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Abstract

This article describes a calculating machine for obtaining the Fourier
transform, ff(x) ei[v + ¢(x)]dx, or the sum of a Fourier series, Zansin(ny + bn).
as a continuous function of y, The method uses linear potentiometers for taking
the product and the integral, while the complex exponential is generated by mech-~
anical linkages. The machine may be adjusted to give direct readings of absolute
value and phase as well as the real and imaginary parts. With minor modifications
the same device also gives the convolution .ny(x)g(x - $)dx as a function of t and
ys the solution of simultaneous linesr equations; and certain integrals containing
a perameter, such as the Laplace transform, It is shown that the principles here
used can be adapted to summation of complex power series or to computation of the
general integral ff(x) el[¢(x) +l'p(x)cos(x *+ y)]dx, vhich often occurs in antenna
work, The present report is concernsd exclusively with designs the question of
performance is considered in a report to be published by the Naval Research
Laboratory, Washington, D, C.
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Part I, Design of Machine for Specific Problem

1, Iptroduction. The expression
) = Jem oflF * 9]y, w

frequently occurs in mathematical and engineering investigations, For various reasons
however, the existing methods of evaluating it appear to be somewhat unsatisfactory in
certain cases, The chief shortcoming of these methods is that they require a so-called
noint by point computation, in which one assigns a fixed numerical value to y, where-
upon the expression becomes an ordinary integral not contalning a parameter and may be
computed on that basis. For each new velue of y the entire operation is repeated.

With such a procedure, which appears to be the only one hitherto available, one finds
the cost of a complete curve to be prohibitively high. For example, a few computations
of this sort carried out on the M.I,T, differential analyzer cost as much as $500 each,
nor does it seem probable that the cost would be much below $50-100 even with quantity
production. As far as principles are concerned, however, the evalution of such an
integral on the differential analyzer presents no difficulty whatever; with y fixed,
the exponential, product, and integral are readily generated, the curves f and ? veing
introduced in the usual manner. Thus, the high cost Just noted is found chiefly because
the computation must be repeated for each value of y. The same difficulty occurs in the
use of punched card machines, which also lead to an estimated cost of not much less than
$50 for each curve. The procedure here is to separate the integral into the four
simpler integrals

511§=J’f cos 9{31“ ‘7} dx

1’ cos Xy

(2)
I3} = ft etn ¢$s“‘ "y} ax
14 cos xy )

These expressions suggest that one form the two products f cos P, f sin § and take a
sine and cosine transform of each of these. From the four integrals thus obtained (each
of which must be evaluated for a whole series of y's), the sbsolute value of the original
integral is determined by the relation

le@)|? = (1, - 1%+ (1, + 1,)2 (3)
which is likewise to be computed as a function of y. Similar inconvenience ig entailed
by the rolling ephere method, and indeed by all the other methods that have been brought
to our attention. In view of these difficulties 1t is belleved that the device here
described fills a definite need, even though the Fourier transform and allied expressions
can be computed, in principle, by existing methods.

2.__General Approach to the Problem. From the foregoing paragraph it is clear that much
of the difficulty arises from the need for separate computation with each value of y.

As one of the characteristics of the proposed machine, therefore, we shall require that
this parameter be continuously variable. Such a requirement greatly restricts our cholce
of method, many of the design features being in fact completely determined. For example,
since the value of the integral for any y depends on the functions f and P over the
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whole range of integration, it is clear that these entire curves must be introduced to the
machine at the beginning of the calculation. In particular it will not suffice merely to
trace the curves while computation progresses, as in the differential analyzer, or to
introduce plotted points in rapid succession, as is done on punch-card machines. Now the
introduction of a complete function in the manner here required presents considerable
difficulty, in general, since its value must be specified at every point of the interval.
On the other hand a step-function of sufficiently simple type leads to no inconvenience,
and hence for such a function, at least, it appears that the design can perhaps be carried
out as originally planned,

Suppose, then, that we have a deviece for evaluating integrals of the form
‘l}(x.y)dx whenever the integrand, for each value of y, is of the form illustrated in
Fig. la. Of course the curves ordinarily encountered are not of this type, but they may
at least be approximated by such functions as shown in Fig. 1b., in which case the value
computed, for any fixed y, is simply the trapezoidal-rule approximetion to the desired
integral. Instead of taking values at O,h,2h, ... as in Fig. 1b, one could equally well
take values at h/2, 3h/2, ... as shown in Fig. lc. Such a computation is still in the
form ‘rf(x,y)dx with £(x,y) a step function of the proper type, and hence it too can be
made by the hypothetical machine, But the arithmetic average of this value with the
earller one gives the result that would have been obtained with a basic interval of h/2
instead of h (Fig. 14), and this is true for every value of y. Hence if we obtain a
complete curve of.f}(x,y)dx versus y by the procedure of Fig. 1b, and repeat as in Fig. 1le,
then the arithmetic average of the two curves will give the curve corresponding to the
finer subdivision of Fig. 1d. It 4s clear that this process, illustrated in Fig. le, could
be indefinitely continued, and that the arithmetic mean of the k curves obtained by shift-
ing a distance O,h/k,2h/k, ... will give the single curve obtained for a subdivision h/k.
Thus, if the machine be so designed that the integrand may be shifted sideways as here
described, then the true integral may be approached as closely as desired even though at
each step one obtains only an approximation. In the present machine there are 45 elements,
that is, a single computation gives a trapezoidal-rule approximation based on 45 points of
the curve. Repetition accordingly gives the result that would be obtained with 90 points,
and so on, With 45 elements, a single computation is actually sufficient for many cases;
the possibility of shifting, however, which is duly allowed for in the construction, shows
that the restriction to step functions is not a serious disadvantage. Of course the
functions considered must also be bounded, and equal to zero outside of some finite interval.
Though objectionadble, these latter conditions are qufte difficult to avoid, and they appear
to be required not only by the present machine, but by all others as well,

Before leaving this question of general procedure, it 1s of interest to compare
the method here suggested with those used in similar conditions on the differential analyzer
or on punch-card machines, In the former case one uses continuous variation of x but
discrete values for y, so that one obtains a set of points on the desired curve rather than
the whole curve; but each point so obtained is theoretically without avproximation. With
punch~card machines one uses discrete values for both x and Y, obtaining a discrete set of
values each of which entails an approximation similar to that described above. An operation
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analogous to shifting cannot readily be carried out, but on the other hand the initial
number of subdivisions can be made as large as we please by using a sufficient numder of
cards. In contrast to this method, where x and y assume a finite set of values, and in
contrast also to the differential analyzer, where one uses discrete values for y and
continuous variation of x, the proposed machine uses a discrete set of values x but
continuous variation of y. Bach point obtained is only approximate, but the entire curve
may be found as a continuous function of y in accord with our initial requirements.

3. Baaic Circuit. The real part of the desired integral (1) has the form
ff(x) cos(xy) dx (4)

whenever ¢ = 0, and for fixed y this in turn is equivalent to the integral
Jt(x) ®x) ax. (5)

Por evaluation of this latter expression, the procedure outlined above leads to three
simple design problems, all of which are easily solved by a sultable d-¢ circuit. The
first problem is to insert the values of f and ¥ at equally spaced points on the curves,
Because a large mumber of points must be used, it is clear that any device for this
purpose should be convenlent to construct and to operate; and the use of linear potentiom~
eters is at once suggested (Fig. 2¢). Equal increments of x are obtained automatically
if the potentiometers are equally spaced, and hence it suffices merely to move each slider
until it rests on the curve. It turns out that potentiometers wound on strasight cards, which
are clearly best sulted to the present application,are less expensive than the circular type,
and are also more accurate unless the latter are supplied with a correction cam. The
accuracy is about 0.2 per cent of the full scale value. while the unit cost ranges from about
$.50 to about $2.50 depending on the size. Purther economy can be achieved by use of slide
wires, although, on account of their low resistance, this procedure is not to be recommended.
Instead of relying on the accuracy of the individual potentiometers one could of course make
each gsetting by means of a bridge circuit, using an accurate decade box for comparison; but
such a procedure introduces just the type of inconvenience which it is our odbJect to avold,
With the values of the two functions at x, thus inserted into the machine, our
next problem in the solution of (5) is to obtain the product at these points. A simple means
of effecting this is shown in Fig. 2a, where the two potentiometers corresponding to f and T
at x = x, are connected in tandem. Since the first potentiometer is linear, the voltage at
point B, which is equal to that at A, is proportional to the displacement of the first slider;
and this in turn is equa) to f(xi). Similarly, the voltage at C is proportional to F(xi)
and, moreover, it is clearly proportional to the voltage at B. Thus,

V.- (constant) f(xi) P(xi) (6)

as required. To complete the computation of (5), finally, we note that the procedure used
here replaces the integral by a finite sum, so that we have to evaluate

n
-i-zl f(xi) l‘(xi) (7)




vhere n is the number of elements (n = 45), and the voltages corresponding to f(xi) l'(xi)
are available by the previous construction. This expression in turn is equal to the voltage
V! in Fig. 2b, as we see by the relation

n

Y -
Z—-—J—nv =0 (8)
1

which follows from the fact that there can be no net current flow to the point P. The
complete oircuitl for approximate evaluation of (5) is shown in Fig. 2c, where input voltage
on the potentiometer corresponding to x, 1s to be +V if f(xi) l’(xi) is positive and -V if
f(xi) l‘(xi) is negative. We note that different cholce of the resistance R would lead to
different weightings, for example,the values R, R/2, R/4, B/2, ... would give an approximation
based on Simpson's rule, and results with polynomials of higher degree could be similarly
obtained, The above operation of shifting -loses its merit with such a procedure, however,
and there is additional disadvantage in that the error now depends on the higher derivatives.
Also, non-uniform weighting leads to inconvenience when the machine is used for some of the
calculations considered below; snd for these reasons it was thought best to use equal values
for the R's as described.

