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Abstract

The free volume theory of liquids is applied to problems con-
nected with sound propagation. The equation of state derived by Tonks
for assemblies of hard elastic spheres may be written p 3 NkT, where
the available volume V is the difference between the actual volume and
the volume correspondig to the closest possible packing. It i shown
that the molar available volume is approximately given by the increase
in molar volume of a substance on heating from O°E to the temperature
considered, so that the pictorial concept of the available volume has a
real physical basis. Using the Tonks equation expressions are derived
for the sound velocity and the temperature and pressure coefficients of
sound velocity. These expressions are compared with experimental results.
Expressions are also given for the cubic expansion coefficient and the
difference of the specific heats on the free volume model. The Herzfeld-
Rice derivation of the sound absorption caused by phase shifts in the
vibrational specific heat is carried through for the Tonks equation of
state. The temperature and pressure coefficients of sound absorption are
discussed. Remarks are made on the relation of molecular structure to sound
absorption.
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ULTRASONIC PROPAGATION IN LIQUIDS. II. THEORETICAL STUDY OF THZ

FREE VOLUME MODEL OF THI LIQUID STATE

I. Introduction

The urpose of this paper is to describe the velocity and absorp-

tion of ultrasonic waves in liquids in terms of the free volume theory of

liquids and the relaxation theory of absorption processes. It is emphasized

at the beginning that simple models of liquids may not be expected to give close

numerical agreement with observation. We should, however, require that the

model give the correct order of magnitude of physical quantities and their varia-

tions. This test we propose to apply to the free volume theory of liquids. The

implications of the theory with respect to the mechanical properties of liquids

have not previously been considered, to the author'e knowledge.

The important experimental facts regarding ultrasonic propagation

in liquids are sumsmarized below;

(a) The velocity of sound in a liquid is commonly of the order of

five to ten times the velocity in the vapor at the same temperature. For example,

the velocity of sound in liquid oxygen at 90X is 910 m/eec, while the velocity

in oxygen vapor 2 at the same temperature is 180 /sec.

(b) The temperature coefficient of sound velocity C(ao/aT) is

of the order of -3 10 ec-1 ; in gases the temperature coefficient is of the

same order but is positive.

(c) The pressure coefficient of sound velocity o 1 ( C/a p)T is of

the-order of +5 1010 cm2/dyne.

(d) The absorption of sound waves in liquids usually exceeds the

classical value calculated on the basis of ordinary viscosity losses; in the case

of 082, the observed value i several thousand times greater than the classical

value.

(e) The temperature coefficient of sound absorption v-1 (a s/T)
is of the order of +0.01 1 . Both positive and negative signs occur, whereas

on classical theory the sign is always negative, as the viscosity has a negative

temperature coefficient.

(f) The pressure coefficient of scund absorption P l(a/Dp)T is

-6 10 1 0 c 2/dyne for toluene, the only liquid for which a determination has

been reported.

The two traditional concepts of the liquid state regard a liquid as

either a very dense gas or else as a solid in which the long range order between

the molecules has broken down. Both of these concepts account qualitatively for
the two distinguishing properties of liquids; namely, that a liquid combines the

small shear modulus characteristic of gases with the small compressibility

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1. Liepmann, H. W., elv. Phys. Acta , 507 (1936).
2. van Itterbeek, A., and Mariens, P., Physics 4, 207 (1937).
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characteristic of solids. To explain in a convenient and natural manner the

origin of other physical properties of liquids, such as fusion, viscosity,

dielectric constant, density and solution effects, sometimes the gas and some-

times the solid point of view is used.

In understanding the propagation of sound in liquids the gas model

is particularly suitable. It turns out that sound velocities can be predicted
qualitatively from this model; and further, the absorption of sound in liquids

can be related to the absorption processes in gases, which are fairly well

understood. On the other hand, the absorption processes in solids are poorly

explained at the present time.

II. Sound Velocity

The relationship between the velocity of sound in the liquid and

gaseous states has been made plausible by the work of yring and his collaborators ,

who have given a simple and useful explanation of the relation in terms of the

gas model. The relation is derived by fyring in a qualitative way and is not quite

correct; later on we shall consider a rigorous equation of state for this model

from which the sound velocity can be calculated unambiguously.

]yring pictures the sound wave as traveling with infinite velocity

within a molecule and with gas kinetic velocities through the space between the

molecules of the liquid (ig. 1). This space is termed the available volume."

L

I II I
--- Lf 1P- ig. 1

I I
The molecules effectively short-circuit a part of the path of the sound wave.

