system. Similarly if a particular normal mode's energy is



decreased by an amount ho, it corresponds to a reduction of one phonon. The entire

dynamical exchange of energy between normal modes in a nonlinear classical system

therefore corresponds to a series of discrete phonon-phonon scattering events which

create and annihilate phonons, subject to the constraints of energy and momentum

conservation [25, 27]. For convenience we can write creation it and annihilation a

operators for each mode, which have the following properties [21],

= +i p (1.1.5)
A 2 2mhw

m = - 1 p (1.1.6)
= 2h 2mhcop

~A~ =n. (1.1.7)

S= ta(1.1.8)

H = ho(fi+ (1.1.9)

where n is the quantum number indicating the energy associated with a given solution

E,= Ao(n+ Y). Using this approach we can describe the heat carried by a system of

interacting vibrational normal modes as a gas of phonon quasi-particles that are created

and annihilated through scattering events (mode-mode interactions). This transformation

now allows for a description of thermal transport based on the Boltzmann equation,

where the thermal conductivity is proportional to the phonon specific heat, group velocity

and average time between collisions [24],

K OC C-v 2 r (1.1.10)

C and v represent the phonon specific heat and group velocity respectively and can be

determined using lattice dynamics methods. The average time between phonon collisions

,r, however, is more difficult to determine because it is fundamentally limited by the

anharmonicity, which causes phonon-phonon scattering (mode-mode interactions), but

can also be affected by other scattering mechanisms such as boundary, impurity, defect,

and electron scattering [20, 24, 25].

The effect that different scattering mechanisms have on the thermal conductivity

of solids can be seen through the temperature dependence of thermal conductivity for a

typical solid such as silicon, which is shown in Fig. 1.1.3. Figure 1.1.3 highlights three



different regimes where the thermal conductivity is limited by different factors. At the

lowest cryogenic temperatures, the atomic vibrational amplitudes are low and most

modes are likely to be in their ground state. As a result, atoms do not move far from their

equilibrium position and their interactions approach the harmonic limit. Therefore,

anharmonicity, which is a measure of deviation from the harmonic limit, is minimal at

low temperatures, which causes the phonon-phonon scattering rates to approach zero

1/ -o . The zero scattering rate limit corresponds to the harmonic limit because

phonons would not scatter with each other. In a real crystal, however, phonons can still

collide with boundaries, interfaces, impurities, crystal imperfections and electrons. In the

low temperature regime, phonon impurity and boundary scattering typically become the

limiting factors for the average time between collisions and therefore 7 is approximately

constant. With the time between collisions fixed by the grain size (boundary scattering)

and density of impurities, the thermal conductivity then becomes limited by the specific

heat, which approaches zero at zero temperature. It is for this reason that the thermal

conductivity in Fig. 1.1.3 increases proportional to T3 [20, 31, 32], in the same manner as

the specific heat at low temperatures. Eventually however the thermal conductivity

reaches a peak value as phonon-phonon scattering becomes comparable to impurity and

boundary scattering effects and c begins to decrease from its upper limit. Beyond this

peak value, thermal conductivity decreases monotonically with increasing temperature.

This is because atoms move further away from their lattice sites, which causes

anharmonicity to increase and subsequently induces more phonon-phonon scattering,

such that it becomes dominant.
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Figure 1.1.3 Thermal conductivity of silicon [32] vs. temperature and governing
mechanisms

For most bulk crystalline materials, phonon-phonon scattering is dominant in the

higher temperature regime, as indicated in Fig. 1.1.3. In micro and nanostructures,

however, phonons can encounter boundaries and interfaces more often than other

phonons, which can allow boundary scattering to restrict r below the upper limit

imposed by phonon-phonon scattering. In fact, for some nanostructures, this effect which

is commonly referred to as a classical size effect, can result in more than an order of

magnitude reduction in thermal conductivity [33, 34]. Through classical size effects it

becomes possible to observe stronger reduction in the thermal conductivity as more

dimensions of the crystal are constrained by increased boundary/interfacial scattering.

Figure 1.1.4 shows experimental results for the thermal conductivity of several different

silicon nanostructures. This plot shows that a bulk single crystal which is not constrained

to a nanometer length scale in any dimension will have the highest thermal conductivity

(3D) [32], while a (2D) thin film which is constrained in one dimension will have lower

thermal conductivity [35]. A (lD) nanowire can then have even lower thermal

conductivity [34], because it is constrained in two dimensions, and a (OD) quantum dot

can exhibit the lowest thermal conductivity since it is constrained in all three dimensions

[33]. This classical size effect on thermal conductivity has proven particularly useful for

improving thermoelectric material performance, because it allows the thermal



conductivity to be reduced without significant impact on electrical transport. Many

studies over the last 20 years have contributed to understanding size effects and the

efficiency improvements have been largely due to thermal conductivity reduction [36].

... 160

E 140 2D

120

. 100

S80

o 60 ID A Bulk (3D)
( Thin Film (2D)
- 40E 4 Nanowire (1 D)

( 20 Quantum Dot
Superlattice (OD)

10 100 1000 10000

Characteristic Length (nm)
Figure 1.1.4 Dimensional dependence of classical size effects showing how thermal
conductivity is reduced from classical size effects as more dimensions are constrained to
nanometer length scales, from 3D bulk [32] to 2D thin films [35] to lD nanowires [34] to
OD quantum dot superlattices [33].

Although it is generally understood that lower dimensionality and smaller

characteristic lengths result in lower thermal conductivity for most nanostructures, some

low dimensional structures, such as carbon nanotubes (CNTs), actually have high thermal

conductivity and exhibit the opposite trend with decreasing diameter, as shown in Fig

1.1.5. Here we see distinctly different behavior between CNTs [9] and nanowires [34],

which both have very large aspect ratios. The key difference between CNTs and

nanowires, however, is that a CNT is a single molecule and it only supports lattice waves

traveling along its axis (lD phonon transport). Nanowires have high aspect ratios, but

they also have many unit cells spanning their cross section, which allows modes to

propagate in all three-dimensions. Since lattice waves (phonons) can still propagate in

3D, the reduced diameter only serves to increase boundary scattering. CNTs on the other

hand exhibit lD phonon transport, which in turn yields high thermal conductivity. It is

also important to note that this high thermal conductivity also increases with decreasing



diameter [9], because the number of modes is reduced and therefore the number of

allowable scattering events is reduced, which leads to a longer time between phonon-

phonon collisions.

: CNTs - High K

>o o
U A

-6 :tOA
E SiNWs- Low K"I--

- 100

0 20 40 60o 80 100 120

Diameter (nm)

Figure 1.1.5 Thermal conductivity vs. diameter showing opposing trends for silicon
nanowires (SiNWs) [34] and CNTs [9].

Although classical size effects can be used to make cheap low thermal

conductivity materials, such as ball milled nanocomposites [37], synthesizing cheap high

thermal conductivity materials can be even more challenging [2-6]. One approach for

developing cheaper high thermal conductivity materials involves mixing CNTs into a

bulk polymer or epoxy matrix [2-6]. This approach seeks to enhance the composite

thermal conductivity based on reasoning derived from effective medium theories. Under

the effective medium assumption, one would expect the high thermal conductivity of

CNTs to greatly impact the composite thermal conductivity even at low volume fractions.

Experiments, however, show minimal thermal conductivity enhancement (<20 W/mK)

[2-6] which indicates that the interfacial resistance between the CNTs and matrix is a

fundamental constriction on heat flow.

Another approach for making cheap high thermal conductivity materials involves

restructuring bulk polymers themselves. Bulk polymers consist of molecular chains that

are highly entangled in a disordered arrangement. The disordered nature of bulk polymers

limits their ability to conduct heat, because energy is primarily transported across regions

where chains overlap and interact via weak van der Waals forces. A straightened



individual polymer chain molecule, however, can exhibit similar 1D phonon transport

characteristics as CNTs, since it only has one dimension of special periodicity. Thus we

might expect that individual polymer molecules intrinsically have high thermal

conductivity, despite the fact that bulk polymers have low thermal conductivity. Choy et

al. [18] and Mergenthaler et al. [19] have demonstrated the potential for taking advantage

of the intrinsic heat conduction characteristics of individual chains by measuring the

thermal conductivity of mechanically stretched bulk PE, which is the simplest most

widely used polymer. Choy et al. [18] were able to increase the thermal conductivity by

more than two orders of magnitude, from 0.35 W/mK to 42 W/mK, which is higher than

some steels. This strong enhancement is believed to derive from increased chain

alignment resulting from the extreme plastic deformation. This [18] and other

experiments on mechanically stretched bulk polymers [19] suggest that it may be possible

to engineer high thermal conductivity polymer materials, which would have a wide range

of applications.

Thus far, Choy et al. [18] have reported the highest thermal conductivity

measurement of any polymer (42 W/mK). The applications where high thermal

conductivity polymers will become relevant depends on the how much thermal

conductivity enhancement can be achieved. For example, if the highest achievable

thermal conductivity is - 42 W/mK, these materials cannot compete with aluminum-

based heat sinks or heat exchangers, but could serve as a means of heat spreading in

electronic packages, where the plastic encasings often act as an additional thermal barrier

to internal component heat dissipation. Since polymers are generally much cheaper to

manufacture, high thermal conductivity polymers may become useful in low power

thermal management applications, where aluminum heat sinks are too expensive. On the

other hand, if it is possible to obtain a thermal conductivity as high as - 200W/mK, these

materials could compete with aluminum in higher power thermal management

applications, and could also become relevant for heat exchangers in industrial

applications such as refrigeration, air conditioning, power plants, chemical processing

plants and refineries. These materials would have the added benefit of being lightweight

which is important in space and transportation applications, such as satellite electronic

package thermal management and automobile radiators. Another attractive aspect of high



thermal conductivity polymers is that they can be electrically insulating. As a result, a

material such as high thermal conductivity PE, could be used as to reduce the thermal

resistance between superconducting wires and their cryogenic coolant, while

simultaneously acting as an electrical insulation barrier.

The key to determining the applications where high thermal conductivity

polymers will be relevant is to first quantify the upper limit on its thermal conductivity.

Providing an accurate upper limiting estimate and understanding the heat conduction

mechanisms can act as a stimulant for further research into large scale manufacturing

techniques and optimization methods for specific applications. Intuitively we expect that

the upper limiting thermal conductivity for a material consisting of PE chains is the limit

of a single chain. A macroscopic material, on the other hand, will consist of many

interacting chains, which may have lower thermal conductivity. It will be important to

understand both single chains and systems of interacting chains in order to enhance our

design intuition. To begin our investigation, we will start with the question of

determining the thermal conductivity of a single polymer chain. This question has deep

theoretical implications that are discussed in the next section, as it relates to the problem

of a 1D chain of nonlinear oscillators.

1.2 Anomalous Heat Conduction in 1D Lattices

In our quest to predict the thermal conductivity of a single PE chain, we first

consider the limiting thermal conductivity of a ID nonlinear chain of oscillators. From

statistical mechanics we know that a linear chain of harmonic oscillators (linear forces) is

non-ergodic and has infinite thermal conductivity, because the normal modes of vibration

are non-interacting and thus there is no source of mode-mode/phonon-phonon scattering

[38-40]. Theory suggests that nonlinear particle interactions introduce mode-mode

interactions, which in turn give rise to thermal resistance (finite thermal conductivity)

through Umklapp scattering [25, 27]. In 1955 however, Fermi, Pasta and Ulam (FPU)

showed that a simple model of a nonlinear lD chain of particles can be non-ergodic,

which also implied infinite thermal conductivity [40]. This "remarkable little discovery"



led to the discovery of solitons and gave birth to the modem field of computational

nonlinear dynamics [38, 39]. The FPU problem was originally proposed in order to study

the system's rate of thermalization and approach to equilibrium. This was based on an

expected evolution toward an equipartition of mode energy as a result of the mode-mode

interactions induced by the nonlinear particle interactions. Here, the term equipartition

implies that, on average, the system's vibrational energy is distributed amongst all the

normal modes and is not restricted to a subset of modes. An example plot showing the

mode energy with respect to time from the FPU study [40] is shown in Fig 1.2.1. The

FPU system consisted of 64 particles and this particular simulation was initialized with

all the energy in the lowest frequency mode (mode 1). Figure 1.2.1 shows that

nonlinearity does cause mode-mode interactions and the lowest mode' s energy decreases

as it is exchanged with several other modes. However not all of the system's modes were

excited, and after enough time, all of the system's energy returns into the original mode.

Since all the system's energy is returned to the lowest frequency mode the entire

trajectory repeats itself, which indicates that the system is non-ergodic. This surprising

recurrence phenomenon suggests that even an anharmonic chain of oscillators can have

infinite thermal conductivity, because the system has infinite memory of its original

configuration and the vibrational energy does not diffuse amongst all the modes. To

draw a connection between the recurrence phenomenon and heat conduction, it is

common to start with the Boltzmann equation and derive an expression, similar in form

to (1.1.10), for the thermal conductivity based on phonon transport.
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Figure 1.2.1 FPU recurrence phenomenon. This plot shows the energy contained in each
normal mode with respect to the simulation time, where the system is initialized with all
the energy in the lowest frequency mode labeled mode 1.

From the perspective of the Boltzmann equation, a system having infinite thermal

conductivity implies that some phonons do not experience phonon-phonon collisions

(Umklapp scattering) and therefore conduct heat ballistically T = c . In the FPU problem,

however, phonon-phonon collisions (mode-mode interactions) do occur from the

nonlinear forces between particles. How is it that phonon-phonon collisions can occur,

giving rise to a finite nonzero scattering rate, and yet the thermal conductivity is still

infinite? Over the years, it has proved quite difficult to explain the FPU recurrence

phenomenon with Boltzmann equation based arguments [38, 39].

Since the FPU discovery, many important works have provided significant insight

into the circumstances required for anomalous transport, as well as possible explanations

for the recurrence phenomena [34, 40-62]. For example, in 1965 Zabusky and Kruskal

[63] showed that numerical integration of the Korteweg-de Vries equation could lead to

stable, solitary waves (solitons) from general initial conditions. These solitons could

travel through the media and interact with each other while maintaining their identity

[63]. This type of wave propagation would therefore correspond to a mode that does not



scatter/relax, which would imply infinite time between phonon-phonon collisions and

infinite conductivity. Another explanation for the recurrence phenomenon, given by

Chirikov et al. [64, 65], was based on a threshold for dynamical chaos. Chirikov et al.

showed that an overlap in nonlinear resonance could cause a dynamical instability that

would lead to chaotic motion in low dimensional systems. They then used the approach

to analytically derive a stochastic threshold, which was later confirmed numerically [66].

These studies explained the FPU recurrence by showing that, in the original report, the

initial conditions were below the stochastic threshold and that when initial conditions

above the threshold were used, the expected equipartition behavior was observed [64,

65].

Another explanation, provided by Lepri et al, was based on hydrodynamic mode

coupling theory. Their explanation [47], suggested that a iD system is likely to have low

frequency modes that behave differently than others. They assert that the dynamical

characteristics of these modes can be described by mode coupling theory, which implies

that they diffuse over a much longer time scale than other modes in the system. This

difference in time scales allows these modes to propagate without fully attenuating,

leading to an infinite memory, which then causes the thermal conductivity to diverge

c -> oo. It is unclear, however, whether or not these explanations would apply to a more

complicated model of an individual polymer chain and questions surrounding the

circumstances required for anomalous heat conduction continue to linger [38, 39].

1.3 Polymer Chain Modeling

In establishing a connection between the many previous works on anomalous heat

conduction in lD lattices [34, 40-62] and thermal transport in single polymer chains, it is

important to address their similarities and differences. Previous models are similar to

single polymer chains in the sense that they only have one dimension of spatial

periodicity for the atomic arrangement. Most of these studies [34, 40-62], however, used

simplified toy models, which do not accurately represent the more complicated many-

body interactions in a real polymer chain. In fact, most works have investigated fictitious



systems, where the interactions between particles were simply chosen for better

understanding of the circumstances required for infinite conductivity.

For example, Casati et al. [42] used a ding-a-ling model to show that chaos is

essential for convergent behavior. The ding-a-ling model is not intended to represent a

physically meaningful system, as it consists of linear chain of hard colliding spheres,

where every other hard sphere is bound to its lattice site with a harmonic potential while

the other hard spheres are unbound and free to collide with their nearest neighbors. This

model aided in uncovering some of the underlying physics and necessity of chaos [42],

but does not provide directly applicable insight into the behavior of polymer chains.

Prosen and Robnik [67] later showed that the free particle collisions were not necessary

for normal transport behavior, by investigating the ding-dong model, which only consists

of hard spheres that are bound to their lattice site with a harmonic potential. For this

model [67], there is an obvious threshold, where the atoms must deviate far enough from

their lattice site to cause elastic collisions with neighboring spheres, otherwise the system

evolves as a group of independent oscillators. Nonetheless, Prosen and Robnik [67]

showed that these hard sphere collisions between oscillators were sufficient for

introducing enough randomization (chaos) for normal convergent thermal conductivity.

These works [42, 67] helped to establish that some lD lattice models do behave normally

and do not exhibit anomalous transport (diverging thermal conductivity).

Although hard sphere collision systems exhibited normal transport characteristics,

a series of investigations involving Toda's lattice model [45, 68, 69] revealed that other

nonlinear oscillator models, other than the FPU model, showed divergent behavior. The

Toda lattice consisted of point masses connected via an exponentially decaying potential.

Toda showed that this system can be studied analytically and has normal modes [69],

while others such as Hatano [45], demonstrated its capacity to exhibit divergent thermal

conductivity. Another more recent example, where toy models were used to examine the

thermal conductivity more specifically, was that of Li and Li [70]. Here, the authors

tested and compared various toy models [70], including harmonic models with cosine

functions as onsite potentials, as well as slightly extended versions of the original FPU

model, such as the FPU-t, FPU- and FPU-ccp models. This study [70] showed that the

temperature dependence of the thermal conductivity depended on the strength of the



nonlinearity and that different trends could be obtained by changing the model

parameters. Although these works helped to uncover some of the fundamental physics

associated with heat conduction in 1D lattices [42, 45, 56, 67, 70], the results provide

little insight into the expected behavior of more complicated single polymer chains. In the

preceding examples, as well as many others [40-44, 46-62], the models were chosen for

elucidation of the underlying physics and were not necessarily based on physically

motivated considerations. As a result, the evidence and conclusions in these works cannot

be extended to predict the behavior of an individual polymer chain in a straightforward

manner.

