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A. ELECTRON EMISSION PROBLEMS

1. Effect of a Magnetic Field and of a Unidirectional Heating Current on Thermionic

Emission from Molybdenum

The chief purpose of this research - investigation of the effect of a magnetic field

on thermionic-emission current - was described in the Quarterly Progress Report of

January 15, 1957, page 2, together with a description of the tube design and a discus-

sion of the background of the experiment. We shall also study another effect, which

can be easily investigated with the same tube structure. This concerns the possibility

of changes in the surface structure of the filament as a result of sustained dc heating.

We believe that the application of dc heating over a period of time will cause a shifting

or migration of the surface atoms, and thus a change in the exposed crystal structure.

This change would probably result in a preferred direction of emission; that is, the

emission from the two sides of the ribbon filament would be unequal.

This study will require measurement of the emission current to each of the four

collector plates as a function of the length of time of dc treatment, and as a function of

the magnitude and direction of the heating current. Until the effect of direct current is

tested, all heating will be by alternating current. Since the emission is a highly sensi-

tive function of temperature, and therefore of filament current, a steady heater voltage

is essential. Effort is now being devoted to perfecting an electronic ac voltage-regulator

circuit which is expected to reduce fluctuations in the line voltage to 5 per cent of their

initial value (1). For dc heating, the regulator developed by H. Shelton, of this labora-

tory, will be employed (2).
J. Greenburg
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B. PHYSICAL ELECTRONICS IN THE SOLID STATE

1. Characteristics of Junctions in Germanium

Measurement of the characteristics of germanium alloy - junction rectifiers at low

voltages reported in the Quarterly Progress Report of April 15, 1957, page 7, continues,
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with the measurement of the barrier height and its apparent temperature dependence in

a third junction, sample AB3. This junction is constructed from 0.6 ohm-cm germanium,

in the same manner in which the previous junctions were constructed. If we assume that

the height B of the potential barrier at the junction is B = B0 + aVT, then the constants

for this rectifier are B = 0. 557 volt, a = 5. Z24.

Present work is an attempt to predict the usual rectifying characteristics from the

low-voltage measurements of Bo and a. The measurements on sample JA357 indicate

that this can, indeed, be done, the current density j through the junction being given by

the relation

j = A'VT2 exp(-Bo /VT - a) [exp(-VB/VT) - 1]

where A' = 4nmq3/h3 =1.619X 10 1 4 amp/meter 2 volts 2 , VT = kT/q = T/11,606 volts, and

VB is the voltage across the junction. (Notice that the previously reported value of A'

was in error.) Sample AB3, however, does not show this behavior, since the current

in the reverse direction does not reach a saturation value. This sample was previously

damaged by pressure on the indium contact, and probably has leakage paths around the

junction; it is also quite unstable at high voltages.

Samples of different types, such as point-contact and grown-junction rectifiers, are

being obtained so that data on them can be compiled. Because the present measurements

use a potentiometer for voltage measurements, they take a great amount of time, and the

possibility of using a chopper amplifier instead of the potentiometer is being investigated.

J. F. Campbell, Jr.

2. Surface States on Semiconductors

A tube was constructed for measuring the changes in the photoconductivity and the

contact potential of a germanium sample simultaneously. However, it was impossible

to take accurate measurements because of stray voltages that originated in the tube.

These voltages consisted partly of random noise, but mostly of microphonics. We

also found that the contact resistance of the germanium sample was extremely high,

approximately two orders of magnitude higher than that of the sample itself. The tube

was torn down and rebuilt several times, but it was still plagued with cracks caused

by strains in the glass. We originally planned not to bake the sealed tube so that the

sample would not be heated and drive off adsorbed compounds that might give rise to

traps (in Gebbie's experiment (1), of which this study is a continuation, the germanium

samples were mounted without heating in a demountable system). After the frequent

occurrence of cracks we decided to bake the tube with the germanium in it. This helped

to relieve strains in the glass and improved the vacuum in the tube (8 X 10- 10 mm Hg

on the pump) but gave rise to slight deformations in the tube during baking periods,
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which caused short circuits in the tube. The ends of a new germanium sample were

plated with gold, and the contact resistance of the ends was subsequently found to be

small in comparison with that of the sample. The random noise was also reduced. The

main assembly in the tube and the electron-deflector plate were both welded to additional

press wires to achieve greater rigidity in the mounting. This considerably reduced the

microphonics, and led to the conclusion that they were caused by a Kelvin effect between

the vibrating metal parts in the tube. At one time a crude experimental photoconduc-

tivity run was taken, and the response was approximately linear with light intensity with

no saturating component (as in Gebbie's experiment) present. An oscilloscope trace

showed no evidence of slow decay of photoconductivity when the light was cut off, and

therefore no evidence of trapping either. We hope to create trapping centers by bom-

barding the surface with a Tesla coil in an oxygen ambient.

