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Abstract

The concept of linearity and the relations fundamental to trans-
mission and reflection theory are derived from the properties at the termi-
nals of an object, without reference to its interior. The so-called vector
diagram of conventional theory is interpreted as a conformal mapping, as a
polar plot, and as a linear transformation. Conditions for its exact valid-
ity are obtained, as are the errors when the diagram is known to be only
approximate. When no approximations are made, different interpretations of
the vector diagram lead to different geometrical figures, each of which is
investigated in detail. For ease of reference the results are summarized in
numbered paragraphs distributed throughout the text.
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1. ]Fundamental Relations

11. Introduction. In this article, transmission and reflection coefficients are used

to investigate the behavior of an object or an array of objects in a transmission line

at microwave frequencies. The questions considered are of the type which, at least for

the lower frequencies, are almost always treated by means of impedance, rather than by

means of transmission and reflection coefficients as here described. Since impedance is

very common in engineering practice, while transmission and reflection are less often

employed, it is natural to inquire whether the advantages of the new approach are suffi-

cient to offset its unfamiliarity. Such a question is particularly relevant in that im-

pedance can be used for microwave problems as well as for problems at the lower frequen-

cies, and many of its general properties are preserved in the two -cases. Moreover, the

reflection coefficient r is related to the impedance z by

r= 1-z (1)1+ z

with a similar equation for transmission in terms of transfer impedances; and hence it

might be supposed that the new method, which differs only in this rather trivial change

of variable, could offer no advantages not already inherent in the old. These and other

arguments in favor of the imldedance approach are certainly very cogent, and have induced

a number of authors to write whole books on microwave theory, in which the notion of im-

pedance is used almost exclusively (Reference 2, 3). The greater part of Reference 3, in

particular, is devoted to the establishment of equivalences between the familiar imped-

ance relations of circuit theory and the equations of an electromagnetic field.

There is a large class of problems, nevertheless, in which the alternative

method used here offers many advantages. Reflection and transmission properties fre-

quently have a simple physical interpretation, for example, and results which are intui-

tively evident with this point of view may be rather difficult to derive on the basis of

impedance. Because of this difference in physical meaning, the change of variable in-

dicated in (1) is actually less trivial than one would at first suppose. At least for

microwave frequencies, moreover, the derivation of results from first principles is some-

what easier with the present approach than with the methods of circuit theory, and the

final form is often simpler. An example is given by the equation for moving the refer-

ence point down the line, which becomes

z + zo tanh(ikx)

z(x) ° z 0 + z tanh(ikx) (2)

for impedance, while we have the simpler (and more easily derived) relations

r(x) = r(O)e2ikx

(3)
t(x) = t(O)e

for transmission and reflection. In such cases the impedance procedure is attractive,

not because it is really better suited to the problem at hand, but because it is more

familiar. An illustration of this idea is found in the fact that reflection methods are

easier to explain to a person unacquainted with either theory.
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The present investigation was prompted partly by these considerations and partly

by the fact that impedance methods have been fully described in many works, while only the

most cursory consideration appears to have been given to the corresponding theory of re-

flection. The subject is here presented as a field of study in its own right, and no

attempt is made to correlate the results with those of circuit theory.

1.2. Definitions. Following Reference 1 we may write the equation of an electromagnetic

wave in the form

E(x,t) = Aei(k x - wt) (4)

where E(x,t) represents the complex electric field at point x and time t, both quantities

being measured from some fixed origin. The wave may be travelling down a transmission line

in the general sense, which includes any arrangement with cylindrical symmetry; for example,

the line may be a waveguide of arbitrary cross section, or free space. For our present

purposes the nature of the line is sufficiently specified by the so-called propagation

constant k of Eq. (4), which will be assumed independent of field strength over the range

of fields under consideration. With such an assumption, which is always made in work of

this kind, we find that k is simply a constant, complex if the transmission line is dissi-

pative, real if it is lossless. In the latter case the material filling the line must be a

perfect dielectric (zero conductivity) and the line itself must be made up of perfect con-

ductors (infinite conductivity). We may then write

k = 2/Xg (5)

where Xg is the wavelength, in the transmission line, of the particular mode under dis-

cussion.