If the intermolecular separation is L and the "free length s Lf, the molecules

short-circuit all but the fraction Lf/L of the path. The sound velocity in the

liquid is then given by

cliq = (L/Lf) cgas (1)

where kinetic theory gives

c2 = 3"as (iT/K) (2)
gas ga

withgas = 0p/0v, the ratio of specific heats in the gas.

The reasoning leading to Eq. (1) from the specified properties of

the model is not rigorous. It is possible to derive a rigorous equation of state

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3. yring, H. and Hirschfelder, J. 0., J. Phys. Ohem. 41, 249 (1937) incaid,
J. 7., and yring, H., J. Ohem. Phys. 5, 587 (1937), i, 620 (19385; Hirsch-

felder, J. 0., Stevenson, D. P. and lring, I., J. Ohem. Plys. 5, 896 (1937).
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for the free volume model, and this has been done by Tonks in a paper on the

statistical mechanics of assemblies of hard elastic spheres. Recently, Rice 5

and rank have drawn attention to the importance of Tonks work in relation

to theories of the liquid state and have considered some of the thermodynamic

consequences of the model.

The Tonks Equation of State

The onks equation of state for a classical three-dimensional gas

of hard elastic spheres in the limit of close packing is

pV( - l/3) - kT (3)

where is the packing fraction with respect to the closest possible packing.

sWe have 0 - V f/T = 1 - (V /V), where V is the minimum possible volume and V
a a 0~~ a

the available volje, is defined as V - V . For close packing as in a liquid

1 - o/3 v /3V . (4)

In this approximation the equation of state becomes

pVa 3NkT . (5)

The form

p .. (3T/,)P l (6)

where

(7)
1 0

is also useful. Here o is the density corresponding to the closest possible

packing.

The remarkable and simple form q. (5) which the equation of state

assumes makes it easy to deduce various properties of the model. This form does

not appear to have been stated explicitly before.

Before using Eq. (5) we shall consider its physical significance

as applied to actual liquids. The pressure p is understood to be made up of two

terms, one representing the effect of the attractive intermolecular forces and

the other representing the external apDlied pressure. Let us imagine the inter-

molecular potential energy to be altered by removing the attractive part of the

potential while leaving the repulsive part; the internal pressure s may then be

regarded as thepressure which would compress the system to the volume actually

occupied. The implied relationship between internal pressure and temperature is

plausible on the free volume model, since the internal pressure does balance the

kinetic pressure of the molecules regarded as moving freely within the volume.

It is not obvious, however, that the thermal expansion at constant external

pressure should be given correctly by the Tonks equation. This amounts to the

assumption that the balancing pressure due to potential energy is independent of

the volume. The experimental checks of qs. (10) and (15) below may be taken as

4. Tonks, L., Phys. Rev. 50, 955 (1936).
5. Rice, . K., J. hem. Phys. 10, 653 (1942); l, 1 (1944); 4, 335 (1946).
6. Frank, . S., J. hem. Phys. U, 478 (1945).

-3-
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Justification of this assumption within the generous limits of error of this

paper.

It is important to note that what is called the available volum

Va in this paper is not identical with the fre volue Vf as customarily do-

fined, although the same model is used. The available volume is the difference

between the actual volume and the minimum possible volume and is given by

Y(1 - 0); the free volume is defined3 ' 4 ' 5 as the volume of possible motion of

the center of a single molecule, and is given, per mole, by V(1 - Gl/3)3 . or

close packing Vf = Va(V27V2 ). The available volume is a natural quantity to

use in the equation of states the free volume is a natural quantity to use in

the partition function. The numerical values of the free volume given by

Kincaid and Ryring are defined in terms of an approximate equation for sound

velocity in liquids; the use of the more exact quation below will necessitate

small changes in the numerical values.

The velocity of sound is given in the usual way by

°2 ( p/*)5 ' (J 1 /Y) 2 (3 ap//l) · i

so that

a , - c ) ) , (B)

where liq has been set equal to (Cv + 3aR)/Cv in accordance with :q. (16).

It may be noted that Cli q and 0 gaare to be taken at the same temperature.
iq gas

Calculation of Bound Velocity

It is not practical to give a direct comparison of Nq. (8) with

measurements of sound velocity in liquids since there is no really accurate

independent method for determining the available or the free volume (see,

however, Kincaid and Byring 3 ). We may, however, make an estimate of the

available voluse by considering the increase in volume between absolute zero

and the temperature concerned.

If we are to take the free volume piature seriously there should

exist some correlation between the Molar available vola e as calculated using

Aq. (8) from sound velocity measurements at room temperature and the actual

increase i molar volume of the material between 0 1K and room temperature.

Such a relationship does in fact exist.