4. _Sources of Frror. The foregoing analysis contains a number of tacit assumptions which
require additional investigation. In Fig. 2a, for example, the first potentiometer is loaded
by the second, so that the voltage 1s not really proportional to distance as we have assumed
above (see Fig. 3). Similar inaccuracy is introduced by use of a finite value for R, which
affects both potentiometers to some extent; and the whole question is actually somewhat
complicated, particularly when our purpose is optimum design rather than mere estimation of
the error. In the first place, it is not desirable to use the entire potentiometer, even
though the error is zero at each end, but instead one should so limit the range that the
maximum positive and negative errors will be equal, if the most favorable proportionality
constant is used. In other words the desired dependence of voltage on the distance S is
taken as S (1 + tan @), rather than as S alone, where 8 (Pig. 3) and the range of S are so
adjusted that the error c¢ 1s equal to the common value of a and b. With this procedure,
for which the author is indebted to H, Dowker, it is found that only about 7/9 of the
potentiometer should be used or, which is practically the same thing, that a resistance
2P/7 should be inserted at the high voltage end. The former method is followed in the
present machine,

With the range determined, our next problem is to estimate the ratio of the
potentiometer resistances rfo , R/r. Of course one could use a very high ratio (say 100:1)

1. This circuit, which was devised independently dy the author in 1943, has also been used
by others in problems leading to a sum of products. For solving linear equations it is
described in the J. App. Phys. 12, 262 (1946), * A Computer for Solving Linear Siml-
taneous Equations", C. E. Berry, D. E, Wilcox, S. M. Rock, H. W. Washburn. The circuit
has likewise been used for evaluating the Fourier coefficients of real functions,
though the remainder of the method is different from that suggested here.

See: Rymer, T. B, and Butler, C. C.,, Pnil, Mag., 38, 606 (1944).
Hagg, G. and Laurent, T. J, Sci. Instr., 23, No. 7 155, July 1946.
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in each case, but such a procedure leads to a large ocutput impedance and to consequent
difficulty from noise. For this reason we require the minimum ratio consistent with the
desired accuracy. The problem was investigated in considerable detail by H. Dowker, his
procedure in estimating the error being to separate the various sources of error and to
maximize each individually. The calculation was not defined to a single element (Fig. Za).
but took account of the circult as a whole (Fig. 2¢). The results finally obtained in this
way show that, with the resistance ratios of Pig. 4, the error cannot exceed 1/4 per cent of
the full scale reading plue 1/2 per cent of the actual output. It is worth noting, in this
connection, that no error is introduced by the impedance of the voltmeter, provided this
impedance remains constant [Eq. (8)].

After the ratios have been thus determined, it is a simple matter to obtain the
actual values, Thus, we want the resistances to be low on account of noise, but high to
obtain good resolution and to avoid overloading the generator. Considering only the
question of resolution, we note that the functions are to be introduced mamually, so that
the maximm accuracy will hardly be better than X 0,01 inch. If the potentiometer of
lower resistance P is to have comparable accuracy, 1t 1s found that 1its resistance in the
length used should not be much less than 5000 ohms. The resistancespP, r, R, which should
of course be rounded off to standard values, are tims completely determined (Fig., 4). The
problem of loading may be dealt with in other ways ; if R is very large, for example, one
could have p = r and plot £(x) on graph paper speclally prepared to compensate the error.
Alternatively, one could introduce a vacuum tube isolating stage at appropriate points in
each element, a procedure suggested by O, A, Tysen, Both procedures are in many respects
less simple than that actually used, however, though they would present certain advantages
if the computation involved the product of more than two terms,

Begides these errors due to loading, there is additional error from stray flelds
and from variation in generator voltage. The former error can be eliminated by using
direct current, though such a procedure complicates the probleme of stabillization and
detection. Instead of direct current, one could use alternating current at a frequency
not a simple multiple of 80 cycles. In this way pick-up from power lines in the neighbor-
hood of the apparatus is minimized. To reduce interaction between adjacent potentiometers,
one may use shields as illustrated in Fig. 5 1 . Both of these latter procedures are due
to O, A, Tysen, who likewise designed and supervised the construction of the stabilized
power supply illustrated diegrammatically in Fig. 6. The method of direct current is the
one actually adopted.

The need for accurate stabilization of the generator is more urgent than at firet
appears to be the case. Thus, one might perhaps expect a fluctuation of 1% in generator
voltage to introduce an error equal to 1% of the output; and 1t might be thought too that
the error could be completely eliminated by use of a monitor. Actually, however, this
desirable state of affairs does not prevaill in practice. As we see by Eq.(4), the
integrand is generally positive for some values of x, negative for othersj; and a small value
of the output may accordingly arise through cancellation of voltages which are not themselves
small., Without entering into great detall we note that the power supply must give the three

1. The method of making connection to the slider is taken from standard practice in the
Potentiometer Group of the Radiation Laboratory, MIT,
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voltages -V, O, and +V. A given error, "Wl - ‘-Vl,usually introduces an error of about

the same magnitude in the output, and this in turn mey represent a large percentage of the
correct answer. Moreover, the condition I'WI = |-V| mst prevall even when the impedance
on 0, +V ig different from that on O, -V, since the impedance in elther case may take values
ranging approximately from eo to /o/n in the course of the calculation. Hence the power
supply must not only have an adjustment for setting +V equal to -V, but it must be so sta-
bilized that this equality will persist when the *impedance changes as here described. Both
conditions are adequately met by the circuit of Fig. 6, which also gives an output equal in
absolute value to the optimum, if the optimum is taken as the largest voltage that will not
lead to excessive heating of the first potentiometers. We remark in passing that the
impedance change noted above, and hence the difficulty of stabilization, can be reduced dy
1ntr6duction of an extra resistance P with each potentiometer. The resistances would be
connected across 0, +V if the corresponding potentiometer is on O, -V, but across O, -V if
the potentiometer is on O, +V, With such an arrangement the above 1imite oo .,O/n are re-
Placed by values somewhat better than P/n, pr/(np+ nr). In view of the success of the
pover supply, however, this added complication of the circuit, which also doubles the

power requirement, was considered unnecessary. Incldentally, the question becomes irrelevant
if any device in Fig, 8 is used.

Besides these errors due to electrical effects, further inaccuracy will be
introduced by the mechanical tolerances. It turns out that this last is relatively unimpor-
tant with the proposed designj since the functions are introduced manually, an accuracy of
sbout ¥ 0,01 inch is, as we observed above, about the best that can be expected. The me-
chanical tolerances, which should be somewhat smaller than this, are accordingly taken as
0.002 to 0.005 inch in typical cases. This order of precision is readily attained by routine
methods. It is assumed, of course, that the error is not cumulative over the forty-five
elementsj and due care has been taken in the design to insure that this condition is
actually satisfied.