In all relations with which we shall be concerned here, the time dependence

e it of Eq. (4) plays no part, and need never be explicitly stated. This is the reason

for our choice of Eq. (4),which leads to slightly simpler relations than the corresponding

engineering form obtained by writing i = -J. With the time dependence omitted, the

complex amplitude of the wave at a particular point is defined as the coefficient of

e it. By means of Eq. (4) one may then write

A(x) = eikXA(O) (6)

where A(O) is the complex amplitude at some point of the line, while A(x) is the complex

amplitude at a distance x down the line in the direction of propagation. If there are

several waves all travelling in the same direction, the complex amplitude of the resultant

wave is defined to be the sum of the individual complex amplitudes. This property will be

explicitly used only at points of the transmission line, not at points interior to the

reflecting objects presently to be introduced. Its ustification for this case follows

from the well-known superposition principle for plane waves, which in turn is valid when-

ever k is, as here assumed, independent of field strength. Similarly, the resultant field

at a point in the line is obtained by adding the complex amplitudes of all waves at that

point, whether these waves are travelling toward the generator or toward the load.



The complex amplitude, as thus defined, is Just a complex number, and hence it

may be written in the form

A = IiAe (7)

The quantity AI in this equation is called the amplitude (as opposed to the complex

amplitude) while Al is the phase. For the power in the wave one may write

power = (constant)1A12, (8)

an expression which is more convenient for our present purposes than explicit use of the

Poynting vector. Thus, it is desirable not to introduce the field vector H, but to ex-

press all results in terms of E. This requirement is met by Eq. (8), and the proportion-

ality constant, which depends on the characteristics of the transmission line, will cancel

out of the relations with which we shall be concerned here. If the line is lossless, so

that no power is absorbed by it, one would expect the power at any one point to be the

same as any other point. That such is indeed the case is clear from Eqs. (5), (6) (8);

and conversely, we see that if this condition is satisfied, then the line must necese-

sarily be lossless.

The foregoing discussion applies to an infinite line or, which is nearly the

same thing, to a line terminated by a matched load. More generally, however, the line may

contain an obstruction, as shown in Fig. 1. The wave from the generator now gives rise

MATCHED LOAD
OR INFINITE
LINE.

Figure 1. Transmission line containing a single reflecting object.

The wave A, is the incident wave: Ao and B, are the
transmitted and reflected waves,repctively.

to two other waves, one being transmitted through the object, the other being reflected

back toward the generator. Over a imited range of values for the field it may happen

that the amplitudes of these two waves (called the transmitted and reflected waves) are

proportional to that of the original wave (called the incident wave). Such a situation

leads to the following definition:

An object is said to be linear from the left if the complex amplitudes

of the transmitted and reflected waves are both proportional to that

of the incident wave, whenever this wave is incident from the left.

Linearity from the right is similarly defined, and an object is said

to be linear if it is linear both from the left and from the right.

The transmission coefficient is then defined, in corresponding cases,

to be the constant ratio of complex transmitted to incident amplitude,

and similarly for the reflection coefficient.

As suggested above, it is clear that a physical object can be linear only for

certain values of the field; if the field is indefinitely increased, thermal and other
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effects will destroy the linearity of any real object. Whenever we speak of a linear

object, therefore, it is implied that the field is suitably restricted -- an assumption

which is standard in this kind of work, although not always stated explicitly. It is

similar to the assumption previously made concerning the constancy of k, In fact we see

from the definition that a section of line of length x will be linear if and only if k

is independent of field strength; in this case the two transmission coefficients are both

equal to e , and the reflection coefficients are zero.

Over the given range of the field, it is implied in the definition that the

ratios are constant, with a given incident wave, even when another wave is traversing the

object in the opposite direction. Similarly, the coefficients are defined only for a

single mode, the result for several modes being obtained by superposition. For simplicity,

however, we shall assume here that energy is propagated in the transmission line at one

mode only, although the object itself may excite other modes, and it may have any number

of unctions. A so-called magic T, for example, fulfills all requirements for a linear

object in this sense.

It is worth noting that the above definition of linearity differs from the one

used in the circuit theory, in that we do not here assume linearity throughout the inte-

rior of the object. The condition is stated in terms of the terminals only, a point of

view which is characteristic of transmission and reflection methods. The present con-

cept of linearity is slightly more general than the usual one; for example, an object may

be linear in this sense without satisfying the reciprocity theorem. In other words, the

transmission from the left and right need not be equal. It may be noted too that the dis-

tin ction between complete linearity and uni-directional linearity is not entirely

academic. At sufficiently low fields, for example, certain vacuum tube circuits may be

linear in one direction only; an illustration for r-f frequencies, which does not contain

vacuum tubes, is shown in Fig. 2.
CRYSTAL OR OTHER SHORT
NON-LINEAR DEVICE CIRCUIT

Figure 2. Example of an object linear from the right, but not from the left.