We write

TV-V V , (9)o a

where V is the molar voluse corresponding to the closest possible packing in a
o

geometrical sense, and V is the molar available volume. Let
a

Va V1 + V2 V3 , (10)

where s
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V1 a molar volume change on heating solid from 0 [ to the melting point;

V2 a molar volume change on fusion;

V3 a molar volume change on heating liquid from melting point to the temperature

concerned.

Unfortunately, the expansion data from which the V's can be cal-

culated are inadequate, and a certain amount of guesswork enters into any esti-

mate of the available volume based on the thermal expansion data. A compari-

son of available volumes as calculated from sound velocity and thermal ex-

pansion data is given in Table 1. The agreement is a good as can be expected.

This evidence shove that the pictorial concept of the available

volume has a real physical basis. It is in principle possible to give an

approximate calculation of sound velocities from thermal expansion data alone.

Table 1

Oomparison of Available Volume as Oalulated from Thermal Expansion and Sound

Velocity Data for 300 K

Available Volume Increments cc/mole Oalculated Available Volume

V1 2 V3 in cc/mole derived froms
Thermal Sound

OeK to Fusion Melting hermal BoundO.K to Fusion MeltingExpansion Velocity
Melting Volume Point to Expanion Vlocity

Substance Point hanL 300 _ [_q._)] _q.(8)]

cHBr3 8 10 (2) 20 19

0014 11 4 5 20 28

Benzene 10 10.3 2.5 23 25

Notes. Thermal expanlsion and fusion volump change data are from the Landolt-

Bernstein tables. V is based on a linear extrapolation of measured values
1

obtaining between 80 or and 200 *oK this overestimates the chsnge at low

temperatures(since by the Nernst theorem the expansion coefficient must

vanish at 0 X) and underestimates the change at high temperatures. No

allowance has been made for any effective #sro-point available volume.

Teuoerature Coefficient of Sound Velocity

We may determine the available volume from the sound velocity at

one temperature and using this value compare the calculated with the experimental

value of the temperature coefficient of sound velocity o -l(o/?T)p. The
velocity of sound in liquids has usually a negative temperature coefficient; that

is., the velocity dcreases with increasing temperature. This is contrary to the

position with gases, which show a positive temperature coefficient. In terms of

the free volume picture of a liquid the effect of the increased distance the

molecules have to travel, owing to thermal expansion, dominates the increase in
molecular velocity.

We may derive an expression for the temperature coefficient of

sound velocity on the free volume model. From qs. (2) and (8).

-l ()/aT)p 1 r 1-laT/) - rt1aV/aT)p + (l/2) + (1/2 liq)(' ?1/a), (11)

11111�.1____�_______�__�___��__�_rrs-�-- '�-I-�, �



where the change in 'ga is neglected. Now AT is essentially equal to AT since

the expansion of the molecules themselves may be neglected in omparison with the

expansion of the available volume. riting A for the temperature coefficient of

aubic expansion 7 , e have

cl c/A9)p (1/2T) - l (V/Ta 11 (2;'xiq)1(a rliq/lT)p; (12)

this equation may be written in terms of observables by using 2q. (8):

(/2T) -A [ ) - ) I}T)

A detailed omparison of experimental values of the temperature coefficient

with calculated values from 2q. (13) is given in Table 2. The purpose in giving this

and other tables is not in order to emphasize specific cases of agreement or die-

agreement, but rather to exhibit the consequences of the free volume equation of state.

It seem likely that 3q. (5) will fnd wide use in problems of the liquid state, so

that it is well to understand some of the limitations and capabilities of the eqVt ion.

It is seen that the calculated values are in order of magnitude agreement

with the measurements, but that the calculated values underestimate the value some-

what. It is significant that the order of magnitude of the results derived from the

simple model of hard elastic spheres is correct, and that the existence of an

anomalous positive temperature coefficient for water is correctly indicated by the

theory.

Pressure Oofficient of ound VeloSty

It is of interest to consider the pressure coefficient of sound velecitr

c l(c/p). eUsing the Tonks equation we find

a P13bP 0 IO (T/a) 1 NT 1/2 (i 1} (1 4

where is the isothermal compressibility and is equal to ?'t times theIliq
adiabatic compressibility. The variation of a.liq with pressure should probably

be considered, but relevant data could not be found. A comparison of ex tal

with theoretical values is given in Table 3, from which it appears that the pre-

dictions of the theory are slightly low. The positive sign of the pressure co-

efficient arises because the sound path through the available volume i shortened

by compressing the volume. he fact that both the temperature and pressure ce-

efficients of velocity as calculated are somewhat low suggest that the available

volume is overestimated by the sound velocity equation.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