Closely related to the gquestion of mechanical tolerance is the question of
potentiometer size, which ig also determined by the 0.01 inch estimate when taken in con-
Junction with the percentage accuracy. Thus, one finds that commercial potentiometers are
accurate within about 0.1 to 0.2 per cent of the full scale reading; and hence if this error
is to be comparable in magnitude to the former figure, 0.01 inch, then the effective length
should be five to ten inches. TFor reasons which will become apparent in what follows
it 1s desirable that the first potentiometer be fairly short, although there is no especial
restriction on the length of the second. The values finally determined, after revision to
meet standard specificstions, are shown in Fig, 4,

The sources of error in the proposed machine are, then, of three kinds. PFirst
are theoretical errors due to the use of a step-function approximation. These persist no
matter how accurately the machine is constructed, but on the other hand they can be reduced
as much as we please by repetition of the calculation. The second source of error is the
fact that the response of a loaded potentiometer is not precisely linear. This error too
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can be reduced as much as desired by appropriate choice of the resistances, but on
account of nolse and other considerations, one finds in practice that a compromise
must be reached. Closely allied to this error is that introduced by variation in the
supply voltage, which, as we have seen, is of considerable importance, but can be
sufficlently reduced with careful design of the power supply. The third source of error
1s inaccuracy of the mechanical parts, which of course cannot be manufactured with zero
tolerances. The question of tolerance applies also to the potentiometers; even without
loading, there would still be some departure from linearity. The foregoing discussion
13 intended to show that these errors, which are hardly avoidable with the proposed
design, can be so reduced that the machine will still give results of practical utility.

In this connection we note that the machine takes an average of forty-five
individual values. It is reasonable to suppose that the errors will be randomly dis-
tributed, with the result that the overall accuracy is frequently better than the above
considerations at first appear to indicate. In summary, one may say that serious error
should be noted only for small values of the output; every one of the above sources of
inaccuracy is a magnitude effect rather than a percentage effect, and becomes of
increasing (relative) importance as the output decreases. The machine tends to give
results accurate to within a certain percentage of the full-scale output, rather than a
certaln percentage of the observed output.

5. Geperation of cos 8., Up to this point we have discussed a circuit for approximate
evaluation of the integral in Eq.(5). Turning now to the more complicated expression
given in Eq.(4). we find the only new problem to be the generation of cos X,y as a
contimous function of y. If this problem is solved, then the previocus comstruction,
applied to f(x) = £(x), P(x) = cos xy, will give the desired integral (4). Assuming
for the moment that xiy has been obtained for each Xy, WO see that it suffices merely
to take the cosine, One method of doing so is illustrated in Fig. 7b, where the dis-
placement of the T-gshaped bar B 1 1s proportional to cos ©, 1f © 1g the displacement of

the upper bar 4A; from some suitably chosen origin., To see this, let us notice that the
result 18 obviocusly true in the arrangement of Fig. 7a, where the edge C 1s constrained
to pass through one of the points D rather than to rest on the difk E, But if the
variation in Pig, 7a ie sinusoldal, that in Fig. 7b must be also, since the displacements
in the two figures differ only by the constant radius of the disk E.

This construction gives lcos Gl,while it is cos @ that is desired. Since we are
really concerned with the voltage of the potentiometer slider, rather than with its dis-
Placement, the difficulty is easily avoided by the introduction of a reversing switch as
shown in Fig. 7b. With this arrangement the voltage will follow the dotted lime in
Fig. 7¢, while the position varies according to the solid line; that is, the slider voltage
is proportional to cos © even though its displacement is proportional to |cos e|. The use
of disks which are free to rotate, rather than fixed, is recommended to reduce friction and
wear; it was suggested by H, Kylin of N,R.L,, who also suggested the use of a cam machined
directly into the gear surface, as shown in Fig. 7b, for operating the switch. The large
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gear diameter and fine pitch, which will be required later in connection with @¢(x), have
the further advantage of giving high accuracy without the use of cloge tolerances or
precision-cut gears.

Before leaving this question of generating cos @, we observe that the problem
is actually a simple one, for which a large number of constructions are readily obtained.
In the course of designing the present machine, each of the constructions suggested in
Pig. 8 was considered in some detail; and, with so many alternatives, it is natural to
inquire whether the optimum construction is really given by Fig. 7. To consider the
merits and shortcomings of each of these constructions would take us too far, and instead
we list the advantages presented by the recommended arrangement. These advantages may
also be of some interest in their own right, inasmch as this construction is the one
actually used.

a. Base of assembly - Since we shall ultimately require forty-five unite
mounted side by side, it is quite important that this grouping can be carried out without
undue difficulty. Such a requirement is met by the arrangement of Fig. 7, which is so
designed as to be thin in the necessary direction. Also the whole set of forty-five
elements is conveniently supported by the rods T in Fig., 7b, only the five rods shown
being required in the completed machine. This property, that the individual units can be
readily stacked, leads to material simplification in assembly.

b. Zero set - At the end of the calculation, the values of & for each x,
will generally be distributed more or less at random, and it 1s necessary to return them
all to zero, or at any rate to some constant value, before a new computation can be
carried out. This problem 1s readily solved by the method of Fig. 7, since the arrange-
ment is in stable equilibrium when the two disks E both touch the T-shaped bar Bi' Hence
for the zero set it suffices to push these bars as far as possible to the left in the
figure, ar operation that can be easily carried out for the forty-five elements simul-
taneously.

c. Potentiometer accuracy -~ As a third advantage of the proposed method
we find that it doubles the effective length of the potentiometer. This property, which
is sufficiently evident from the figure, leads to an increase of accuracy for given
potentiometer length, or, which is nearly the same thing, it permits use of shorter
potentiometers, and hence of smaller mechanical elements, for given accuracy.

d. Loading errors - In the course of investigating error due to the load-
ing of one potentiometer by another, H. Dowker showed that the center of the first
potentiometer should be grounded (1.e.. connected to V = O) for best results. So great
is the difference between the two cases, grounded or ungrounded, that the latter leads to
excessive error with any reasonable ratio of resistances, while the former can be used with
success. With the devices shown in Fig. 8, the use of a grounded center requires insertion
of a center tap on each potentiometer, an operation that presents considerable difficulty.
In the system of Fig. 7, however, the desired condition is automatically achieved without
the use of taps,for the role taken by the center of the potentiometer in Figs. Ba-e .is
talken by the left-hand end in Fig. 7b.




Although some of the devices of Fig. 8 offer the first advantage noted above,
none appears to give the last three. It was believed, therefore, that the arrangement of
Fig. 7 should be used, even though it requires an extra switch, and has the added dis-~
advantage of reversing the slider motion at the point of maximum velocity. This last
objection, in particular, is of no moment at low speeds, and because of the time required
in setting up a calculation, the use of high speeds offers only slight advantage. Thus,
it is permissible (in the author's opinion) that the time of calculation be comparable to
the time required in setting up a problem; and with this condition the arrangement of
Pig. 7, which permits a gear speed of about 20 rpm, is mechanically sound.

6, Generation of the Produgt. The only step in the computation of (4) which we have not
yet considered is the determination of xy. Once this is solved, the preceding construc-
tion gives cos xy; the circuit of Fig, 2a gives f(x) cos xy; and the integral is obtained
as suggested in Fig., 2¢c. To obtain xy, let us note that the length x is already available;
it is simply the distance from some eultably chosen point to the corresponding potentiom-
eter, Because of this rather fortuitous property, the problem in question turns out to be
quite trivial., Thus, in the arrangement of Fig, 90, the displacement of the raclk corre-
sponding to x, is proportional to the fixed distance x, in the figure, and also to the
variable displacement y. Being proportional to each separately it is proportional to the
product, as required,

At this point it is of interest to consider the range of variation in y. For
Fourier transforms the values will generally be included between -20 and 20, while for
Fourier series the corresponding limits may be from O to 100 or more if a complete period
is to be obtalned. In terms of the machine, this requires from 40 to 100 revolutions of
the outer gears, that is, of the gears Gi’ corresponding to x, or to x . Since these gears
are to be about 1l inches in diameter for high accuracy, the lever of Fig. 9 would have to
be over a hundred feet long to function as described above. To circumvent this difficulty,
one may proceed as suggested in Figs. 14,16, The lever is continuously moved back and forth,
the racks being engaged during only half a complete cycle. In this way the restriction on
range is entirely removed, while the desired dependence on xy is preserved. In general
such a modification of the basic principle would be expected to introduce a cumulative error,
since the racks will not exactly mesh when dropped on the gears at the beginning of
successive cycles. If the dimensions be so adjusted, however, that the maximum swing of the
lever moves each gear an integral number of teeth with respect to its nelghbor, then no
such difficulty arisesi for the racks would now mesh exactly in the first case and hence in
every subsequent case. Because the variation of position is always linear as we proceed
from one gear to the next, such a condition, namely, displacement by an integral number of
teeth in every csge, 1s readily obtained. In addition it is desirable that the outer gear
move a simple fraction of a revolution with each sweep of the lever, as this condition some-
times facilitates correlation of the value of y with the position of the hand crank., In
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certain cases, moreover, we wish the integral between symmetric limits, J: :, rather than

‘gag with the former, Eq.(1) leads to a real result whenever f(x) is even and P(x) is
- odd, as may be easily proved, while the latter is sometimes convenient for Fourier series.