].3. Transmission nd Reflection of Two Objects. Throughout the foregoing discussion it

was assumed that the transmission line contained at most one reflecting object. Proceed-

ing now to the case in which two or more objects are present, we find that this new situa-

tion introduces no additional complications, but may be solved on the basis of the orig-

inal assumptions and definitions. Thus, for the two objects of Fig. 3a let us denote

the resultant amplitudes at the indicated points by A, Bi. That the field can be thus

resolved into plane waves follows from the assumed properties of the transmission line

and the two objects. The wave A4 is equal to the resultant wave A3 moving from left to

right at 3, multiplied by the left-hand transmission coefficient of the second object, so
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that one may write
A4 = A2e t,

after using q. (6) to transfer A2 to the point 3. Si

OVERALL I
COEFFICIENTS R I

-4; , T

(9)

.milarly the wave A2 is equal to the

(a )

(b)

INDIVIDUAL
COEFFICIENTS r

Figure 3. Two methods of computing the over-all transmission and reflection coefficients

for two objects in terms of those for the individual objects. a) Solution by

simultaneous equations. b) Solution by multiple reflections.

portion of A, which is transmitted through the first object, plus the portion of 32 which

is reflected at that object:

A2 = Alt + B2P (10)

This relation requires use of the superposition principle at point 2 of the transmission

line. The wave B2 is obtained by transferring A2 to the point 3 by Eq. (6), then reflect-

ing this wave at the second object to fina B3 and finally transferring the reflected wave

B3 back to point 2. We thus obtain
3 _ ikt ikx {11}~~~~~~~~~~~~~~~~--

B2 = A2 emr, e.' ,

And finally, by using superposition at the point 1 we find that the wave BI is equal to

the part of A, which is reflected at the first object, plus the part of B2 which is trans-

mitted:

BI A,r + B2t 
(12)
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After solving these four equations one obtains

A tt, ei
T 4 = (13)

A, 1 r, 2 ikx

r te 2ikx

R : -r + (14)
A, 1 -pr, e2ikx

which, by definition, give the left-hand transmission and reflection coefficients of the

pair of objects, this pair being itself regarded as an object. Expressions for the right-

hand coefficients cn be obtained by the same calculation, with A, incident from the right.

By ymmetry it is clear that the results would be equivalent to the above, except that

corresponding Greek and Latin letters, for each object, would be interchanged.

In many cases the behavior of a system of objects can be determined by inspec-

tion provided one has a clear physical interpretation of the reflection mechanism. Such

an interpretation is given by the following alternative derivation of Eq. (13). In ig. 3b,

the resultant wave moving from left to right at point 2 is given by the sum of the waves.

Each of these individual waves in turn is obtained from its predecessor by the relation

ikx ikx (15)ai+j = ai r, e (15)

which may be used repeatedly to give

a, = A,t, a2 = A,tr,pe 2ikx, a = At(r e2ikx)2,...

For the amplitude A2 one may therefore write

A2 a 2 + + a2 + + a ..

= t[1 + (r,p e2ikx) + (r e2ikx)2 + (r, e2ikx)3 + 

Ajt

=ikx (16)
1 - r,e 2ikx (1

whenever re 2 ikxl(1. A similar process of summation will give the amplitudes A4 and

BI, but these may be more simply obtained in terms of (16). Thus, the wave at point 4 is

found, as above, by letting the wave A2 proceed to the point 3 and then through the

second object. This procedure gives Eq. (13). Similarly, the wave B, is- obtained by

letting A2 go to the point 3, be reflected, return to the point 2, and go through the

first object. We thus obtain Eq. (14), after adding the term r arising from initial

reflection of A by the first object.

Although, in the general case, the procedure suggested by Fig. 3b is less

concise than that of Fig. 3a, there are many simple situations in which it can be

profitably used. As an example let us derive Eqs. (3), the realtions for travelling down

the line. These can be obtained directly from (13) and (14) by the substitutions

t == ei r == (17)

or by the alternative substitutions

t =t= 1 r -= O x = x. (18)

Physically, q. (17) means that the first object is a section of line x units long, and
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that the spacing of the two objects is zero(Fig. 4a with 2 coinciding with 3). The second

equation, (18), means that the first object is a section of line with zero length, sepa-

rated a distance x from the second object (Fig. 4a with 2 coinciding with 1). The two

situations are clearly equivalent; and by actual substitution one finds, in each case,that

Eqs. (13), (14) reduce to (3). To obtain a more immediate derivation one may construct

the analogue of Fig 3b for this particular case. From such a diagram the desired result

can be obtained by inspection (see Fig. 4a). Reasoning of this type entails no loss of

rigor and, as in the present case, it can often be used with advantage.