7. The conventional symbol for both the cubic expansion coefficient and the
pressure attenuation coefficient is 4 in this paper A is used for the cubie
expansion coefficient to avoid confusion.
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Pressure Coefficient of Sound Velocity c1 cbP)T

Comparison of Calculated Values from Eq.(14) with Experimental Values

Pressure Coefficient of

Adiabatic Sound Velocity
Corpressibility cm /dy ne

Substance cm;/dine Experimental Calculated

Carbon Disulfide 59.0 x 10-12 3.7 x 10 1 1.7 x 101 o

Carbon Tetrachloride 74.5 4.7 2.7

Ether 138.7 7.7 3.1

Ethyl Bromide 88.1 5.7 2.1

Methyl Acetate 80.9 2.7 2.0

Benzene 64.9 3.1 2.3

Toluene 68.2 3.2 2.7

Notest Values of the adiabatic compressibility are from Hiedemanals book. x-

perimental values of the pressure coefficient of sound velocity are from J. C.

Swanson, J. Chem. Phys. a, 689 (1934), except for the value for methyl acetate,

which is from P. Biquard, Comptes rendus (Paris) M0, 897 (1938).

III. Discussion of Free Volume Theory

It is appropriate at this point to discuss the basis for the application

of the Tonks equation of state to actual liquids. Pour main assumptions underlie

this application:

(a) It is assumed that the internal structure of a molecule is
'hard' - that is, the internal compressibility of a molecule is neglected in com-

parison with the compressibility of the system as a whole. This assumption is

Justifiable.

(b) It is assumed that the molecules are spherical. It should be

possible to generalize the derivation of the equation of state to describe other

shapes.

(c) It is assumed that the compressibility of the molecules with

respect to each other - that is, the intermolecular compressibility - is purely

kinetic in origin. The repulsive forces are imagined to rise sharply at the

The internal compressibility of a molecule ol is of the order of L/k, where Lmol
is the length of the molecule and k is the force constant. The force constant

2
is given by k = ('f) m, where the frequency f is a fundamental vibration frequency

of the molecule and is of the order of 1000 cm 1 or 3 x 1013cps; m is the reduced

mass of the molecule and is of the order of 3 x 10-23 gm for a light molecule.

With these values k-106 dynes/om, so that l-10 -14 cm2/yne, which is to be
10 2 ~~mol ca/ye

compared with gas- 10-1 cm /dyne under the equivalent pressures obtaining in

a liquid.

-8-
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boundary of the hard sphere. This is quite a drastic assumption.

(d) It is assumed that the internal pressure arising from the

attractive intermolecular forces is approximately independent of volume. This

is also a drastic assumption.

(e) The Tonks derivation is based on classical mechanics, and no

account is given of quantum effects. It is almost certain that quantum effects

are of considerable importance in liquids, since the spacing between the energy

levels of a molecule confined within its own free volume is of the order of kT

for room temperature. 8

In the light of the assumptions which have been made, it is of in-

terest to consider further consequences of the Tonks equation. We have already

seen that the equation leads to values of the temperature and pressure coefficients

of sound velocity which are correct to within an order of magnitude at least.

Thermal Expansion Coefficient

The measure of agreement with experiment attained by the calculated

values of the temperature coefficient of velocity may be attributed in part to the

use of experimental values of the cubical expansion coefficient when substituting

in Eq. (13) to obtain the results displayed in Table 2; this is particularly true

with respect to water. We may, however, calculate the cubical expansion coefficient

from the Tonks equation of state, obtaining

A = V-iQV/T) = (Va/V)(l/T) (15)

A comparison of experimental with theoretical values is given in Table 4. The

agreement is excellent for the organic liquids, but is poor for water and mecury,

Table 4

Oubical Expansion Coefficient

Comparison of Calculated Values from Eq. (13) with Experimental Values

V-1 V/3T) in C

Cubical Expansion Coefficient
Substance V/Va Exnoerimental Calculated

Benzene 3.5 1.34 x 10-3 0.95 x 10

Carbon Disulfide 2.8 1.20 1.19

Carbon Tetrachloride 3.4 1.23 0.98

Chlorobenzene 4.0 0.98 0.84

Ethyl Alcohol 3.4 1.10 0.98

Mercury 6.4 0.18 0.52

Methyl Iodide 3.1 1.24 1.07

Water 2.3 0.12 1.45

Water (400 °K) (2.3) 0.97 (1.1)

Notes: The data are for T = 300 °X. The values of the ratio of the volume to the

free volume (V/Va) are from Table 2.

as might be expected. We have neglected entirely the role of the metallic electrons,

so that the present discussion is often inapplicable to liquid metals. Water is

8. Bartholome ., and Eucken, A., Trans. ar. Soc. , 45 (1937).

-9-
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anomalous in general behavior at room temperature and below, but near the boiling

point the calculated value of the cubic expansion coefficient is in good agree-

ment with experiment.

