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The free volume theory of liquids is applied te problems con-
nected with sound propagation. The equation of state derived by Tonks
for assemblies of hard elastic spheres may be written pV_ ¥ 3NkT, where
the available volume V_is the difference between the actual volume and
the volume correspondi&g to the closest possible packing. It is shown
that the molar available volume is approximately given by the increase
in molar volume of a substance on heating from O°K to the temperature
considered, so that the pictorial concept of the available volume has a
real physical basis, Using the Tonks equatlon expressions are derived
for the sound velocity and the temperature and pressure coefficients of
sound velocity. These expressions are compared with experimental results.
Expressions are also given for the cubic expansion coefficient and the
difference of the specific heats on the free volume model, The Herzfeld-
Rice derivation of the sound absorption caused by phase shifts in the
vibrational specific heat is carried through for the Tonks equation of
state. The temperature and pressure coefficients of sound absorption are
discussed, Remarks are made on the relation of molecular structure to sound
absorption.
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ULTRASONIC PROPAGATION IN LIQUIDS: II, THEORETICAL STUDY OF THE
FREE VOLUME MODEL OF THE LIQUID STATE

I. Iptroduction

The purpase of this paper is to describe the velocity and absorp-
tion of ultrasonic waves in liquids in terms of the free volume theory of
liquids and the relaxation theory of absorption processes. It is emphasized
at the beginning that simple models of liquids may not be expected to give close
numerical agreement with obeervation. We should, however, require that the
model give the correct order of magnitude of physical quantities and their varia-—
tions. This test we propose to apply to the free volume theory of liquide., The
implications of the theory with respect to the mechanical properties of ligquids
have not previously been considered, to the author's knowledge.

The important experimental facts regarding ultrascnic propagation
in liquids are summarized below:

(a) The velocity of sound in a liquid is commonly of the order of
five to ten times the velocity in the vepor at the seme temperature., For example,
the velocity of sound in liquid owgonl at 90°K is 910 m/sec, while the velocity
in oxygen va:.x:uu'2 at the same temperature is 180 m/sec.

(v) The tenperaturo coafficient of sound velocity € 1(30/3!) is
of the order of -3 x 10 °C 1 in gases the temperature coefficient is of the
same order but is positive,

(c) The pressure coefficient of sound velocity ¢ (3 Glap),r is of
the-order of +5 x 1070 cnz/d.yne.

(d) The absorption of sound waves in liguids usaually exceeds the
classical value calculated on the basis of ordinary viscosity losses; in the case
of 082. the observed velue is several thousand times greater than the classical
value,

(e) The temperature coefficient of sound absorption & (30./3!)
is of the order of +0,01 °C 1 Both positive and negative signs occur, wheroal
on classical theory the sign is always negative, as the viscosity has a negative
temperature coefficient,

(f) The pressure coefficient of sound absorption & (aG/Bp) is
-8 & 1 2/d;me for toluene, the only liquid for which a determination has
been reported,

The two traditional concepts of the liquid state regard a liquid as
either a very dense gas or else as a solid in which the long range order between

the molecules has broken down. Both of these concepts account qualitatively for
the two distinguishing properties of liquids; namely, that a liquid combines the
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small shear modulus characteristic of gases with the small compressibility
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characteristic of solide. To explain in a convenient and natural manner the
origin of other physical properties of liquids, such as fusion, vimcosity,
dielectric constant, density and solution effects, sometimes the gas and some-
times the solid point of view is used.

In understanding the propagation of sound in liquids the gas model

is particularly suitable, It turns out that sound velocities can be predicted
qualitatively from this model; and further, the absorption of sound in ligquids

can be related to the absorption processes in gases, which are fairly well
understood. On the other hand, the absorption processes in solids are poorly
explained at the present time.

II. Sound Velocity

The relationship between the velocity of sound in the liquid end
gaseous states has been made plausible by the work of Byring and his collaborqtorla.
who have given a simple and useful explanation of the relation in terms of the
ges model, The relation is derived by Eyring in a qualitative way and is not quite
correct; later on we shall consider a rigorous equation of state for this model
from which the sound velocity can be calculated unambiguously.

Dyring pictures the sound wave as traveling with infinite veloclty
within a molecule and with gas kinetic velocities through the space between the
molecules of the liquid (Fig. 1), This space is termed the "available volume."

The molecules effectively short-circult a part of the path of the sound wave.
If the intermolecular separation is L and the "free length" L{. the molecules
short-circuit all but the fraction Lf/L of the path. The sound velocity in the
liquid is then given by

11

" /a,) s (6 9]

where kinetic theory gives
=
cz . 7. _(RT/K) (2)

vlth'zgn' = OP/OV. the ratio of specific heats in the gas.