After a few more cracks and short circuits had developed, we decided to redesign

the tube envelope so that all of the parts whose alignment is critical would be mounted

on wires of a single common press (instead of on wires of different single-lead presses).

Such a tube was built, and we found that no more short circuits developed. The electron

accelerating mechanism was tried, and an electron current of approximately 107 amp

was collected at the germanium sample. This is small compared with the total emission

current of 50 ma, but it does prove the workability of the system. The electron deflec-

tor potential was the same as that of the center of the emitting filament.

The sample is etched with CP-4 and rinsed with high-purity water before every

installation in the tube. The plated ends are protected during the etching by paraffin

wax which is later dissolved in trichlorethylene. Argon is blown into the tube during

the sealing process to reduce oxidation of the metal parts.
E. Ahilea
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C. GASEOUS DISCHARGES

1. Ion Generation, Electron Energy Distributions, and Probe Measurements in a Low-

Pressure Mercury Arc

Since the last report (Quarterly Progress Report, Oct. 15, 1956, p. 8), the study of

the low-pressure mercury arc plasma has been completed. The results are available in

the Ph.D. thesis of S. Aisenberg, Department of Physics, M.I. T., May 1957. A short

summary of the experiments and the results will be given here.



(I. PHYSICAL ELECTRONICS)

A series of Langmuir probe measurements was made on the plasma of a low-

pressure mercury arc in order to obtain information about some of the fundamental

processes in the plasma. This research showed that the actual ionization is many

times larger than the direct ionization components, and that the effect of the electron-

drift velocity on the direct ionization is negligible. The results of this research

and the limited published information indicate that the metastable density is rela-

tively independent of the electron density, at least at the higher pressures, and that

the cumulative ionization is a linear function of the electron density and not a quad-

ratic function. The effective cross section for ionization of the 63P states was cal-

culated to be at least 9.0 times greater than that for the ground state. The mobility

of the electrons in the plasma was calculated, and it was found that the effective

cross section for slow electrons in the plasma is essentially constant with an average
-16 2

value of 42 X 10 cm . The ambipolar diffusion coefficient and the ambipolar

mobility coefficient were determined as a function of E/po for an active plasma.

An original theory was developed (with the aid of Professor W. P. Allis) for

ion mobility and diffusion in a strong nonuniform electric field. With the help of

this theory, the mobility and longitudinal coefficients were calculated for mercury

ions in the plasma. The radial electric field was calculated from the assumed

Bessel-function electron-density distribution obtained from ambipolar-diffusion theory

and from the Boltzmann potential and density-distribution relation. The effective
-16 2

cross section for mercury ions is found to increase from 31 to 104 X 10 cm

as the ion energy is increased from 0.44 to 1.37 ev. There is reasonable agree-

ment with the limited data of others.

The theories and methods developed can be used for the measurement of ion cross

section in other gases. A study was made of the collection of positive ions by a nega-

tive probe for comparison with theory, and a theory was developed for the ratio of

saturation ion current to saturation electron current, which is in good agreement

(approximately 3 per cent) with the experimental data. Several new experimental tech-

niques were introduced. The partial pressures of the residual gases in the arc were in

the range 108 to 10 mm Hg (or less). They were measured while the arc was in oper-

ation in the constant-temperature water bath. The probe potential was supplied by a low-

impedance voltage source (featuring a high degree of negative feedback) which was

specially designed for this experiment. A new method was developed to permit direct

recording of the change of probe work-function as a function of time. This method

involves the use of a constant-current source (to null the electron current to the probe,

which was operated at a retarding potential) and an expanded-scale, high-input,

impedance-recording millivoltmeter. This method should prove useful in future exper-

iments.

S. Aisenberg
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D. EXPERIMENTAL TECHNIQUES

1. Spectral Emissivity of Tungsten

An experiment designed to measure the spectral emissivity of tungsten over the

wavelength interval 310-800 my and the temperature interval 1600-2400 0 K has been

summarized in the Quarterly Progress Reports of April 15, 1956, page 9; July 15,

1956, page 4; October 15, 1956, page 3; and April 15, 1957, page 7. The results of

these measurements, for unpolarized light, with the tungsten surface viewed perpen-

dicularly, are tabulated in Table 1-1. The rms error of these measurements is 0.002

dimensionless (emissivity) units.

Table 1-1. Spectral Emissivity of Tungsten.