Of course any limite may be obtained by a transformation of the input and output functions,
.or, if one is content to use only part of the machine, by a simple translation of the dnput
alone; but direct evaluation appears to be preferable. In the present machine, therefore,

we have provided for pivoting the lever either at one endcrig. SOor in the center; the
former arrangement givesiga while the latter gives J::. Other limits could be obtained dby

use of intermediate points.

The conditions previously mentioned, that adjacent gears be displaced an integral
number of teeth and that aone end should move a simple fraction of a revolution, muet both
prevalil, then, whether the lever is pivoted at one end or in the center. It is not
difficult to glve necessary and sufficlent conditions on the dimensions, number of elements,
and number of gear teeth to insure that these requirements are all satisfied;, in the
present machine we use 45 elements with 538 teeth in each gear. other quantities being
as shown in Fig, 15, One sweep of the lever moves the end gear through 1/6 revolution,

80 that adjacent gears are displaced exactly four teeth when the lever is pivoted at the
center, two teeth when pivoted at one end, That the desired relations will prevail

for the central pivot, if they are satisfied when the pivot 1s at one end, is insured by
the geometrical construction of Fig. 9b. We remark in passing that the operation of
shifting as described in Sec. 3 requires that the pivot be moved in small steps through

a distance equal to the distance between elements. In the present machine a screw adjust-
ment is provided for this purpose, the same mechanism being operable whether the pivot is
at the center or at one end (see Figs, 14-16). In case we wish to equip the machine for
automatic recording, it is convenient to have the recording drum rotate automatically with
the independent variable y. Because of the intermittent operation of the lever, the drum
cannot be connected to the crank, and instead is arranged to turn with the last gear Gn'
To this end, a pinion is supplied in the completed machine,

For generation of xy it is worth noting that various other devices may be used,
of which perhaps the simplest is suggested in Fig, 10. Adjacent sprockets differ by one
tooth, additional gearing down being furnished at one end to avoid use of sprockets which
are too small. Such an arrangement, which has been investigated in considerable detall,
provides continuous rather than intermittent motion, and would be of interest if rapid
calculations were contemplated. To this end 1t should be used with one of the devices of
Fig. 8 rather than with that of Fig. 7. Besildes the advantage of speed, however, the
device in question has little to recommend it. In addition to the expense of making the
sprockets, which do not appear to be stock iteme in the variety required, therg is further
difficulty due to the backlash and other inaccuracy introduced by the chains, Also the
operation of shifting cannot be carried out by any obviocus procedure, nor is the arrange-
ment well adapted to the introduction of P(x) or to the generation of absolute values.
With regard to this last, in particular, the intermittent operation of the device in Fig, 9

~16-




will be found to be an advantage rather than otherwise, and the srrangement of Fig. 10
is accordingly dismissed forthwith.

2. Complex Functiona. It has been assumed hitherto that #(x), the phase associated with
f(x), is equal to zero. Turning now to the case in which this condition is not satisfled, we
find that the real part of (1) takes the form

a
f £(x) cos[xy + p(x)]ax. . (9)
-8
Although this expression is apparently much more general than the one previously considered,
£q. (4), it may be computed without additional complication., Thus, instead of starting the
calculation with the gears of Fig., 7 all at the szero position, we may equally well adjust
their positions according to ﬂ(x), the gear corresponding to x, being displaced initially
through an angle ¢(xo), that for x through an angle ¢(xl). and so on, It is clear that
these initial conditions will persist, in the form of additive displacements, throughout
the subsequent calculation. Where we formerly obtained xy we now have xy + ¢(x); instead
of cos xy we have cos[xy + ¢(x)]i for £(x) cos xy the machine accordingly gives
£(x) cos[xy + p(x)]; and hence the final answer is the expression (9) rather than (4).

To introduce the function ¢(x) in the manner here required, one® may proceed as
suggested in Fig. lla. With the gears fixed at the zero position, the racks are released
from the lever and set on the curve, each one beirng lifted so that it does not engage with
the gear until the operation is actually completed. The racks are then returned to their
original positions, the gears being engaged during the whole time., In practice the latter
operation could be carried out for all elements simultanecusly by use of a straight-edge.
The machine is ready for use as soon as the racks are coupled to the lever, an operation
for which a number of devices has been obtained; the procedure shown in Fig. 11b, which
represents a substantial improvement over all the alternatives considered, is due to
H, Kylin,

In the above process some slight error is to be anticipated in that the racks do
not engage precisely with their gears when placed on the curve. This difficulty can be
resolved by the device suggested in Fig. llc, which is due to H. Dowker; in the present
machine, however, such complications, which would give difficulty in taking absolute values,
are avoided by large gears with small teeth., Thus, the error need never exceed half a
tooth, which amounts to only 0.34° in the present case, and such accuracy is comparable to
that assumed for the other components.

To obviate the excessive rack lengths entailed by use of large gears we modify
the procedure outlined above. In the first place, the curve $(x) may clearly be assumed
to lie between -7 and T, since addition of * 2km to ¢(xi) has no significance. Addition of
an odd multiple of T, moreover, merely changes,the sign over the corresponding portion of
the curve, and hence 1t could be compensated by means of reversing switches manually
cperated but otherwise similar to the cam-switches of Fig. 7. Switches of this kind are
shown, with their connections, in Fig. 11d. For convenience they would be placed in a
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horizontal line over the table on which #(x) is to be plotted. The extra contacts in
the figure are used to determine the position of the corresponding gear Gi’ which admits
an ambiguity of 1/2 revolution (see below). With proper adjustment of these switches,
the curve may be assumed to lle between -47/2 and ﬂ/Z. The corresponding travel for the
racks, about 18", is still too great, and to achieve further reduction we introduce stops
on each rack which restrict its motion to exactly 1/4 revolution of the corresponding gesr,
By pushing a rack through the extent of its travel we can conveniently add + n/2 to the
function, and hence the curve may be assumed to be between -41/4 and 11/4 (rig, lle).

The distance through which each rack must move now turns out to be about nine
inches, and this is mechanically convenient. Similarly, the curve is plotted on a
strip of about the same width, which is likewise a convenient size from the point of
view of operation; and the accuracy is nevertheless equal to that obtained with direct
ropreaeﬁtation when the curve covers a range of nearly three feet,

8, Absolute Value and Phage, When taken together, the above operations give the ex-
pression (9), which is the real part of the desired expression (1). The imaginary part
1e similarly obtained; it suffices in fact to repeat the previous calculation with

#(x) replaced by /2 + §(x) or, which is the same thing, with all gears displaced a
quarter turn at the beginning of the new computation., Once the real end imaginary parts
are known,the integral is completely determined; and since both are obtained as continu-
ous functions of y, the problem facing us at the outset may be regarded as solved, There
are many situations, nevertheless, in which we require the absolute value or phase rather
than the real and imaginary parts, and such a requirement may well triple the time of
computation, even though the additional operations are completely elementary, Thus, we
must find both the real and imaginary parts, an operation which takes nearly twice as
mach time as finding either alone; and we must then compute the square root of the sum
of the squares, or the inverse tangent of the ratios, for a whole set of values of y.

The computation is much facilitated by graphical methods, of course, One obvious pro-
cedure is to plot the real part versus the imaginary part, whereupon the length of the
radius vector gives the absolute value while its direction gives the phase, The time
required would still be comparable to that consumed by the machine in finding the real
part alone, however, and we thus obtain the time estimate given above,

It is desirable, then, that the machine give direct readings of absolute
value and phase, To meet this requirement, let us observe that the absolute value of
any complex number r exp(i6)may be obtained by the following somewhat devious procedure:
First multiply by exp(iz) to get r exp[i(e + z)]; then take the real part, r cos (0 +z);
and finelly adjust z to make this real part a maximum, The maximum value so obtained
is clearly equai to r, which is the absolute value of the original expression. Apply-
ing this principle to the problem at hand, we are led to consider

ff(x)coa(¢(x) + xy + z]dx ' (10)
where z, like y, is an independent real variable. The maximum value of this expression,
with respect to z, gives the absolute value of (1), In terms of the machine, the parameter




z represents a constant addition to the angular poeition of the gears Gi’ as we see by
the above discussion of ﬂ(x); and hence one may vary z, with y fixed, by rotating the
whole set of 45 gears as a unit. If the output is presented on a meter, we simply set
y to the desired value and adjust x for maximum deflection.