The reasoning leading to Bq. (1) from the specified properties of

the model is not rigorous. It is possible to derive a rigorous equation of state

3. Ryring, H. and Hirschfelder, J, O., J. Phys. Ohem. 41, 249 (19575' Kincaid,
J. ?., and Byring, H., J, Ohem, Phys, 5, 587 (1937), §, 620 (1938); Hirsch-
felder, J, O,, Stevenson, D, P, and Hyring, H., J. Chem., Phys, 5, 896 (1937).
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for the fres volume model, and this has been done by 'Ionks‘tn a peaper on the
statistical mechanics of assemblies of hard elastic spheres. Recently, Bi.c05
and l‘ranke have drawn attention to the importance of Tonks' work in relation
to theories of the liquid state and have considered some of the thermodynamic
consequences of the model.

T Equatl f Stat

The Tonks equation of state for a classical three-dimensional gas
of hard elastic spheres in the limit of close packing is

pV(l - 01/3) = NkT (3)

where O 1s the packing fraction with respect to the closest possible packing.
We have 0 = V /7 =1 - (V /V) where V is the minimum possible volume and V
the gm_;_g_;_g yolume, is deﬁned as V - Vo Tor close packing as in a liquid

1- o3, v/ (4)
In this approximation the equation of state becomes
p¥, = 3T . (5)

The form
p= (@!/M)Pl (6)

b-3-3 Q)

is also useful, Here .Po is the density corresponding to the closest possibdle

where

packing.

The remarkable and simple form Bq, (5) which the equation of state
assumes makes it easy to deduce various properties of the model., This form does
not appear to have been stated explicitly before. )

Before using Eq. (5) we shall consider its physical significance
as applied to actuml liquids, The pressure p is understood to be made up of two
terms, one representing the effect of the attractive intermolecular forces and
the other representing the external applied pressure. Let us imagine the inter-
molecular potential energy to be altered by removing the attractive part of the
potential while leaving the repulsive part; the "internal pressure® may then be
regarded as thdtpressure which would compress the system to the volume actually
occupied. The implied relationship between internsl pressure and temperature is
plausidle on the free volume model, since the internal pressure does balance the
kinetic pressure of the molecules regarded as moving freely within the volume.
It is not obvious, however, that the thermal expansion at constant external
pressure should be given correctly by the Tonks equation, This amounts to the
assumption that the balancing pressure due to potential energy 1s independent of
the volume, The experimental checks of Eqs. (10) and (15) below may be taken as

4, Tonks, L., Phys. Rev. 50, 955 (1936).
5. Rice, 0. K., J. Chem. Phys. 10, 663 (1942); 12, 1 (1944); 14, 335 (1946).
6. Trank, H. S., J. Chem. Phys. 13, 478 (1945).




Jjustification of this assumption within the generous limits of error of this
paper.

It is important to note that what is called the available volume
Va in this psper is not identical with the {ree voluge Vr as customarily de-
fined, although the same model is used. The available volume is the difference
between the actual volume and the minimum possidle volume and is given by
¥(1 - 0); the free volume is definea>*4+®
the center of a single molecule, and is given, per mole, by V(1 -
close packing Vf = V.(Vilz’lvz). The available volume is a natural quantity to
use in the equation of state; the free volume is a natural gquantity to use in
the partition function. The numerical values of the free volume given by

Kincaid and Byring are defined in terms of an approximate egquation for sound

as the volume of possible motiom of
1/3,3
¢ '")°, Tor

velocity in 1iquids; the use of the more exact equation below will necessitate
small changes in the numerical values,
The velocity of sound is given in the usual way by

o® = (3p/3p)g = (A1 PIX3 DA
so that

() (- ()5) v - o

where ?liq has besn set equal to (C' + 33)/0'. in accordance with Bq. (16),
It may be noted that qu and 0‘“ are to be taken at the same temperature.

[*] ] A 1 it

It 1s not practical to give a direct comparison of Bq. (8) with
measurenents of sound velocity in liquids since there is no really accurate
independent method for determining the available or the free volume (see,
however, Kincaid and lyringa). Ve may, however, make an estimate of the
avallable volume by considering the increase in volume between absolute sero
and the temperature concerned.

1f we are to take the free volume picture seriously there should
exist some correlation between the golar available volume as calculated using
Bq. (8) from sound velocity measurements at room temperature and the actual

increase in moler volume of the material between O °K and room temperature.
Such a relationship does in fact exist,
' We write
VeV +V.. (9)

where Vo is the molar volume corresponding to the closest possible packing in a
geometrical sense, and V‘ is the molar availeble voluwe, Lat

V. = V1 * 72 * Va R (10)

where!