Difference of Specific Heats (C - v)
p *v

Using Zq. (5) we may compute the difference (C - C ) for the Tonks
equation, finding

C - =p(Va/T)p = 3R (16)

instead of simply R which obtains for an ideal gas. A comparison is given in

Table 5 of experimental with theoretical values of the difference ( - Cr).

Table 5

Comparison of Experimental Values of (C
C C /C P
P Or.P

Substance Eit. ZDt

Argon (870K) 10.0 2.2

0orxygen (900K) 13.0 1 7

Nitrogen (760E) 13.6 2.0

Hrdrogen (200K) 6.9 1.5

Benzene 31.6 1.44

Carbon Tetrachloride 30.7 1.46

ZIther 40.6 1.33

Ethyl Alcohol 27. 1.18

n-Reptane 49. 1.19

n-Propyl Alc. 35.6 1.16

Toluene 37.8 1.34

- Cv) with Calculated Values from Eq.(16)

(C - C ) cal/mole/SC
E=pr.t alc.P v

5.5 6

5.3

6.6

2.5

9.7

9.7

10.0

4.2

7.8

5.0

10.0

6

6

6

6

6

6

6

6

6

6

Notes: The data are for 300°K unless otherwise specified. Experimental values

of Cp/0v are from L. Bergmann, Der Ultraschall (Edwards Bros. reprint, Ann Arbor, 1944)
- - - - - - - - - - -

The agreement in the case of the liquefied gases is good except for the case of

hydrogen, where quantum effects are of importance. or the organic liquids the

calculated ( - Cv ) of 6 cal/mole/°C is generally low. With regard to C0, one
p v T

might expect on the basis of the free volume model that C0 would be equal in the
v8

liquid and gaseous states at the same temperature. It is well known that 0 is
v

greater in the liquid state, however.

IV. Sound Absorption

The two principal mechanisms responsible for the absorption of sound

in liquids are the ordinary shearing viscosity and the energy loss associated with

incomplete excitation of vibrational energy states of the molecules. In many

liquids the latter mechanism is the dominant cause of attenuation. A detailed

bibliography of the literature concerned with incomplete vibrational excitation

in gases has been given by Richards. The theory developed for gases was first

9. Richards, W. T., Rev. Mod. Phys. 11, 36 (1939).

-10-



10 1applied to liquids by Mandelstam and Leontovic , and later extended by Kneser .

Herzfeld1 2 has given an interesting discussion of absorption in liquids, while

Tisza13 has considered the important implications of the subject with respect to

the hydrodynamical equations.

The program of this section is to give a physical order-of-magnitude

estimate of the maximum absorption expected from relaxation processes; to go through

a detailed calculation of the absorption for the Tonks equation of state; to con-

sider the temperature and pressure coefficients of absorption; and, finally, to

discuss the relation between sound absorption and molecular structure.

It is possible to make a simple estimate of the maximum absorption

caused by relaxation of a vibrational mode. The work done by the compressional

cycle of a sound wave is of the order of ApAV. Now tp/p = - AV/ + Wm/T, for an
ideal gas where the first term on the right represents "mechanical" effects and

the second term thermal" effects of the pressure. For an adiabatic process the

ratio of the thermal term to the mechanical term is ( 1), where r is the ratio
of the specific heats. Let Ci be the specific heat associated with the relaxing

degree of freedom; then Ci/Cv represents the fraction of thermal energy in the

mode concerned, and (Ci/Ov)( A - 1)/ is an approximate upper limit to the
fraction of the total energy of the sound wave dissipated in one cycle. We should,

of course, find absorptions of this order of magnitude only in the neighborhood of

the relaxation frequency characterizing the exchange of energy between translational

and vibrational degrees of freedom.

Let us compare this estimate of the peak absorption with some ex-

perimental values. For 002 gas we have ( - 1)?% .~ 0.23, and Ci/Cv " 0.3, so
that about 0.07 of the energy i dissipated per cycle. This means that the in-

tensity is dowfn l/e in about 14 wave lengths; using data for high frequencies we

should estimate 8 wave lengths. Measurements by Fricke14 show that at the re-

laxation frequency of 20 kc/sec the intensity is down by l/e in about 4 wave

lengths, indicating that our order of magnitude estimate is generally correct. The

famous example of a highly absorbing low viscosity liquid is S2, for which the
measured absorption15 at 1 m/sec is about 2000 times the classical value as cal-

culated from viscosity and heat conduction losses alone; yet at this frequency the

intensity is only down by 1/e in 50 wave lengths. At 7 mc/sec the intensity1 6 is

down by l/e in about 12 wave lengths; this value appears quite reasonable in the

light of the above estimates.