2 MAY BE AT EITHER POINT

I! x I
It ,

A,ei k r,eikx

(a)

A, _L
-i

I l #

I I

3 4

it' i I I

~T r, III
I ~ X --- i I

i I

Al

Air 4'

A,te ikr,ei k T

I I
2 31 '4

DI
Figure 4. The use of figures for deriving simple results by inspection. a) Derivation

of the equations for travelling down a line, Eqs. (3). b) Derivation of the
equation leading to the approximate vector diagram, Eq. (29).

1.4. Linearity of Several Objects. If each of two objects is linear from the left only,

then the two objects together will uusually not be linear in either irection. More

generally, if one object of a series is linear from the left only, all the others being

linear in both directions, then the whole series will ordinarily be linear neither from

the left nor from the right. If the exceptional object happens to be at the right-hand

end, however, then the series will always be linear from the left. These and similar
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observations may be readily proved by use of diagrams as above described.

Uni-directional linearity of each object, then, does not imply uni-directional

linearity of the series. On the other hand if each of two objects is linear in both

directions (the word linear being always understood in the sense of Sec. 1.2), then the

two objects will also be linear in both directions. This result is clear from either of

the above derivations of Eqs. (13), (14). By regarding two objects as themselves form-

ing an object, one can obtain the corresponding result for three; by treating the three as

a single object, the result with four is obtained, and so on. Proceeding in this way can

easily give an inductive proof of the following, which summarizes the chief results of

this section:

i. If each object of a series is linear, then the whole series, con-

sidered as an object, is also linear. The over-all transmission

an d reflection coefficients for two objects are given, in terms

of the individual coefficients, by Eqs. (13), (14). These equa-

tions are valid for any linear objects, and hence they may be

applied repeatedly to obtain the transmission and reflection

coefficients of the whole series.

From now on, all the objects with which we shall be concerned will be linear in

the sense of Sec 1.2. The result ust stated shows that every combination of these objects

will also be linear, and hence that this property need not be separately verified in any

given situation.

2. Reflection as aTransformatior

2.1. Separation of Amplitude and Phase. By the foregoing expressions we obtain the complex

coefficients T, R. The absolute value and phase, which are frequently required in practice,

can be computed in terms of these complex coefficients. As above, we use primed letters to

denote the phase associated with a given complex number, so that for example t = Itle it ,

with similar relations for the other quantities. If the line is lossless, as we shall

assume throughout this section, then the transmission satisfies

IT12 = I , (19)
1'- 21pr, cos 0 +pr, 12

T = t + t + kx + t r, sin 01 (20)
1 -Ir, co (20)

where all variables are now real and 0 is defined by Eq. (26). These equations are so

simple that their chief properties can be determined by inspection. If graphical methods

are to be used, moreover, one can obtain complete representation on a single page by

plotting ttI or T-t'- r,-kx versus 0 with rlI as a parameter.

Before proceeding to the corresonding expressions for reflection, which are

more complicated, let us introduce new parameters d and A defined by the equations

d = Idleid ' = tT- r (21)

A = t' +'- r' - ' (22)
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Because of its importance in determining the general character of a reflecting object, we

shall refer to d as the discriminant. Its chief properties are discussed in RLE Technical

Report o. 25; for the present, these results will be used without proof as required.

In terms of d, Eq. (14) takes the form

2ikx
r + dr, e

lR ~2ikx (23)1 -er, e

which leads to

2Ir 2+21dr,l cos G+Idr,l
IRI2

1-21pr, cos 0+1pr5 2 (24)

-l r'+tan Idr, sin 1 lP r I sin d
R'= r'+tan Irl+ldrI cos G + tan 1-pr, cos (25)

for the absolute value and phase. The quantities 0 and 9, which depend on the spacing of

the two objects, are given by

= 2kx+ r +' + (26)

9 = 2kx + r' + d' - r' = + d' - ' - r (27)

The relations (24), (25) are inconveniently complicated, and for this reason it is desir-

able to present the same information in other ways. There are several alternative methods

of representation, and a simple introduction to each of them is given by the so-called

vector diagram discussed below.