Vl = molar volume change on heating solid from O °K to the melting point;

Vz = molar volume change on fusion;

Vz = molar volume change on heating liquid from melting point to the tempsrature
concerned,

Unfortunately, the expansion data from which the V's can be cal-
culated are inadequate, and a certain amount of guesswork enters into any esti-
mate of the availsble volume based on the thermal expansion data. A compari-
son of available volumes as calculated from sound velocity and thermal ex-
pansion data is given in Table 1. The agreement is as good as can be expected.

This evidence shows that the pictorial concept of the available
volume has a real physical basie. It is in principle possible to give an
approximate calculation of sound velocities from thermel expansion data alone.

Table ]

Comparisen of Available Volume as Oaloulated from Thermal RBxpaneion and Sound
Velocity Data for 300 °K

vailable Volume Increme Oalculated Available Volume
vl vz v3 in cc/mole derived fromi
0°K to PFusion Melting g;:::ion :°““d'

Melting Volume Point to [2q.(10)] [elo‘(’i}’
Substance Point  Ghange 300 °K L %q.(8)]
CHBr, 8 10 (2) 20 19
oo, 11 4 5 20 28
Benzene 10 10,3 2.5 23 -3

Notes: Thermal expansion and fusion volump change data are from the Landolt-—
Bornstein tables, Vl is based on a linear exirapolation of measured values
obtaining between 80 °K and 200 °K; this overestimates the change at low
temperatures (since by the Nernst theorem the expansion coefficient must
vanish at O °K) and underestimetes the change at high temperatures, No
allowance has been made for any effective “sero-point" available volume,

2 [*] Sound V it

We may determine the available volume from the sound velocity at
one temperature and using this value compare the calculated with the experimental
value of the temperature coefficient of sound velocity o'l(ao/QT)p. The
velocity of sound in liquids has usually a pegative temperature coefficient; that
is, the velocity decreases with increasing temperature., This is contrary to the
position with gases, which show a positive temperature coefficient, In terms of
the free volume picture of a liguid the effect of the increased distance the

molecules have to travel, owing to thermal expansion, dominates the increase in
molecular velocity,

We may derive an expression for the temperature coefficient of
sound velecity on the free volume model. From Egs. (2) and (8),

."R;./ar)p - v“(avla!)p - v:l(av./a!)p . (1))« (1/2 ’a'nq)(a?nq/a!)p. (11)
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where the change in 2 s is neglected. Now AV 1z essentially equal to A'a' since
the expansion of the molecules themselves may be neglected in comparison with the
expansion of the awvailable volume., Writing A for the temperature coefficient of
cubic oxpansion7. we have

¢loefor), = (1fam) = AL(TY) = 1) + @7, ))NEYY fom), 5 G2)
this equation may be written in terms of observables by using Eq. (8):

2
o"'osfom), = (1/2m) -2 (—5!‘;)'/( =1p+ (277, )7000, or) . (12)

A detailed comparison of experimental values of the temperature coeffiocient
with calculated values from Bq. (13) is given in Table 2, The purpose in giving this
and other tables is not in order to emphasize specific cases of agreement or dis=-
agreement, but rather to exhibit the consequences of the free volume equation of etate.
It seems likely that Bq, (5) will find wide use in problems of the liquid state, so
that 1t is well to understand some of the limitations and capabilities of the eqmt ion,

) It is seen that the calculated values are in order of magnitude agreemsnt
with the measurements, but that the calculated values underestimate the value some-
whate It is significant that the order of magnitude of the results derived from the
simple model of hard elastic spheres is correct, and that the existence of an
"anomalous® positive temperature coefficient for water is correctly indicated by the
theory,.

Eressure Coefficient of Sound Velocity

] I% 12 of interest to consider the pressure coefficient of sound velocity
e-leobp)!. Using the Tonks equation we find

> 1/2/¢
TlOckrly = BLON) -1l =By {[ 552 ) [ )1 . 4
1liq gas

where By, 1s the isothermal compressidility and is equal to ?’n o times the
adiabatic compressibility., The variation of a'liq with pressure should probably
be considered, but relevant data could not be found, A comparison of experimental
with theoretical values is given in Table 3, from which it appears that the pre=
dictions of the theory are slightly low. The positive sign of the pressure co~
efficient arises because the sound path through the available volume is shortemed
by compressing the volume, The fact that both the temperature and pressure co-
efficients of velocity as calculated are somewhat low suggest that the available

volume is overestimated by the sound velocity equation.