This method of taking the absolute value, which was suggested to the author by
S, J. Mason, turns out to be particularly convenient when the other components are as
describved above. Thus, while the lever of Fig. 9o. sweeps back and forth, the racks are
automatically disengaged during each half cycle, and at the same time the brake is engaged
to prevent rotation. If the brake be designed as shown in Fig. 12a, then the value of g
is readily changed by simply turning the crank. In other words, during the return cycle
of the lever in Fig. 9a, the machine is automatically prepered for determination of
absolute values, Because the change of y introduced by a single sweep of the lever 1is
very small, the restriction to values occurring during the return-sweep generally causes
no lnconvenience; on the actual machine, nevertheless, a switch is provided for engaging
the brake and disengaging the racks at the mid-point of the cycle, so that y is almost
unrestricted. For the few cases in which even these values do not suffice, one must use
the real and imaginary parts.

Turning now to the question of phase, we find that it is determined, in
principle, by the position of the crank at which the meter reading was maximum. This
result, which is an immediate consequence of the elementary considerations noted above,
cannot be used, however, for accurate computation. The difficulty is that the
derivative of meter~deflection with respect to crank position is zero at the desired
point, and hence the error is greatly magnified. Instead, we therefore adjust the crank
for zero meter reading and subtract ﬂ/z from the result thus obtained. If a logarithmic
meter, or a linear meter of sufficiently high and varisble sensitivity, be used, there is
clearly no theoretical 1imit to the accuracy with which these settings can be made,

In the above operation it i1s the problem of meshing that prevents use of the
method for arbitrary y, and this problem may well be considered in greater detail. When
the brake of Fig. 12 is engaged, it is clear that every gear must line up with its neighbor,
80 that the successive teeth 1ie on a straight line. Not only must they correspond in this
way with each other, but they must line up with the teeth of the pinion-rod forming the
brake. For general positions of the lever, it is clear that neither condition is satisfled;
and closer investigation shows that the proper positions occur only when the lever 1s at
one of its stops or half way between them. That the gears will then line up, if due care is
taken in the design, is insured by certain requirements stated above, which also show that
the absolute position of the whole group will be invariant. Besides this condition on the
gears we have a similar condition on the pinion rod, which must be rigidly clamped in the
correct position, rather than free to rotate, while it 1s being engaged. Apart from the
problem of meshing, incidentally, this clamping is also desirable whenever the pinion is
used as a brake. Still a third requirement is that the racks must engage exactly, when the
brake is released and the machine reset for adjustment of y. These conditions, and the
further requirement that z be variable as above describded, are met by the interlock shown
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in Fig. 12b, which was designed by H. Kylin and the author. The crank is free to turn
only when it is pushed in, towards the machine; and after being engaged it cannot de
released, unlees it is lined up as required for proper meshing. The angular position of
the pinion rod is fixed whenever it is being meshed or unmeshed; but this fixed position
i1s itself adjustable to account for the change of origin introduced by shifting the lever
sideways,

9. Output. The output of the machine is given in the form of a voltage, and may be eval-
uated in a number of ways. For example one may use a meter, as suggested in Fig, 17a, or a
bridge circuit, as shown in Fig, 17b. Regardless of one's choice of method, the machine
must be calibrated, for the operations hitherto described give a voltage proportional to
the answer rather than the answer itself. Since the proportionality constant depends

only on the machine, not on the problem, a simple method of calibration is to take

£(x) = 1, §(x) = y = 0, or some other set of values leading to easily computed expressions,
and to compare the observed with the predicted output. As far as principles are concerned,
this is sufficlent, since subsequent readings can all be normalized by division., For
convenience, however, one may proceed as suggested in Fig. 17¢c. With simple functions in
the machine, the potentiometer 1 is adjusted until the meter reading is equal to the
predicted valuej and thus in all later calculations the readings are normalized anto-
matically. The calibration should be checked and the potentiometer adjusted from time to
time 1f required. Besides this calibrating potentiometer 1, one may have a second one 2,
linear or logarithmic, which is itself accurately calibrated. In this way the output can
be readily multiplied by any desired factor, a possibdlilty that 1s often convenient for
purposes of plotting.

In many applications one requires the answer in the form of a curve. To avoid
manual plotting, one may use a recording voltmeter of standard design, the drum being
conneéted to Gn’ the last of the gears Gi‘ FPor this purpose a pinion is provided on the
completed machine {Fig, 15). In case greater accuracy is required than may be obtained
with commercial recording meters, one may use the method of Fig. 174, which has the further
advantage that a logarithmic or other plot may be obtained as easlly as a linear one by
sultable choice of the potentiometer. The pen 1s kept off the paper by an electromagnet,
which may either be operated by a foot switch or may be connected at the point normally
‘occupied. by the galvanometer. With thigs latter procedure the pen drops on the paper.
automatically when the desired point is reached, provided the adjustment of position 1is
not made too rapidly.

411 results hitherto obtained have been expressed in terms of the parameter y in

Eq. (1). Tor antenna work 1t is often more convenient to express the result in terms of

8, where 8 is given in terms of y by the relation

y=2x‘Lsine

Such a change of variable can be made mamially, if the curve 1s known as a function of y,
but the devices for automatic recording are no longer applicable. To remedy this defect one
mey proceed as suggested in Fig. 17e. The device indicated 1s practicable, because one 1is
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interested only in the range -m/2<0 £ m/2, and because the output gear Gn will generally
make a large number of revolutions in the course of the calculation. In case this latter
condition is not fulfilled, the vertical screw for adjusting the position of the T-bar
should be replaced by a rack and ?inion.

10. _Assembly and Operation. A photograph of the completed machine is not available, but
assembly drawings are given in Figs 13-15. There are two units, which are connected

only by a cable and which may therefore be regarded, for purposes of fabrication, as
completely independent. The first is a simple array of potentiometers for the function
£(x), and presents no serious design problems (see Fig. 13). The second unit 1s the
linkage and potentiometer assembly for generation of cos{xy + ﬁ(x)]; the individual
components of this unit have been described in the foregoing pages, and it suffices here
to indicate a few of the preblems which apply to the assembly as a whole,

In the first place it is desirable that cumulative tolerances be avoided, a
condition which is met by the indicated arrangements for supporting the T-bars, racks, and
gears. Similarly, the individual components must be so mounted that they are accessible
for repair, and this condition too is met by the suggested design. In particular,the
potentiometers may be removed individually or, by unsoldering the connectione, as a groupj
that 1s, the framework holding them is self-sufficient. This arrangement is especlally to
be recommended because it permits separate assembly of the potentiometers--an operation
which is preferebly to be done by electricians rather than by machinists. These and most
of the other design features required in the assembly are due to H. Kylin.

The operation of the machine can perhaps be best 1llustrated by an example.
Suppose, then, that we wish the absolute value of

3 2
f sin x o (W + x Jax

3

as a function of y. The first step is to obtain a curve of f(x) = sin x and p(x) = xz

to the proper scale; on the present machine each graph would cover about 20 inches in x,
10 inches in y, the full scale preferably being used on account of the increased accuracy.
The curves are then placed on the tables A and B of Figs. 13, 15, which, for convenience,
may be removed from the machine. The potentiometer sliders in Fig. 13 and the racks in
Pig. 15 are then placed on their respective curves, the switches of Fig. 1l being adjusted
with due regard to the initial position of the gears and to the range of the curve

¢(x) = xz. If the initial position of the gears was adjusted as suggested in Sec.5,

by simply moving the T-bars as far forward as possidle, then there will be an ambigulty of
180°, as noted abovej that is, a glven cam-switch may be connected either to +V or to -V.
To determine which connection prevails for a given gear we rotate the gears as a unit
through a small distance, and then use the hand probe of Fig. 1ld. If the 1light goes on
when this probe is connected to the corresponding contact, then the cam-switch is connected
t¢ -V, and otherwise it is connected to +V. The connection may be reversed dy means of
the manual switches added for this purpose. In the present case we find that P(x) = x2
will be less than T in the range 3 £x S+¥m, and hence in this range we want all cams
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connected to +V, The manual switches of Fig. 114 must then be so adjusted that the light
remains off when the probe is connected to each contact in turn. Forﬁ <X s'l’aT,however.
we have 1 £@(x) £ 2mand hence we must subtract M. For these values of x, we adjust the
manual switches in such a way that the light is always on; and a similar process is used
for the remainder of the interval —% $x €3, The final adjustment can be checked by
slowly drawing the hand probe through the slot containing the contacts.