Wavelength
(mp)

300
310
320
330
340
350
360
370
380
390

400
420
440
460
480

500
520
540
560
580

600
620
640
660
680

700
720
740
760
780

800

1600'K

0.4798
0.4823
0.4828
0.4823
0.4816
0.4804
0.4791
0.4775
0.4754

0.4735
0.4694
0.4651
0.4620
0.4595

0.4571
0.4553
0.4539
0.4522
0.4501

0.4477
0.4450
0.4428
0.4412
0.4400

0.4375
0.4340
0.4304
0.4274
0.4246

0.4222

1800'K

0.4769
0.4795
0.4801
0.4798
0.4792
0.4781
0.4769
0.4

7
54

0.4735

0.4717
0.4678
0.4638
0.4606
0.4578

0.4552
0.4531
0.4514
0.4494
0.4470

0.4443
0.4413
0.4388
0.4369
0.4354

0.4331
0.4299
0.4266
0.4239
0.4215

0.4194

Temperature
2000°K

0.4740
0.4767
0.474
0.4773
0.4768
0.4758
0.4747
0.4733
0. 4716

0.4699
0.4

6
62

0.4625
0.4592
0.4561

0.4533
0.4509
0.4489
0.4466
0.4439

0.4409
0.4376
0.4348
0.4326
0.4308

0.4287
0.4258
0.4228
0.4204
0.4184

0.4166

ZZOO

0.4711
0.4739
0.4747
0.4748
0.4744
0.4735
0.4725
0.4712
0.4697

0.4681
0.4646
0.4612
0.4578
0.4544

0.4514
0.4487
0.4464
0.4438
0.4408

0.4375
0.4339
0.4308
0.4283
0.4262

0.4243
0.4217
0.4190
0.4169
0.4153

0.4138

2400°K

0.4682
0.4711
0.4720
0.4723
0.4720
0.4712
0.4703
0.4691
0.4678

0.4663
0.4630
0.4599
0.4564
0. 4527

0.4495
0.4465
0.4439
0.4410
0. 437

0.4341
0.4302
0. 4268
0.4240
0.4216

0.4199
0.4176
0.4152
0.4134
0.4122

0.4110

Equations for the variation in the spectral emissivity with the direction of polari-

zation and the angle at which the surface was viewed were developed in terms of

classical electromagnetic theory. In the Quarterly Progress Report of April 15, 1957,

page 7, it was shown that this theory is in excellent agreement with the limited existing

experimental data. We found that, by utilizing this theory, the basic optical properties

of tungsten could be computed from an analysis of the emitted thermal radiation.

The index of refraction, N, is defined as the ratio of the phase velocity of light in

vacuum to the phase velocity of light in tungsten. The extinction coefficient, K,

measures the rate at which the intensity of the light is attenuated as it propagates

through the tungsten structure according to the relation

xIntensity = 10 exp(-4wTrK -)
O
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where x is a coordinate that measures the distance that light has traveled through the

tungsten structure; I is the light intensity at x = 0; and ko is the wavelength of the light

if it were propagating in vacuum. The computed values of N and K are listed in Table

1-2.

Table 1-2. Computed Values of N and K.

A. Values of N

Wavelength
(m)

350
400
450
500
550
600
665
700

B. Values of K

Wavelength
(m)

350
400
450
500
550
600
665
700

1600°K

4. 136
4.232
4.291
4. 369
4.443
4. 537
4.613
4.605

1600°K

2.824
2.894
3.004
3.065
3.099
3. 144
3.215
3. 269

1800°K

4.084
4.192
4.255
4. 327
4.392
4.452
4. 508
4.484

1800"K

2. 865
2.929
3. 034
3.017
3.155
3. 222
3. 308
3. 367

Temperature
2000ZK

4. 040
4. 155
4. 224
4. 282
4.337
4.363
4. 396
4. 362

Temperature
2000°K

2. 904
2.964
3.062
3. 145
3.203
3.291
3.401
3.457

2200°K

3.994
4.117
4. 194
4. 242
4. 280
4. 287
4.286
4. 250

2200°K

2. 945
2.999
3.085
3.178
3. 256
3. 354
3.484
3.540

2400'K

3.950
4.081
4. 168
4. 200
4.221
4.210
4. 186
4. 144

2400'K

2. 988
3.032
3. 110
3.213
3.304
3.414
3. 558
3.607

This report terminates the series of

given in a thesis, entitled "The Spectral

reports on

Emissivity

this experiment. More details are

and Optical Constants of Tungsten,"
which was submitted to the Department of Physics, M.I. T., June 1957, in partial ful-
fillment of the requirements for the degree of Doctor of Science, which will be published
as Technical Report 328.

R. D. Larrabee