2.2. Vector Diagram. In practical work it frequently happens that the reflection coeffi-

cients are small. When this is the case one may sometimes neglect terms involving the

product pr, , so that Eq. (13) tkes the simplified form

T . tt,e ikx (28)
while (14) becomes

R r + r t e (29)

This latter equation may be written

R-r + re 2ikx (30)

when ttl, which is often true for small reflections. Physically, Eq. (28) means that

the over-all transmission is approximately equal to the product of the individual coeffi-

cientsfor the first object, for the second object, and for the section of line between

them. Equation (30) says that the over-all reflection is the sum of the individual

reflections, if that for the second object is duly modified to account for the length of

line. Either (28) or (29) can be obtained from first principles by inspection, if we

simply neglect interaction between the two objects (see Fig. 4b).

According to (30), the complex numbers r and r, e2ikx, which are equivalent to

two-dimensional vectors, are added in the usual way to give a new complex number or vec-

tor R. The quantity r represents the reflection of the first object, while re2ikx repre-

sents that of the second, as measured at a point immediately behind the first. In this

-9-
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sense the vector R, representing the over-all reflection, is simply the sum of the vectors

representing the individual reflections, a property which is the origin of the term

vector diagram generally applied to the construction of Fig. 5b. If we keep the first

object fixed and change x by moving the second, then the first vector remains unchanged

while the second rotates as shown, the angle through which it moves being exactly propor-

tional to x. These and similar results, which are standard in work of this kind, follow

easily from (30) and from well-known properties of complex numbers.

We have regarded Eq. (30) as representing the sum of two vectors. Many other

interpretations are possible. For example, one may regard it as a conformal transforma-

tion in the complex plane. Thus, when x is changed the reflection at a point Just behind

the first object (point 2 of the figures) will move around a circle with center at the

origin and with radius r, . If we now measure the reflection at point 1 instead of at 2,

this circle, approximately, becomes the one shown in Fig. 5 The process may be inter-

preted as a complex transformation because Fig 5, besides representing vector addition, is

also equivalent to the so-called ArRand diagram: it gives the imaginary part of R versus

its real part.

From another point of view, Fig. 5 is found to give a plot in ordinary polar

coordinates with origin at the point r. In other words the quantity R-rl is plotted as

radius while 2kx is taken as the angle. This interpretation is satisfactory because

the angle through which the second vector turns is, as noted above, exactly proportional

to x.

A final interpretation, quite different from any of the foregoing, is to regard

(30), not as a complex transformation, but as a simple linear transformation of the quantity

r e2ikx , which represents the reflection coefficient of the second object as measured from

point 2. A similar interpretation can be given to (28), and more generally, either pair of

equations (28), (29) or (28), (30), when taken together, give a linear transformation of

the transmission and reflection.

Because the vector diagram has so many desirable properties, one is naturally led

to inquire whether it ever gives an exact, rather than an approximate, representation of

Eq. (14). By inspection of (14) we find the following result:

ii. Equation (30) is exactly true, for some finite range of values of x,

if and only if we have r,(lel+ Il-tt[) = 0. In this case it is

valid for all x. When the object is assive in the normal sense

(i.e. contains no source of power), the condition becomes

r,(Irl+lpl+l-ttl) = 0. Hence in this case, for all practical pur-

poses either one or the other of the two objects must not be present

at all. Similarly, Eq. (29) is valid for some range of values of x

if and only if ttprl = 0, and in this case it is valid for all x.

The corresponding condition for (28) is tgt,r, = 0.

Hence these approximations are exact only in trivial cases. We have discussed

them at some length, nevertheless, because the errors are often small, and many of the

general properties are retained. Thus, the simple equations, (28(29),(30) give an intro-

-10-



(a)

(b)

Figure 5. Two forms of the vector diagram for addition of reflections.
Figure 5a is based on Eq. (29) and takes account of the trans-
mission of the first object. Figure 5b is based on Eq. (30),
and neglects the transmission of the first object.
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duction to the exact equation (14) treated in detail below. Except for the vector repre-

sentation, each of the above interpretations has its analogue in the exact case, although

they then lead to different geometrical figures.