In Fige. 14~16 the machine should have been horigontal when these operations
were carried out, the brake should have been on, and the locking bar should have been
withdrawn. After the racks have been placed on the curve, the brake is released, the
racks are lined up by a straight-edge, the locking bar is inserted, and the machine is
tipped to bring the T-bars against their cams. The machine is now ready for operation.
We set the crank Q to a desired value of y, then turn the crank P to maximize the meter
reading, and so on. It is worth noting that one generally requires an arbltrary set of
values. In this case one may simply turn the crank Q through a single turn, take a
reading, make another turn, take a reading, and so on. If fewer points are needed
(1.s., 1f the function appears to be varving slowly), one may of course take readings every
-other turn, or less often, as desired. This procedure gives positive values of y only.
For negative values of y a number of methods may be used, of which perhaps the simplest
18 to start at the smallest required value, rather than at gero as described above. This
value is reached by turning the crank backwards from the zero position, the machine
preferably being not yet tipped, so that there is no restriction on the speed with which
the crank may be turned. Except for this difference in starting position, the procedure
for negative y's is the same as above,

In case greater accuarcy is required one may carry out the operation of shifting,
For sufficiently smooth functions f and @, it is easily seen that difficulty is introduced
by the exponential alone, and this too only when y is very large; hence it is generally
sufficient to move the pivot (kmob F in Fig, 16) without resetting the curves, and to
repeat the calculation for large y. If f and @ are not smooth, the whole process may be
repeated from the beginning, the only change being that the tables and the pivot are doth
shifted. We disengage the brake and the racks, when the calculation is finished, so that
the T-bargcan turn most of the gears to the equilibrium positionj the remaining gears are
treated by rotating the whole group through a quarter turn.

Part II, Other Problems Solved

11, TYourier Series., As the reader has perhaps noted already, it is the sum of a Fourier
series, rather than a Fourier integral, which the machine actually computes, The most
general expression obtained is the exponential series.with complex coefficients,

Real t
Imagi& part £ 44 eibn + iy
Absolute value| ° Z )

Phase
The values a correspond to the points x, used for £(x), while the b correspond to those
for §(x). To facilitate insertion of these constante the two tables are provided with a

(11)

.




gset of rulings. When the series contains lesg than 23 terms, it would often be advantageous
to use every other potentiometer, rather than every one; if there were 15 terms or fewer, we
should use every third one, and so on. Similarly, if the series contains more than 45 but
less than 90 terms, we should put every other coefficlent ahexp(ibn) into the machine, using
all potentiometers, then repeat with the pivot shifted half the dlstance between elements,
now using only the remaining terms anexp(ibn). Thig latter operation is analogous to the:
shifting procedure noted above, and may be carried out as often as desired. The original
sum glves 45 terms; one repeat gives 90, a second gives 135, and so on. It must be noted
in this connection that the calculation of the Fourier transform was only approximate,
and shifting was then used as a simple means of reducing the theoretical error. For
Fourier series, on the other hand, there is no theoretical error of this type, and shifting
is now used merely to permit summation of series with more than forty-five terms. Even
when the range is tlms extended, éomputation of Fourier series still entalls no theoretical
approximation.

Yor the special case in which p

=0,by 417 n/2, we find that the

2n
real part of (11) reduces to an ordinary Fourier series with real coefficients,

22
A+ J [A cosny+*3B_ sein ny] (12)
o 1 n n
and similarly, the specializa,tions'bk = /2 or bk = 0 give Fourier sine and cosine series:
44 44
2 o sinny, Fe cosny. (13)
) o

These expressions may all be computed, then, as continuous functions of y; and there is
no theoretical error, nor any theoretical upper limit to the sum. Transferring the pivot
to the center gives the sum between symmetric limits; corresponding expressions with cos,
sin replaced by fcos|, |sin| are given whenever the cam-switches in Fig. 7b are taken out
of the circuit. A similar variation of the expression (1) also is thue obtained.

12. Convolution. In the circuit of Fig. 2c one may imagine that all the wires labeled
a are cut, so that the lower potentiometers are connected to the upper ones only by the
common ground. After this is done, suppose we reconnect the two left-hand wires only,
then these two and also the next two, then the three left-hand pairs, and so on, until
finally the original circuit is completely restored, A moment's reflection shows that
this process is equivalent to varying the upper 1limit of the sum or integral computed by .
the machinej and hence every one of the integrals mentioned above may be replaced by
j: where w is a new parameter that may be varied at will, Similarly, the sums (11)-(13)
are replaced by with k variable,

Instead of connecting the corresponding pairs in order as Jjust described, one
may connect the left-hand wire of the lower set to the right-hand wire of the upper set,
then disconnect these and connect the two left~hand wires on the lower set to the two
right-hand wires on the upper set, and so on. The process 1s readily visualized if we
think of the lower group as sliding past the upper one. When f(x) represents the function
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Figure 17. Problems connected with determinationof output. a) Determination of output
by means of a meter, The reversing switch is for negative values. b) Use
of a bridge circuit for determining output. o) Circuit for calibration and
miltiplication, d) Arrangement for semi-automatic recording. e) An arange-
ment for finding © from the equation y = 2m/\ sin O,
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on the lower potentiometers, F(x) that on the upper ones, then this second process gives

j': £(x)F(x - t)ax (14)
which is eimply the convolution (Paltung) of the two functions f,F. In any of the
integrals previously considered, then, the variable x in either one of the factors may be
replaced by x - t, with t a new parameter that may be varied independently of the others.
The most useful expression of this sort is that given in (14), rather than the corresponding
form of (1); and hence the cams need not be used for such calculations. Their effeet could
be compensated for by performing a preliminary transformation on the function; that is, by
putting cos L F(x) into the machine rather than F(x), or which ie the same thing, by
plotting the originel function F on suitably prepared graph pnper. Such expedients are some-
vhat inconvenient, however, and the present machine is accordingly supplied with an extra
teble (see Figs. 14, 15). Munctions placed on this table are inserted directly into the
(x) potentiometers without intervention of the mechanism of Fig., 7b, and hence the integrals
obtained are of the form (14) rather than (1).

The foregoing procedure gives the convolution (14) of two arbitrary functions as a
function of t. Turning now to the gquestion of mechanical design, we see that the arrange-
ment suggested in Fig. 18 allows one to carry out the required operations, and is at the
same time relatively simple to construct. The wires on the lower disk, which is fixed, go
to the lower potentiometers in Fig, 2, while the wires on the upper disk, which 1s free to
rotate through one revolution, are connected to the upper potentiometers. The disk in the
center is also free to turn; it has a set of metal contacts, as shown, but requires no out-
side connections. The contacts are equally spaced, and the spacing, which must be the same
on each disk, is such that slightly less than half of the circumference is required. For
operation, we start with the three disks lined up. so that every contact on the lower disk
is connected electrically to a contact on the upper disk. The complete circuit is then of
the form shown in Fig. 2., To vary the upper limit w we turn the center disk, keeping the
others fixed; to vary the parameter % we turn the top disk, keeping the lower ones fixed.

It is clear that the two parasmeters t, w are completely independent: one may adjust the two
lower digks to get an arbitrary value of w, then the top disk to vary t; or one may give an
arbitrary value to t, and adjust the center disk to vary w.

Computation of (14) by the foregoing method makes no use of the linkage mechanism
required for (1). In other words, the caleulation could be effected by a machine having
two units of the type shown in Fig. 13, plus one of the type shown in Fig, 18, and nothing.
else. The unit shown in Figs. 14~16 1s really not required at all, and is used only
because it happens to contain an array of potentiometers. In view of this simplicity, it
1s natural to inquire whether the expression (1) can perhaps be deduced from (14), with the
result that the complicated unit of Pigs. 14-16 (whMch accounts for by far the greater part
of the cost of the machine) could be completely discarded. Such a transformation can indeed .




be carrled out by suitable adjustment of the original functions and by choice of suitable
curves for F(x). Thus, in the next section we shall see that the expression
b
j £(x) P(xt) dx (15)
a

can be obtained from (14); and this in turn is of the form (2). Calculation of the
Fourier transform can therefore be made, in theory, by any machine which yields the
expression (14). When we proceed from theory to practice, on the other hand, we find
that such a procedure would be quite inferior to the standard methods now in use. Not
only must one carry out all the preliminary calculations noted in connection with (2),
but one must transform the original functions as descrided below. For large y the
aceuracy is poor; and, all things considered, the method appears so inconvenient that
even manual computation (e.g., by means of vectors) would be preferable, Hence this
procedure, which was contemplated before the unit of Figs., 14~16 wae designed, is
rejected. Though the parameter y 1s indeed (discontinuously) variable, the method is
not in keeping with our bvasic aim, simplicity of operation.