In a real polymer chains, such as PE, there are strong covalent forces between

bonded atoms separated by short distances and weaker van der Waals forces between

atoms separated by larger distances. Figure 1.3.1 identifies the carbon and hydrogen

atoms in two PE chains along with the two distinctly different types of interactions. In

general, the covalent interactions between bonded atoms are complicated, because they

are very sensitive to the positions of surrounding atoms, as well as their bonding angles

and local coordination. This is because the atomic interactions are fundamentally

governed by the electron density, which is most sensitive to the closest nucleic positions.

Solving the many-body electron problem, however, is currently too computationally

expensive for the systems of interest. In light of this difficulty, many schemes for

approximating the effective Coulombic interactions have been developed, with varying

degrees of complexity, realism and accuracy.

Carbon Hydrogen

Covalent van der Waals

Figure 1.3.1 Two neighboring polyethylene chains. Covalently bonded atoms are

connected by smaller cylinders. Ellipses identify pairs of atoms that experience each of

the two types of bonding.



To our knowledge the most realistic model that has been used for studying the

thermal conductivity of a single polymer chain was that of Freeman, Morgan and Cullen

[71]. Their study employed the Kirkwood model [72], which uses a united-atom (UA)

representation to describe the vibrational modes of a zig-zag PE chain molecule in two

dimensions. UA models reduce the total number of degrees of freedom in a MD

simulation by lumping atoms together to form a single pseudo-atom rigid body. In the

case of the Kirkwood model for PE, each pair of hydrogen atoms is lumped together with

a carbon atom to form CH2 pseudo-atom units, such that the total number of degrees of

freedom is reduced by a factor of three. The UA representation also allows for a time step

that is - 4 times larger, because the high velocity hydrogen motions no longer need

explicit treatment. These two benefits together allow for at least an order of magnitude

reduction in computational cost, as compared to a fully explicit treatment of each atomic

species. Sumpter et al. [73] have discussed the ramifications of the UA simplification on

the structural properties of PE. For the thermal/phonon transport properties, however, the

Kirkwood model is oversimplified and neglects several important features that are

present in real PE chains.

One issue is that Kirkwood's use [72] of the UA approximation and limited

vibrational degrees of freedom (2D) significantly reduces the number of modes present in

the simulations, from 18 polarizations in a real chain (6 basis atoms with 3 degrees of

freedom) to 4 polarizations in the Kirkwood model (2 basis atoms with 2 degrees of

freedom). If many of the system's modes are nonexistent in the model, the resultant

thermal conductivity, which is a consequence of the many different types of mode-mode

interactions, becomes questionable. The second issue in the Kirkwood model is that the

atomic interactions are highly simplified, consisting of only harmonic bond stretching

and harmonic bond bending. Although it is a harmonic interaction based approach,

nonlinearity arises from cross-terms generated by expansion of the interatomic forces.

The interactions in a real PE chain, however, will be more complicated because of many

body effects that arise from the electron density's sensitivity to the respective locations of

neighboring atomic nuclei.

Another feature that is absent in the Kirkwood model is the treatment of van der

Waals interactions. These weaker, longer ranged interactions derive from the attraction



between the nucleus of one atom and the electron clouds of other atoms to which they are

not covalently bonded. Van der Waals forces are an order of magnitude smaller than

covalent forces, but their long range nature allows whole polymer chain molecules to

form a minimum energy lattice structure. In the case of PE, the lattice structure is

orthombic as shown in Fig. 1.3.2, where the chain axis extends perpendicular to the

viewing plane [1]. The unit cell contains two chains and each is rotated by - 30 degrees

from the primitive cell vectors to minimize the hydrogen atom repulsion.

For a single chain, the phonon transport is one-dimensional, because all of the

normal mode wave vectors point in the z direction along the chain backbone, since it is

the only direction of spatial periodicity. When multiple chains are allowed to interact they

can minimize their energy by forming the bulk lattice structure shown in Fig. 1.3.2. In the

bulk lattice structure additional modes are present, which arise from the relative

vibrations between whole molecules. These modes propagate in the other two dimensions

at various angles from the chain backbone and have both lower frequencies and group

velocities because of the weaker van der Waals stiffness. As a result, the bulk lattice

structure supports three-dimensional phonon transport, which is common to most bulk

materials and nanostructures. Thus we can anticipate a dimensional transformation in

phonon transport as we move from studying ID transport in single chains to 3D transport

in the bulk lattice structure.

van der Waals
Bonding

Covalent
Bonding

Figure 1.3.2 Polyethylene bulk lattice structure. Dashed lines indicate the unit cell, while
ellipses identify the two types of bonding present.

For most nanostructures, reducing their size reduces their thermal conductivity,

because of enhanced boundary scattering of phonons caused by an increased surface area



to volume ratio. Polymer chain lattices however may exhibit different behavior because

of the strong anisotropy in bond chemistry, with stiff covalent bonds in the axial direction

and weak van der Waals bonds in the lateral directions. Since each polymer chain is

likely to have high thermal conductivity by itself, additional chains may detract from the

axial conductivity by imposing chain-chain van der Waals interactions, which in turn act

as an additional phonon-phonon scattering mechanism. Adding chains however, also

opens up new paths for heat conduction, which can enhance the thermal conductivity.

The interplay between these two effects will determine whether or not the thermal

conductivity will exhibit the opposite trend observed in most nanostructures. We

anticipate that the phonon scattering effect of the van der Waals interactions will

dominate, which will give rise to a dimensional transformation in the thermal

conductivity as it corresponds with the dimensional transformation in phonon transport.

1.4 Objectives

In an idealized infinitely long polymer chain lattice, the weakly attractive van der

Waals forces between chains give rise to a lattice structure in both 2D and 3D. This

unique feature allows for the observation of both a 1D-to-2D and 2D-to-3D transition in

phonon transport. In the remainder of this thesis, we will begin from the limiting behavior

of an infinitely long single PE chain. Upon starting from a single PE chain, which is

expected to have high thermal conductivity, we anticipate a transition to 2D behavior as

more chains are added to form a single lattice plane (1D-to-2D transition). The 2D lattice

plane should then exhibit lower thermal conductivity, as a result of anharmonic scattering

induced by neighboring chains. A second transition from 2D to 3D is also expected as

additional lattice planes are stacked, leading to even more chain-chain anharmonic

scattering, which should lower the thermal conductivity even further. As a result, we

expect that the strongly anisotropic bond chemistry in PE chain lattices may cause the

axial thermal conductivity to increase with decreasing crystal size, which is the opposite

trend observed in most materials [24, 34]. These transitional behaviors will be probed



with molecular dynamics (MD) simulations and analyzed using linear response theory

approaches along with modal analysis techniques.

For the specific case of PE, several experiments have provided evidence to

support the notion that individual polymer chains may intrinsically have high thermal

conductivity, but only in the direction of the chain's carbon backbone. In both sets of

experiments conducted by Choy et al. [18] and Mergenthaler et al. [19], the mechanical

stretching of bulk PE resulted in more than two orders of magnitude increase in the

thermal conductivity along the stretching direction, while the thermal conductivity in the

perpendicular directions remained largely unchanged. Choy et al. [18] in particular

reported that spectroscopic measurements of their most stretched samples

initia > 300 which showed thin crystal needle structures. Their measurements

shown in Fig. 1.4.1 indicate that the thermal conductivity is initially very sensitive to

stretching, but appears to approach an asymptotic value at the highest stretch ratios. This

asymptotic value may correspond to the bulk crystalline value and we will use their

measurements as a basis for comparison with our calculations for the upper limiting

thermal conductivity of a single crystal (3D).
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Figure 1.4.1 Thermal conductivity of mechanically stretched bulk polyethylene [18]. The
draw ratio is based on the final and initial sample lengths L and Lo respectively.



In the remaining chapters we provide a discussion of our MD simulation

implementation, the potential energy model used, and the simulation procedures. We then

present the analytical framework used to interpret the atomic trajectories. These analysis

techniques are based on incorporation of results from linear response theory [24, 74],

lattice dynamics [23], the Boltzmann equation [24] as well as a spatial Fourier transform

technique [23, 30]. We then present the results of over 300 independent simulations of

single PE chains and various sizes of PE lattices to address the issues outlined in this

chapter. Finally, we provide concluding remarks that encompass the theoretical

advancements achieved, as well as the physical insight gained with respect to the details

of phonon transport in PE.



Chapter 2: Molecular Dynamics Simulations

In this chapter we introduce a numerical method, termed molecular dynamics

(MD) [75], which can be used to investigate the fundamental properties of materials by

simulating the atomic motion. Many fundamental parameters, such as phonon mean free

paths, are difficult to determine analytically or experimentally and therefore numerical

techniques, such MD simulations, are a powerful alternative. Although MD simulations

can be used to study a wide variety of phenomena, the present investigation is focused on

the vibrational properties, which give rise to phonon transport phenomena. In this chapter

we introduce the theory of MD simulations and briefly discuss how it can be

implemented on a parallel computing architecture.

2.1 The Theory of Molecular Dynamics Simulations

In classical mechanics the motion of rigid bodies is governed by Newton's

equation of motion. Under the classical framework, a body's position, velocity and

acceleration are all calculated deterministically in response to the forces acting on it.

Quantum mechanics, on the other hand, treats material bodies probabilistically, as waves

whose spatial makeup is determined by solving Schrodinger's equation [21]. In the

classical framework, two bodies cannot occupy the same space, while in the quantum

framework, individual material waves can overlap leading to interference phenomena

[21].

MD simulations model the motion of atoms by treating each atom as a point

particle that obeys classical equations of motion. MD simulations track the trajectory of

particles by sequentially integrating the equations of motion to determine each atom's

position after fixed time intervals. In classical MD simulations, Newtonian dynamics are

used to relate forces to particle accelerations through

d2(
F=m.(2.1.1)

dt2



d2

where F is the net force, m is the particle's mass and is i its acceleration. In MD
dt2

simulations the forces are calculated from a model for the system's potential energy. The

potential energy model is thus the most important component of MD simulations,

because its accuracy in describing the interactions is crucial for accurate and realistic

results. Most often, potential models are functions of the atomic nuclei positions and do

not include velocity contributions. This is because most models attempt to provide an

effective treatment of Coulombic interactions, which only depend on the relative

locations of charged particles. Once the model for the potential energy (D has been

chosen, the force on each particle can be determined by

F, - (2.1.2)

where F, is the force on a particle labeled i. The relationship between force and energy

in (2.1.2) ensures that particles adjust their positions to minimize the system's potential

energy. Once the potential model, initial positions, and initial velocities are specified, the

force on each particle can be calculated numerically, based on the analytical derivative of

the potential energy. The positions, velocities and calculated forces can then be used to

predict the future position of each particle using an algorithm to integrate the equations of

motion. The simplest and most popular is the Verlet algorithm [75], which is based on a

forward and backward Taylor expansion of a particle's position in time. By adding,

ri (t + At)= ii (t)+ Vi (t). At +2 . (At)2  (2.1.3)

and

ii (t - At)= ri(t)- i (t)- At+ Fi (At)2  (2.1.4)

we can arrive at

r (t + At)= 2 -r(t)- ri(t-At)+ - (At) 2  (2.1.5)
m i

where the velocity is calculated as

(t) = t+At)-(t-At) (2.1.6)
2-At



i (t + At) is the particle's predicted position, (t) is its current position, if (t - At) was

its previous position, i (t) is its velocity, -' is its acceleration and At is the specified
m i

time step. Since the velocity is calculated based on the predicted position, obtained from

the algorithm itself, the Verlet algorithm is generally more stable than the forward or

backward schemes alone [75]. This is because it uses the acceleration, present and

previous positions as inputs and not the velocity, which contains numerical error from the

current time step. With this scheme, the future positions are computed iteratively to

determine the system's trajectory. Even more stable and accurate algorithms exist.

However they have increased complexity and computational expense [75].

The last component to a MD simulation is the specification of initial and

boundary conditions. Typical simulations start with particles at equilibrium positions and

initial velocities that correspond to a desired temperature. It is this natural inclusion of

temperature that makes MD ideal for the investigation of temperature-dependent

phenomena. The specification of boundary conditions depends on the problem of interest,

but wherever possible it is common to impose periodic boundary conditions to imitate an

infinite medium. Periodic boundaries are useful because the size and timescale of MD

simulations are the limiting factors in its implementation. Periodic boundaries are natural

conditions that reflect microcanonical statistics, because they inherently conserve the

number of particles, energy and volume [75].

Figure 2.1.1 Two-dimensional illustration of periodic boundary conditions



Figure 2.1.1 shows how periodic boundary conditions are implemented in a two-

dimensional simulation domain. As atoms move beyond boundaries they reenter through

opposite sides so that the particle interactions are geometrically cyclic, preserving energy

and volume in a simulation cell. Periodic boundaries can be implemented by copying the

particle positions, such that the atoms on one side of the domain interact with the atoms

on the opposite side of the domain [75]. This is a feature that naturally works with

rectangular domains, which is the most common choice for the domain shape.

Other boundary conditions have been developed for simulating constant

temperature and constant pressure ensembles that involve rescaling the equations of

motion, such as the Nose-Hoover thermostat. Nonequilibrium boundary conditions also

exist and are often used to study transport. Velocity rescaling is a nonequilibrium

boundary condition that alters the atomic trajectory in order to impose heat fluxes and

induce a temperature gradient [75, 76]. The thermal conductivity can be calculated with

these boundary conditions by inverting the temperature gradient in accordance with

Fourier's law [76],

Q = -r- T (2.1.7)

where Q is the heat flux, K is the thermal conductivity and VT is the temperature

gradient. Although this approach for determining the thermal conductivity is intuitive,

nonequilibrium techniques have several drawbacks.

One issue is that the atomic vibration in regions where the boundary conditions

are applied becomes unnatural. Here, the vibrational dynamics in the boundary regions

are no longer solely governed by the interatomic potential, and therefore velocity

modifications introduce an artificial mechanism for the phonon scattering. For properties

such as the thermal conductivity, which are based on phonon scattering, this effect can

have a strong impact on the results. Studies employing this approach typically observe

size effects on the thermal conductivity and can require large simulation domains for

convergence of the results. This issue is most problematic for high thermal conductivity

materials, with long phonon mean free paths, because the results will not converge unless

the simulation domain is larger than the mean free paths [76].

A second issue with nonequilibrium approaches arises as a consequence of the

length scale limitations in MD simulations. In many studies, computational resources are



limited, which constrains the maximum size of the simulation domain that can be studied.

As a result, most MD simulation domains are nanometers in length. This can become

problematic when generating temperature gradients that are large enough to detect. If the

domain is small, large heat fluxes on the order of MW/m are required to generate single

degree temperature differences. When considering that the temperature fluctuations in

MD simulations are on the order of ± 10 degrees, a serious problem for the signal to

noise ratio arises, and it is often difficult to determine thermal conductivity reliably [76].

Equilibrium methods, on the other hand, allow for natural atomic vibrations without

boundary artifacts introduced by trajectory modifications. A common drawback to

equilibrium techniques, however, is the necessity for long time simulations, which are

needed for sufficient sampling of the statistical fluctuations [29, 77].

2.2 Interatomic Potentials

The potential energy model is the essential feature of MD simulations that

determines the dynamics and therefore the validity of the results. Most potential models

fall between two categories, ab initio/quantum and empirical/classical. In general,

modeling atomic interactions involves approximate solution of a nonlinear N-body

problem, where the speed and simplicity of empirical models is traded at the expense of

accuracy and realism, which is maintained to a higher degree with ab initio methods. In

MD simulations the most expensive portion of the calculation is numerical computation

of the forces. As a result MD simulations are usually limited by processor speed as

opposed to available memory and careful considerations should be taken when choosing

a potential model, so that an optimal balance of accuracy and speed is achieved.

Ab initio techniques are highly accurate because they typically involve a

minimization scheme to determine the coefficients of basis functions, which are used to

describe N interacting electrons obeying Schrodinger's equation. Once the electron wave

function, or pseudo-wave function has been determined, the force acting on each atom

can be calculated by numerically integrating the Coulombic contributions from the



charge distribution. The high degree of accuracy associated with ab initio approaches [78,

79], however, is accompanied by an extremely large computational expense, in

comparison to empirical and semi-empirical methods.

Despite the large computational requirements, ab initio calculations have become

popular in recent years due to advancements by Walter Kohn and John Pople, who

received a Nobel prize in 1998 for developing density functional theory (DFT). In DFT

the assumption is made that all electrons occupy their ground state and the Schrodinger

equation is solved for a pseudo-electron wave function [78, 79]. In DFT the valence

electrons are treated as degrees of freedom, while the core electrons and nuclei are

represented by pseudopotentials. Under this approach, the electronic structure of virtually

any material can be determined. By knowing the electronic structure, highly accurate

forces can be calculated based on very few underlying assumptions. Excellent agreement

between DFT calculations and experiments has been observed for a variety of material

properties [78, 79]. In quantum molecular dynamics (QMD) the wave function is

recalculated after every time step, which limits the size and length of simulations to a few

hundred atoms and picoseconds. These limitations render QMD inappropriate for the

purpose of this investigation. However, as computer hardware advances it may eventually

become a feasible option. Other semi-empirical techniques, such as tight binding and

molecular orbital based methods, lie in between quantum and classical models with

varying accuracy and computational expense. Next we shift focus to classical potentials,

which have the least computational expense, because the system of interest requires

multiple nanosecond simulations of thousands of atoms.

