
XV. MICROWAVE THEORY

E. F. Bolinder

A. GEOMETRIC-ANALYTIC THEORY OF NOISY TWO-PORTS

Sections XV-A, B, and C are extensions of the geometric-analytic theory of noisy

two-ports published in the Quarterly Progress Report of July 15, 1957, pages 163-169.

This report will use the notation that was given in the previous report. In the presen-

tation of the geometric-analytic theory voltages and currents were used. In many micro-

wave applications, however, it is more convenient to use a wave representation.

We split the reflected wave at the output of the two-port network into two components

a2 a2n + IFcor 1

where a 1 is the transmitted wave, and Fco r
cient, defined by

is a complex correlation reflection coeffi-
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In Eq. 1, a2n and co a are uncorrelated and thus

a2n al = 0

(2)
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If we set
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where T 2 , T 2 n, and T 1 are noise temperatures, Eq. 1 yields

T 2 = T 2 n + cno 2  T 1

The four-vector Q can now be written in the wave representation as
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The reflected and transmitted waves at the input of a noise-free two-port network

are expressed in the transmitted and reflected waves at the output by the equation

w
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a 1 D

By using the chain matrix, w

T
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For a noise process, we hav,
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* -1 -1
L is the product of the three Kronecker products S X S, T X T , and S xS

w
If we set

V -  (a + a2 )  a2 (V-I)

I (a a) a, (V+I)V2 v-a22

we obtain
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PZ1 - 2(VI + VI) = - a 2 a 2 -a l

PZ2 - (VI -V I) =-a aa - ala2
Z 2 2(VVI 2 a 12

P (VV - II) = a 2 a + aa =
PZ3 - 2(2

P
12

Pr
1

(12)

PZ4 2(VV + II*) 2 a a2 + ala 1

Thus, for bilateral, two-port networks, Eq. 9 can be interpreted geometrically as a

movement in a Poincare model of the three-dimensional hyperbolic space that has the

complex reflection-coefficient plane for its absolute surface. The corresponding

Cayley-Klein model, which has the unit sphere as the absolute surface, is obtained from

the Cayley-Klein model of the last report by a 90' rotation around the y-axis.

E. F. Bolinder

B. CASCADING OF NOISY TWO-PORT NETWORKS

With the notation of Fig. XV-1,on a voltage-current basis, we write

S"t = o + qi0 + T (1)

Similarly, on a power basis, we obtain

Q," = QQ' =O + Tx T Q

If we insert in Eq. 2 the Q-vectors expressed in the equivalent noise resistance

rn, the equivalent noise conductance gn, and the complex correlation impedance

Z or (1),cor

r +
n

Q = 4kAf

VO

n cor

gn cor

gn cor

gn

Fig. XV-1. Noisy two-port network.
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we obtain

go ' Z' - Zoo gn n cor co
r" = gr + r' +

n n n o

g, o , (4)

o Z0  + g Z'
Zn cor n cor

Z"
cor 0

n n

From Eqs. 2 and 3 we also obtain

g' cc r + Ic Z + d2gn n cor n

ad - bc 2 r g
n n n (5)

cc r + Ic Z + d2 gn cor n

ac r + (a Z + b) (c Z + d) gZ' n cor cor n
cc rn + c Zo + d 2 g

Equations 4 and 5 are formulas obtained by Dahlke (2). In Dahlke' s formulas all = d,

a12 = c, a21 = b, and a 2 2 = a.
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C. GEOMETRIC-ANALYTIC THEORY OF PARTLY POLARIZED ELECTRO-

MAGNETIC WAVES

The geometric-analytic theory of noisy two-ports is converted into a theory of

partly polarized electromagnetic waves, if the voltages and currents are exchanged

for two complex electric field-strength quantities E and E x, perpendicular in space
y

to each other and to the direction of propagation of the wave. The complex corre-

lation impedance Zco r is replaced by a complex correlation polarization ratio Pcor,

where
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EE

cor
EEx x

For a polarized wave (beam),

E
y

p =-
E

x

(Some authors (1) use -jp instead of p.) The mapping of the complex polarization ratio

p on the Riemann unit sphere was introduced into optics by Poincare (2), the "Poincare

sphere," and into antenna theory by Deschamps (3).

The transformations of elliptically polarized waves through lossless transducers

form a unitary group. Therefore,

E' a-c E 2 2
' = = = Te ; a + c = 1 (3)

le ee
E' c a E

x x

In the p-plane

p? = ap - c

cp + a
(4)

A simple

p = 0, and p'

example of a lossless p-transformation (a = (/6/3)e j 6 0 , c = (3/3)e j 3 0 °

= (V/2)e j 2 1 0 ) is performed by the isometric circle method (4) and shown

Fig. XV-2. Example of a lossless polarization-ratio transformation.
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in Fig. XV-2. The isometric circles intersect, so that the transformation is elliptic.

The fixed points of the transformation (marked by crosses) fall, by a stereographic

mapping, on a diameter of the unit sphere. The transformation consists of a rotation

of the sphere through an angle 24 around the diameter, where 4 is given by one of the

eigenvalues of the matrix T . Thus we have

e

e =- a + a') ± a + a2 - 4 (5)

An elegant and convenient tool to use in connection with unitary groups is Hamilton' s

theory of quaternions (5). Partly polarized waves can be represented by the Qe- or

Pe-power four-vectors (Stokes vectors). Points, representing power ratios, are

obtained both in a three-dimensional space that is formed by an extension of the

polarization-ratio plane, and inside the unit sphere. An unpolarized wave (natural

light) is represented by the center of the sphere or by the point (0, 0, 1) in the Qe-space.

Fig. XV-3. Example of a lossless power-ratio
transformation in the Qe -space.

A---

t 

Figure XV-3 shows a cross section through A-A of Fig. XV-2 extended to three

dimensions. The point ( , Te, e) = (/-, 0, 2) is transformed into ( e' r', 0e)

(6-/4, 3 /2-/4, 1/2) by a rotation through the angle 4. This rotation may be consid-

ered as a non-Euclidean rotation around the point F, the crossover point between the

plane and a semicircle through the fixed points. The semicircle is orthogonal to the

e -e - plane. For a unitary transformation, the semicircle passes through (0, 0, 1).
E. F. Bolinder
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