13, Tranaformetions of the Munctions or Circuit. It has been assumed hitherto that the
actual values of all functions and coefficients are put into the machine, without pre-
liminary manipulation. Actually, however, the range of useful computations can be
extended by use of suitable transformations, many of which are conveniently effected
with non-linear graph paper. In the expression (14), for example, we may plot the two
functions f and F on so-called semi-log paper, the logarithmic scale being used for the
independent variable. Where we formerly obtained (14) we now obtain

ji(-l‘-)- g(xt') ax (16)
X

with t' = e again an independent paremeter. For the specisl case in which g(x) = e~

this expression reduces to the Laplace transform of f(y)/y,
xt!
Ig-(L)- e xt dx v (17)
x

80 that the transform of f(x) can be obtained by carrying out the above operations on
xf(x).

Transformations of the type just described may be used in most devices for
mechanical computationj they are not peculiar to the present machine, snd are mentioned
only on account of their great utility. There 1s another kind of transformation, however,
which appears especially applicable to the particular machine here considered. Instead of
using the circuit of Fig. 2c, one may equally well connect the potentiometers in other
ways. Such a procedure would require a large but otherwise simple switch of conventional
design, and presents no serious difficulties in either construction or operation. The
expressions thus computed are of course different from those considered hitherto; and if
the integrals ccntain a parameter (though not otherwise), the new ¢lass of functions is
actually larger than the class obtained by using only the simple mathematical trans-
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Figure 19, Exemples of other connections possible with same potentiometers.
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of making various connections,
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formations mentioned above., Suppose, for example, that we revise the circult as shown in
Fig. 19a, connecting corresponding potentiometers in series rather than in tandem. It is
easily seen that the voltage V' of that figure is given by

yrz—xf (18)
r¥F + pf v

80 that, with cholce of a suitable scale for f, one can evaluate integrals of the form

Mz (
fF(x) + af(x) & 19)

where a ls any constant, Similarly, if the potentiometers be connected as shown in
Fig. 19, then the voltage is

"w=_¥r v (20}
rf +f
and hence one obtains integrsls of the form
29 e, (21)
2(x) + 2

or of the form

fg-&}- ax (22)

by subtracting a suitable constant from the function g(x), that is, by displacing the
graph paper through a constant distance p/r. Computation of (22) is subject to a natural
restriction that £(x) be not too smallj more precisely, the ratio of its maximum to its
minimum value must never exceedlﬂyr = 1/185,

These changes of circuit can be carried out by the device suggested in Fig. 19c.
Each of the cables a, b, ¢, a', b', c' contains 45 separate conductors, one for
each potentiometer. Similarly, the switchboard is supplied with 6 x 45 or 270 plugs,
divided as shown into 45 rows. By connecting the plugs on the left to those on the right
by cables, as in a manually-operated telephone switchboard, one can obtain every possible
one-to-cne connection of the potentiometers. This procedure allows the potentiometers to
be separated into groups, different connections being permissible in different groups;
and it would be useful for problems of the type considered below. In case we are concerned
only with circuits hitherto described, however, in which the same connections are used for
each palr of potentiometers, then the result can be obtained by connecting the cables a, b,
¢ to a', b', ¢' directly, without use of the switchboard. For this reason it is desirable
that the cables a, b, c, be supplied with male vlugs while the others have female plugs.
The original circuit of the machine, Pig. 2¢, would then be obtained, for example, by
connecting ¢ and ¢' to ground (V = 0), while b is connected to V, a to b', and a' to the
set of resistors R, which may be placed in a separate box and supplied with a plug for this
purpose. If the input and output terminals of the switech (Fig. 18) are likewise connected
to suitable plugs, then the switch may oe inserved directly into the circuit at any
desired point. PFor the convolution it would be inserted between a and b', the other
connections being as described above.

There is one other modification of the circuit which is perhaps worth mentioning.

BB




Since the potentiometer circuit generates the sum of products, one can obtain expressions

of the form
n
Z 830y
1

by inserting the coefficients a, on one set of potentiometers and the bi on another set,

As connected in Fig. 2, the circuit gives only a single expression of this form [Eq. (7)];
but if the units be divided internally as shown in Fig, 20a, then the number of sums is
equal to the number of separate sets. By means of the switch A we can evaluate any of
these sums independently, only one meter being required for the whole group. After thus
subdividing the circuits by modifying the connections, one may unite corresponding
potentiometers mechanically, in such a way that their sliders move in unison (see Fig, 20b),
Alternatively, since only one of these potentiometers is required for any given position of
the switch A, we may use a single group of six and switch this single group from one group
of the upper potentiometers to the next, as switch A is changed. The need for the mechanical
device of Pig. 20 1is thus eliminated. This procedure, which was suggested to the
author by J. C. Eaton of NRL, can be carried out by the switch of Fig.18, if six extra
contacts be added to the rotating disk. Whichever method is used, the expressions obtained

D
Zaijui
i=1
with J taking the values 1, 2, ... as we proceed from one group to the next. By adjusting
the first unknown uy to make the first sum equal to c¢,, the second unknown u, to make the

1? 2
second sum equal to ¢,, and so on, one can solve the system

Fegney 4ot

1=1
The process is a well-known method of successive approximation, and converges rapidly when-
ever the coefficient matrix is suitebly adjusted. Although found independently by the
author in 1945, use of the circuit of Fig, 20a, or of one substantially equivalent to it,
for solving equations in this way has been fully descrided elsewhere;l and hence, without
entering into detalls, it suffices here merely to indicate the possidility of carrying out
such calculations on the proposed machine. The number of equations solved is 5y ]',
with 45 potentiometers one could deal with six equatione in six unknowns, while 1f the

equations are adjusted to have at least four coefficients equal to zero, one can solve seven

are of the form

2.

equations in seven unknowns.

It is evident that these and other forms of the circuit can be used in conjunction
with the mathematical transformations just described, and that the two together can be
combined with the mechanical units of Figs. 14 or 18 to give corresponding variations of all-
expressions hitherto considered. It should be noted too that the vpresent discussion is

representative only; of course one can make mathematical transfermations different from the -

1. Berry, E., et. al. 1loc. olt.
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substitution f£(x)-f(e*) considered above. Similarly, the possible forms of the circuit are
not exhausted by Figs. 19, 20 even when there are only two =ets of potentiometers; and if
three or more sets are ured, the variety is correspondingly increased. The device of

Fig. 20c may be extended, in an obvious way, to glve all possible connections for these
more general circumstances; instead of six columns of plugs we should require nine for

three sets of potentiometers, twelve for four, and so on.

14. Other Types of Potentiometers. The effect of the device in Fig. 7b is essentlally to
change a linear potentiometer to a sinusoidal one, that is, to a potentiometer in which
the slider voltage varies as the sine of the displacement. This and linear variation form
the only kinds hitherto considered, all the expressions noted above having been obtained
either with linear potentiometers alone, or with linear and effectively sinusoidal ones in
combination. When each potentiometer is adjusted manually, as for the insertion of f(x),
it is clear that nothing is gained by using a non-linear relation; for the same effect
could always be obtained by plotting the function initially on suitable graph paper, When
on the contrary the setting is determined mechanically, as for example in the unit of
Fig. 7b, then substitution of non-linear for linear potentiometers can have effects not
readily dupliceted by any other procedure. This possibility, which is exemplified in the
linkage mechanism described above, is perhaps worth coneidering in greater detall.

Suppose, then, that we use potentiometers for which the voltage varies according
to the equation ’

Vv = P(a) (23)

where 4 is the displacement of the slider, Such dependence is evidently obtained if the
card upon which the wire is wound be shaped according to the equation Pt(a). With an
initial displacement of d, for the i-th potentiometer, the arrangement of Fig. 21 gives
functions of the form

i

¥P(1y +4,), (24)
when used in conjunction with the summing circuit previously described. The corresponding
integral becomes :
fp[;q + a(x)] ax (25)
if the number of elements is large, or 1if the calculation is repeated sufficlently often
with a sideways shift of the functions. In this expression the function P(x) 1s fixed
for a given machine, and cannot be changed; but the curve a(x) is an arbitrary function
which need not be the same in different problems. Thus, P(x) corresponds to cos x and
a(x) corresponds to P(x) in the discussion given above, If the potentiometers are not
identical the function P in (24) must be replaced by Pi' Similarly, if the potentiometers
be used in conjunction with the linkage mechanism of Figs. 7, 9 rather than with that of
Fig.2la,then the functions P(iy + di) are replaced by P{sinliy + di)]; this latter case
is equivalent to a device using the simple mechanism of Fig. 2la and potentiometers with
voltage versus distance given by V = P(ein d).