Since empirical potentials, for many material systems, were developed before

DFT, they have been widely used in MD studies. Empirical potentials are usually

developed by first creating a physically motivated functional form. Potential parameters

embedded in the function are then determined by fitting to experimental data. Most

commonly, functional forms are developed for certain types of bonding, and are usually

based on a physical observation or intuition about the associated electron states or

effective coulomb interactions. Once the functional form is chosen and the parameters

have been determined, the potential is most often tested by comparing material properties

calculated with the potential, to a variety of experimental data. More recently, results



from ab initio calculations have been used for comparison and in some cases have been

used in the initial determination of the free parameters via the force matching method

[80].

One of the mostly widely used empirical potentials was developed by Lennard

and Jones and is commonly called the Lennard-Jones (LJ) potential [75]. This potential's

functional form was physically motivated by the separation dependence of dipole-dipole

van der Waals interactions. In dipoles, positively charged nuclei experience a screened

attraction to the electrons of surrounding atoms. By summing these Coulombic

contributions, it can be shown analytically that the potential energy between neighboring

dipoles decays varies as , where 1 1i is the dipole separation. As a result, the famous

Lennard-Jones 6-12 potential for a system of N dipoles was developed with the following

functional form,

(D = 1- 4 -E - " 1(2.2.1)
i=1 j=1 PA 11

where (P is the potential energy, the subscripts i and j denote atomic indices, e is the

minimum energy, a is the minimum energy length scale and is the dipole

separation. The 12 th power term in the potential represents the repulsive interactions that

dominate at very close distances and prevent atoms from fusing together. The exponent in

this portion of the potential, however, is not uniquely motivated by physical

considerations. Instead, the 12 th power repulsive exponent is commonly used to simplify

6 12

the computation, where is computed first and is obtained by squaring the

stored result. Other large repulsive exponents, such as 13 or 14 can also be used with

minimal impact on the results [75].
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Figure 2.2.1 Lennard-Jones potential and force

Figure 2.2.1 shows a plot of the Lennard-Jones potential energy and force as a

function of increasing distance. The forces are largely repulsive at short distances and

decrease to zero at the equilibrium distance arY, where the repulsion is balanced by the

van der Waals attraction. Beyond that distance, the van der Waals forces are weakly

attractive and extend to infinite dipole separation. The balance between attractive and

repulsive forces is a common theme in empirical potential development. Most models

include an attractive term that dominates for large separations and a repulsive term for

short distances when valence electron orbitals overlap. The Lennard-Jones potential has

been widely used and has shown the best agreement with noble gases. This is because

their valence electron shells are completely filled, thus there is no shared electron

bonding and the interactions are dominated by dipole-dipole van der Waals forces.

Most materials in nature, however, cannot be wholly described by van der Waals
interactions. Some materials can be described with only pair-wise attraction and
repulsion, however many covalently bonded systems, such as semiconductors and

polymer chains require inclusion of higher order many-body interactions. For covalently
bonded hydrocarbon systems the interactions are quite complicated and depend on the
local bond angles, coordination and dihedral angles. One of the most successful empirical
potentials used to describe various configurations of hydrocarbon bonding was developed



by Brenner [81]. Brenner's reactive empirical bond order (REBO) potential was designed

for simulations of reactive systems where the bonds do not need to be pre-specified, but

can break and form dynamically. Brenner's pioneering work [81] has been highly

successful and has been widely used to study diamond [82], carbon nanotubes [76],

graphene and polymers [83].

2.3 The Adaptive Intermolecular Reactive Empirical
Bond Order Potential (AIREBO)

Brenner's REBO potential [81] is restricted to covalent bonding systems and uses

a cut-off function to truncate the interactions at 2 A. Although it has been largely

successful, it is insufficient for studying many systems of interest where interactions

beyond 2 A are important. This inability to treat other types of interactions limits its

applicability. For example, REBO can be used to study individual graphene sheets, but

cannot be used to study graphite, where multiple layers are stacked with an inter-layer

separation of - 3.4 A. This issue also arises with multi-walled carbon nanotubes and

polymer chain lattices. To alleviate this constraint, Stuart et al. [83] built on Brenner's

work by adding two additional terms to form the adaptive intermolecular reactive

empirical bond order potential (AIREBO), where the potential energy is written as,

E=Rj E REBO+ ELu + E TORS (2.3.1)
i j>i ki, jli,j,k

Here, EREBO is the Brenner potential, Eua is a Lennard-Jones potential which is used for

treating more long ranged van der Waals interactions and ETORS is a four-body potential

that shows preference to certain bonding angles in polymeric systems. The covalent

bonding described by the pair-wise REBO energy consists of an attractive term VA and

repulsive term V]f given by [83],

EEBO = RV + b.VA (2.3.2)



where the repulsive term VR is given by,

VR1,j=1+ exp(- aQt 4c (2.3.3)

In equation (2.3.3), ir is the distance between atoms i and j, and w(r) is the short

ranged cut-off function that terminates the interactions beyond 2 A,

w ()= S'(t( )) (2.3.4)

S'(t) = e(- t)+ O(t)e(1- t). 1[1 + cos(lt)] (2.3.5)
2

nm

)= (2.3.6)
max _ rmm

In equation (2.3.5), 0 is the Heaviside step function and all other unspecified quantities

are constants that depend on the species of atoms i and j (carbon or hydrogen). The

repulsive interaction of the REBO potential is balanced by the attractive term V, which

is given by a summation of three exponential functions that are indexed by integer n,

3
VA =-w i) exp(- fl)(n) (2.3.7)

n=l

In equation (2.3.7), the superscripted (n) signifies that each term of the summation has

different constants BY) and (n)' that depend on the interacting species i and j. In a

bond order potential, the attraction between pairs of atoms is mitigated by a bond order,

which contains the many-body aspects of the relevant physics. For the REBO potential

the bond order b~, depends on the local carbon and hydrogen coordination numbers N,

and N, respectively, as well as the conjugated coordination No nJ  , the triplet bond

angle 0~ I and the dihedral bond angle okjl,. In the REBO energy term, the

bond order is written as the summation of four quantities pVi, PJ" rRC zDH that can

impact the strength and character of the covalent bonding between neighboring atoms,

b=_[ par ]+p f c + c" .DH (2.3.8)
2 Y Y Y



The principal portion of the bond order b comes from p" and p", which penalize

bonds that are too close together. These two quantities depend on the local bond angles

and coordination of surrounding atoms and are given by,

P = 1+ wk (r.)- gi(cos(Ok))exp(Ajik)+ j (2.3.9)
k~i,j

where N. is the coordination number that depends on the number of neighboring carbon

Nc and hydrogen atoms N,
N.. = NC + NH (2.3.10)

N = rXcwik(kJjCwIJ(r). (2.3.11)
kti

The three-body angular dependence of the bond order comes from 5t order spline

functions g:) and gc),

gc(cos(Oji ))= g) (cos(jik ))+ S'(tN(N, ))[g2) (cos(Ojik))- g(cos(Ojik)) (2.3.12)

where,

tN(N,)= -Nn (2.3.13)
N'"ax - N "

In equation (2.3.9), A3jk, which is given by,

ik = 46,H[(6kHpH + kCPCH - r )- (j P + 6 PCH - r)] (2.3.14)

and the two dimensional spline (N]C, N,) were added as correction factors for certain

coordination and bond configurations. The bond order, b. , involves tabulated multi-

dimensional splines, such as P(Nf,Nf ), gC) (cos(OJi )) and g(2) (cos(Ojik)), but b. also

depends on ITRC (N Nj1 NCOJ) and TJN N,, No"), which depend on the conjugated

coordination number N onJ

i i,

N~co" =1+ 8kciw(rik )S'(con;(Nki) + Y W /r)S'(to;(NJ )) (2.3.15)
(k~i, j (Ii, j



t N) - N,, (2.3.16)
NoN Nmax N m in

The dihedral angular dependence of b, is contained in i DH, which is given by,

DH T (1- cos2 (k)) Wi ( )w~l(le(sin(jlk)- sm ' )E(sin (e 1)- 
s )] (2.3.17)

ki, jl1i,j

where the dihedral angle cosine cos(ok,,l) is computed from,

COS oj,,,)= r ri. x r (2.3.18)

and the dihedral interaction is truncated by the cut-off function w ( ) ,

w (r)= S'(t'( )) (2.3.19)

where
rim

) -i (2.3.20)

Equations (2.3.2)-(2.3.20) comprise the REBO portion of the AIREBO potential, which

describes covalent bonding between atoms separated by less than 2 A. All quantities that

are not explicitly listed are constants that depend on the interacting atomic species and

can be found elsewhere [83]. The major advancement of the AIREBO potential was the

addition of an adaptable LJ potential, which is controlled by switching functions that

depend upon the local bonding environment,

EyJ = S(t ,(j))S(tb(b))C V (j)+ [1 - S(t(r))]C jVYp(r) (2.3.21)

where VjL is the commonly used Lennard-Jones 6-12 potential

V rJ)=4 '- - .(2.3.22)

The addition of a LJ potential to the short ranged REBO potential is non-trivial, because

the LJ potential must only have its effect on specific pairs of atoms that are not covalently

bonded. The switching functions S(t) in (2.3.21), are used to mitigate the 12 th power

repulsive term in V$,

S(t) = E(- t)+ O(t)O(1- t)[1 - t2(3 - 2t)] (2.3.23)



where,

r umin
tr =  

Jmax J nin (2.3.24)

and

tb (b) bax (2.3.25)
bmax _ b"n

The switching function C. is used to determine whether or not pairs of atoms are

connected to one another through a series of covalent bonds and is given by,

C =1- max{w (r wIk(r.) w(kjrj)Vk, w (k). wk,(,). wj(r)vk,1 (2.3.26)

where the symbol V denotes that all possible atoms labeled k and combinations k,l

must be checked for a given pair of atoms i and j. Consequently, this function requires

cycling through all possible permutations of three successive bonds, to determine if

atoms i and j are connected through a series of covalent bonds or partial bonds and

therefore should not experience the LJ interaction. Although C. is very general and

allows the potential to describe an arbitrary configuration of carbon and hydrogen atoms,

this portion of the potential can require the largest computational expense on a parallel

architecture. For large systems, evaluating CU requires a long iterative procedure

whereby every nearest neighbor is checked for a possible path between atoms i and j.

Although the C. switching function is expensive, it is nonetheless necessary. If all pairs

of atoms were evaluated with VY alone, the 12th power repulsion would dominate at

short distances nullifying the REBO potential, which would lead to an inaccurate

description for the covalently bonded atoms separated by < 2 A. The switching functions

relieve this problem and alleviate the need to explicitly express which pairs of atoms

experience each type of bonding, thus preserving the reactive characteristics of the REBO

potential. With this approach, entire molecules separated by any distance can experience

van der Waals attraction and can subsequently come into contact and react.

The last term of the AIREBO potential is an explicit dihedral term which shows

preferences to specific bond angles, which is of particular importance in polymeric

systems and is given by,



ERs = wkI(r,)w(r )w,(J)VTRORS (k,) (2.3.27)

where the torsional potential is based on a 10th power cosine function,

VTRoRS(k 256 Ekico s -10 j ekUl (2.3.28)
405 kco 2) 10 ,

and Eijl is a constant. Using this functional form, the AIREBO potential was fit to

various experimental data with strong emphasis on the thermodynamic properties of

liquid polymers [83]. Since the fitting procedure for AIREBO focused on polymeric

systems, we deemed it a suitable choice for the present investigation.

The covalent portion of the AIREBO potential has the same functional form as

Brenner's second generation REBO potential [81], however several of the fitting

parameters were slightly adjusted for better overall performance [83]. The REBO

potential itself has been used to accurately predict the thermal conductivity of diamond

[82]. The AIREBO potential is much more complicated than Kirkwood's model [72],

because the functional form is motivated by the chemical bonding characteristics of

hydrocarbons. To conduct our molecular dynamics simulations of PE chain lattices, we

implemented the AIREBO potential in the Large Atomic/Molecular Massively Parallel

Simulator (LAMMPS), which is a software package developed at Sandia National

Laboratories [84]. This implementation required several modifications to the existing

parallel MD framework LAMMPS is built upon. Most notably, we changed the way in

which nearest neighbors are computed such that the AIREBO force routine includes its

own secondary neighbor list function. Our implementation includes a neighboring

function that scans the neighbor list generated by LAMMPS and finds all pairs of atoms

separated by less than 2 A. This secondary list is then used in conjunction with the larger

neighbor list generated by LAMMPS, which is based on a user specified cut-off distance

for the LJ potential. The parallel features of LAMMPS, however, were not changed. Any

simulation using the AIREBO potential can run in parallel, using the domain

decomposition procedure already employed in LAMMPS [84].



Chapter 3: Analysis of MD Simulation Results

In the preceding chapter we introduced the theory and methodology of MD

simulations. In this chapter we describe the theoretical background associated with the

analysis of MD trajectories for the study of thermal properties. Although atomic motions

may appear random, there is always some degree of correlation. When viewed through a

statistical lens, this correlation can be measured and used to determine the thermal

conductivity. In this chapter we present several derivations of equations that are later

used to analyze our MD simulations of PE chain lattices. First we discuss how the

system's energy and temperature are computed in an equilibrium MD simulation. We

then proceed to a discussion of the Green-Kubo method and describe how the thermal

conductivity, heat flux and chain-chain conductance are computed. We then move to a

brief derivation of the Boltzmann equation and we show how it can be used to calculate

the thermal conductivity of a 1D chain under the relaxation time approximation. After

introducing the relaxation time based approach, we then discuss lattice dynamics and the

methods used for normal mode analysis. Finally we conclude the chapter with a brief

overview of the simulation procedures.

3.1 Energy and Temperature

As discussed in chapter 2, an equilibrium MD simulation with periodic boundary

conditions naturally conserves energy, volume and the number of particles. These

conserved quantities correspond to the microcanonical statistical ensemble, where the

energy in the simulation is

E = e+ -. m,. ,2 (3.1.1)
i=1 2

where D is the system potential energy, m, is the particle mass, ;I is its velocity and the

system energy E remains constant. The second term in (3.1.1) is the system's kinetic



energy, as we show it is consistent with (3.1.1) by taking the time derivative of the

energy

dE N ae 1 - _=O

= . +--m i 2. 0i

dt ,.=, iat 2 at

mi. at) (3.1.2)

1 a(
Thus, -. m-2 conserves the total energy when calculating the forces as . With

2 aii

this definition for energy, we can now describe the system temperature.

To determine the temperature of a system of particles we must relate their

positions and momenta to the macroscopic variables we observe. Intuitively we know

that for the same macroscopic state, described by its temperature, pressure, volume, etc.

we have a large number of corresponding microscopic states. If we imagine a set of six

orthogonal axes, three for position and three for momentum, we could plot the individual

state of one particle within the system. If we then multiply the number of axes by the

number of particles N, we generate 6N total dimensions and could identify the system's

microscopic state as a single point in phase space. As time evolves, under the constraints

of the system Hamiltonian, H, the microstate moves through phase space tracing out a

trajectory. We can then imagine using phase space to plot a number of independent

systems, s, all of which have the same macroscopic state identified by temperature T,

volume V and pressure P. If we then take s to be large enough, such that it approaches a

continuum of points we can write a conservation equation for the s systems in terms of a

spatially and temporally dependent density of systems:

df f (s)  f (c' q af (s) p+- + .0 + = 0 (3.1.3)
dt at qsi at ais at

where f(s) is the density of s points, j, and ji are the position and momentum of all

the particles and t is time [24, 85]. Equation (3.1.3) is called the Liouville equation and

will be subsequently used to derive an expression for thermal conductivity in section 3.2,

based on linear response theory, and it will also be used to derive the Boltzmann equation

in section 3.3.



As time evolves, each individual system translates through phase space tracing

out a trajectory. If each system is microcanonical, the total energy remains constant and

we can define a hyper-surface containing all the system states that correspond to that

fixed amount of energy. The total area of the constant energy hyper-surface could then be

used as an approximate measure of the number of states Q available to the system,

where all states are treated as equally likely. Using this estimate for the number of states

we can approximate the system entropy using the Boltzmann relation

S = kB ln(Q) (3.1.4)

where S is the entropy, kB is Boltzmann's constant and Q is the number of available

microstates that correspond to the same macrostate. The temperature of the system can

then be determined by the thermodynamic definition

1 _S

- NV (3.1.5)

where T is temperature, E is the system's energy, while the number of particles N and

volume Vremain fixed.

Let us now consider a classical three dimensional system of harmonic oscillators.

We can write the system Hamiltonian H as the sum of potential 1 m. * 2qi2 and kinetic
2

-2

energies P for each particle,
2mi

E=H q...q 4N, ...p = 1 + m 2(3.1.6)

i=1 2mi 2

where ji is the particle momentum, j, is the displacement, m is the mass, and w is the

natural frequency, which is related to the spring constant K = mi 02

The estimate for the number of states can then be calculated by integrating over

the coordinate space subject to the constraint that the energy be constant:

3- f  diq,...doN d ... dn N (3.1.7)

H=E



where h = h/ 2r , h is Planck's constant and h is used to non-dimensionalize the

integral. For mathematical convenience we can make a canonical transformation that

preserves phase space

where the energy is now
N

E= , '2 i+4,2) (3.1.8)
2 i=1

The hyper-sphere radius can then be determined from,

R=-- (3.1.9)

and the integration for the number of states is now written with respect to 4i' and ,'

-h 3N-' -  Jcl""d'N'dP'..dP'N. (3.1.10)
-oo

H=E

Here we have relaxed the constant energy criterion to encompass energies close to E. We

now approximate the integral with that of a thin volumetric shell, where

2 )3N . 2E 3S2(3N_1) .AR. (3.1.11)

Inserting (3.1.11) into (3.1.4) yields an extensive expression for the entropy that can be

differentiated to yield an approximate expression for the energy in terms of the

temperature.

s- =I k 3) (3.1.12)
aE T " E

where,

E N-kB -T (3.1.13)

With this result we can derive an expression for a single particle probability distribution

as a function of its coordinates by integrating over all other coordinates in the system,



h3N J dk 2...AN d2-...dP N

f(,,,)= HE(N-1) (3.1.14)

h3N Id l ... N"d , - "...d N

HE(N)

where E(N-1) denotes the energy of all but one particle in the system. Substituting

(3.1.11) into (3.1.14) reduces to,

-P 1 2 -2+ -m,
f(q 1p)- (0 N _ 1- 2-ml 2 m, (3.1.15)

21r E E

because N is large and a single particle only contributes a small portion of the total

system energy. This allows us to treat (3.1.15) as the first term of an exponential series,

resulting in a properly normalized Gaussian distribution.

