
XVIII. MICROWAVE THEORY

E. F. Bolinder

A. USE OF NON-EUCLIDEAN GEOMETRY MODELS

Non-Euclidean geometry models have been used in Electrical Engineering for about

ten years. Gradually, engineers and physicists are becoming more interested in using

this convenient tool; therefore it seems worth while to try to answer the following ques-

tions: "Which non-Euclidean geometry models are available ?", "How are they inter-

connected ?", and "Where are these models described in mathematical literature ? "

Non-Euclidean geometry is, to use Klein's terminology, divided into hyperbolic

geometry, or Gauss-Bolyai-Lobachevsky geometry, and elliptic geometry, or Riemann

geometry. Hyperbolic geometry is characterized by the properties that through a point

outside a straight line two parallel lines can be drawn; that the sum of the angles of a

triangle is less than r; and that this geometry is valid on a surface of constant negative

curvature. Elliptic geometry is characterized by the properties that through a point

outside a straight line no parallel line can be drawn; that the sum of the angles of a tri-

angle is greater than rr; and that this geometry is valid on a surface of constant positive

curvature. The limiting case between the two geometries, parabolic geometry, is con-

ventional Euclidean geometry.

A discussion of some of the non-Euclidean geometry models follows.

1. Hyperbolic Geometry Models

1. 1 Two-dimensional models

a. The pseudosphere

The pseudosphere, which originates if a tractrix is rotated around its asymptote

(see Fig. XVIII-1), is the simplest surface with constant negative curvature. This

important adjunct was combined with hyperbolic geometry by Beltrami in 1868 (1). The

pseudosphere has recently been thoroughly studied by Schilling (2, 3). It has a singular

line. It was shown by Hilbert (4) that in Euclidean space there is no analytic surface

of constant negative curvature which does not have a singular line.

b. The hyperboloid

Another surface of constant negative curvature that is imbedded in a three-

dimensional space is the hyperboloid, which will be further discussed below. It has

been studied by Schilling (3) and M. Riesz (5).

c. The Cayley-Klein diagram

This model was introduced by Beltrami (1) in 1868. However, it did not come into

practical use until 1871, when, Klein (6) introduced it as a projective model with a
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conic as the absolute or fundamental curve. Klein based his work, to a large extent,

on the work of Cayley (7) and, therefore, the model is usually called the "Cayley-Klein

diagram." An example of this model is shown in Fig. XVIII-2. The unit circle in the

figure corresponds to the absolute curve (infinity). A straight line is a chord. The

hyperbolic distance between two points, P 1 and P 2 , is defined as half of the logarithm

of the cross ratio between P 1 and P2 and the two points Pa and Pb that are cut out of

the absolute curve by a straight line through P 1 and P 2.

d. The Poincare model

Although it was known to Beltrami (1), this model has been called after Poincare,

because of his extensive use of it in his investigations on automorphic functions (8).

Examples of this model are shown in Fig. XVIII-3 and Fig. XVIII-4. In Fig. XVIII-3

the unit circle is the absolute curve (infinity); in Fig. XVIII-4 it is a straight line. In

both figures a straight line is represented by an arc of a circle which cuts the absolute

curve orthogonally.

Fig. XVIII-1. Tractrix. Fig. XVIII-2. Two-dimensional Cayley-
Klein model.

Pbb

Fig. XVIII-3. Two-dimensional Fig. XVIII-4. Two-dimensional
Poincare model. Poincare/ model.
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1. 2 Three-dimensional models

a. Hyperhyperboloid

The hyperhyperboloid is imbedded in four dimensions, and therefore it is of little

interest from a practical point of view. However, in many cases the calculations and

constructions can be made in three dimensions and formally extended to four dimen-

sions (5).

b. The Cayley-Klein model

This model is a direct generalization of the two-dimensional model to three dimen-

sions. It has been thoroughly studied by Schilling (9), who, for simplicity, uses the

(Riemann) unit sphere as an absolute surface.

c. The Poincare model

This model is a direct generalization of the two-dimensional model to three dimen-

sions.

2. Elliptic Geometry Models

2. 1 Two-dimensional models

a. The sphere

The sphere is the simplest surface of constant positive curvature. However, the

important assumption that two points on a diameter together form a single "point" has

to be made in order that the sphere (hemisphere) constitute an ideal model of two-

dimensional elliptic geometry.

b. The projective plane

A central projection of the hemisphere on a plane parallel to the plane that limits

the hemisphere and is tangent to it yields a model of elliptic geometry in the form of a

one-sided projective plane.

c. Closed surfaces

Two closed surfaces without singularities were found by Boy (10) and Schilling (11).