2.3. Conformal Representation. One may plot the real part of R versus its imaginary part,

or the absolute value IRI versus its phase, to obtain the customary representation in the

complex plane. This procedure, which corresponds to the second of the above interpreta-

tions of ig. 5, is by far the most important method of representation. In principle the

radius for a polar plot is given by (24) and the angle is given by (25); but in practice

it would be too complicated to use these relations directly. Instead, let us solve
2ikx

Sq. (23) for r,e2i , then multiply both sides byp, and finally take the absolute value

to obtain

I ~~~R + d'(P~~~s~ I *(31)

The reflection R must vary in such a way, therefore, that the absolute value on the left

of Eq. (31) is equal to a constant, independent of x. It is well known that such a

relation, which implicitly determines IRI as a function of R', represents a circle with

center at p

c Icleic =eir - -
1 -|lrI1 2 (in general) (32)

1 - Ir, 2

1 - ..rr2 (lossless) (33)

and with radius tr (34)

l-lprI 2 (34)
l-Ierl

- I r.i l1r1 2 (35)

The points

r, - d/p (in general) (36)

eir lrl, eir'/rl (lossless) (37)

are inverse points. The maximum and minimum values of I Rlare quite difficult to derive

directly from (14) or (24), but by using the relations ust obtained we easily find

extremes =I [ Ir 2+21prdr21cos(dt-rI-t)+Ir, 212 + ittr (38)

Results accompanied by the word lossless are valid whenever the first object absorbs no

energy: they follow from the equations It12+lr 2
= ITrI2 +1e1 = 1, pl1= Irl,

d = -e i(rt + ') established for this case in RLE Technical Report No. 25.

Let us compare these exact relations with the familar vector diagrams discussed

above. By combining the relation, fractional error = (approximate minus correct)/correct,
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with Eqs. (34), (35) we obtain the following, which describes the behavior of the radius:

iii. A complex plot of reflection is a circle in the exact case,

Just as in the approximate cases. For Fig. 5a, the frac-

tional error in radius is -rr, I2 or -Ipr, 2 according as

the first object is lossless or notl and hence the radius

in this figure is never greater than the true radius.

Similarly, the fractional error in Fig. 5b is

ir12 -1r,12I 1 or (1 - Itt I - Ipr, 2)/Ittl, and hence,

for the lossless case, the radius in this figure is never

less than the true radius. As far as the radius is con-

cerned, Fig. 5a or 5b is the more accurate, in the loss-

less case, according as r1
2 (2-Jrl2) is greater or less

than one.

Having considered the radius, let us investigate the location of the center.

In the approximate diagram, the center coincides with the point r, which point may be

termed the fixed mismatch because it represents the mismatch prevailing before the

second, or moving, object was added to the system. As we see by q. (23), this simple

property -- coincidence of center and fixed mismatch -- is not generally obtained in the

exact case. For quantitative investigation let us use Eq. (32)to obtain

c - r = Itpr.. i(t'+v-p) (39)
-Ipr, I 2

while from (14) we have

r, tT e2ikx

1 r e2 ikx . (40)
1 - r,e

These relations lead to results which may be summarized as follows (see Fig. 6):

iv. A necessary and sufficient condition that the circle be cen-

tered at the origin is that IrI+lpr,2d = or that simul-

taneously d = + r +p p I ri =ipdr,2 | the corresponding

condition for coincidence of the center and the fixed mis-

match is ttpr, = 0. BY (ii) it follows that coincidence of

the center with the fixed mismatch, and exact validity of

Fig. 5a, are equivalent conditions. In terms of the radius

a, the distance r-cl from the center to the fixed mismatch

is given by alpr, I .

If we draw a line from the origin to the fixed mismatch,

and a second line from the center to the fixed mismatch, then

the angle between these lines will depend only on the first

object, not on the second; in fact this angle equals the angle

-13-
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(a)

b)

R

alpr,l

Figure 6. Reflection of two obJects, as plotted in the complex plane with-
out approximation. a) General case. b) First object lossless.
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A of Eq. (22) whenever the equation is well defined. The

result remains valid for r=O if r'=O is asswned for the now

indeterminate value of rt. For a lossless object we have Anr

(RLE Technical Report No. 25) and hence the center, in this

case, will always lie on the line Joining the fixed mismatch

to the origin, as shown in Fig. 6b.