7+ The conventional symbel for both the cubic expansion coefficiont and the
pressure attenuation coefficient is &§ in this paper A is used for the eubic
expansion coefficient to avoid confusion.
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Zable 3

Pressure Coefficient of Sound Velocity c"]'chp)T
Comparison of Calculated Values from Eq.(14) with Experimental Values

Pressure Coefficient of
Sound Velocity

Adiabatic P
cosyressibility en” [dyne
Substance salayne Experimental Calculated

Carbon Disulfide 59,0 x 10~%2 3.7 x 100 1,7 x 10720
Carbon Tetrachloride 7445 447 247
Ether 138,7 7e7 3e1
Ethyl Bromide 88.1 Se7 2.1
Methyl Acetate 80,9 247 240
Benzene 64,9 3el 2.3
Toluene 6842 3e2 247

Notest Values of the adlabatic compressibility are from Hiedemann's booke Ex-
’ perimental values of the pressure coefficient of sound velocity are from J. C.
Swanson, J. Ohem. Phys. 2, 689 (1934), except for the value for methyl acetate,
which 1s from P, Biquard, Comptes rendus (Paris) 206, 897 (1938).

III. Discussion of Free Volume Theory

It is appropriate at this point to discuss the basis for the application
of the Tonks equation of state to actual liquids, Four main assumptions underlie
this application:

(2) It is assumed that the internal structure of a molecule is
"hard" - that 1s, the internal compressibility of a molecule is neglected in com-
parison with the compressibility of the system as a whole. This assumption is
justifiablet

(b) It is assumed that the molecules are spherical., It should be
possible to generalize the derivation of the equation of state to describe other
ghapes.

(c) It is assumed that the compressibility of the molecules with
respect to each other - that 1s, the intermolecular compressibility - is purely
kinetic in origin. The repulsive forces are imagined to rise sharply at the

- em s e wm  en e e em e e mm e e e W am e e e e e - = -

*

- . e o - o e e

The internal compressibility of a molecule Bmol is of the order of L/k, where L

is the length of the molecule and k is the force constant, The force constant

is given by k = (zl‘f)zm, where the fregquency f£ 1s a fundamental vibration frequency
of the molecule and is of the order of 1000 cm-l or 3 x 1013@.; m 1s the reduced
mass of the molecule and is of the order of 3 x 10-23@ for a light molecule,

With these values k~10° dynes/em, so that B ;~10" *m®/ayne, which 1s to be
compared with Bgasfvlo-lo cmzldyne under the equivalent pressures obteining in

a li quid.
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boundary of the hard sphere. This is quite a drastic assumption,

(d} It is assumed that the internal pressure arising from the
attractive intermolecular forces is approximately independent of volume. This
18 also a drastic assumption,

(e) The Tonks derivation is based on classical mechanics, and no
account is given of quantum effects. It is almost certain that quantum effects
are of considerable importance in liquids, since the spacing between the energy
levels of a molecule confined within its own free volume is of the order of kT
for room 1',en:perat’n.x::‘e.8

In the light of the assumptions which have been made, it is of in-
terest to consider further consequences of the Tonks equation. We have already
seen that the equAtion leads to values of the temperature and pressure coefficlents
of sound velocity which are correct to within an order of magnitude at least.

Thermal Bxpansion Coefficient

The measure of agreement with experiment attained by the calculated
values of the temperature coefficient of velocity may be attributed in part to the
use of experimental values of the cubical expansion coefficient when substituting
in Bq. (13) to obtain the results displayed in Table 2; this is particularly true
with respect to water. We may, however, calculate the cubical expansion coefficient
from the Tonks equation of state, obtaining

A= v"lm/am)P = (7 /NQ/1) (15)

A comparison of experimental with theoretical values is given in Table 4, The
agreement is excellent for the organic liquids, but is poor for water and mecury,

Table 4

Cubical Expanslon Coefficient
Oomparison of Calculated Values from Eqe (13) with Experimental Values
v‘l(av/au:)P in o072
Cubical Expansion Coefficient

Substance v/, Experimental Calculated
Benzene 3e5 le24 x 10"'?> 0,95 x 10"3
Carbon Disulfide 2.8 1.20 1.19
Carbon Tetrachloride 3.4 1.23 0.98
Chlorobenzene 4,9 0.98 0.84
Bthyl Alcohol 3.4 1.10 0.98
Mercury 6.4 0,18 0.52
Methyl Iodide 3.1 l.24 1.07
Water 23 0.12 1.45
Water (400 °K) (2.3) 0.97 (1.1)

Notes: The data are for P = 300 °K. The values of the ratio of the volume to the
free volume (V/Va) are from Table 2,

as might be expected. We have neglected entirely the role of the metallic electrons,
so that the present discussion is often inapplicable to ligquid metals. Water is

-8, Bartholomé E., and Bucken, A., Trens. Far. Soc. 33, 45 (1937),




anomalous in general behavior at room temperature and below, but near the boiling
point the calculated value of the cubic expansion coefficient is in good agree-
ment with experiment.