These surfaces possess all of the properties of the projective plane.

2. 2 Three-dimensional models

a. The hypersphere

The hypersphere is imbedded in four dimensions.
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b. Three-dimensional elliptic space

This space has been thoroughly studied by Schilling (12), among others.

c. Two Riemann spheres

An interesting model of three-dimensional elliptic space consists of two Riemann

spheres imbedded in Euclidean space. The natural analytic tool to use is the theory of

quaternions. See the work of Study (13) and of others (14).

3. Interconnections of the Non-Euclidean Geometry Models

3. 1 Two-dimensional models

a. Geometric treatment

Let us study a simple example, an ideal transformer transformation:

Z' = k 2Z = e2 Z, k = 2 (1)

If we use the well-known transformation,

' 1 - 1 (2)Z'+ 1' Z+ 1

where F' and F are complex reflection coefficients, Eq. 1 transforms into

5 3
r cosh Y + sinh 5 r - 3

r, = 4 4 (3)
F sinh + cosh r + 54 4

If the complex-impedance plane, Z = R + jX, is stereographically mapped on the

Riemann unit sphere, the reflection-coefficient plane, F = r z + j y, falls in the yz-

plane, because it can easily be shown that Eq. 2 corresponds to a rotation of the pro-

jection center from (0, 0, 1) to (-1, 0, 0) on the sphere. In Fig. XVIII-5 the point Z = 1

corresponds to F = 0; and Z' = 4, which is obtained from Eq. 1, corresponds to

F' = 0. 6. The ideal transformer corresponds to a stretching (hyperbolic transform-z
ation) of the surface of the sphere directed from the fixed point (0, 0, -1) toward the

fixed point (0, 0, 1), so that (1, 0, 0) is transformed into (0.47, 0, 0. 88).

We now consider a unit hyperboloid with the x-axis as the rotation axis. In

Fig. XVIII-5, therefore, we obtain a unit hyperbola. M. Riesz (5) has shown that if,

in Fig. XVIII-5, the point F' = Pp, which may be considered to lie in a two-dimensionalz p
Poincare model in the yz-plane, is stereographically projected on the hyperboloid from

(-1, 0, 0) so that Ph is obtained, then a central line OPh cuts the vertical plane parallel

to the yz-plane through (1, 0, 0) in PCK which may be considered a point of a two-

dimensional Cayley-Klein model. The Cayley-Klein diagram may also be obtained by

an orthographic projection of the sphere on the same plane. An orthographic projection
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P(1, 0,188)

P ( 2.13,0, 1.88)

P (1,0, 1. 2)

( .. ) (047,0,0 88)

r\ %(ooo a 0,0-, - z848

SPs Ph Pc KP2 p ,P e x R

" (1,0,0)

(0,0, )I

Fig. XVIII-5. Interconnections of different non-Euclidean models.

of Ph on the same plane yields Pe, which can also be obtained by a central projection

of P' . Therefore, P' may be considered as lying in an elliptic projective plane. Thus
s e

we have the hyperbolic Cayley-Klein model (PCK), the parabolic (Euclidean) plane

(Pp), and the elliptic projective plane (Pe) coalescing in the same vertical plane. By

varying Z'(F') we obtain a geometric picture of how the points Ps' PCK' Pp' Pe, and

Pj vary. The example selected, Z = 1 - Z' = 4, is indicated by arrows in Fig. XVIII-5.

b. Analytic treatment

A point F in the F-plane (Poincare model) is

S= z +jF y

If F is expressed in tetracyclic coordinates (14), we obtain

2 2
ex = + +F4 z y

2 2
x 3 = 1 - F 2 -3 z y

0x 2 = 2F

ex = 2F1 z
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on the surface of the hyperboloid, w - z - y = 1, is
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The transformation of Ph -- Ph on the hyperboloid is expressed as

w1 al
z' b

y' c 1

a 2 a 3  w

b 2 b3) z

c2 c3/

The transformation by the real 3 x 3 matrix belongs to the G+ subgroup of the proper

Lorentz group.