Absorption in Liquids on ree Volume Model

It is instructive to calculate the absorption in detail for the
free volume model of the liquid state, applying the method of Herzfeld and Rice1 7

10. Mandelstam, L. and Leontovic, M., . R. (Doklady) Acad. Sci. URSS , 111 (1936).
11. Kneser,H. 0., Ann. d. Phys. 32, 277 (1938).
12. Herzfeld, . F., J. Acoust. Soc. Am. 13, 33 (1941).
13. Tisza, L., Phys. Rev, 61, 531 (1942).
14. Fricke, . ., J. Acoust. Soc. Am. 12, 245 (1940).
15. Olaeys, J., rrera, J. and Sack, ., Trans. ar. Soc. 33, 136 (1937).
16. Parthasarathy, S., urrent Sci. 6, 501 (1938).
17. Herzfeld, . ., and Rice, . 0., Phys. Rev. 31, 691 (1928).
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to the Tonks equation of state, q. (5). In a sense the calculation is but a

formal extension of the treatment of absorption in gasses developed by Herzfeld

and Rice, and others. Let Ci be the specific heat of the relaxing mode of

vibration, and Ce the specific heat of all the other degrees of freedom of the

molecule. Let T denote the effective temperature of the energy associated with

i, and T the temperature associated with e. Losses owing to ordinary viscosity

and heat conduction are not considered; it can be shown that these are additive to

the first approximation.

Prom the Tonks equation of state,

p = M3Tl/M ; (1/f1) = (1/ ) - (l/o) (17)

The force equation gives

,/,l= - (1/,p)Cp/x) = - (3RT/M)(fl/P)[(aln Ta;x) + O(alnyj/x)] , (18)

while the conservation equation is

ln£/at = -a/ax 1 (/A)0 -1/Jt). (19)
From the first law of thermodynamics

¢ 0T/at) a CT/3t) (pMv'P)j/at). (20)

The relaxation time constant 1 is introduced* through the equation

ci(a T/t) = ci(T - T')/rl' . (21)

We consider small changes inf, T and T, and suppose that the

small changes are of the form ep[J(wt - kx), where k = k1 - Jk2. On substituting

in qs. (17) through (21) we find an expression for k . For the technique of the

calculation Herzfeld and Rice may be consulted. The imaginary part of k is

-2k1k2, where

2 , 2 ,2(~ ~)(£/£~)z 1 *(f ' -0 7 ( 22)

Here 2r-'= (Ci/C)(r*/ ); .e - Co V ; -- C . The low frequency
specific heat 0e is given by 0 + 0e, while the high frequency specific heat 0v v
is simply Ce.

Now k1
1 w /liq, where the sound velocity liq is given by q.(8).

Also, k2 = , where a. is the ordinary pressure attenuation coefficient in the ex-

pression p = p0 exp[-ax] for the damping of a plane wave. We have finally

a.= - (I'f 2 /Oj*q) jt f
2

f2 (23)o + 
where f - w/2 and f = 1/2n; here O - OC = 3R from q. (16).o ~~p v

* For simplicity all of the modes of internal motion are supposed to relax at the
same frequency, in which case C0 includes the whole of the vibrational specific
heat. 
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The maximum absorption per wave length occurs when f f and is

given by

o -c o
(C liq/f)ma = (24)

p v

which is of the same form as the previous estimate reached by a qualitative

argument.

At low frequencies (f<<fo0 ) we have

2 ) 0 ID- 0 Oi
X = f2 (r/foCliq) o 0° (25)

p v2~ ~ ~ ~~~,(5
so that at low frequencies /f is constant for the attenuation caused by the

relaxation mechanism, ust as for viscosity and heat conduction. These results

are in agreement with those of neser and Herzfeld, when slight differences in

definitions are taken into account.

Temperature Coefficient of Sound Attenuation

Experimental determinations of the temperature coefficient of

attenuation in different liquids show both positive and negative values. Where

relaxation is a minor factor, a negative coefficient is found owing to the decrease

in viscosity with increasing temperature. Where relaxation is the predominant

factor a positive coefficient is expected when the frequency is above the relaxation

frequency, and a negative coefficient when the frequency is below the relaxation

frequency. This is because a rise in temperature increases the probability of

energy transfer and thus increases the relaxation frequency. If f> fo an increase

in f brings the region of maximum absorption nearer to the measurement frequency;.0
the opposite holds if f f The actual situation, however, may be more complicated.