Finally, the distance R-rlfrom a variable point R on

the circle to the fixed mismatch is related to the over-all

transmission T of the two objects by IR-r r IT' |

In practical work it is frequently desirable to adjust the reflection of one or

the other object in such a way that the over-all reflection is zero. This process is some-

times termed matching the line. If the origin (that is, the point R=O in Fig. 6) is inside

the circle, then one must decrease Ir,l or increase Irlbefore a match can be obtained, the

contrary procedure being required if the origin i outside. When it is actually on the

circle, then a perfect match can always be obtained by suitable adjustment of x. Because

of these results, which are evident from the figure, it is of interest to investigate the

circumstances in which the origin is inside, on, or outside the circle. By Eqs. (32),(34)

one finds the followinr, fter noting that the origin will be inside if and only if aj)l cl:

v. The point R=0O will be interior to the circle, on the circle,

or exterior to the circle, according asir/d is less than,

equal to, or greater than Ir, . or zero loss we have

Idl= 1 and hence the condition becomes Ir less than,

equal to, or greater than Irli. This condition is the same

as that for the simplified vector diagram of Fig. 5b; in

other words, if the first object is lossless, then the ori-

gin will be in, on, or outside of the circle in the approxi-

mate case, according as it is in, on, or outside of the

circle in the exact case.

With the vector diagram of Fig 5 the angle determining the position of the

radius vector R-r is such that the initial vector measured at point 2 and the trans-

formed vector measured at point 1 move with the same angular velocity; in other words, uni-

form linear motion of the second object will lead to uniform angular rotation of the radius

vector. With the exact diagram, however, this situation no longer prevails. For quantita-

tive investigation let W represent the angularposition of the radius vector, the angle
being measured from the line Joining c and r (Fig. 6a). This choice of origin leads to con-

siderable simplification. By applying the law of cosines to the triangle formed by the

three points c, r, R we obtain

I R-r12 = Ir-c1l2+a2-2alr-clcos l (41)

which gives

sin.- (1-pr,12) sin
1 - 21pr, I cos +pr,I (42)

-15-
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by virtue of Eqs. (39), (40). This result is the desired relationship between and ',

and when combined with results previously established, it leads to the following:

vi. If the angle Y determines the position of the transformed vec-

tor (Fig. 6) while 0 determines that of the original vector,

then the ratio sin +/sin has the same form whether the loss

is zero or finite, and does not depend explicitly on any of

the quantities tl, l, t, ', p', r', or r,'. It may be

expressed as -t 2 1
2, where t is the transmission of two loss-

less objects which are an electrical distance 0 apart and

each of which has a reflection coefficient ipr .

The two vectors will rotate with the same angular velocity

if and only if pr,= 0O hence uniformity of the angular velocity,

and exact validity of Fig. 5a with non-zero radius, are equiva-

lent conditions.

In terms of IR-rI, which represents the distance from a

variable point on the circle to the fixed mismatch, we have

_ si2n rt It IR -rl where r-clis the
sin - - r tT alr,trl

fixed distance from center to mismatch, while a is the radius.

The variation of IR-r12 as one traverses the circle, then,

gives a measure of uniformity of the angular velocity. In terms

of the over.all transmission T for the two objects, this last re-

lation becomes sin = by virtue of iv.

sin 0 at 

If the first object is lossless one may use Eq. (24) to obtain a, the radius, as a

function of Irl, the distance to the fixed mismatch. For this lossless case a few simple

properties are also found when, instead, we obtain a in terms of cl, the distance to the

center. Such a relation is readily found by combining Eqs. (33), (35); we have in fact

a = [1 + -a ( a) 2 4 2 2/2 a c (43)

where a = Irl is the radius before transformation, that is, the radius corres onding to

r = 0. A simple geometrical interpretation of this equation is given by Fig. 7a, which

is due to Rieke, and another is given by Fig. 7b, which was suggested to the author by

S. Silver.

Equation (43), like most of the others, may be derived by impedance methods,

although the calculations for the general case are uite laborious. There is an inter-

esting special case, however, in which impedance methods lead directly to this result.

If the mismatch r is introduced by varying a single stub of a lo-less tuner, then the

circle in the impedance plane is translated parallel to the imaginary axis. By well-

known properties of the transformation (1) relating the impedance and reflection planes,

one immediately obtains Fig. 7b; and from this in turn Eq. (43) may be derived. Such reason-

ing can be generalized as described in Reference 4, where a more detailed discussion is

-16-



(al

(b)

Figure 7. Two geometrical constructions for obtaining the final radius
a in terms of the initial radius a and the distance to the
center Icl. The first object is assumed to be lossless.

-17-
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given; for the present it suffices to note that Fig. 7b, even as to details, admits a

simple physical interpretation.