The point PCK in the Cayley-Klein diagram in homogeneous coordinates is

(w'p z'

The point P' on the sphere is
s

ZI ZI
( ' _ =

s wt (1 + Z'2 +y2 )1/2

yI

Ys w'

1
x' -

s W'

yI

(1 +z'2 + 2 1/

1
( Z y2 1/2(1+z, + 2

The point PCK in the Cayley-Klein model is

"' = z'
zCK s

ryCK Ys

The point 1 z' in the F-plane (Poincar6 model) is

Z'
S

z 1 + x
s

Ys
y 1 +x'

s

z ' "'
zCK

yl yCK

2 2y,1/2 2 _ 2 1/21 +(1 +z' + ) 1 +(1 - zCK yCK

The rather complicated procedure, which is presented above, for transforming

S- r' was performed in order to show analytically how some of the two-dimensional

non-Euclidean geometry models can be used. In the presentation we have proceeded
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from the F-plane (Poincar" model) to the hyperboloid by means of the sphere and the

Cayley-Klein model. Instead of the Cayley-Klein model we might just as well have

used the elliptic projective plane.

3.2 Three-dimensional models

The interconnections of the three-dimensional models can be shown by a direct

generalization of the two-dimensional case. We start out with a point Q in three

dimensions (Poincar6 model) which we express, this time, in pentaspheric coordinates:

2 2 2
x 5 = + Qz + Qy + Qx

5 z y

2 2 _2
ox =1-Q -Q -Q

4  z y x

a-x 3 = 2Q x

o-x 2 = 2Q

o-x = 2Q z

We proceed from the Poincar" model to the hyperhyperboloid by means of the hyper-

sphere and either the three-dimensional Cayley-Klein model or the three-dimensional

elliptic space. The transformation on the hyperhyperboloid is performed by a real

4 X 4 matrix which is the same matrix that was discussed in the Quarterly Progress

Report of July 15, 1956, pages 83-85.

While the two-dimensional models are suited for impedance transformations through

lossless, bilateral, two terminal-pair networks, the three-dimensional models are

equally suited to impedance transformations through lossy, bilateral, two terminal-pair

networks.

E. F. Bolinder
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B. ELEMENTARY NETWORK THEORY FROM AN ADVANCED GEOMETRIC

STANDPOINT

In the early days of network theory two different methods of transforming imped-

ances by the linear fractional transformation

Z' aZ + b ad - bc = 1 (1)cZ + d'

were developed. These methods were called the "iterative impedance method" and the

"image impedance method."

In the first method the input impedance Z' is expressed in the output impedance Z

by the linear fractional transformation

X -X
Z f l e - Zf2 e- Zfl Zf2 X -e-

Zfl -Zf2 fl -Zf2e (2)
Z' = - (2)-X X

X - Zfle - Zf2 e
Z +e f f2

Zf f2 Zf - f2

where the iterative impedances Zfl and Zf 2 , the fixed points of the transformation, are

expressed as

fl a - d [(a+d) - 41/2

Zf2 ad[ 2c ad - bc = 1 (3)

and

ek a + d -[(a+d) 2 - 41/2 (4)
2

In the Quarterly Progress Report of April 15, 1956, pages 126-8, it was shown that
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Eq. 2, written in the canonic form

=e (5)
Z f2 - Zf2

can be interpreted as a spiral (loxodromic) motion of the surface of the unit Riemann

sphere around an inner axis through the fixed points Zfl and Zf2. This motion can be

split into a stretching and a rotation, given by the real part k' and the imaginary part

X" of X, respectively.

A similar geometric interpretation is valid for the image impedance method. For
that case Eq. 1 can be written:

(Z I 1/2 1

Z cosh 8 + sinh 0 (Z. Z)i1/2

Z' =

(z Z)1/2
with

Z (Z Z )1/2 (7)

Z! = (Z' Z' )1/2 (8)1 o s (8)

Z 1/2 = 1/2
tanh 0 = / 1 (9)

where Z. and Z1 are the image impedances at the output and at the input, Z and Z' are

open-circuit impedances, Z and Z' are short-circuit impedances, and 0 is the imageS S
propagation function, also called the "image transfer constant." A comparison of Eqs. 6
and 1 yields:

Z = bd)l/2 z( )1/2 tanh = (bc) 1/ 2  
(10)

Let us study a simple example consisting of the unsymmetric resistive network

shown in Fig. XVIII-6. The six impedances Zfl = 2, Zf2 = -1, Z = 3, Zs = 1, Z = -2,
and Z s = -2/3 are stereographically mapped on the unit sphere (unit circle), as shown

in Fig. XVIII-7. The sphere (circle) is considered as the absolute surface (curve) of

a three- (two-) dimensional hyperbolic space with hyperbolic metric. In this space a
hyperbolic distance is defined as half the logarithm of the cross ratio between the given
points and the two points on the unit sphere (circle) which are cut out by a straight line

through the given points. See, for example, references 1 and 2.