These general considerations can perhaps be illustrated by application to a

specific example. A convenient expression for this vurpose is the power serles

ZnAi zi. (286)
o
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which also has a certain interest in its own right. At first confining our attention
to the case in which both Ai and z are real, we observe that a complete solution is given
by the arrangement illustrated in Fig. 21, if the potentiometers are of the so-called
logarithmic type,

P(4) = ed,
and y is replaced by Ln y. The coefficients are introduced by taking di = In a.
To obtain logarithmic potentiometers of the required range one may proceed as suggested
in Pig. 2le. An accurate logaritnmic potentiometer is wound on a card which is later
bent into a circle, the two ends of the winding being drought as close together as
possible. The range may be any convenient value, which for definiteness we may assume to
be 10:1. At each complete revolution of the potentiometer shaft the input voltage is to
be reduced by a factor of ten, a requirement which may be met by use of a sultable set of
fixed resistors and a simple switch. It 1s clear that the range thus attained may be as
large as we please; a value of 50 or 100 db would doubtless be sufficient, however, for
most applications. Of course the simple lever of Fig. 2la will no longer do for such an
arrangement, and it is accordingly replaced by the mechanism of Fig. 1€. The problem
there encountered is identical with the present one, even as to details, and the solution
previsusly obtained therefore applies without modification to the present case. e remark
in passing that the potentiometer voltage will show an ambiguity of 10 db whenever the
transition is made from one end of the card to the other. It 1s suggested, therefore, that
each potentiometer be supplied with a switch which 1s on during this critical portion of
its range. For all the potentiometers of the set, these switches are then connected in
parallel, and the whole is comnected in series with a light., No readings are to be taken
when this light is on.

By the above procedure the sum of a real power series can be found as a continuous
function of the variable; and the number of terms is restricted only by the number of
(1dentical) potentiometers one wishes to use. Turning now to the less trivial case in which
the coefficients and the variable z = r 919 may be complex, we find that this problem too
depends for its solution only on principles already mentioned. Thus, the arrangement Jjust
descrived, Fig. 2la with P(d) = €%, may be substituted for the f(x) unit of the foregoing
discussion, Fig. 15. If the connections are made as before, we again obtain the sum of
corresponding products, so that the machine now computes

?eal part 44 (e + ) eyt
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instead of (1). By taking a, =tnlal, v = ‘_A—n, y=1n |z, y' = |z, ve see that (27)
reduces to (26), so that the sum of a power meries has been obtalned as a continuous
function of the two parameters lzl = r, |z = 6. The logarithms need not be found in
practice, incidentally, since the tables may be supplied with logarithmic rulings, or
simply with a sheet of logarithmic paper, to vermit direct insertion of IAnI. Similarly,
the scale giving the position of the lever fary wuld normally be logarithmic rather than
linear, so that direct readings of )z} would also be obtained. It is perhaps worth noting




that the lever need not be pivoted at one end as shown in Fig. 2lu, dbut can be pivoted instead
at some intermediate point. The simple power series formerly obtained now becomes a Laurent .,
series, with as many negative powers of z as there are potentiometers on the far side of the
pivot.

15. Mechanical Additions. The modifications heretofore discussed have been of two kinds. The
first kind, exemplified in the devices of Sec. 12, uses nothing but the original components,
together with transformations of the input functions or of the circuit. The only extra

items required are switches for carrying out the indicated operations., The second type of
alteration ies more extensive, since it requires construction of a whole new unit as, for
example, the potentiometer unit descrided in Sec. 14. This second, more radical departure
from our original design need not be confined to the potentiometers but can be extended to

the linkage mechsnism as well., In the course of antenna design, for example, one sometimes
requires the secondary pattern produced by an illumination f(x) exp[1f(x)] on a cylindrical
surface with polar equation r =/°(9). Such a calculation leads to an integral of the form

.[% 2(x)el[P(x) + K plx)cos(x + 7)) 4n (28)

for perpendicular polarization if one includes obliquity, and the same expression is obtained
in the general case 1f obliquity is neglected. The only difference between this and the
former expression (1), which is the analogous result for a plane aperture, is that we are
now concerned with p(x)cos(x+ y) where we previously had xy. Insertion of £(x), P(x), and
generation of the exponential can be carried out, then, by the components previously de-
seribved (Figs. 1-7); and it suffices to replace the lever of Fig. 9 by some system that will
generate’b(x)cos(x + y) as a contimious function of y. Such a device is represented in
Pig. 82, where the guides for the flexible wires are placed along the curve/?(x) while the
variable y is introduced by changing the indicated angle. Tor simplicity of fabrication one
can group the adjacent wires as shown in Fig. 23c¢, the error introduced by non-parallelism
being of the second order and completely negligible for most applications, Similarly, the
rollers need not adjust themselves in such a way that the angle A is exactly equal to 90°;
the relevant error is the error in length, rather than that in the angle. Use of a slotted
metal sheet for holding the wire guldes was suggested by H. Kylin.

Before the construction of Fig, 22 can be successfully operated,it must be coupled
to the remainder of the machine; that is, one must arrange that the displacement of a glven

gear G, in Fig, 14 shall be proportional to the displacement of a corresponding wire in

i
Fig. 23, In ordinary work the proportionality factor is rather large, so that a small
motion of the wire must produce a large motion of the corresponding gear; and hence an
amplification of torque will be required. We are thus led to the following problem:

a) The wires must be coupled to corresponding gears with
amplification of torque.

b) The coupling must be reversible, so that the gear will
turn backwards when the wire 1s slacked.

¢) It must be possible to stack the succesive units
conveniently.,
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These requirements are met by the device illustrated in Fig. 23a. The shafts A are
turned in the indicated directions by a motor, the torque being as large as is necessary for »
reliable operation. The two shafts shown and one motor serve for the entire assembly. It
is readily seen that the gear will indeed follow the wire in either direction, as required,
if the input tension is enough to couple the wheel ¥ to the shaft A, The alternative
arrangement of Fig., 23b avoids this difficulty, since the coupling is now effected by an
electromagnet rather than by the tension of the wire. In either case the error cannot
exceed the displacement required to actuate the mechanism once; it is not cumlative, and
no error is introduced by slippage between the shafts and the wheel V.

With the foregoing device the parameter k is determined by the diameter of the
sprocket S, and cannot be changed directly. This is not a serious disadvantage, since a
change of k may be simulated by a change of scale in the curve,O(x). Tor taking the
frequency dependence of an antenna pattern, however, one requires a set of curves for many
values of k, and in this case a method of continmous or near-continuous variation would be
desirable. Such a requirement is met, in principle, by the device shown in Fig. 23c, The
ratio of wire motion to gear motion is proportional to the velocities of the two shafts
A and A', and this ratio can be adjusted by change gears, only one gear box being required
for the whole array. Unlike the simpler devices of Fig., 23a, b, however, this dne leads to
cumulative error. Thus, it is necessary that the time of contact be the snme for the upper
and lower rollers, and that the rates of slipning be equal., For quantitative investigation
we observe that the problem is completely analogous to problem 3, page 147, of Uspensky's
"Introduction to Mathematical Probability". Making use of the approximate results given on
pages 153-154, one finds that the probability of a large error is very small whenever the
initial errors are small, if positive and negative errors are equally likely. When this
last condition is not satisfied, however, the cumulative error may become serious even in
relatively short calculations, and hence the arrangement of Fig. 23 ¢ should be used only if
each unit is accurately symmetrical. The present machine is so designed that any one of the
three devices can be added at some future date if this should be found advisable.

It is worth noting that the wires in Fig, 22 can be connected to a point P rather
than to the lever, as there indicated. In this case one obtains an expressjon which can
sometimes be used for approximate evaluation of the field in the Fresnel region, although
obliquity and inverse-distance attenuation are both neglected. The lamtter could be supplied
by an extra bank of potentiometers, connected as described above for computation of (22),
and arranged to have a slider motion proportional to the displacement of the corresponding
wire in Fig. 23. It is doubtful, however, that such complications are economically Justifled.
A similar construction can be used for calculating the field in the Fresnel region of a space
curve, though the complications again are greater than the interest of the problem would
appear to warrant.

Acknowledegment. The machine here described is being constructed by the Antenna Group of '
the Naval Research Laboratory under the direction of L. C. Van Atta. The author is
responsible for the design only. The engineering and mechanical design is due to E, Kylin,
now at the Naval Research Laboratory.

As far as principles are concerned, most of the devices here described were completed
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in 1943; because of the pressure of war work, however, the subject was not pursued in
detall until 1946, when 1t was reduced substantially to 1ts present form. During this
period (1943-1945) the author was working in the Antenna Group of the Radiation Laboratory,
M,I.T,, and he is glad of this opportunity to thank L. C, Van Atta, Group Leader of

Group 54,and E. B, McMillan for the opportunity to carry out the research and development
here describded.
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