2,4. Polar Coordinates. Up to this point we have assumed that the complex reflection coef-

ficient R is to be plotted in the complex plane or Argand diagram, the variable 0 being

represented only implicitly. This procedure is an extension of the well-known vector dia-

grams for small reflections, Fig. 5, to give an exact, instead of an aproxi'r/ate, portrryal

of the function. Such an extension may be made in other wys, as noted above; for example,

instead of retaining the property that the real and imaginary parts of R be represented

explicitly, we my insist that the angle remain equal to a constant plus 0. In other words,

the length of the line from the fixed mismatch to a given point on the circle' will be

unchanged, but the angle determining its position will now be proportional to the distance

x separating the two objects.

With this point of view, which corresponds to the third of the above interpreta-

tions for the vector diagram, one finds that the resulting curve will no longer be a

circle in the general case. For quantitative investigation let us combine Eqs. (26) and

(40) to obtain

[1-rl= - 2|rl| 0 + prJ IZ2 (44)[1 - 21er,i cos+ Ipr,I (

which, when plotted in polar coordinates with 0 as angle, gives the desired representa-

tion. We observe that (44) is unchanged when we replace 0 by -0, nd hence that 0 = 0

gives an axis of symmetry. The length of this axis is the sum of the maximum and mini-

mum distances to the fixed mismatch, while the width of the curve is given by the expression

IR-risin 0 when maximized with respect to 0 (see Fig. 8). By these results, and by

comparison of Eq. (44) squared with

1 + e cos 0

the standard form of an ellipse in polar coordinates, one obtains the following, which

on account of iv, may also be applied to transmission:

vii. If the angle 0 + A of Fig. 5a is kept equal to 0 + A,

the radius being determined by its exact value (44), then

the curve so obtained will be a circle or a point if and

only if ttpr, = 0. In this case the exact figure (8)

will be identical with the approximate figure (5a), as we

see by ii: that is, degeneration of the curve to a circle

or point, and exact validity of Fig. a, are equivalent

conditions.

The maximum diameter of the curve in Fig. 8 is always

equal to the diameter 2a obtained for the circle in the

exact case [Fig. 6a and Eq. (4)]. The minimum diameter

or width of the curve, on the other hand, is always equal

to the diameter 2itt rl obtained for the circle in the

-18-
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approximate case (Fig. 5a). The width of the curve, in partic-

cular, does not depend explicitly on any of the variables

Irl, Il , r', , t', ', or r.

If we replace the radius of this polar plot by its

square, other things being the saLe, then the curve becomes

an ellipse with the fixed mismatch at one focus. The eccen-

tricity depends only on Ipr,l and is equal to 21pr,t/(l+ipr,l 2 ).

The ratio of axes is equal to (l+lprl12 )/(l-(pr,1 2), the volt-

age stanrding-wave ratio for a power reflection pr, l2 the

ratio of maximum to minimum distance from the fixed mismatch is

equal to (l+lPr,l )2/ (l-lpr, 1 ) 2 , which is the power standing-

wave ratio for an amplitude reflection pr, .

IGIN OF POLAR
COORDINATES

-[,\

Figure 8. Radius vector of Fig. 5a, as plotted in
polar coordinates without approximation.

2.5t Linear Transformation. Proceeding now to the fourth of the above interpretations of

Fig. 5, we attempt to find a linear transformation which will represent the effect of the

first object. Neither Eq. (13) nor (14) is linear as it stands, and hence one cannot

expect to express the transmission itself, or the reflection itself, in the desired manner.

Following Reference 5 we therefore assume t t,O and write Eqs. (13), (3) in he form

1 _ 1 1 e 'a
T t t4

-ikxR_ r 1 e
T t t,

rp r ee
t t

I

Lkx

r ikx
d e
t. t,

For any fixed value of x these equations represent a simple linear transformation of the

-19-
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variables /t, rt, into new variables 1T, R/T. It is clear that such variables

characterize the object just as well as the original ones t , r,, in the sense that, if

either set is known, the other set can be found. Aside from the trivial restriction

that no transmission be zero, the chief shortcoming of these new parameters is that they do

not lend themselves readily to physical interpretation.

With matrix notation the transformation represented by (45) can be written in the

form (Reference 5)

( 1 ) -ikx ikx

T t P
(...L~~~~le .. A.e j(46)

R r -ikx d eikx

T t t ts

and hence calculation of the reflection for a series of objects is equivalent to calcula-

tion of a matrix product. This question will be considered in detail subsequently; it is

mentioned here to illustrate one of the advantages of the otherwise rather arbitrary sub-

stitution (4-5).
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