Difference of Specific Heats (OP - Qv)

Using Bq. (5) we may compute the difference (G:p - Cv) for the Tonks
equation, finding '
qp -0 = p(avaﬁaw)p = 3R (1)

instead of simply R which obtains for an ideal gas. A comparison i1s given in
Table 5 of experimental with theoretical values of the difference (Cp - Gv).

Table 5
Comparison of Experimental Values of (6 — C ) with Calculated Values from Eqe(16)
o S/ "6, - ¢) cal/nole/*0
Substance Expt, Expt, Tapt. Galc,
Argon (87°K) 10,0 2.2 5.5 6
Oxygen (90°K) 13,0 1,7 5.3 6
Nitrogen (76°K) 13,6 2.0 6.6 6
Hydrogen (20°K) 6.9 1.5 2.5 6
Benzene 316 1.4 9.7 6
Carbon Tetrachloride 30.7 1.46 9,7 6
Bther 40,6 1.33 10,0 6
Ethyl Alcohol 27, 1.18 4,2 6
n-Heptane 49,  1.19 7.8 6
n-Propyl Alc. 35.6 1l.16 5,0 6
Toluene 37.8 1l.34 10.0 6

Notes: The data are for 300°K unless otherwise specified, Experimental values

of 0 /O are from L. Bergmann, Der Ultraschall (Bdwards Bros. reprint, Ann Arbor, 1944)

The agreement in the case of the liqueﬁad gases 1s good except for the case of
hydrogen, where quantum effects are of importance, For the organic liquids the
calculated (C - G ) of 6 cal/mole/°C is generally low. With regard to G » one
might expect on the basis of the free volume model that G would be equal in the
liquid and gaseous states at the same temperature. It is well kncwn that G is
greater in the liquid state, however,

1V, Sound Absorption

The two principal mechanisms responsible for the absorption of sound
in liquids are the ordinary shearing viscosity and the energy loss associated with
incomplete excitation of wibrational energy states of the molecules, In many
liquids the latter mechanism is the dominant cause of attenuation, A detailed
bibliogrephy of the literature concerned with incomplete vibrational excitation
in gases has been given by Richards.g The theory developed for gases was first

9. Richards, W. T., Rev. Mod. Phys, 11, 36 (1939).
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applied te liquids by Mandelstam and Leontoviclo, and leter extended by Kneserll.

Eerzfeldlz has given an interesting discussion of absorption in liquids, while
Tiszals has considered the important implications of the subject with respect to
the hydrodynamical equations,

The program of this section is to give a physical order—of-magnitude
estimate of the maximum absorption expected from relaxation processes; to go through
a detailed calculation of the absorption for the Tonks equation of state; to con~
slder the temperature and pressure coefficients of absorption; and, finally, to
discuss the relation between sound absorption and molecular structure.

It 1s possible to make a simple estimete of the maximum absorption
caused by relaxation of a vibrational mode. The work done by the compressional
cycle of a sound wave is of the order of ApAV, Now &p/p = -~ &V/V + &/T, for an
ideal gas where the first term on the right represents "mechanical® effects and
the second term ®thermal" effects of the presswre. For an adiabatic process the
ratio of the thermel term to the mechanical term is ( 0” = 1), where 7 is the ratic
of the specific heats. Let Gi be the specific heat assoclated with the relaxing
degree of freedom; then Gi/ Gv represents the fraction of thermal energy in the
mode concerned, and (cilcv)()- -1)/7» 1is an approximate upper limit to the
fraction of the total energy of the sound wave dissipated in one cycle. We should,
of course, find a‘osorptions of this order of megnitude only in the neighborhood of
the relaxation frequency characterizing the exchange of energy between translational
end vibrational degrees of freedom.

Let us compare this estimate of the pezk absorption with some ex-
perimental velues. For 00, gas we have (- 1)/7"~ 0,23, and ci/cv ~ 0,3, so
that about 0,07 of the energy is dissipated per cycle. This means that the in-
tensity is dowd l/e in about 14 wave lengthe; using date for high frequencies we
should estimate 8 wave lengths., Measurements by l‘r‘.l.cke]'4 ghow that at the re-
laxation frequency of 20 kc/sec the intensity is down by 1/e in about 4 wave
lengths, indicating that our order of magnitude estimate is generally correct, The
famous example of a highly absorbing low viscosiiy liquid is csz. for which the
meagured absomtion15 at 1 mc/sec 1s about 2000 times the classical value as cal-
culated from viscosity and heat conduction losses alone; yet at this frequency the
intensity is only down by 1/e in 50 wave lengths, At 7 me/sec the intensityle ie

down by 1l/e in about 12 wave lengths; this value appears quite reasonable in the
light of the above estimates.

