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RESEARCH OBJECTIVES

This group is interested in a variety of problems in statistical communication theory.
Current research is primarily concerned with: development of a level-selector tube,
crosscorrelation functions under nonlinear transformation, and the saddlepoint method
of integration.

1. The level-selector tube described in the Quarterly Progress Report of January
15, 1956, page 107, is being developed with the primary objective of applying to fil-
tering and prediction problems of current interest the nonlinear theory reported in "A
Theory of Nonlinear Systems" by A. G. Bose, Technical Report 309, May 15, 1956.
Other applications of the tube include its use in the measurement of probability densities
at high frequencies and its use as a function generator.

2. The relationship between the crosscorrelation functions of two time functions
before and after nonlinear transformation is of considerable theoretical and practical
importance. For a certain class of time functions, any nonlinear no-memory transfor-
mation leaves the crosscorrelation function unchanged except for a scale factor. A
necessary and sufficient condition for the invariance property to hold has been formu-
lated and proved. This condition generalizes past results on the invariance property.
Further study is being made. The application of this property to the improvement of
correlation measurement techniques is also being investigated.

3. In many communication problems inverse Laplace transformations are difficult
to obtain. One method that offers a straightforward means of estimating time functions
from frequency functions is the saddlepoint method. Aside from being a powerful tool
in transient analysis, the method is important in obtaining probability densities from
characteristic functions, and power-density spectra from autocorrelation functions.
Work is being done on (a) a redevelopment of the method with the objective of making it
better known and appreciated by engineers, (b) an investigation of methods for reducing
the approximation errors, (c) the exploitation of certain complex-plane interpretations
of time functions which saddlepoint techniques make possible.

4. The project on signal theory will soon be completed. This is a study of the
possibility of achieving a mathematical description of physical signals which embodies,
more realistically than the usual functional representation, our limitations in performing
measurements.

5. Another project that is nearly completed is the project on analytic nonlinear
systems.

Y. W. Lee

A. THE INVARIANCE PROPERTY OF CORRELATION FUNCTIONS

UNDER NONLINEAR TRANSFORMATIONS

Further work on the invariance property (1) has yielded the following results and

generalizations. Some frequently encountered examples of separable processes are:

(a) any wave alternating between two amplitudes a and b, randomly or other-

wise; (b) any frequency-modulated or phase-modulated wave in which the

(stationary) modulation is independent of the carrier phase; (c) any carrier-suppressed
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amplitude-modulated wave in which the (stationary) modulation is separable and inde-

pendent of the carrier phase. Note that, although the modulation is required to be a

separable process for case c, the modulation for case b is completely arbitrary.

Continuing with the investigation of the characteristics of the separable class, we

find that when two independent separable processes, x(t) and y(t), are added, the suffi-

cient conditions for the sum process to be separable are either

px(T) = Py(T) (1a)

or

2  2

X[fx x= I Y (1 b)

and one of these two conditions is necessary for the sum process to be separable. We

have restricted ourselves to independent processes, for, otherwise, we would need a

fourth-order joint probability density function of the two processes x(t) and y(t). We do

not want to make any assumptions about the higher-order probability density functions.

If we add N independent separable processes, (N > 2), necessary conditions seem

to be very difficult to obtain. However, two sufficient conditions are

pl(T) = (T) ... N(T) (2a)

or

1/- 2  1/o 2  1/o-N
[f 1()] [fN( )] (2b)

Thus, for example, the sum of any number of independent squared gaussian processes

(zero means), with identical spectra, is a separable process. Note also that, in

general, sums of separable processes tend to become nonseparable. This will be dis-

cussed more fully later.

If we multiply two independent separable processes x(t) and y(t), the product process

is always separable if both initial processes have zero means. Here no mention is made

of spectra or statistics - only of zero means. The necessity for the two processes to

have zero means has not been demonstrated but it is felt to be true in the general case.

The answer hinges on the linear dependence or independence of the correlation functions

of each process. As a start towards demonstrating that zero means are necessary, we

have been able to show that if one process has a zero mean and the product process is

separable, then the other process must also have a zero mean.

It follows that the product of any number of zero-mean independent separable proc-

esses is always separable. (Independence is required for products for the same reason

that was stated for sums.) Thus, for example, the product of a zero-mean gaussian
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process with a sine wave of arbitrary frequency is a separable process. Also, the

product of any number of sine waves of different frequencies is always separable.

The present results are a generalization of some of Luce's (2) work which was based

on more stringent assumptions. More general results relating to those of Luce will be

stated later.

We can show that any process belonging to Barrett and Lampard's (3) class A is

always a separable process; the converse is not necessarily true. Therefore the class

of separable processes is more general than class A.

In connection with Brown's (4) work we find that if

a ln(T) = dn all(T) = dn p(T) for all n, T

the process is always separable. The converse is true only if aln(T) exists for all n.

This is equivalent to requiring that all moments of the process exist. We have also

tacitly assumed that the second-order probability density function can be expanded in a

series and the aln(T) can be determined for all n. This is, indeed, a formidable task.