(02

f(qp) = 1kB E (3.1.16)
2;- kB- T E

Using the one particle distribution function we can calculate the average kinetic and

potential energies

2\!3 2P 3 kB-T 1L .(0272
2  3 kB .T (3.1.17)

2.-m, 2 2 2

This result is commonly known as the equipartition theorem, because each quadratic term

in the energy contributes 3kB - T to the total energy.
2

In modeling atomic interactions in real materials, the potential energies are

typically large and negative as compared to the smaller positive kinetic energy

contributions. This has led to interesting questions concerning the appropriate definition

of temperature in a MD simulation. One argument used to justify the use of (3.1.17) to

calculate temperature is based on the fact that the atoms in crystalline materials vibrate

around an equilibrium position, similar to a particle in a harmonic potential well.



Although the potential energy in most real systems is large and negative, such that it

heavily outweighs the kinetic energy contribution below the melting/dissociation

temperature, the potential energy could be adjusted with use of an additive constant. This

constant could be adjusted to cancel the equilibrium lattice energy but the constant would

not alter the system dynamics. If the constant is chosen appropriately, we could perturb

the atoms as in a classical MD simulation and we will likely observe an equipartition of

kinetic and potential energy. If the assumption of equipartition is valid for the system of

interest, the temperature can be computed as [75],

T = (3.1.18)

where the brackets () denote a time average.

Some systems may not be well approximated by the equipartition theorem,

because in MD simulations all vibrational modes are activated at all temperatures. In real

materials, however, the vibrational modes obey quantum mechanics which result in Bose-

Einstein statistics [21, 24]. Under this quantum model for the vibrational energy, lower

frequency modes are excited to higher energy states at lower temperatures, while the

higher frequency modes can remain in the ground state. For systems where the spread in

vibrational frequencies is minimal this effect is less pronounced, particularly at higher

temperatures where the highest frequency modes are excited well above the ground state.

Some systems, such as polyethylene chains, however, have vibrational frequencies that

span almost three orders of magnitude [86]. For these systems, even at moderate and high

temperatures, the highest frequency modes may not be highly excited. In a MD

simulation, which is inherently based on classical mechanics, however, these modes

would be more highly excited and would comprise a greater portion of the system's

vibrational energy. Based on this line of reasoning we can attempt to fuse the classical

dynamics of MD simulations with the quantum reality, by choosing a different definition

for the system temperature. Here we propose defining the temperature in the MD

simulation by matching the vibrational energy in the simulation with the total vibrational

energy for a system of phonons at the same temperature,

ED k e(3.1.19)
p k e' kBT



where kB is Boltzmann's constant. Lukes et al. [9] have used a similar definition to

rescale their temperature-dependent MD results, which were initially run using the more

common equipartition-based definition (3.1.18). The main difference between Eq.

(3.1.19) and the definition used by others [9, 87], is that here we have not included the

zero point energy [21]. Eq. (3.1.19) essentially states that the total vibrational excitation

energy in the MD system should match that of a quantum system of phonons at the

desired temperature. This definition requires a prerequisite determination of the phonon

dispersion. Once the phonon states for a specific material are known, the total energy for

the MD system can be determined and used as a set point for initialization of the system

dynamics.

3.2 Green-Kubo Formula for the Thermal Conductivity

To determine thermal conductivity from equilibrium MD trajectories, we use the

approach developed by Green and Kubo [24, 74] based on the linearized Liouville

equation. We begin by solving the linearized Liouville equation for the N particle

distribution function. We then use this distribution to determine the average heat flux in a

system that is subjected to a thermal disturbance as a temperature perturbation. Lastly we

identify the portion of the result that is proportional to the temperature gradient as the

thermal conductivity.

To begin, we recast (3.1.3) in terms ofN particles recognizing that the second and

third terms can be substituted in terms of the Hamiltonian equations of motion [24],

f(N) = H, f (NJ (3.2.1)
aJt

where f N) is the N particle distribution and the Poisson bracket {_,_} is defined as

N (A DB aA aB
{A, B}=I I - . (3.2.2)

with A and B as arbitrary functions of the phase space variables. We then define the

Liouville operator F as



F i {H,_}

so that

af(N)
- -i -F f(N)  (3.2.3)

where i= - .The fundamental assumption in linear response theory is that the

Liouville operator does not have an explicit time dependence. Assuming this is valid, we

can solve the Liouville equation for the time and phase space dependent density

f (N"' (, j, t)= exp(- i -t. F) f (N, i,0) (3.2.4)

With this solution we derive an expression for the thermal conductivity by considering

the linear response to a thermal disturbance.

We momentarily step away from the microcanonical description of our system

and consider a canonical system at equilibrium temperature T with a small temperature

disturbance ST. Assuming that ST is stationary, its gradient is constant and that the

system is in local equilibrium we can apply Boltzmann statistics and write the local

probability distribution as:

fo = C. ex - = C -ex (3.2.5)
i k, -(T +6T) ) kk T T

where E is the local energy density and AV is the local volume. Taking the second term

in the exponent as the perturbation energy we write the perturbed Hamiltonian H' as

H'(t) = - ((t)) T((t)) dV H = Ho + H' (3.2.6)

where H is the total energy and Ho is the energy of the unperturbed system. Having now

identified the perturbed system's Hamiltonian we rewrite the Liouville equation as,

I (N), {Ho, f( J}+{HI, fo(N} (3.2.7)

By substituting (3.2.6) into the second expression, we arrive at

S= --i. o f(N) f(N)2  a((t)) .ST(q(t))dV . (3.2.8)
at kB T at

Using energy conservation



- +V.jQ =0 (3.2.9)

where e is the local energy and jQ is the local heat flux, we then substitute into (3.2.8)

f(N)]__i. f(N) fo(N)/

at= i 2 f f( I- Qo(4(t))- sT((t)))+ (Q (q(t)) 3 ST(4(t)))]dv.

(3.2.10)

The first term in the integral is negligible, which allows us to focus on integrating the

second term, resulting in

t-i--(N) 0 V'TJ2 (3.2.11)
t kB TT

where JQ is now the net heat flux in the system. We argue that the first term inside the

integral of (3.2.10) is small assuming jQ(4q(t)) and the disturbance 3T(q(t)) itself are

independent, resulting in a smaller volumetric integral by comparison to the second term.

However, we intuitively know from Fourier's law fir heat conduction (2.1.7) that the

heat flux jQ(q(t)) and the gradient of the disturbance 6T(q(t)) (temperature gradient) are

more likely to point in the same direction, giving rise to a larger volumetric integral.

Based on this simplification, we can continue by solving (3.2.11) for the phase

space density

-V t
f 'i,) = k-2 -.V.ST. exp(-i-(t - t') - dt' (3.2.12)

and use the result to calculate the ensemble averaged heat flux

(JQ(t)) = IIJ (,p,t) f ' (N , 0,t)dd. (3.2.13)

By substituting (3.2.12), we arrive at
-V

JQ(t)) = k- T2 (JQ(t) (- t')) ST- dt. (3.2.14)

We then extract the temperature gradient, since we assumed it to be time independent,

resulting in an expression for the heat flux, similar to Fourier's law (2.1.7). We now

identify an expression for the thermal conductivity, using a Fourier transform to rewrite

the integral to obtain:



(T, -T2 J(.JQ(O). j,()) exp(-io-).- dT, (3.2.14)

kB T 0

Here, i (T, W) is the temperature and frequency dependent thermal conductivity tensor,

where co is the perturbation frequency and the ij subscripts denote the directional

components. In macroscopic heat conduction, we most often encounter constant fluxes

and therefore require the zero frequency limit of (3.2.14) [24, 74],

4T(T) V fJQi(0) ()). -d (3.2.15)

where K(T) is now the thermal conductivity most often required in macroscopic analysis,

and where the time scale of the system perturbations are orders of magnitude slower than

atomic scale fluctuations. However for high frequency inputs of similar time scales as the

atomic fluctuations, the frequency dependent thermal conductivity can deviate from the

static value by orders of magnitude [88].

We are now left with the task of determining the volume integrated heat flux for

the system in terms of the microscopic variables we can extract from an MD simulation.

To do this, we revert back to (3.2.9) and develop a quantum mechanical heat flux

operator that is generalized for any phase of matter and can be applied to any empirical

form of potential energy. Here we recast (3.2.9) as [89],

(x)+ V. s(x) = 0 (3.2.16)

where s(x) is now a local heat flux operator and Hi(x) is related to the energy density

operator and H by [89],

fI(x) = {H(x), H} (3.2.17)

where i = - in the forthcoming steps when not used as a labeling subscript and h is

Planck's constant h divided by 2 . Combining these expressions gives [89],

Vs(x)= ~H(x), H} (3.2.18)

We then assume a generic form for the Hamiltonian operator in order to express the heat

flux operator in terms of the microscopic variables available in a MD simulation,



N 2

H Pi +
i=1 2-m,

(3.2.19)

We then define a local energy density operator in terms of a spatially dependent

weighting function that incorporates contributions to the heat flux from the local

environment [89].

H(x)=
2 =

I A(x-
-2
Pi
2mi

I+ H.c.} (3.2.20)

where H.c. is the Hermitian conjugate and A(x- q, ) is a spatial weighting function

normalized to unity

JA(x - ,)dV = 1. (3.2.21)

Taking

(3.2.22)

and using the commutation relations for the position and momentum operators, along

with a Taylor expansion of the spatial weighting function, allows simplification of

(3.2.18) to

i{H(x),H}= Xsa.
h a xa

(3.2.23)

Here a denotes a vector component and the spatially dependent heat flux is given by

1 - -2

s(x)- A(x - ,) (x - +...
2V i= 2m, 2m, 2. mi

(1+1

2! b
X i q,' j i ,DA + H.c. (3.2.24)

We now spatially average the local heat flux operator s(x), to yield an expression

suitable for implementation in a MD simulation [89],

N 2
s 1 P

V i=1 2 -mi

Nja J

jfi

(3.2.25)
i S(qi,-q, j.m i

- qb) + ...
S -"b

SPi
Mi

1 x 9 Iq,
A(x - 4J = 1 exp - ,

( 3



This expression (3.2.25) has two physically meaningful terms that correspond to the two

mechanisms that carry heat in all phases of matter. The first term, often called the

convective or diffusion term, dominates in liquids and gases where energy is transported

through the kinetic energy of the constituent molecules. In solids the second term

dominates because the forces are large and atoms do not diffuse through the crystal.

In addition to using this approach for describing the thermal conductivity, the

Green-Kubo approach has also been used to derive expressions for other linear response

transport coefficients, such as the electrical conductivity, mass diffusivity and viscosity

[24, 74, 90]. In each case the resulting transport coefficient is shown to be proportional to

the integral of the autocorrelation function for the corresponding flux. As a result, this

approach can be generalized to describe any linear transport coefficient. Domingues et al.

[91] have used this more general technique to derive an expression for the thermal

conductance between any two arbitrary bodies. This derivation is based on an analogy

between a voltage/temperature gradient, which drives the flow of electrons/heat through

an electrical/thermal impedance [90]. We first define the linear response susceptibility

Gj* (co)T, which relates the heat flux Q12 to the temperature difference [91],

T()= 12 (3.2.26)

where To is the average temperature between the two bodies. The equilibrium

fluctuations in AT(w) and Q2 (co) are characterized by their respective power spectral

densities P. (co) and P (co) which are proportional to the square of AT(co) and Q2 (co),

, (0) = (3.2.27)

We can then draw an analogy to the relationship between electrical current and voltage

[90],

AV(c) = I Z(co) (3.2.28)

where the resistance is the real part of the complex impedance

R(co) = Re(Z(o)) (3.2.29)



R()= R{G ()T . (3.2.30)

Application of the fluctuation-dissipation theorem then allows us to write the average

square voltage as [90],

(V2 2 R(9o). - (, T)d (3.2.31)
/0

where e is the average energy of a quantum harmonic oscillator,

E ex h o -1 (3.2.32)

By analogy we can also write a similar expression for the temperature fluctuations,

(6AT(O). AT(t)) = R(o) - (, T)do (3.2.33)
0

(6A T(o)- 6AT())= R G ) (w, T). (3.2.34)

Rewriting the resistance as,

)T1 Re(G ()) (3.2.35)R G(r (G;;( (3.2.35)

yields a second expression for the power spectral density of PT (o)

,()=Re(G2  -O((o, T) (3.2.36)

Equating (3.2.27) and (3.2.36) results in an expression for the real part of the

susceptibility [91],

Re(G P ( .) (3.2.37)( (0, r). o

Inspection of(3.2.26) identifies the thermal conductance G = Q2 as,AT

G = To -G2 (3.2.38)

where the power spectral density for the energy exchanged between the two bodies can

be written as,



Pq2 ( = (Q12 (0). Q2 (t))e"dt (3.2.39)

based on the Wiener-Khinchin theorem. This results in the following expression for the

thermal conductance [91],

G(m)= (ho. To)' ( exp(h 1 (Q 2 (0). Q2 (t))e- tdt (3.2.40)

where again we are principally interested in the static conductance as w -4 0. The

conductance can then be calculated in a MD simulation by tracking the equilibrium

fluctuations in the energy exchanged between the two bodies [91] as,

Q 12 = .F .vj - Fj,~ -v, (3.2.41)
iebodyl iEbodyl
jebody2 jbody2

where F. is the force exerted on atom j by atom i, while atom j travels with velocity

vj and Fj, is the force exerted by atom j on atom i, which travels with velocity v,.

Equation (3.2.40) is a particularly useful result and has far reaching implications

as a new way to investigate the effects of the thermal contact resistance. Most notably,

this approach offers an alternative to the more widely used non-equilibrium techniques,

which have limited ability to elucidate the details of thermal transport. This approach,

however, is based on the equilibrium fluctuations in the net energy exchanged between

the two bodies. This allows for natural incorporation of the modal analysis techniques

discussed in the forthcoming sections of this chapter, which could allow for the

determination of the phonon reflectivity at material interfaces. This expression for the

thermal conductance is also useful for the present investigation, because it will allow for

calculation of the thermal conductance between PE chains, which is expected to increase

with the number and strength of the van der Waals interactions.

3.3 The Boltzmann Equation for Phonon Transport

We begin this section by first deriving the Boltzmann equation for gas molecules.

We then derive an expression for the thermal conductivity based on phonon transport.



The resulting expression allows us to calculate the individual phonon contributions to the

thermal conductivity, which can provide insight into the thermal transport mechanisms.

We start by recasting the Liouville equation, (3.1.3), considering a system of

particles that are broken into two regions. A joint system Hamiltonian H is then

composed of two regional Hamiltonians H, and HN_- as well as an interaction

Hamiltonian H' as follows,

H = H, + Hs_, + H' (3.3.1)

where the subscript N denotes the total number of particles and s denotes the subset of

particles we are interested in describing, which interact with particles not contained in the

group N - s. We assume that the Hamiltonian has the following form

s 2 NHs = [(" + U(4)+±-- XD(q -qm)
n-- I 2m 2 m=1

men

N 2 N
HN-s = +U(q -) )+-(3.3.2)

S2m 2 j=s+

which includes an external potential U(4) and a particle interaction potential (D. The

interaction Hamiltonian H' is then

sN
H = (qn-q. (3.3.3)

n=1 i=s+1

Next we rewrite the phase space density in terms of a normalized probability distribution

function ps based on the coordinates in the group of particles denoted by s,

N! N N!
fA,(q,...,p, t)- N! dVp (q, p, t) N ip,(q,...,,41p* 0 . (3.3.4)

(N - s) +l (N - s)!

The time evolution of the probability distribution is then

ap,= d V _= j dV{p,,Hs+HN, +H'}, (3.3.5)
at i=s+l at i-s+

which involves three separate terms in the Poisson bracket, which are evaluated

separately. Using integration by parts, the second term {p, HN-s goes to zero and the

first and last term are written as



i fldV{p,Hs}= J dXVp,Hs = {PsH } (3.3.6)
i=s+l i=s+1

and

I d  s ap NX a. 4.-s +- - (3.3.7)
i=s+l n=-ln j=s+l j=s+o n=

The integral in (3.3.6) involves the sum of N - s versions of the same integral and can be

simplified to the following in terms of the phase space densities5 1

-+ {H,, fs}= V dVs+ n(4 ) s+1 (3.3.8)
at n=1 a I ann

When written in the limit that s goes to unity, (3.3.8) is termed the Boltzmann equation,

which describes the time evolution of the single particle phase space density/probability

distribution. In the absence of interactions the equation reduces to the left hand side of

(3.3.8), often referred to as the streaming terms, because the phase space density

evolution becomes identical to that of an incompressible fluid. The right hand side of

(3.3.8) is called the collision term and governs the rate at which particle interactions take

place.

In (3.3.8) we see that the fs distribution depends on the integration of the f+,,

distribution, which comprises the probability of the coupled system of particles. To make

the solution of (3.3.8) tractable, Boltzmann asserted that in the dilute gas limit, the

particle trajectories are uncorrelated before collisions. Boltzmann referred to this

assumption as "Stosszahlansatz", which is more commonly known as the molecular

chaos assumption [92]. With this assumption, the coupled distribution fs, in (3.3.8) can

be written as a product of single particle distributions f, and f2. One subtlety associated

with this assumption is that the particle trajectories are only required to be uncorrelated

before collisions. After a collision, however, this assumption allows for particle

trajectories to remain correlated. This asymmetry in the assumption sets the direction of

time, because the particle collisions are now irreversible processes. This inherent

irreversibility later became an important aspect of Boltzmann's H-theorem, which shows

that the entropy of a gas mixture evolved toward a maximum at thermal equilibrium [92].