Absorption in I.igui:ds on Free Volume Model

It ie instructive to calculate the absorption in detail for the
free volume model of the liquid state, applying the method of Herzfeld and Ricel7

10, Mandelstam, L, and Leontovic, M., C. R. (Dokl Acad, Sci,

11, Hneser,H, O., Ann, d. Phys, 32, 277 (19:55). *4) 7RSS 3 111 (1936).
12, Herzfeld, K. P., J. Acoust, Soc. Am. 13, 33 (1941),

13, Tisza, L., Phys. Bev. 61, 531 (1942),

14, Fricke, E, F., J, Acoust, Soc. Am. 12, 245 (1940),

15, (Qlaeys, J., Errera, J. and Sack, H., Trans. Fer. Soc. 33, 136 (1937).

16, Parthasarathy, 8., Ourrent Sci. §, 501 (1938). -

17, Herzfeld, K. F., and Rice, F. O., Phys. Rev, 31, 691 (1928),
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to the Tonks equation of state, Bqe (5)e In a sense the calculation is but a
formal extension of the treatment of absorption in gasses developed by Herzfeld
and Rice, and others. Let 01 be the specific heat of the relaxing mode of
vibration, and Ce the specific heat of all the other degrees of freedom of the
molecule. Let T! denote the effective temperature of the energzy assoclated with
01, and T the temperature assoclated with Ce. Losses owing to ordinary viscosity
and heat conduction are not considered; it can be shown that these are additive to
the first approximation.

From the Tonks equation of state,

p=2RTP. /M ; (1/p)) = (1/P) - (/P) . (17)
The force equation gives
vt = - (1/p)@r/x) = - (RY/M)(P /P @ln 7/2x) + Plnf,/3x)] , (18)

while the conservation equation is

P1npfot = -Au/dx = (p/f ) @1n P /3t). (19)

From the first law of thermodynamics

c,02/2t) + 0,@11/3t) = (oM[F7)(DP,/2%). (20)

The relaxation time constant 2'' is introduced¥ through the equation

¢, (aT4/at) = ¢ (T - 1)/t . (21)

We consider small changes in fl' T and TY, and suppose that the
small changes are of the form exp[j(wt - kx), where k k'.l. - sz On substituting
in Bqs. (17) through (21) we find an expression for k%, Tor the technique of the
calculation Herzfeld and Rice may be consulted, The imaginary part of lcz is

-2k k,, where
2 ky

)k, = o 04/5E) (PP, ) {1—"'7%7 ' %«3}3—} : (22)

Here 'Z’='Z"(Ci/0°)(b"°°/)'°). T = CP/C" : 7‘ = cp/c o The low ﬁ'equemcy
specific heat O° is given by O + 0 o while the high frequency specific heat 0
is simply C o

Kow Ik, = w/onq, where the sound velocity C11q is given by Bq.(8).
Also, kz = &, where & is the ordinary pressure attenuation coefficient in the ex-

pression p = poem[-cx] for the damping of a plane wave. We have finally

c f
2 i
o= (e, )| B L o (23)
®11q 0% £asf

- e e e e s e e e e e e o e e e o e mr em e = e e e e me mm we  em ee ee e = me e - e

# TPor simplicity all of the modes of internal motion are supposed to relax at the
same frequency, in which case 0 includes the whole of the vibrational specific
heat,
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The maximum absorption per wave length occurs when f = fo and is
glven by

[ [
=1 2 __¥ L1
Crag/ ez =2 “T= T (2¢)
which 1s of the same form as the previous estimate reached by a gqualitative
argument,
At low frequencies (f£<X fo) we have

- Pmjr e, ) Rar X (25)
= £7(n/ 0%11q o T

so that at low frequencies a/fg 1s constant for the attenuation caused by the
relaxation mechanism, just as for viscosity and heat conduction. These results
ere in agreement with those of Kneser and Herzfeld, when slight differences in
definitions are taken into account, i

Temperature Coefficient of Sound Attenuation

Experimentel determinations of the temperzture coefficient of
attenuation in different liquids show both positive and negative values. Where
relaxation is a minor factor, a negative coefficient is found owing to the decrease
in viscosity with increasing temperature. Where relaxation is the predominant
factor a positive coefficlent is expscted when the frequency is above the relaxation
frequency, and a negative coefficient when the frequency is below the relaxation
frequency. This is because a rise in temperature increases the probability of
energy tranefer and thus increases the relaxation frequency., If t>r°. en increase
in :o brings the region of maximum absorption nesrer to the measurement frequency;
the opposite holds if f £ fo. The actual situation, however, may be more complicated,