Considering only relaxation losses we find from Eq. (23):

a 1 (aalT)p = t fOf /dT)p + i/ OIaT) - 2(C0,aT) - c (aq(eiq/aT)p. (26)

where the plus sign before the term f folfT) applies to the case ffo and the
minus sign applies when f f o' The intermediate case is more complicated. Consider

now the magnitude of the term in fo f.PT)p: Landau and Teller 8 shown that under

certain assumptions

fo eCexp- (aV)2I3(X/:T)l/ , (27)

where a is the atomic radius, the mass of the molecule, and )v the frequency of the

vibrational mode. The exponential factor gives essentially the probability of ex-

change of vibrational and translational energy in a collision, and comes out to be of

the order of l0- 4 to 106, in agreement with the experimental results for gases, where

a collision frequency of the order of 1010 collisions per second is associated with

relaxation frequencies of the order of 105 cycles per second. From q. (27) we have

18. Landau, L. and Teller, ., Phys. Zeit. d. Sow. 10, 34 (1936); of. Zener, .,
Phys. Rev. 38, 277 (1931).
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f- ~f *08T)p v q3T (28)
0 0 p

where q is the argument of the exponential factor in the above equation. Since q

is of the order of 10, we have fo fo/ T)p " 1 - 2 ,

Let us consider the order of magnitude of the other terms in Eq. (26).

The term arising from cli q is of the order of 3 x 10- 3 and may usually be neglected.

The two terms in the specific heat may be combined in one, since Cv = ELi, giving

( aCI/aT) p(Ocl - 2C l). Since the specific heat Ci usually corresponds to a vibration,

it is given by an Einstein function. The relative slope of an Einstein function varies

from very steep at low temperatures to flat t high temperatures. 7or molecules con-

taining at least two non-hydrogen atoms, we are up near the flat part of the curve at

room temperature and the contribution of the change in specific heat to a- 0o/aT)
-3 p

will be of the order of 5 x 10 or less. It therefore appears that the term arising

from f0 often may be the most important single contribution; in some cases, however,

the term in the specific heat may be significant.

In liquids for which the viscosity is a major factor contributing to

the attenuation, a term arising from of the order of 10-2 must be considered. In-

cluding viscosity, the attenuation as given by q. (23) is increased by the additive

Stokes term 8 2f2 / 3cy 

Measurements of the temperature coefficient of absorption have been
19 20 " 21 22 23

reported by Pellam and Galt 9
, Bazulin2 , Sorenson , Baumgardt 2 and Hunter . An

interpretation of the results of Pellam and Galt is given in Table 6.

Study of the table suggests that the temperature coefficient of sound

absorption is a useful quantity in the study of molecular relaxation times. The

indications are not always unambiguous, hut in the absence of more complete experi-

mental knowledge of the acoustic absorption spectrum of liquids the temperature co-

efficient provides pertinent information.

Pressure Coefficient of Sound Attenuation

The pressure coefficient of sound attenuation in toluene has been

determined by Biquard24 who measured the absorption at 7 m/sec between pressures of

1 to 500 atm, giving cl7(aatap) = 6 x 1010 cm2/dyne. At one atmosphere
2 -17 2 - -17

a/f = 80 x 10 1 sec2cm , as compared with the classical value 8 x 10 17, suggesting

that the principal part of the absorption may be ascribed to relaxation processes. On

the assumption that f f and that changes in specific heat may be neglected, we have

from Eq. (25)

0 11/vP) _ fo (foaP)T - Cl(ac/ap) (29)

19. Pellam, J. R. and Galt, J. ., Ultrasonic Propagation In Liquids, Part I.
Application of Pulse Technique to Velocity and Absorption Measurements at 15 mg,"
R. L. . Technical Report 4.

20. Bazulin, P., C. . (Doklady) Acad. Sci. URSS 14, 273 (1937).
21. Sorenson, ., Ann. d. Phys. 27, 70 (1936).
22. Baumgardt, ., Comptes Rendus (Paris) 202 203 (1936).
23. Hunter, J. L., J. Acous. Soc. Am. 1, 36-1941).
24. Biquard, P., Rev. dAcoustique 8, 130 (1939).
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Table 6

Temperature Coefficient of Sound Absorption

Interpretation of Results in Terms of Eq.(26) - requency 15 mnc/sec.

Temp. Coef.

j i /T)8 p Mexper 

Substance C 1 classical Tentative Interpretation

ethyl + 0.010 7 Dominant factor is change in f , the re-
B3romide laxation frequency. fo 0 15 m/sec.