We now change our interpretation of the Boltzmann equation from that of gas

molecules to phonons, and we seek an approximation for the collision integral. Here we

adopt the relaxation time approximation, whereby we model the collision integral as

follows 20

(af )c f - fo(E, T)=- e - ,k) (3.3.9)

where - is the right hand side of (3.3.8), fo is the equilibrium distribution and

rj,k) is the relaxation time. The relaxation time approximation assumes that, when the

system is perturbed, it decays exponentially back to the equilibrium distribution, seen by

solving (3.3.10):

f- f = Cexp zt (3.3.10)

Recasting the Boltzmann equation within the relaxation time approximation, it is

now possible to solve the phonon Boltzmann equation and derive an expression for the

thermal conductivity

f f- fo(E,T)
-+ f+-- ,f , (3.3.11)

where (3.3.12) represents a generalized expression for particle transport, in which v is

the particle velocity and - is its acceleration, and the symbols V, and V. denote
m

gradients with respect to position and velocity, respectively. Next we write (3.3.12) in

terms of the deviation from equilibrium statistics, where g = f - fo and

g Of F F g+ 0 v4g+.V fo+-- VVfo +--Vg= g (3.3.12)
at at m m z

in which

= f (-i. f) (3.3.13)

We arrive at (3.3.14) by first assuming that g is small and therefore its derivatives can be

neglected. We also note that phonons are constant velocity plane waves that do not

accelerate. Additionally we can incorporate quantum statistics recognizing that phonons



are bosons (quasi-particles), which allows us to describe the average phonon occupation

with Bose-Einstein statistics at equilibrium, where the equilibrium distribution function is

written as,

fo= (3.3.14)
ex h o

in which co is the angular phonon frequency. The equilibrium distribution achieves

spatial dependence through the temperature field resulting in,

f(q,k)= fo -,r ( df o - T (3.3.15)
dT

Since we are initially interested in describing phonon transport along individual PE

chains, we can describe the heat flow as one dimensional. For a single PE chain the heat

flux can be written as a sum over phonon states propagating in the z direction along the

PE chain backbone as:

Jo, QZ= hO f -vz  (3.3.16)
V pk

where JoQ is the component of heat flux in the z direction, V is the volume, p denotes

the sum over all polarizations and k is the wave vector. Substituting (3.3.15) into

(3.3.16) leads to:

QZV --h z dT (3.3.17)
Jojh=t-_ .° vz" fo - dT v z (3.3.17)

p i

Taking the phonon dispersion relation as an even symmetric function about k =0

reduces (3.3.17) to:

JQ d )v,r.(V T) (3.3.18)j V .d z

since the phonon group velocity v is an odd function. This is expected because the

equilibrium distribution should not contribute to the heat flux. Comparing (3.3.18) with

Fourier's law for heat conduction (2.1.7), identifies the thermal conductivity K for a one-

dimensional molecular chain as,

=- Cvt (3.3.19)
p k



which depends on the phonon specific heat C, velocity v and relaxation time T . In the

forthcoming section 3.4 we provide a brief description of lattice dynamics, which can be

used to determine the phonon specific heats and group velocities. The phonon relaxation

times, however, are more challenging to calculate. Nonetheless, we present a framework

for extracting the phonon relaxation times from MD simulations based on the modal

description obtained in lattice dynamics. We then conclude the chapter with a final

derivation that combines normal mode analysis techniques with the Green-Kubo method

for determining the modal contributions to the thermal conductivity, without the

relaxation time approximation.

3.4 Lattice Dynamics

To determine the thermal conductivity, as expressed in (3.3.23), we must first

determine the phonon specific heats and group velocities using lattice dynamics. Lattice

dynamics is a generalized formulation that can provide a useful picture into the spectral

characteristics of phonons. To introduce the formulation, we take a simple one-

dimensional chain as an example and then proceed to a more general formulation

involving the solution of an eigen value equation.

Figure 3.4.1 One-dimensional chain of atoms connected by springs

Consider the one-dimensional chain of atoms in Fig. 3.4.1, where each atom is

connected with a spring to two neighboring atoms on each side. If we sum the forces and

write down the equation of motion for the nth atom in the chain, we have the following

wave equation [23],

d2U Ka 2  Un (3.4.1)
m- = K(un+1 -un)-K(U n - U,, )=> m, (3.4.1)

dt2 at- aX



where un is the displacement of the atom from equilibrium, the subscript n denotes its

a2
position in the chain, K is the spring constant, is the acceleration and m is the

at
2

mass of the atom. If we assume the chain to be infinite, taking the continuum limit, we

arrive at an expression for u, in (3.4.1), which is solved by a series of plane waves

(normal modes)

un = A. exp(- i. (o t- k -n a)) (3.4.2)

2zr
where k is a wave vector equal to --- , in which A is the wavelength corresponding to

the wave's spatial periodicity and oa is its angular frequency. Inserting the solution into

(3.4.2) yields an expression for the normal mode frequencies as a function of the wave

vector o(k),

(k)= 2 . sin( (3.4.3)

The dispersion relation given by (3.4.3) is a periodic solution in k and the maximum

K
frequency is 2 -. This simple case shows that when masses are connected together

with long-range repetition, frequencies lower than the natural pair oscillator frequency

appear in the temporal displacement of each atom. The periodic solution in k also

illustrates an important symmetry property, namely, the highest unique k vector occurs

at k = 7 / a. Shorter wavelengths beyond this k value, called the first Brillouin zone

boundary, reproduce the same atomic displacements already associated with longer

wavelengths occurring within the first Brillouin zone. Thus, the first Brillouin zone

represents the shortest range of k vectors that result in unique solutions for the atomic

displacements.

We now generalize the above treatment to three dimensions and any number of

basis atoms. Rewriting (3.4.3) in matrix form, for an individual plane wave solution we

arrive at the following [23]:

O2 (k,v). i(k,v)= D(k)- (K,v) (3.4.4)



where -e,v) is a complex polarization vector which depicts the direction of atomic

displacements. Here, D(k) is the dynamical matrix containing the mass and stiffness

information as D(k) is projected onto a particular propagation direction. The D(k)

matrix elements are given by [23],

Df (jj',K)= 1 I Oaf(jj',O01').exp(i.[r(j'r)- '(jO)]) (3.4.5)

a2(
ap (jj' ,01) = au )u( ') (3.4.6)

a (jl)Pu (U 0'1'

The indices j and j' label individual atoms, while 1 identifies the unit cell in which the

atom j is located. The dynamical matrix is symmetric and Hermitian, guaranteeing real

eigenvalues that are all positive for stable crystal structures. The eigenvectors, however,

may be complex. The real and imaginary parts of each eigenvector correspond to the

coefficients of an elliptically polarized wave.

Equation (3.4.6) expresses the essential assumption of lattice dynamics, which is

the harmonic limit of the potential model. By Taylor expanding the potential, the first

derivative term cancels out for equilibrium structures because the net forces are zero. The

second derivative, however, is nonzero and can be interpreted as a harmonic or spring

constant associated with a given potential in the equilibrium structure. For the case of an

individual PE chain, we can employ the AIREBO potential [83] to determine the phonon

dispersion. This can be accomplished by numerically computing the second derivatives in

(3.4.6) for a periodic PE chain, which has 6 basis atoms. Application of the lattice

dynamics model yields the eigen values and eigen vectors for each of the 18 polarizations

shown in Fig. 3.4.2 where Figure 3.4.2a also shows the phonon dispersion computed for

the Kirkwood model [72] of a polyethylene chain, which only consists of 4 phonon

branches. Figure 3.4.2b shows a plot of the phonon dispersion for the bulk polyethylene

lattice structure, based on an ab initio calculation of the force constants in (3.4.6) [86].

The bulk PE lattice structure consists of 12 basis atoms (2 chains), and thus there are 36

phonon polarizations in Fig. 3.4.2b. Comparison of Figs. 3.4.2a and 3.4.2b indicates that

the AIREBO potential [83] exhibits a drastic improvement over Kirkwood's more

simplified model [72]. Although the mid range optical phonon branches are slightly over



predicted with AIREBO, the acoustic polarizations are well described. Most importantly,

the slopes of the acoustic polarizations, which equate to the phonon group velocities

v = Ik' are well described by the AIREBO potential. The Kirkwood model, on the

other hand, largely under predicts the phonon frequencies and velocities, which would

have significant impact on the resulting calculation of phonon transport and thermal

conductivity.

80 8o
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Figure 3.4.2 Phonon dispersion curves for polyethylene. (a) Phonon dispersion for a
single PE chain using the AIREBO potential [83] (solid lines) and the Kirkwood model
[72] (dashed lines). Text labels are used to identify the four acoustic polarizations: LA,
TAy, Tax and Tors (see text) (b) Phonon dispersion of bulk PE using ab initio force
constants [86].

The atomic displacements associated with each of the four acoustic polarizations

are shown in Fig. 3.4.3. Based on scattering theories [25], these modes are expected to

have the longest relaxation times and therefore the largest contributions to the thermal

conductivity. As a result, we introduce abbreviations for these modes, which are labeled

in Fig. 3.4.2a, because they will be discussed in greater detail in chapter 5. Here, TAx

corresponds to the transverse acoustic modes with vibrations perpendicular to the C-C

bonding plane (Fig. 3.4.3a), TAy corresponds to the transverse acoustic modes with

vibrations in with the direction of the C-C bonds (Fig. 3.4.3c), LA corresponds to the



longitudinal acoustic modes with vibrations along the chain axis (Fig. 3.4.3d), and Tors

corresponds to the torsional acoustic modes, which twist about the chain axis in/out of the

C-C bonding plane (Fig. 3.4.3b) [93]. Once the phonon dispersion is determined, we can

compute the individual modal/phonon contributions to the specific heat by expressing the

energy as a sum of quantum harmonic oscillator energies,

E= 1 i ho- fo (3.4.7)
p k

where fo is the Bose-Einstein distribution, which describes the average phonon

occupation for each mode at temperature T . The specific heat can then be determined by

taking the derivative of fo with respect to temperature,

C= k ' ex (3.4.8)
p i (e - 1)2

where

x= hb T  (3.4.9)

Transverse Torsional Transverse
Acoustic x Acoustic Acoustic y

Longitudinal Acoustic

Figure 3.4.3 Atomic displacements for the 4 acoustic polarizations in a polyethylene
chain.



3.5 Normal Mode Analysis

To determine the phonon relaxation times r we can first decompose the atomic

positions into normal mode contributions and track the normal energy content as a

function of time. The temporal fluctuations in each mode's energy are caused by the

nonlinear mode-mode/phonon-phonon interactions. As a result, we can use the time

history of these mode energy fluctuations to compute each individual mode's

autocorrelation function, which would reveal the time scale over which the mode loses

memory of its original configuration. This time scale would then identify the normal

mode attenuation rate which would then provide a measure of the phonon relaxation time

7r for each mode. To this end, we begin by recalling that the lattice dynamics approach is

based upon the harmonic approximation, and therefore allows us to expand the atomic

displacements in terms of a Fourier series of normal modes. Under this framework, the

atomic displacements can be written as [23, 30],

1l, . e(j,i, p) -exp(ik. -(jl)). -X(, p) (3.5.1)

where ii(jl, t) is the displacement of an atom labeled j in unit cell I with mass m,

j,k, p) is the mode eigenvector, k is the wave vector, i(jl) is the lattice site position

and the time dependent amplitude of the mode is X(i, p) where p denotes the mode

polarization. Equation (3.5.1) represents an inverse Fourier decomposition of the atomic

displacements where the original transform can be computed as [23, 30],

X(k, )= eI j, Kt, p) i(jl, t)- exp(-ii (jl)) (3.5.2)

where the * superscript in (3.5.2) implies that the complex conjugate of ej,ki,v). X(i, p)

is also a generally complex quantity, although the actual atomic displacements are real

values and can be computed by taking the real or imaginary part of the modal amplitudes.

The quantity X(k, p) is also time dependent and represents the instantaneous amplitude

of a specific mode, which can then be used compute the mode's total energy,



E(k,p,t)= -w2X* X+IX* X (3.5.3)
2 2

where X is the time derivative of the modal amplitude X . The mode energy is

proportional to the phonon occupation and we can analyze the modal fluctuations by

taking the deviation from the average energy (E(t)):

SE(t) = E(t)-(E(t)). (3.5.4)

By tracking the mode energy fluctuations throughout the MD trajectory, we can then

compute and integrate the normalized mode autocorrelation function, which gives the

phonon relaxation time:

J(E(t) - E(O))

0 ,p)= O (3.5.5)
(SE(O))

This approach was originally proposed by Ladd et al. [94], later expanded upon by

McGaughey and Kaviany [30], and was used to extract phonon mean free paths A = v-r

in silicon by Henry and Chen [29]. This MD simulation-based approach allows for

calculation of phonon relaxation times without fitting parameters. Analytical approaches,

usually based on scattering theory, are often limited to a single type of scattering (3-

phonon, Normal, Umklapp) under a specific set of conditions (high w, high T etc.) and

often neglect effects such as dispersion and scattering with optical modes [25, 95].

Furthermore these methods require fitting parameters to existing experimental data,

which can be unreliable. This severely limits the predictive power of these methods. The

MD method, on the other hand, does not suffer from such constraints and is closer in

concept to a first principles-based approach to computing relaxation times.

One limitation of the preceding derivation is that it is based upon the relaxation

time approximation [25]. The relaxation time approximation is a secondary

approximation to the scattering integral in the Boltzmann equation (3.3.12). This

approximation however, was based on Boltzmann's assumption of molecular chaos [92].

One way to avoid the necessity of this assumption, would be to derive an expression for

the modal contributions to the thermal conductivity, starting from the Green-Kubo result

(3.2.15). Assuming the system's response is linear (small deviations from equilibrium)



the resulting expression would be valid for any phase of matter and therefore would not

provide any detailed information about phonon transport in crystalline materials. These

details, however, can be included in the Green-Kubo expression, by expressing the heat

flux in terms of its modal contributions. For a one dimensional system, such as a PE

chain, we express the heat flux as [25]:

Qz =l h . v X. Sn(t) (3.5.6)
V k p

where 3n is the deviation from the average occupation number. Inserting Eq. (3.5.6) into

Eq. (3.2.15) results in an expression for the thermal conductivity in terms of the normal

mode-mode correlation functions [25],

it= 1 T (hw -hA') (v- v') (Sn(t) Sn'(t + t'))dt' (3.5.7)
VkT k p k p o

Here we can make use of Wick's factorization scheme [25],

(abcd)= (ab)(cd)+ (ac)(bd)+(ad)(bc) (3.5.8)

to determine the squared deviation from the average occupation number (n2), by

substituting the creation and annihilation operators a and it for the occupation n,

n (n -2 2

(at )(a) + (t )(aa) + (a t)(>at)

= ni(n +1) (3.5.9)

where il is the average occupation number,

! exp hv (3.5.10)
This factorization scheme then allows us to express the thermal conductivity in terms of

(Sn(t) .Sn'(t + t'))the normalized correlation functions ) which can be calculated from

(the MD (t)trajectory data through:

the MD trajectory data through:



1 x'  -e' ,) (8n(t).-n'(t +t'))
V k p k' v' (V (v dt' (3.5.11)

where, x= hBo By identifying the specific heat from (3.4.8), equation (3.5.11) can

be cast more intuitively as,

K = -I C p k, p -(t t')) vdt'. (3.5.12)

Inspection of (3.5.12) reveals several interesting features that bear resemblance to the

way the thermal conductivity is expressed when derived from the Boltzmann transport

equation, using the relaxation time approximation. In (3.3.23) the relaxation time 17

includes all possible phonon-phonon scattering interactions. The key difference between

(3.3.23) and (3.5.12) is that the relaxation time in Eq. (3.3.23) is based on the Boltzmann

equation, which is hinges on the assumption that phonon-phonon scattering events are not

correlated. The cross-terms in Eq. (3.5.12), where k k' or p p', account for the

possibility that phonon-phonon scattering events could be correlated, which would

violate the Stosszahlansatz assumption of molecular chaos [92]. In previous works, where

molecular dynamics simulations were used to study the thermal conductivity, only the

terms where k = k' and p = p' were included in accordance with (3.3.23) and (3.5.5)

[29, 30, 94, 96]. The added correlation features captured by (3.5.12), in fact, will be

important for understanding anomalous heat conduction in 1D PE chain molecules.

3.6 Simulation Procedures

To investigate the phonon transport in single PE chains and PE lattices, we

implemented the AIREBO potential into the large atomic/molecular parallel simulator

(LAMMPS). Every simulation employed periodic boundary conditions along the chain

axis in the z direction. All simulations were run at constant energy, volume and number

of atoms corresponding to the microcanonical ensemble. Based on preliminary testing a

time step of 0.25 fs was used in each simulation to achieve good energy conservation,



with total energy variations less than 0.001%. Preliminary testing also indicated that 10

ns of simulation time were required for thermal conductivity convergence within ± 20%.

As a result all simulations were run for 10 ns and very little dependence (< 5%) on

equilibration time was observed. Each simulation was initialized with all atoms at the

equilibrium positions and random velocities corresponding to room temperature (300K),

based on the quantum-corrected temperature definition, given in (3.1.19). The minimum

energy positions of the atoms were determined by standard line search methods in

LAMMPS and the resulting PE lattice unit cell dimensions were 7.1 A ^, 5.0 A jr, 2.578

A i in the orthombic lattice structure (Fig. 1.3.2), which is within 4% of the values

measured experimentally [97]. For single chains, these unit cell dimensions were used to

determine the chain volume, as the chain length multiplied by an - 18 A2 cross sectional

area [97]. This choice allowed for a direct comparison with results for PE chain lattices

[97].