Considering only relaxation losses we find from Bq., (23):

o."l(BafaT)p T: e ST+ c;leoi/am)p - 202020 Jom), - °ﬁq(a°nq/”)p' (26)
where the plus sign before the term f;J‘(afo/?!!)p epplies to the case f7f o0 20d the
minus sign applies when £ << fo' The intermediate cese is more complicated., Consider
now the megnitude of the term in f;l(af 0/3 T)p: Landeu end Teller S shown that under
certain assumptions

fooCexp[- 2 (nav)zls(M/M)ll:‘] s (27)

where a 1s the atomic redius, M the mass of the molecule, and ) the frequency of the
vibrational mode. The exponential factor gives eesentially the probability of ex—
chaenge of vibreztional and $ranslational energy in a collision, end comes out to be of
the order of -‘.!.0-'4 to 10-6. in agreement with the experimental results for gases, where
a collision frequency of the order of 1010 collisions per second is associzted with
relaxation frequencies of the order of 105 cycles per second, From Eq. (27) we have

18. Landau, L, and Teller, E., Puys. Zeit. d. Sow. 10, 34 (1936); cf, Zener, O.,
Phys. Rev. 38, 277 (1931).
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r:l(afo/ar)p = o/30 , (28)
where q 1s the argument of the exponential factor in the above equation, Since g
is of the order of 10, we have f;]‘Gf ST~ 107,

Let us consider the order of magnitude of the other terms in Eq. (28).
The term arising from °l:lq is of the order of 3 x 10"3 and may usnally be neglected.
The two terms in the specific heat may be combined in one, since AG = AC, 30 giving
(301/8T) (0'1 - -l). Since the specific heat G, usually corresponds to a vibration,
it is given by an Einstem function. The relative slope of an Einstein function varies
from very steep at low temperatures to flat at high temperatures, For molecules con-
taining at least two non-hydrogen atoms, we are up near the flat part of the curve at
room tempersture and the contribution of the change in specific heat to c-leu./aﬂ.')p
will be of the order of 5 x 10"3 or less. It therefore gppears that the term arising
from fo often may be the most important single contribution; in some cases, however,
the term in the specific heat may be significant.

In liquids for which the viscosity is a major factor contribvuting to
the attenuation, a term arising from N of the order of 10"2 must be considered, In-
cluding viscosity, the attenuation o as given by Bq. (23) is increased by the additive
Stokes term 8"222'1/30?? .

Measurements of the temperature coefficient of absorption have been
reported by Pellam and Galtlg. Bamlinzo, Sgrensongl, Baumgard.tzz and Hunterzs. An
interpretation of the results of Pellam and Gelt is given 1n Table 6.

Study of the table suggests that the temperature coefficient of sound
ebgorption is a useful quantity in the study of molecular relaxation times. The
indications are not always unambiguous, but in the absence of more complete experi-
mental knowledge of the acoustic absorption spectrum of ligquids the temperature co-
efficient provides pertinent information.

Pressure Coefficient of Sound Attenustion

The pressure coefficient of sound attenuation in toluene has been
determined by Biquard% who measured the absorption at 7 mc/sec between pressures of
1 to 500 atm, giving o (Ba./ap) 6 x 10710 cmz/dyne. At one atmosphere
a-/f = 80 x 10 17 seczcm 1. as compared with the classical value 8 x 10 17 « suggesting
that the principal part of the absorption may be ascribed to relaxation processes, On
the assumption that £<< fo and that changes in gpecific heat may be neglected, we have
from Eq. (25)

o« Hoajaply = - £7202 Jap)y = c-@c/dp)y (29)

19, Pellam, J. R, and Galt, J. K., "Ultrasonic Propagation In Liquids, Part I.
Application of Pulse Techmque to Velocity and Absorption Measurements at 15 mg,"

: R. L. B, Technical Report 4.

20, Bazulin, P., C. R. (Doklady) Acad. Sci, URSS 14, 273 (1937).

21, Sérenmson, O., Ann. d. Phys. 27, 70 (1936).

22, Baumgardt, B., Comptes Rendus (Paris) 202, 203 (1936).