Methyl + 0.0087 30 Fxndamental vibrational frequency of CE3I
Iodide molecule is fairly low (534 cm 1), so that

specific heat change is not important; f
0

is dominant factor. f< 15 mc/sec.
0

Methyl - 0.011 3 Change in viscosity contributes only -0.004;
Alcohol velocity contributes +0.003; specific heat

term is positive, so that at least -0.010

must be accounted for by f change.

fo)' 15 mc/sec, in agreement with Herzfeld1 2,

who concludes on other grounds that

f N 3 x 10 mc/sec.

n-Propyl - 0.0086 2 As for methyl alcohol, f >) 15 mnc/sec.
Alcohol

n-Amyl - 0.014 1.5 Changes in both viscosity and fo are pro-
Alcohol bably effective here. The absorption is

nearly classical. f?> 15 mc/sec.

Benzene + 0.011 90. The evidence of the temperature coefficient

of absorption is that fo< 15 mc/sec, yet

Herzfeld indicates that f 2000 me/sec.
0

It is possible that these figures represent

two different relaxation modes, the mode with

a weak absorption peak near 10 m/sec having

a predominant effect on the temperature co-

efficient. Such a peak is suggested by a

plot of a. vs fsed on collected results.

Kneser11 gives f> 55 me/sec.

Now f at constant temperature is proportional to the collision frequency, so that

0 (fJ@P)T Lf 1 (aLf/8P)T = - (V/3Va)T , (3)

where L is the free length as in Pig. 1. The magnitude of the term in f is
_f0 ~~~~~~~~~~-1001 10- , while the term in the sound velocity c is 3 x 10 . The calculated

value of .l 0 /8 p)T comes out to be 4 x 1010 cm2/dyne, in fair agreement with the

experimental value x 1 10 cm2 /dyne.

The physical interpretation of the result is that the molecules are

brought closer together by the application of pressure, thus increasing the collision
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and relaxation frequencies. If ffo 0 an increase in f moves the region of

sximum absorption away from the working frequency. Also, the wave length is

increased by pressure, so that the absorption per unit length will decrease even

if the absorption per wave length is constant.

ISound Absorption and Molecular Structure

According to present ideas the magnitude of the non-classical part

of the attenuation is determined by the position and magnitude of the relaxation

frequencies of the molecule. It is difficult to calculate these frequencies since

they are dependent upon the detailed coupling between different modes of motion.

In gases it is well-confirmed experimentally that the relaxation mechanism accounts

for most of the non-classical absorption. Relaxation frequencies in pure gases

are of the order of 103 - 105 cps; since collisions' in liquids are at least 103

more frequent than in gases we would expect relaxation frequencies in liquids to be

of the order of 107 cps. The indication of the present evidence is that the actual

frequencies are of this order or higher. The existence of well-defined vibrational

states in liquid molecules is known from infra-red and Reman spectra evidence.

A review of the absorption of sound in various liquids at 15 mc/sec

shows several regularities with regard to molecular structure: a) The three most

absorbing liquids of low viscosity are non-polar:0S2, 0014, Benzene.

Substance aee r/c' lassical

GS2(7 mc/sec) 600

c0014 25

Bensene 90

Other non-polar liquids are highly absorbing - heptane, hexane, toluene. This

tendency suggests that the coupling of translational and vibrational motion is

small in molecules with small electrostatic interactions, giving a long lifetime

to the vibrational state and a low relaxation frequency. h) Highly associated

liquids tend to show lo, near-classical absorption at 15 m/sec. The alcohols

and water are good examples of associated liquids, and they show the following

values:

Substance aexver/'clas ical

Methyl Alcohol 3

Ethyl " 1

Propyl 2

B3utyl " 1

Amyl 1.5

Water " 3
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This tendency suggests that the formation of molecular groups is conducive to the

transfer of vibrational enery and therefore leads to high relaxation frequencies.

This is expected. In the limiting case of a solid there is little distinction be-

tween translational enery of molecules with respect to one another and vibrational

energy internal to a molecule. In solids we have relaxation times of the order of

LO -1 2 sec, as estimated from heat conductivity data.

CONCLUSIONS

It is found that the Tonks equation of state as applied to liquids

is a suitable framework for making close order-of-magnitude estimates concerning

quantities involved in sound propagation. The detailed numerical agreement is

usually unsatisfactory, thus indicating the limitations of the model. In particular

the temperature and pressure dependence of the compressibility is given only roughly

by this model. On the other hand, the thermal expansion coefficient is given quite

accurately; also, it is possible to attach physical significance to the concept of

the available volume.
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