For the single chain simulations, we studied chains that were 10, 20, 40, 80, 120,

and 200 unit cells long. For the several cases where isotopes were added, which will be

discussed in sections 4.1 and 4.2, approximately 3 times the highest naturally occurring

isotope density was used, which corresponded to - 3-4% for carbon and hydrogen. This

resulted in 3 randomly distributed C13 atoms and 5 randomly distributed deuterium

atoms replacing atoms in the 40 unit cell long chains, which contain a total of 240 atoms.

In each of the computed autocorrelation and cross-correlation functions only half of the

simulated data was used, so that the correlation values obtained at t = 5 ns consisted of

the same sample size as the correlation values at t = 0. For each simulation heat flux

autocorrelation and normal mode energy data were recorded after each time step, which

allowed for flexibility and high resolution in the data analysis.

The Lennard-Jones term of the AIREBO potential allows for a user-specified long

ranged cut-off. In the present work, this cut-off was chosen as three times the minimum

energy separation a for the Lennard-Jones interaction of the associated atomic species,

which corresponded to - 10A for carbon-carbon interactions and - 8A for hydrogen-

hydrogen interactions. This allowed for chain-chain interactions between third and fourth

nearest neighboring chain molecules.



The PE lattice simulations were run on large processor grids, ranging from 2-30

processors, due to the larger system sizes and long run-times. Ten independent

simulations were run for each system of PE chains, by using the same initial positions

and different random seed integers for the random number generator. In all systems,

periodic boundary conditions were applied along the length of the chains. The boundary

conditions in the remaining two directions, however, were modified in each case to

examine the anticipated 1D-to-3D transition. Table 3.6.1 lists the system sizes and

boundary conditions used in each simulation.

Table 3.6.1 Simulation parameters for PE chain lattice simulations (see Fig. 5.1.1)

Dimensionality of Molecules Periodic Layers Periodic Number of Number
the Phonon Stacked in Boundaries in Stacked in Boundaries in

Molecules of Atoms
Transport x-Direction x-Direction y-Direction y-Direction

1D-2D 2 No 1 No 2 480

1D-2D 4 No 1 No 4 960

1D-2D 6 No 1 No 6 1440

1D-2D 12 No 1 No 12 2880

2D-3D 6 Yes 1 No 6 1440

2D-3D 6 Yes 2 No 12 2880

2D-3D 6 Yes 3 No 18 4320

2D-3D 6 Yes 4 No 24 5760

2D-3D 6 Yes 5 No 30 7200

The remaining chapters discuss the results of the simulations for single chains and

chain lattices according to the procedures outlined above. In each case, many independent

simulations were run under the previously described conditions for improved statistical

averaging. Chapter 4 discusses the single chain simulation results and focuses on

understanding and explaining the divergent phenomena that were observed. Chapter 5

focuses on how the high thermal conductivity of individual chains is altered by the

presence of neighboring chains which induce phonon-phonon scattering through van der

Waals interactions. Chapter 6 provides concluding remarks and summarizes the

observations of the various aspects of this investigation.



Chapter 4: Single Chain Results

To start our investigation we began with simulations of single PE chains in order

to study the fundamental upper limit imposed by phonon-phonon interactions alone. To

this end, we ran simulations of individual PE chains with periodic boundary conditions

applied along the length of the chain to probe the limiting behavior of an infinitely long

chain. By removing the presence of boundaries, we are able to study phonon-phonon

interactions in isolation. In this chapter we first show Green-Kubo results for single

chains and then proceed to more detailed modal analysis which revealed a new

mechanism for anomalous heat conduction that, to the best of our knowledge, has not

been previously considered [38, 39, 47].

4.1 Divergent Thermal Conductivity

Figure 4.1.1 shows a heat flux autocorrelation (HFAC) function for a single PE

chain. Immediately identifiable from the plot is a strong oscillatory component at - 50

THz. Although these oscillations are strong, they are symmetric about zero and therefore

do not contribute to the thermal conductivity, which is obtained by integrating the HFAC

with respect to time. To highlight the decaying features of the HFAC we also show a plot

of the local average HFAC values, which suppresses the effect of the large 50 THz

oscillations. From this smoothed version of the data, it is possible to see its decay. When

integrated, at short times < 1 ns, the HFAC results in a positive value for the thermal

conductivity. Figure 4.1.2 shows the Green-Kubo thermal conductivity with respect to the

amount of integration time for short simulation domains 10 and 20 unit cells in length.

This cumulative integration of the heat flux autocorrelation function shows that the

thermal conductivity is high - 450 W/mK. These results, which are averaged over 10

independent simulations, also indicate that the thermal conductivity is convergent with

respect to integration time. This non-divergent behavior is typical and has been observed



in all previous studies of other materials that utilize the Green-Kubo formula. However,

when the chain length was increased to 40 unit cells and larger, the integration of the

HFAC function for several cases exhibited distinctly different behavior. Upon

observation of this abnormal result, we probed further by simulating many more cases of

40, 80 and 120 unit cell long chains. Figure 4.1.3 shows a convergent simulation of a 40

unit cell chain and divergent cases for 40, 80 and 120 unit cell chains. The convergent 40

unit cell simulation oscillates around 200 W/mK, while the others diverge and exceed

1,000 W/mK after 5 ns. In studies of other materials, where the Green-Kubo method was

used, the integration of HFAC functions typically converged within the first 500

picoseconds. Here, however, in order to consider the possibility of divergence, we have

extended the integration to 5 ns, where a typical simulation would run for 3-4 days on 64-

bit 3.0 GHz Xeon dual processor servers. This type of diverging behavior has also been

observed in previous studies that use different techniques to study simplified models [38,

39, 45-49, 52, 54-56, 60-62, 68]. The major difference here is that we used a more

realistic model and expected the strongly embedded anharmonicity and inclusion of

hydrogen atoms to discourage such behavior in our simulations. After careful checking

for coding errors or sources of accumulated machine error, it was concluded fhat the

divergent behavior shown in Fig. 4.1.3 was caused by some nonlinear feature of the

AIREBO model, which may correspond to a physically meaningful characteristic of the

phonon transport in PE chains.
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Figure 4.1.1 The heat flux autocorrelation function for a 40 unit cell long chain. The raw
data (black line) and smoothed function (red line), based on local average values (1 ps
intervals) are shown to highlight its decaying features.
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Figure 4.1.3 Green-Kubo thermal conductivity integral for individual 40, 80 and 120 unit
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To further investigate this phenomenon we simulated over 60 independent cases

of 40 unit cell chains with different random initial velocities. Of the 60 independent

simulations that were run, all of the remaining results discussed in this section correspond

to the data obtained from the 6 example cases shown in Fig. 4.1.4. These example cases

were selected because they exhibited strongly contrasting behavior. When compared to
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Time (ns)
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the 6 cases shown in Fig. 4.1.4, all of the other 54 simulations exhibited similar

converging/diverging or intermediate behaviors. Cases 1-4 were conducted under

identical conditions, with the only difference being that the random initial velocities

(random number seed) differed, which subsequently lead to different phase space

trajectories. To further test whether or not the divergent behavior was a result of a

physically meaningful aspect of the AIREBO model, we re-simulated the divergent cases

3 and 4 with the same initial velocities, but changed the mass of 3 randomly selected

carbon atoms and 5 randomly selected hydrogen atoms to heavier isotopes. Initially, the

divergent integrals observed in cases 3 and 4 resulted from the incomplete decay of the

HFAC function, which has a persistent tail with a small but positive offset. When these

same divergent simulations are run with isotopes present, the previously persistent HFAC

tails no longer endure, leading to a convergent integral (Fig. 4.1.4). This response to a

physical modification of the problem suggests that the divergent phenomenon is not a

result of unphysical numerical artifacts. Instead, this result suggests that the divergence is

related to some aspect of the phonon transport, which can be affected by isotope

scattering [82]. It is also important to note that the large oscillations in Fig. 4.1.4 are due

to the fact that each curve corresponds to the results of an individual simulation

trajectory. In typical studies employing the Green-Kubo method, these oscillations are

usually suppressed by averaging over many independent simulations. However, for the

remainder of this section, we focus on analysis and on an explanation of the strong

divergence in cases 3 and 4 specifically.
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Figure 4.1.4 Green-Kubo thermal conductivity integrals for 5 independent simulations,

which exhibited contrasting behavior. Cases 1-4 use identical simulation parameters and

procedures, but were initialized with different random velocities. Cases 5 and 6 use the

same initial velocities as cases 3 and 4 respectively; however the masses of 3 carbon

atoms and 5 hydrogen atoms were increased to heavier isotopes.

4.2 Normal Mode Analysis

With the 6 cases shown in Fig. 4.1.4 under consideration, we used the previously

discussed modal analysis technique in conjunction with the Green-Kubo method to

calculate the normal mode correlation functions and their respective contributions to the

net thermal conductivity (Eq. (3.5.12)). Figure 4.2.1 shows several normal mode

correlation functions corresponding to modes with wavelengths of 40 unit cells (ucs), for

the divergent case 3. In Figs. 4.2.1-4.2.5, the value n denotes the wave vector as

k = n.240ucs while the value for p denotes the corresponding polarization. For the

polarization, p, we have used the abbreviations TAx, TAy, LA and Tors as described in

chapter 3. Each figure panel contains a title with the two modes and polarizations listed in

parentheses. Figures 4.2.1(a-d) show the autocorrelation functions for the longest

wavelength modes in each acoustic branch (divergent case 3). Other autocorrelation

functions for the optical modes were also calculated, but they all exhibited decaying



behavior with time constants between 0.1-5 ps. Although optical modes have much

smaller and often negligible contributions to thermal conductivity [29, 95], they can play

an important role in heat conduction by scattering with acoustic modes [95].

Decaying behavior was also observed for the acoustic mode autocorrelations.

However, Figs. 4.2.1(a) and 4.2.1(c) show that the TAx and Tors modes behave

differently and do not fully decay within 5 ns. This persistent correlation suggests that

these modes do not fully attenuate, as predicted by mode-coupling theory based

explanations of anomalous heat conduction [47]. In accordance with mode-coupling

theory, the non-attenuating modes were the lowest frequency, longest wavelength modes

in the system [47]. The atomic displacements for the two polarizations (TAx and Tors)

correspond to the out of C-C bonding plane vibrations, which are the least stiff and

therefore yield the lowest branches of frequencies in the dispersion. Figures 4.2.1(b) and

4.2.1(d), on the other hand correspond to the stiffer TAy and LA vibrations which occur

within the C-C bonding plane. Unlike the two non-attenuating modes in the TAx and

Tors polarizations, all of the modes in the TAy and LA polarizations decay within 500 ps,

which is consistent with normal diffusive transport, even though the decay time is long.

Motivated by mode-coupling theory-based explanations of divergent thermal

conductivity, the persistent TAx and Tors correlations were initially thought to be the

source of the divergent phenomenon. This mechanism for divergence, however, was

questionable because the TAx and Tors autocorrelation functions persisted in all cases.

Even in cases 1 and 2 where the results converged, these TAx and Tors modes exhibited

non-attenuating behavior similar to that of case 3, shown in Figs. 4.2.1(a) and 4.2.1(c).

The idea that this could explain the divergence in Fig. 4.1.4 was further invalidated by

calculation of each correlation's respective contribution to the thermal conductivity using

(3.5.12), which is shown in each panel with the right-side vertical axis. Examination of

the cumulative thermal conductivity contribution for each of these modes, via the integral

in (3.5.12), shows that despite the fact that these modes do not fully decay, their

contribution to the thermal conductivity is only of order 10 W/mK. Contributions of this

magnitude are not large enough to account for the rate of the divergence observed for

cases 3 and 4 in Fig. 4.1.4. Even though the cross-correlation between the TAx and Tors

modes reaches as high as 0.2, implying that 20% of the energy fluctuations are correlated,



the corresponding thermal conductivity contributions are still unable to account for the

large persistent slopes in Fig. 4.1.4. The LA mode autocorrelation (Fig. 4.2.1(d)),

however, has a much larger contribution, because the LA velocities are - 16,000 m/s.

Although this mode's contribution is stronger, its autocorrelation decays within 500ps,

which cannot account for the positive slope at 5 ns, for case 3 in Fig 4.1.4.



1.0
(n = 1, p = TAx)(n 1, p =TAx)

0.8 (a)

0.6

0.4

0.2

0.0

-0.2
I ,

0 1 2 3
Time (ns)

1.0
(n = 1, P = Tors)*(n = 1,

0.8 (c)

0.6 .

0.4 -i,

0.2 -

0.0 /

-0.2
0 1 2 3

Time (ns)

0.4 ,
(n = 1, p = TAx)*(n = 1,

0.3 (e)

0.2

0.1

0.0 .-

-0.1 /

-0.2 ' '
0 1 2 3

Time (ns)

4 5

0.10

0.08

10 -
CD11"

8 3tu
0
o6 .

06
3'

0't

-- 20 -1
=Tors) =

0

10 a

53

-i---- 0 -4 5

1 20
=Tors) 20

3
15 a_

0

10 C

4 5

0.02

0.00

-0.02

II

(n = 1, p = TAy)*(n = 1, p = TAy)

(b)

.11 II. ~

0 1 2 3
Time (ns)

0 1 2 3
Time (ns)

0.06
(n = 1, p = TAy)*(n = 1

0.04 (f)

0.02

0.00

-0.02

-0.04
0 1 2 3

Time (ns)

4 5

5 -I
4_

30
o:3

2

-1

,- 120 -
LA)

100 3

80 o

6 0

i :40

20

4 5

S 10 -I
= LA)

3
5.

0O
0 -

-5 %<

3

-10
4 5

Figure 4.2.1 Normal mode correlation functions (fluctuating lines) and thermal

conductivity contributions (gray-dashed lines) for the longest wavelength modes

(A =40ucs) of the four acoustic polarizations in case 3. In each panel the correlation

corresponds to the two modes indicated by wave vector index n and polarization p.

The raw data (left-vertical axis) is shown with light, solid, thin lines. Smoothed local
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(d) show mode autocorrelations, while (e) and (f) show cross-correlations. In each panel
the cumulative contribution to the thermal conductivity (right-vertical axis), based on
(3.5.12), is shown with gray-dashed lines.
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Examination of (3.5.12) shows that cross-correlations can also contribute to the

thermal conductivity. Figures 4.2.1(e) and 4.2.1(f) show cross-correlations between the

two non-attenuating TAx and Tors modes, as well as the decaying TAy and LA modes

which have higher velocities. The panels of Fig. 4.2.2 show several cross-correlations for

shorter wavelength modes in the TAx and Tors polarizations, but these cross-correlations

also show minimal contributions to the thermal conductivity. Although these cross-

correlations do not explain the divergent results in Fig. 4.1.4, the small cross-correlation

oscillations in Figs. 4.2.2(e), 4.2.2(f) and 4.2.3(a-d) support the notion that the cross-

terms of (3.5.12) may be negligible in many cases, particularly for 3D materials where

divergent conductivity is not expected.
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In order to explain the large rate of divergence in Fig. 4.1.4, we can see from

inspection of (3.5.12) that the phonon group velocity plays the strongest role in

determining contributions to the thermal conductivity. A rough inspection of the phonon

dispersion for polyethylene indicates that correlations between the LA phonons will have

the strongest contribution to the thermal conductivity. Figure 4.2.3 shows several LA

cross-correlations for the divergent case 3. Figure 4.2.3(a) shows that the correlation

between the n= 4 and n= 8 modes persists up to 5 ns. The corresponding contribution

to the thermal conductivity is on the order of 100 W/mK, which is 5-10 times higher than

that of other polarizations. Figure 4.2.3(b) shows a very interesting feature of the

divergent LA cross-correlations at short times. In the first 400 ps, the cross-correlation

decays with oscillations, bearing strong resemblance to normal mode autocorrelations.

The key feature in Fig. 4.2.3(a) is that the cross-correlation oscillates with a small

positive offset, which causes its integral to increase over the entire duration considered.

Several other persistent LA cross-correlations are also shown in Figs. 4.2.3(c) and

4.2.3(d), which indicate that the n= 4 and n=8 cross-correlation is not the only

combination that gives rise to this diverging trend. Figures 4.2.3(e) and 4.2.3(f), however,

show that not all combinations of LA modes give rise to a persistent tail. Nonetheless, the

combined effect of the several different LA mode combinations that have persistent tails,

when ± k values are considered, results in a large enough contribution that can account

for the magnitude of the divergent slopes in Fig. 4.1.4. A more complete correspondence

would require computation of all possible cross-correlation combinations, which is

beyond our current computing capability. The results in Fig. 4.2.3, however, offer a

possible explanation for the divergence observed in the Green-Kubo results of Fig. 4.1.4.
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To test the results of Fig. 4.2.3 as a possible explanation for the divergent HFAC

integrals in cases 3 and 4, we also computed LA cross-correlations for the convergent

cases 1 and 2, which are shown in Fig. 4.2.4. Figure 4.2.4 shows that when the same

cross-correlations, which were divergent for case 3 (Figs. 4.2.3(a-d)), are computed for

the convergent cases 1 and 2, the contributions to the thermal conductivity oscillate about

zero. This lends support to our explanation for the divergence, which is only associated

with cases 3 and 4. This also supports our hypothesis that cross-correlations may be

negligible in many cases where normal chaotic phonon collisions are expected.

To further test our hypothesis, we also computed LA cross-correlations for case 4

and compared them to case 5, which uses the same initial velocities, but also includes

isotopes. By comparing the correlations and thermal conductivity contributions in Figs.