Equations 7 and 8 yield simple constructions for the image impedances Z i = 2 F/3
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and Z'. = . See Fig. XVIII-7. Equation 9 is essentially the equation for an ideal trans-
1

former. Therefore, the hyperbolic distances 6-os and o's' in Fig. XVIII-7 are equal;

here tanh 0 = F/3. From Eqs. 7, 8, 9,3, and 1 we obtain

(-Z Z ) 1/2 (-Z' Z )1/2 (Z Z1/2 = (-Z Z /2 (= ) (10)s os o = i i fl f2 l (

Therefore, the lines Z Z', Z' Zo, (-Zi) Z, and Z Z must all pass through a point
s 0 s o i1 fl f2

f in Fig. XVIII-7, yielding, for example, a simple construction for finding Zo, when

Z' Z', and Z are known.
S' O' S

Equation 6 can be split as follows:

Z!
Z = Z (la)
a Z.i

Z cosh 8 + Z! sinh 0
Z'= a 1 (1lb)

Z sinh O/Z' + cosh 0
a 1

Z Z (12a)b - Z.
1

Z cosh 0 + sinh 0
Z (12b)c Zb sinh 0 + cosh 0

Z' = Z! Z (12c)
1 C

Z cosh 0 + Z. sinh 0

Zd = (13a)
Z sinh 0 /Z i + cosh 0

Z' =Z Zd (13b)
1

Equations la, 12a, 12c, and 13b represent ideal transformers that correspond to

hyperbolic transformations (stretchings) along the vertical axis through the fixed points

zero and infinity. Equations 11b, 12b, and 13a represent symmetric networks (a=d)

that correspond to hyperbolic transformations (a+d > 2) along horizontal axes through

the fixed points ± Z!, ± 1, and ± Z. The equivalent networks corresponding to Eqs. 11,

12, and 13 are shown in Figs. XVIII-8a, XVIII-9a, and Fig. XVIII-10a.

Finally, let us perform a transformation of the impedance Z = 0. 5 to Z' = 1.4 by

the iterative impedance method and the image impedance method. We know that the

point Z = 0 is transformed into Z' = Z' so that, according to the first method, f is
s 1

transformed into g in Fig. XVIII-7. The hyperbolic distance fg is k' = In -. Therefore,

Z' is obtained from Z by two perspectivities with f and g as centers (1, 2).
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Fig. XVIII-6. Simple example of a resistive network.

Zo

Z

z s Z Zf' Z

0

Fig. XVIII-7. Iterative impedance
method.

-/ .1 ,-3 2 3 -,12 3 -2

(a)

Fig. XVIII-8. Image impedance method.
Example 1.

Fig. XVIII-9. Image impedance method. Example 2.

3 k(. -) .9() f '6 Z,
_I I

Fg I 0 Ia kd I

(l) (b)

Fig. XVIII-10. Image impedance method. Example 3.
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Transformations by the image impedance method are shown in Figs. XVIII-8b, XVIII-9b,

and XVIII-10b. According to Fig. XVIII-8a and b, Z - Z' by two perspectivities through

f and i', corresponding to the ideal transformer, followed by two perspectivities through

i' and g, corresponding to the symmetric network. From Fig. XVIII-9a and b, we

obtain six perspectivities through m and s' (first ideal transformer), s' and k (sym-

metric network = ideal reflection-coefficient transformer), and s' and n (second

ideal transformer). From Fig. XVIII-10a and b, we obtain four perspectivities through

i and 1 (symmetric network), and i and f (ideal transformer). Obviously, if the net-

work studied is symmetric, Zfl Z = Z and Zf = - Z, and the two methods

coalesce.

If the network is composed of both lossy and lossless components the geometric

constructions have to be performed in three dimensions.

E. F. Bolinder
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