23, Honter, J. L., J. Acous. Soc. Am, 13, 36 (1941),

24, Biguard, P., Bev, d'Acoustique 8, 130 (1939).
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Table 6
Temperature Coefficient of Sound Absorption

Interpretation of Results in Terms of Bq.(26) = Frequency 15 mc/sec.
Temp, Coef.

ot @ajer) :cxper -
.,c-l P classical

Substance Tentative Interpretation

Bthyl + 0,010 7 Dominant factor is change in £ , the rew
Bromide laxation frequency. £ <& 15 n&/sec.
Methyl + 0,0087 30 Fundamental vibrational frequency of 0331
Todide molecule is fairly low (534 en™>), so that

specific heat change 1s not important; fo
is dominent factor. f£.<15 mc/sece
Methyl - 0,011 3 Change in viscosity contributes only =0,004;

Alcchol velocity contributes +0,003; specific heat
term is positive, so that at least =~0,010
mst be accounted for by fo change.
f°>) 15 mc/sec, in agreement with Herzfeldlz,
who concludes on other grounds that
£ 3 x 10 me/sec,

n-Propyl ~ 0,0086 2 As for methyl alecohol, f°>> 15 mc/sec.

Alcohol

n-Amyl - 0,014 1,5 Changes in both viscosity and fo are pro-

Alcohal bably effective here, The absorption is
nearly classical, f?) 15 mc/secs

Benzene + 0,011 90. The evidence of the temperature coefficient

of sbsorption is that fo< 15 me/sec, yet
Herzfeld indicates that £~ 2000 me/sec.

It is possible that these figures represent
two different relaxation modes, the mode with
a wezk absorption pesk near .10 me/sec having
a predominant effect on the temperature co~
efficient, Such a peak 1s suggested by a
plot of a vs fmsed on collected results.
Kneser™' gives £ > 55 mc/sec.

Now f° at constant temperature is proportional to the collision frequency, so that

£51002 Jap)g = Ly @Lyfap)y = - (V/3T )8, (20)

where Iof is the frees length as in Fig. 1. The magnitude of the term in fo is
1x 10 0. while the term in the sound velocity ¢ is 3 x 10—10. The calculated
value of a—'laaﬁp)m comes out to be 4 x 10_':"0 ana/ dyne, in fair agreement with the

experimental value 6 X 10710 mz/dyne.

The physical interpretation of the result is that the molecules are
brought closer together by the application of pressure, thus increasing the collision

=15~




and relexation frequencies, If £< 2° an inecrease in f° moves the region of
gaximum absorption away from the working frequency. Also, the wave length is
incressed by pressure, so that the absorption per unit length will decrease even
if the absorption per wave length 1s constant.

Sound orption and Molecular Structure

According to present ideas the magnitude of the non-classical part
of the attenuation is determined by the position and megnitude of the relaxation
frequencies of the molecule., It is difficult to calculate these frequencies since
they are dependent upon the detailed coupling between different modes of motion.

In gases it ie well-confirmed experimentally that the relaxation mechanism accounts
for most of the non-classical absorption, Reloxation frequencies in pure gases
are of the order of 103 - 105 cps; since "collisions® in liquids are at least 103
more frequent than in gases we would expect relaxation frequencies in liquids %o be
of the order of 107 cpse The indication of the present evidence 1s that the actual
frequencies are of this order or higher. The existence of well-defined vibrational
states in liquid molecules is known from infra-red and Raman spectra evidence.

A review of the absorption of sound in varicus liquide at 15 mc/mec
shows several regularities with regard to molecular structure: a) The three most
absorbing liquids of low viscosity are non-polar: 082, 0014, Benzene.

Substance Zexper’ %classical
08,(7 me/sec) 600
0014 26
Benzene 20

Other non-polar liquids are highly absorbing - heptane, hexane, toluene. This
tendency suggests that the coupling of translational and vibrational motion is
emall in molecules with small electrostatic interactions, giving a long lifetime
to the vibrational state and a low relaxation frequency. b) Highly associated
liquids tend to show low, near-classical absorption at 15 mc/sec. The alcohols
and water are good examples of associated liquids, and they show the following

Substance a'gc_geg a'c].assica.l

values?

Methyl Alcohol 3
Bthyl " 1
Propyl " 2
Butyl " 1
Amyl o 1.5
Vater " 3
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This tendency suggests that the formation of molecular groups is conducive to the
transfer of vibrational energy and therefore leads to high relaxation frequencies,
Thie is expected, In the limiting case of a solid there is little distinctiom be-
tween translational energy of molecules with respect to one another and vibrational
energy internal to a molecule, In solids we have relexation times of the order of
10722 sec, as estimated from heat conductivity data,

CONCLUSIONS

It is found that the Tonks equation of state as applied to liquids
ig a suitable framework for making closs order—of-magnitude estimates concerning
quantities involved in sound propagation. The detailed numerical agreement is
usually unsatisfactory, thus indicating the limitations of the model, In particular
the temperature and pressure dependence of the compressibility 1s given only roughly
by this models On the other hand, the thermal expansion coefficient is given quite
accurately; also, 1t is possible to attach physical significance to the concept of
the available volume,

W% 3 % 3 3 3 A 3 3 %
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