4.2.5(a), 4.2.5(c) and 4.2.5(e) with that of Figs. 4.2.5(b), 4.2.5(d) and 4.2.5(f), we see that

the presence of isotopes significantly decreases the LA correlation's contribution to the

thermal conductivity. From the cross-correlation results in Fig. 4.2.5, we see that the

presence of isotopes inhibits the persistent correlation, which subsequently caused the

HFAC divergence for case 4 in Fig. 4.1.4.
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correlation corresponds to the two modes indicated by wave vector index n and
polarization p. The raw data (left-vertical axis) is shown with light, solid, thin lines.
Smoothed local average values (left-vertical axis) are shown with dark, solid, thick lines.
The cumulative contribution to the thermal conductivity (right-vertical axis), based on
(3.5.12), is shown with gray-dashed lines.
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4.3 Divergent Behavior Interpretation

Based on the results of Figs. 4.2.1-4.2.5, we believe the HFAC divergence is

caused by persistent cross-correlations between certain LA modes. This persistent

correlation points to a different explanation for anomalous heat conduction as opposed to

the more commonly used explanation which is based on hydrodynamic mode coupling

theory [47]. In order to explain our observations we propose a dual paradigm approach to

understanding the heat conduction mechanisms, which is illustrated in Fig. 4.3.1. The

traditional viewpoint for understanding lattice thermal conductivity is based on the

evaluation of phonon scattering rates [25, 27]. In this paradigm, we begin from the

idealization of a perfectly harmonic crystal, where the system's normal modes/phonons

are non-interacting. In this limit, the thermal conductivity of the crystal is infinite. The

next step is then to consider anharmonicity, which is the degree of departure from this

idealization. Anharmonicity leads to Umklapp scattering, finite scattering rates and finite

thermal conductivity as illustrated on the right side of Fig. 4.3.1. From this view point, it

is thought that the sequence of scattering events is random, and this perspective leads to

full consistency with Fourier's law for heat conduction. The results of the famous FPU

problem, however, are difficult to understand from this view point. From this scattering

based paradigm, the FPU system exhibits phonon-phonon scattering through its mode-

mode interactions and should therefore have finite thermal conductivity. It is here, that

we offer an interpretation of (3.5.12) based on mode-mode correlation rather than

scattering, which provides a different way of thinking about anomalous heat conduction.

Consider the opposing limit of a crystal with completely random atomic motion,

illustrated on the left side of Fig. 4.3.1. Although this situation does not occur in nature, it

serves as an idealization from which we can deviate, in order to investigate the effects of

correlation. In this limit, we consider that the motion of every atom as completely

independent of the surrounding atoms, such that there are no atomic interactions to allow

two atoms to influence each other's trajectory. We also consider that each atom is

localized to a specific region through an onsite potential. This denies each atom the

ability to transfer heat by convective diffusion. We have chosen this idealization so that

no aspect of the atomic motion is correlated, and therefore if the heat flux autocorrelation



function in (3.2.15) were evaluated, the resultant thermal conductivity would be zero. In

this idealized limit of random uncorrelated atomic motion, the atoms are non-interacting,

while in the opposing limit of an idealized perfectly harmonic crystal, the phonons are

non-interacting. By proposing this counter idealization to the perfectly harmonic crystal,

we can now consider all real materials as a deviation from the uncorrelated limit, because

finite correlation always exists.

Correlation

Random Uncorrelated Harmonic Crystal
Atomic Motion Thermal Conductivity

of Real Materials . $ S

No Atomic Interactions No Phonon Interactions

K -~0 --+ oo0

Scattering

Figure 4.3.1 Diagram of scattering and correlation based paradigms for understanding
heat conduction, which illustrates the two opposing idealized limits, the harmonic crystal

(right) and the limit of completely uncorrelated atomic motion (left).

Starting from the limit of uncorrelated motion leads to a correlation based

paradigm for thinking about thermal conduction, where the correlation in (3.2.15) now

acts as a measure of departure from this limit. From this point of view we consider any

form of patterned or correlated motion in the system's trajectory as a contribution to

thermal conductivity. For systems where phonons are present, this perspective intuitively

accounts for the possibility that scattering events can occur in an ordered sequence. To

expand on this point, let us postulate the meaning of the temporal fluctuations in mode

energy used to calculate the correlations in (3.5.12).

Let us reconsider the idealized perfectly harmonic crystal where the system is

initialized with all the energy in one particular mode. This system will perpetually stay in

the initial state unless otherwise perturbed. We would therefore observe that the singly

excited mode's total energy (3.5.3) is constant. If we then add anharmonicity to the

particle interactions, however, we would expect the mode's total energy to change with



time, due to interactions with other modes. We therefore interpret the mode energy

fluctuations as a direct measure of the mode-mode interactions (phonon-phonon

scattering events) taking place at a given instant.

For 3D bulk materials where many different scattering events are possible, we

would expect the order or sequence of scattering events involving one mode k, p to be

independent and unrelated to the sequence of scattering events for another mode k', p'.

This would be consistent with the notion that phonon-phonon collisions are chaotic,

which would imply that the cross terms ( k # k' and/or p # p') of (3.5.12) could be

neglected. This simplification would reduce (3.5.12) to (3.3.23 & 3.5.5) and would be

consistent with the molecular chaos assumption [92]. The validity of this assumption is

supported by the agreement with experiments that was obtained in previous studies that

employed (3.3.23 & 3.5.5) for bulk materials [29, 30, 94, 96]. For 3D materials we would

expect that the number of allowable phonon-phonon scattering events is large and

therefore chaotic, because many choices for interactions exist. This would imply that the

cross-terms in (3.5.12) are negligible. For ID chain lattices, however, the number of

allowable scattering events is significantly reduced from that of a 3D bulk material and

therefore the assumption of chaotic collisions becomes questionable. From our

interpretation, the cross terms of (3.5.12) account for the possibility that the sequence of

phonon-phonon scattering events can be temporally correlated, which would lead to an

additional contribution to heat conduction that is not captured by (3.3.23 & 3.5.5).

The idea here is that scattering events need not occur randomly, as is generally

assumed in the study of heat conduction. Any form of correlation or patterning of the

atomic motion can add to a material's thermal conductivity as illustrated in Fig. 4.3.1. If a

system of phonons were to have sequenced or cyclically occurring phonon-phonon

scattering events, it could result in positive mode-mode cross-correlation, as indicated by

(3.5.12). This therefore suggests that anomalous heat conduction can occur in a system

with finite (non-zero) scattering rates. If there is some underlying persistent cyclic or

sequenced scattering behavior, this phenomenon could then cause cross correlations in

(3.5.12) to remain correlated indefinitely, leading to infinite thermal conductivity.

Although our results only show divergence when the chain length is longer than

40 ucs, Fig. 4.2.3(d) does not indicate that the lowest mode in the LA polarization is



directly causing the divergence through its own autocorrelation. Its presence in the

system may however be necessary for correlations to persist amongst other LA mode

scattering processes. Mode-coupling theories suggest that low frequency, long

wavelength modes behave differently than higher frequency modes, and diffuse slowly

over a longer time scale [47]. We do see some consistency with this interpretation

through the non-attenuating TAx and Tors modes in Figs. 4.2.1(a) and 4.2.1(c)

respectively. Based on (3.5.12), however, these modes are unable to account for the

strong divergence observed in Fig. 4.1.4. The persistent cross-correlations in Fig. 4.2.3

indicate that the mid-frequency LA modes may have a cyclically correlated sequence of

scattering events. The fact that the autocorrelations for these modes (not shown) decay

with convergent contributions to the thermal conductivity suggests that these modes have

finite nonzero scattering rates. The persistent cross-correlations, however, indicate that

the scattering events themselves are correlated and do not occur randomly, as is

commonly thought.

4.4 Finite Length Chains

Through our use of periodic boundary conditions, our analysis of single chains up

to this point has been focused on the upper limit of an infinitely long chain. Although the

results led to better understanding and new insight into the mechanisms of anomalous

heat conduction, we can never truly achieve infinite thermal conductivity in a real

system. This is due to the finite length of real PE chains, since we would expect that the

terminating end unit cells will act as a boundary scattering mechanism, which will disrupt

the persistent cross-correlations discussed in the previous section. In light of this inherent

limitation, it is important to determine how the finite length of a PE chain will affect the

thermal conductivity. To this end we can estimate the thermal conductivity of individual

PE chains using (3.3.23). Here we can introduce boundary scattering by modifying the

relaxation time according to Matthiessen's rule [24, 25],



- = - +-- (4.4.1)
T PP L

where the net relaxation time z of each mode is affected by the phonon-phonon

1
scattering rate within the chain - as well as the finite chain length L. We can then use

TPP

the autocorrelation terms of (3.5.12), where k = k' and p = p', to generate an estimate

for the phonon-phonon scattering rate -- . Here, we can also consider two limiting
PP

cases. First we can use the autocorrelation data from a convergent 40 unit cell simulation

to determine zp for each mode. We can then use a linear interpolation scheme and a

Toc CO -2 model to extrapolate relaxation times for other modes. We could then use this

phonon-phonon scattering rate in (4.4.1) to determine the thermal conductivity according

to (3.3.23). As a secondary estimate for an upper limit, we could consider incorporating

the anomalous mechanism discussed in the previous sections. In this limit we can include

the cross-correlation effect by taking the phonon-phonon relaxation times for LA modes

with wave vectors on the intervals [0.15, 0.25] and [0.4, 0.5] to be infinite. This choice is

based on the modes that were shown to have divergent cross-correlations in the previous

section (Fig. 4.2.3). The net relaxation time, however, would still be limited by the

chain's length, but as the chain length increases these modes can have an unbounded

contribution to thermal conductivity. Furthermore we can include the observation that the

divergent phenomenon only occurs in chains longer than 40 unit cells.

The results of this predictive scheme are shown in Fig. 4.4.1. This figure shows

that boundary scattering suppresses the effects of the divergent LA modes when the chain

length is shorter than - 1 micron. However, beyond 1 micron the effect of potentially

divergent modes becomes apparent, as the thermal conductivity is unbounded and

continues increasing with length. As length increases, the first limit approaches a

maximum - 300 W/mK, because it does not incorporate the divergent mode

contributions. The difference between the two curves suggests that it may be possible to

detect if the correlated scattering effect actually exists in real PE chains. If thermal

conductivity measurements of individual chains become possible in the future, it may



become feasible to determine whether or not the correlation effect exists in real PE chains

by comparing the magnitude and trend of the thermal conductivity with chain length.

Another important feature of Fig. 4.4.1 is that we expect the thermal conductivity

of individual chains to be much higher than the bulk value, regardless of whether or not

the cross-correlation effect persists in real PE chains. Experiments have been used to

determine the distribution of chain lengths in bulk PE and the results suggest that the

chains - 120 unit cells (30 nm) in length are common [98]. As a result we might expect

the average thermal conductivity of the chains in bulk PE to be - 100 W/mK, which is

about 300 times greater than that of the bulk material (0.35 W/mK). This value is twice

as large as the result obtained by Freeman et al. (- 55 W/mK) [71]. One might expect

their results to be higher than ours, because their use of the Kirkwood model [72] did not

consider the CH2 internal degrees of freedom, and therefore neglected a major portion of

the optical-acoustic phonon scattering. However, Fig. 3.4.1 indicates that the Kirkwood

model largely underestimates the acoustic mode group velocities, which have the

strongest effect on the resultant thermal conductivity, as indicated by (3.5.12).
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Figure 4.4.1 The predicted thermal conductivity for individual polyethylene chains as a
function of chain length.

In evaluating (3.2.15) and (3.2.25) to generate the thermal conductivity results we

specified the volume of an individual PE chain as the chain length multiplied by an 18 A2

cross sectional area. This choice for the area was based on the bulk lattice structure



dimensions [1, 97]. It is important to note that the magnitude of the thermal conductivity

for a single chain is somewhat arbitrary, because it could be rescaled by simply

specifying a different cross-sectional area. In light of this, we have shown the

corresponding conductance values for the individual chains in Fig. 4.4.2, where

G = /L Here, the choice of area does not impact the results and we see that the

maximum conductance per chain is on the order of 10-9 W/K and decreases with

increasing chain length. For the upper limiting case where the LA cross-correlation

effects are included we see that the conductance converges to a constant value - 1.5 x 10-

10 W/K for chains longer than - 1 micron.
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Figure 4.4.2 The predicted thermal conductance for individual polyethylene chains as a
function of chain length.



Chapter 5: PE Lattice Thermal Conductivity

In the preceding chapter we showed that the thermal conductivity of individual PE

chains is high and can even diverge because of correlated scattering events. We also

showed that finite chains are expected to have high thermal conductivity - 100 W/mK,

which is about 300 times larger than the bulk value 0.35 W/mK. The transition from high

thermal conductivity in a single polymer chain to low thermal conductivity in bulk

polymers is interesting from both a fundamental and practical stand point. Experiments

on mechanically stretched bulk polyethylene report thermal conductivities as high as -

42W/mK along the stretching direction [18]. Although we anticipate that the thermal

contact resistance between chains will play a crucial rule, anharmonic interactions

between chains can lead to increased phonon-phonon scattering, which can diminish the

high diverging thermal conductivity of individual chains. From a practical stand point, it

is important to understand this effect for the design and structural optimization of

inexpensive high thermal conductivity polymers. From a fundamental perspective, the

strongly anisotropic bond chemistry (i.e. stiff covalent bonding along the chain backbone

versus weak van der Waals bonding in the lateral directions) gives rise to an interesting

size effect on the thermal conductivity. Here we expect the opposite trend from what is

usually observed in most nanostructures, where the thermal conductivity decreases with

size [24, 34]. For polymer chain lattices, we anticipate that the axial thermal conductivity

can actually increase with decreasing size, as a result of reduced chain-chain anharmonic

scattering.

5.1 1D-to-3D Transition

For infinitely long polymer chains, the weakly attractive van der Waals forces

between chains give rise to a stable lattice structure in both 2D and 3D. This unique

feature, allows for observation of a 1D-to-3D transition in phonon transport, which will

cause a 1D-to-3D transition in the thermal conductivity as is conceptually illustrated in



Fig. 5.1.1. Starting from a single polyethylene chain, which has high thermal

conductivity, we anticipate a transition to 2D behavior as more chains are added to form a

single lattice plane (1D-to-2D transition). The 2D lattice plane should then exhibit lower

thermal conductivity, as a result of anharmonic scattering induced by neighboring chains.

A second transition from 2D-to-3D is also expected as additional lattice planes are

stacked, leading to even more inter-chain anharmonic scattering, which should lower the

thermal conductivity even further. The strongly anisotropic phonon transport in polymer

chain lattices can therefore cause the axial thermal conductivity to increase with

decreasing crystal size, which is the opposite trend observed in most nanostructures and

bulk materials.
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Figure 5.1.1 Conceptual illustration of the 1D-to-3D transition in the lattice structure and
its anticipated effect on the lattice thermal conductivity.

The AIREBO potential is well suited for studying the proposed 1D-to-3D

transition, because we require a model that can describe both intra-molecular (covalent)

and inter-molecular (van der Waals) interactions. The key point is to examine the extent

to which the weaker inter-molecular interactions can interfere with the much stronger

intra-molecular covalent forces, in order to induce phonon-phonon scattering and reduce

the thermal conductivity.



Figure 5.1.2 shows how the decay of the HFAC function changes for the 1D

chain, 2D sheet and 3D bulk cases, which are bolded in Table 3.6.1. Figure 5.1.2a shows

that the single chain has the longest decay time. When a second chain is added the decay

rate increases significantly, leading to lower thermal conductivity. This indicates that the

transition from 1D to 2D behavior is sharp, suggesting that chain-chain phonon-phonon

scattering is substantial with only two chains present. Figure 5.1.2b shows a more

extended view of the HFAC functions. This plot shows that the 1D case has a long tail,

which can even lead to divergent thermal conductivity, while the 2D and 3D cases decay

more rapidly.
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Figure 5.1.2 Normalized heat flux autocorrelation (HFAC) functions vs. time. a shows
the average HFAC function for 10 independent simulations of the bolded lD, 2D and 3D

cases in Table 3.6.1, as well as the 2nd case with two chains. b shows the long time
behavior of the HFAC functions for the bolded lD, 2D and 3D cases in Table 3.6.1. In
both a and b the data has been smoothed over 1 ps intervals to filter out high frequency
oscillations for a clearer representation of the decaying features.
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The results in Fig. 5.1.3 show the thermal conductivity values obtained for all 12

cases described in Table 3.6.1. This figure shows the full 1D-2D and 2D-3D transitions,

with respect to the number of chains or layers in the corresponding dimension. Numerical

integration of the HFAC functions after several nanoseconds exhibited oscillations due to

cumulative noise associated with the longitudinal acoustic phonons, which are the most

dominant heat carriers. As a result, the (infinite) integration limit in (3.2.15), was

truncated to 500 ps, which sufficiently captures the autocorrelation decay for all cases, as

shown in Fig. 5.1.2b. Each point in Fig. 5.1.3 therefore represents the average thermal

conductivity of all 10 independent simulations, while the error bars show the standard

deviation. Despite the spread in the results, the 1D-to-3D transition and overall trend of

decreasing thermal conductivity with increasing size is nonetheless apparent. The results

of Fig. 5.1.3 also show that the transition from 1D-2D is sharper than the transition from

2D-3D. The single chain thermal conductivity is large, as discussed in chapter 4.

However, when two chains are allowed to interact the thermal conductivity decreases by

- 40%, which is also evident from Fig. 5.1.2a. As more chains are added to form a single

layer of chains the thermal conductivity does not change as drastically. Once periodic

boundary conditions are employed in 2D, the transition to 3D is less abrupt, and the

thermal conductivity decreases from the planar limit by another - 30%. Once 5 layers of

chains have been stacked, Fig. 5.1.3 shows that the thermal conductivity is quite close to

that of the bulk value predicted when periodic boundaries are employed in all three

dimensions.

Starting from the single chain limit, as more molecular chains are added to the

simulation domain, lattice waves begin propagating in the perpendicular directions and at

intermediate angles in between. These phonons contribute to the axial thermal

conductivity by carrying heat, but they also detract from the high thermal conductivity of

each individual chain, by scattering the most efficient heat carrying phonons, which

propagate along each chain's carbon backbone. The vital characteristic that allows for the

1D-to-3D transition shown in Fig. 5.1.3, is that these phonons detract from the axial heat

conduction more than they can contribute, thus reducing the net thermal conductivity.
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Another interesting feature of the results in Fig. 5.1.3, is that the bulk value

predicted by our simulations is in good agreement with the thermal conductivity of

stretched samples of bulk polyethylene [18]. In the most highly stretched samples, the

authors report that single crystalline needle structures were obtained [18]. The

correspondence with our simulation results indicates that anharmonic scattering between

chains has a stronger effect on reducing the thermal conductivity than the thermal

resistance at grain boundaries between crystals. Our results show that the anharmonic

scattering induced by weak van der Waals forces can cause significant attenuation of

modes propagating along the stiff covalently bonded polymer chain backbone. This

provides important quantitative insight into heat conduction in polymer lattices, which

will be necessary for designing and manufacturing low-cost high thermal conductivity

polymers.
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Figure 5.1.3 1D-to-3D thermal conductivity results from the Green-Kubo analysis,
showing the 1D-2D (left) and 2D-3D (right) transitions along with the maximum thermal
conductivity reported in experiments on mechanically stretched bulk polyethylene. The
left portion of the horizontal axis is given in the number of molecular chains for the 1D-
2D transition, while the right portion of the horizontal axis is given in terms of the
number of 2D layers being stacked for the 2D-3D transition. Dashed lines indicate the
values obtained for the ID single chain limit, the 2D sheet limit and the 3D bulk crystal
limit, which show the increasing trend with decreased dimensionality.
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5.2 1D-to-2D: Anharmonicity vs. Conductance

In the previous section we observed the expected 1D-to-2D and 2D-to-3D

transitions and increasing trend for the thermal conductivity with decreased

dimensionality. One interesting aspect of the results is that the 1D-to-2D transition is

sharp, and the behavior observed with only two chains present was very similar to that of

the 2D infinite planar sheet. In this section we probe this transition in greater detail by

considering a long 200 unit cell chain with periodic boundary conditions applied along its

length. We then consider how the thermal conductivity of the long single chain (chain 1)

is affected by the growing presence of a second chain of finite length (chain 2), with

terminated ends CH3-(CH 2- CH2)n-CH 3. As we increase the value of n for chain 2 we

would expect to approach the thermal conductivity obtained for two chains, as discussed

in the previous sections. The objective of studying this system is to determine how strong

the effect of anharmonicity is, and whether or not its impact on neighboring chains is

gradual or immediate. Additionally this system allows us to study the conductance

between two neighboring chains, based on (3.2.40). Inspection of (3.2.40) suggests that

the conductance between chains should increase with n2 , since it is proportional to the

square of the energy exchanged between chains as a result of the chain-chain van der

Waals forces. Determining the conductance between chains will allow for further

development of a thermal resistance model which can be used to understand the dominant

heat conduction mechanisms.

The following results are based on 10 independent simulations for each of the two

chain systems previously described, which consist of (chain 1) a long 200 unit cell chain

that extends to the domain's periodic boundaries, and (chain 2) a shorter neighboring

chain that has terminated ends CH3-(CH 2- CH2)n-CH 3. The secondary shorter chain was

initialized at its equilibrium position according to the bulk lattice structure, and its length

was increased from 0 unit cells (only chain 1) to 190 unit cells. All simulations were run

at the quantum corrected room temperature and were initialized with random velocities in

the same manner as all simulations discussed previously. Using this setup, we computed

the thermal conductivity of the longer 200 unit cell chain as the shorter finite chain's

length was increased. For this computation, we omitted contributions to the heat flux that
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arose from the van der Waals forces between chains (see equation (3.2.25)). It is in this

manner that we isolated the effect of anharmonicity, because the resulting heat flux

autocorrelation function was restricted to the same intra-molecular forces that are used in

the single chain calculations and no intermolecular forces were included. Thus the

neighboring chain only affects the results through its ability to alter the trajectory of chain

1. The chain-chain van der Waals forces that give rise to this effect on the trajectory are

not included in the calculation of the temporally varying heat flux (3.2.25), thereby

separating the effect of anharmonicity from the chain-chain conductance. These chain-

chain van der Waals forces, however, are used to compute the chain-chain conductance

(equation (3.2.40) & (3.2.41)).

Figure 5.2.1 shows how the thermal conductivity of chain 1 decreases from the

increased length of chain 2. Here we see that the full onset of anharmonicity occurs at

short chain lengths - 10 unit cells. Conceptually we can think of the presence of chain 2

as a temporally varying perturbation to the trajectory of chain 1. This perturbation serves

to disrupt the correlated motion of the atoms in chain 1 and subsequently causes the heat

flux autocorrelation to decay more quickly. It is interesting to note that the effect is

immediate and once chain 2 is large enough to cause a significant disruption in the

correlated atomic motion of chain 1, the thermal conductivity decreases by - 50%. Figure

5.2.1 shows that beyond 10 unit cells in length, the continued increase in length of chain

2 does not cause a continuous decrease in thermal conductivity for chain 1.

104



180

2 160
E

140

S120 -

80
0

o
0 50 100 150 200

Chain Length (unit cells)

Figure 5.2.1 Thermal conductivity of chain 1 in the presence of chain 2, whose length is
increased from 0 unit cells (only chain 1 present) to 190 unit cells.

Figure 5.2.2 shows how the normalized heat flux autocorrelation (HFAC) changes

as the length of chain 2 is increased. Similar to the results in chapter 4, the HFAC

functions exhibited strong oscillations - 50 THz that are symmetric about zero and thus

do not contribute to the heat conduction. The HFAC functions in Fig. 5.2.2 were obtained

by averaging over the 10 independent simulations, and the curves consist of smoothed

local average values (2.5 ps intervals) in order to highlight the decaying features. Here we

can see that the presence of chain 2 serves to disrupt the correlated decay of chain 1 and

leads to stronger oscillations, which detract form the Green-Kubo thermal conductivity

integral (3.2.15).
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Figure 5.2.2 Normalized heat flux autocorrelation functions for chain 1 a, when chain 2 is
0 and 5 unit cells longs and b, when chain 2 is 10 and 190 unit cells long. The values
have been smoothed using the same procedure for all curves and are based on local
averages over 2.5 ps intervals.

In addition to decreasing the longer chain's thermal conductivity, the presence of

the second chain adds a new parallel channel for heat conduction. This chain-chain

conductance serves to reduce the overall thermal resistance, thereby increasing the

overall thermal conductivity of the two chain composite structure. Studying the interplay

between these two competing effects of anharmonicity and conductance allows for better

understanding of the dominant mechanism for thermal transport in mechanically

stretched bulk PE. Figure 5.2.3 shows the conductance values for the cases considered in

Fig. 5.2.1, based on (3.2.40). This plot shows that the conductance increases as expected,

and is proportional to the square of the number of interacting atoms and length of chain 2.
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It is also important to note that the magnitude of the conductance - 10-10 W/K is

comparable to other conductance values obtained for the conductance between

nanoparticles, which range from 10 14 - 10-9 W/K [91]. Figure 5.2.4 shows an example

normalized energy exchange autocorrelation (EEAC) function. Here we see the same

strong 50 THz oscillation observed in HFAC functions. As a result Fig. 5.2.4 also shows

the same data when smoothed using local average values (2.5 ps intervals) in order to

highlight its decaying features. Here we can see that unlike the HFAC which decays over

hundreds of picoseconds, the EEAC decays much more rapidly in less than one

picosecond. This short decay is expected since the coupling between the two chains is

weak, as compared to the more dominant covalent intramolecular interactions.
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Figure 5.2.3 Chain-chain conductance between chain 1 and chain 2 as a function of the
length of chain 2. Error bars indicate the standard deviation obtained from the 10
independent simulations

107



0.3

0.2

0.1
u
UL< 0.0

-0.1

-0.2

-0.3
0.0 0.5 1.0 1.5 2.0

Time (ps)

Figure 5.2.4 Normalized energy exchange autocorrelation (EEAC) function used to
compute the conductance between chain 1 and chain 2. The (red line) values have been
smoothed over 2.5 ps intervals to highlight the decaying features of the actual EEAC,
which exhibits large oscillations - 50 THz.

One simple way to incorporate the calculated conductance into a thermal

resistance model would be to treat each chain as an infinite lD fin. The notion that

individual chains can be treated as fins is based on the temporal temperature fluctuations.

At a given instant we would expect that the atoms in one chain may have higher kinetic

energy while other atoms in the same vicinity, that comprise the neighboring chains, may

have less kinetic energy. The atoms with higher energy can then conduct that energy to

surrounding atoms through the chain-chain conductance. This process of dissipation

resembles that of macroscopic convection and can therefore be used in accordance with

Newton's law of cooling Q= hAsAT . In the proposed fin model we treat each

neighboring chain as a means of heat removal, by imagining each chain as a fin with a

rectangular cross section set by the bulk lattice constants. We can then calculate a heat

transfer coefficient by matching to the heat transfer obtained with the chain-chain

conductance GAT = hAsAT, where h is the heat transfer coefficient and As = 1.471 x 10-

17 A2 based on the bulk lattice structure. This leads to an overall fin resistance of 1.72 x

109 K/W, where we have used the average thermal conductivity in Fig. 5.2.1 - 47 W/mK

as the individual chain thermal conductivity. This is the average value we would expect

for two completely overlapping 200 unit cell chains. With this estimate for the resistance

we can then proceed to calculate the effective thermal conductivity of two neighboring

200 unit cell chains, where they are considered as thermal resistors in parallel Here we
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find that the effective thermal conductivity of two neighboring chains is - 82 W/mK,

which is in good agreement with the two chain result in Fig. 5.1.3.

Here we can see that even though the effect of anharmonicity is strong and

reduces the thermal conductivity of each individual chain to - 47 W/mK, the chain-chain

conductance counter balances the effect and enhances the composite structure

conductivity by almost 40 W/mK. It is however interesting to note that the effect of the

anharmonicity is immediate and reduces the individual chain thermal conductivity with

only a short overlapping region. The conductance, on the other hand, increases more

gradually and would only be able to compensate for the anharmonic reduction when the

overlapping regions are large.
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Chapter 6: Conclusions and Future Directions

6.1 Conclusions

Experiments have demonstrated that the thermal conductivity of bulk polymers

can be increased dramatically by mechanical stretching, as a result of increased polymer

chain alignment [18, 19, 99]. In order to determine the range of possible applications for

such materials it is important to first understand and quantify the fundamental upper

limits. In this thesis we have derived and implemented several MD trajectory analysis

techniques that revealed important information about the phonon transport in individual

polyethylene chains as well as PE chain lattices. Intuitively we know that the highest

possible thermal conductivity that can be achieved in polymer chain based materials is

the limit of an infinitely long single chain. We have chosen PE because it is the simplest

and most widely used polymer. In this respect, a single PE chain in the zig-zag

conformation bears strong resemblance to the 1D nonlinear chain of oscillators studied by

Fermi, Pasta and Ulam in the 1950's, which led to the discovery that nonlinear chains of

oscillators can be non-ergodic [40]. This surprising result implied infinite thermal

conductivity and has led to decades of discussion about anomalous heat conduction in

low-dimensional systems.

In this thesis we studied phonon transport in individual PE chains and observed

divergent Green-Kubo integrals, which suggests that an infinitely long PE chain can have

infinite thermal conductivity. We then proceeded to conduct more detailed analysis and

found that the divergent effect could be suppressed by the addition of heavier isotopes,

which indicated that the divergent phenomenon was not a result of unphysical numerical

artifacts. Modal analysis showed that the lowest frequency modes in the system do not

fully attenuate, which is often explained by hydrodynamic mode coupling theory [47].

Further analysis, however, showed that this behavior was exhibited by all simulations,

regardless of whether or not the thermal conductivity diverged. Furthermore, when the

contribution of these modes to the thermal conductivity was evaluated, they were unable
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to explain the rate of divergence in the Green-Kubo integrals. Subsequent analysis

revealed that the divergence was due to persistent cross-correlation amongst certain LA

modes. This observation led to a new explanation for the divergence and suggested that

all phonons do experience phonon-phonon scattering, yet some modes encounter

scattering events in a correlated pattern. This notion violates one of the most widely used

simplifications of the Boltzmann equation, which is based on the assumption of

molecular chaos [92]. This new evidence and explanation subsequently led to a new

perspective for thinking about lattice heat conduction. Here we proposed an alternative

paradigm to the traditional viewpoint which is based on working towards the most

accurate account of scattering interactions. Our new paradigm suggests that more

efficient heat conduction can be thought of as arising from increased correlation in the

atomic motion.

Using the results obtained for individual chains with periodic boundary

conditions, we also predicted the thermal conductivity and conductance of finite length

chains. These calculations indicated that the thermal conductivity may converge to - 300

W/mK for micron long chains, if the divergent phenomenon does not persist. On the

other hand, if the divergent phenomenon does persist, these calculations showed that the

thermal conductivity is unbounded and the conductance converges to a constant - 1.5x1 0

10 W/K. In pursuit of understanding phonon transport in stretched polymers, we also

studied how the thermal conductivity of a single chain is impacted by the presence of

additional chains, which can enhance phonon-phonon scattering through van der Waals

interactions. To this end, we studied how the thermal conductivity decreases from 1D-to-

2D behavior in a planar sheet and how the thermal conductivity is further decreased by

stacking planar sheets to build up to a 3D lattice, which gave rise to a second transition

from 2D-to-3D behavior. These results showed that the full transition from 1D-to-2D

occurs with only 2 chains present. The scattering induced by the second chain prevents

the thermal conductivity from diverging and also reduces the single chain conductivity by

- 40%. The transition from 2D-to-3D behavior, on the other hand, is more gradual and

once 5 layers of planar sheets have been stacked, we observed convergence to the bulk

lattice behavior. Our results for the bulk lattice thermal conductivity also agree well with
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the highest value obtained for stretched samples of bulk PE, which were reported to

contain thin crystal needle like structures [18].

Lastly, we investigated the 1D-to-2D transition in greater detail for better

understanding of the interplay between the effect of anharmonicity and conductance. This

was accomplished by studying a system of 2 chains. Chain 1 was 200 unit cells long and

extended to the periodic boundaries, while chain 2 was shorter and had terminated ends.

Using this system we studied the rate at which the thermal conductivity of chain 1

decreased as a result of increasing the length of chain 2. These simulations indicated that

the effect of anharmonicity was immediate and that a 10 unit cell length for chain 2 had

the same impact on the thermal conductivity of chain 1 as a 190 unit cell chain. This

reduction in thermal conductivity of - 50% was counterbalanced by the fact that the

presence of the second chain opens a new path for heat conduction as a parallel

resistance. This effect was studied by computing the chain-chain conductance. These

results showed that the chain-chain conductance followed the expected trend and

increased as the square of the chain 2 length. These results were then incorporated into a

simple ID fin heat conduction model and showed that the two chain thermal conductivity

results can be explained by considering each chain as a separate thermal resistor in

parallel. This self consistency in our calculations further confirms the fidelity of our

results. Furthermore the quantitative results and increased understanding gained from the

various MD simulations conducted in this thesis can provide additional insight into the

design and structural optimization of polymer chain-based heat transfer materials.

6.2 Future Directions

Although several aspects of the relevant physics have been explored in this thesis,

many issues of concern and interest remain for future study. For example, a future

investigation should address more thoroughly the most appropriate definition of

temperature. Here, we have shown results for simulations at room temperature based on

the quantum corrected definition discussed in chapter 3. This choice was motivated by

the large spectrum of phonon frequencies in the PE chains (0.01 - 90 THz), which lead to
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arguments surrounding the possible misrepresentation of normal mode amplitudes if the

equipartition-based definition was used. Other simulations, which were not discussed

were run at room temperature, using the equipartition-based definition and resulted in

even higher convergent thermal conductivity - 1,000 W/mK and a stronger divergence >

10,000 W/mK within 5 ns. The results discussed in chapters 4 and 5, which were based

on the quantum corrected temperature definition, were emphasized because they serve as

a more conservative estimate. Future investigations should probe the behavior of single

chains and chain lattices at room temperature based on the equipartition definition, along

with detailed modal analysis to cross check the magnitude of the thermal conductivity

and to verify the proposed cross-correlation mechanisms. Furthermore, additional

simulations should be used to study the temperature dependence of the thermal

conductivity, which may assist in establishing the correct definition of temperature.

Another area for future pursuit could involve studying the thermal conductivity

dependence on crystallinity. Experiments on stretched polymers often report X-ray

diffraction measurements as a means of estimating the degree of crystallization in the

samples. Although our conductance calculations suggest that the chain-chain conductance

can be large and plays an important role in the lattice heat conduction, we would still

expect that chain-chain entanglement and disorder could disrupt the heat conduction

pathways and reduce the thermal conductivity. It would be interesting if future studies

could establish how exactly how the degree of entanglement impacts the thermal

conductivity.

Future investigations could also explore the properties of related polymer

molecules such as Teflon and polyacetylene. Teflon, for example, has the same structure

as PE except that the hydrogen atoms are replaced by heavier fluorine atoms. It would be

interesting to investigate whether or not the divergent phenomenon observed in single

chains persists in Teflon as well. If so, it could possibly lead to a more general

understanding and also a different range of applications, since Teflon is more stable at

higher temperatures. Additionally, it may be interesting to study polyacetylene, which is

a zig-zag hydrocarbon chain, where every other carbon is only bonded to one hydrogen

atom instead of two as is the case with PE. The absence of some of the hydrogen atoms

leads to stronger double bonds between adjacent carbon atoms. With this increased
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stiffness along the carbon backbone, we might expect even higher phonon group

velocities and therefore even higher thermal conductivity. It would also be interesting to

study whether or not the divergent phenomenon persists in polyacetylene molecules as

well. These future directions along with the foundational knowledge obtained in this

thesis could add important insight into the future design optimization and large-scale

manufacturing of cheap high thermal conductivity polymers.
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