Note how much simpler it is to test separability. We can also show that if the process

is separable, the sequence {dn} satisfies the relation, dn = 0, n # 1, since here we are

talking about one process instead of two, as Brown does. This is Brown's class A .

Some additional results of Brown that relate to Booton's (5, 6, 7) equivalent-gain networks

are best discussed with reference to Booton's work.

In Booton's equivalent-gain networks, a nonlinear no-memory device is replaced by a

linear no-memory device chosen so that the mean-square difference between the two out-

puts for a particular type of input is minimized. We then find that separable processes are

necessary and sufficient in order for the urror caused by the linearization to be uncorre-

lated with the input for any nonlinear device. Also, neglecting the error term from the

linear approximation can be shown to be equivalent to neglecting the autocorrelation of

the error in the nonlinear device output autocorrelation function for separable processes.

If we generalize the linear approximation to a constant plus a linear term, we

obtain the results that have been discussed and, in addition, we find that the constant

of proportionality involved in the invariance property for the particular nonlinear device

is the equivalent ac gain (or linear term) of the approximative linear network for sepa-

rable processes. Thus we have an interesting connection between the invariance prop-

erty and the equivalent linear networks of Booton.

In best-estimate procedure of a signal in noise (additive), given a sample value of

the signal plus noise, we know that the best estimate in the mean-square sense is the

mean of the signal conditioned on the value of the signal plus noise. For separable

processes, the best estimate takes a very simple form, which involves only the unpre-

dicted estimate, the correlation function, and the mean of the process. In the case of

prediction without noise we also find that the best estimate involves only p(T), t, and
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the value of the signal at the present time for separable processes. The error involved

is then easily evaluated in terms of p(T), t, and the signal power. We are dealing here

exclusively with the case in which only one sample of a signal is given, and not the com-

plete past.

In Wiener's (8) optimum linear networks we find that for separable processes the

optimum network takes a very simple form if the desired output is a no-memory dis-

tortion of the input. For nonseparable processes, no such simple result holds. More

generally, the nonlinear part of the desired output is best approximated by a simple

linear network for separable processes.

The use of separable processes for the measurement of linear network transfer

functions is also possible with fairly simple correlation equipment (no multiplier).

By looking at Eqs. la and Ib, we see that it is easy to construct nonseparable

processes. However, a more interesting result is that many processes cannot be

classified as separable or nonseparable because of the lack of information. For instance,

all of the following processes are indeterminate, as far as separability is concerned:

(a) separable process through linear network

(b) sum of process and process delayed

(c) sum of dependent waves (3)

(d) product of dependent waves

(e) inverse of separable process.

The first four processes are indeterminate because of the lack of knowledge of prop-

erties of higher-order statistics. (The first, indeed, requires a knowledge of all

orders of input probability density functions.) The last process is merely a matter of

coincidence that depends on the particular second-order probability density function.

There are two obvious directions to follow for generalization of the separable class

of processes. The first is to generalize to processes that are "separable of degree n."

For example,

n

g(x2 , T) = 1) (x2) g (2)
k=1

where g is defined as

00

g(x2 , T) = (x 1 - ) p(x 1 , x ;T) dx 1

It is possible to show that there are processes that belong to each and every degree of

n > 1. We can also demonstrate that some processes require n = co. Hence, a wide

variety of processes are evidently possible. By considering sums of independent sepa-

rable processes, we can obtain arbitrary n merely by contradicting Eqs. 2a and Zb.
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Fig. X-1. Classes of separable processes.

In fact, we can show that, in general, adding two separable independent processes of

degrees m and n gives a process separable of degree m + n. (The degree is always

S<m+n.) Uses for these processes are unknown; their existence is only pointed out to

demonstrate the wide variety of possible processes.

A diagram of the types of possible probability density functions is shown in Fig. X-1.

The area included in each circle represents a particular class of processes, and includes

all of the other circles (classes) of smaller radii (generality). There is an infinity of

such circles, a process existing in each and every circle. The smallest circle, A, is

Barrett and Lampard's class, B is Brown's class, and the circle of index n is a class

separable of degree n. Note that the class n = 1 is the class that satisfies the invariance

property. The classes for n > 1 do not.

The second generalization is to consider g3 (and possibly higher orders):

g 3 (x 2 , x 3 ; 1 , 2 ) = (x - .) p(x 1 , x 2 , x 3; 1, T2 ) dx 1  (4)

where p(x 1 , x,x 3 ;T 1 , T 2) is the third-order probability density function of the process.

Here also, there are cases that are separable of various degrees. Thus, in general,

we would have to investigate processes separable of order m and degree n. Again,

this is pointed out for its existence rather than for its use. However, it must be noted

that in order to answer some of the questions raised by list 3, we need to consider some

higher-order properties such as Eq. 4. For example, we need some results on the

fourth-order statistics to answer problems c and d in list 3. These investigations are

beyond the scope of the present work but are possible useful generalizations.

Extensions to nonstationary processes and time-variant devices are relatively

straightforward.

A. H. Nuttall

[See following page for references.]
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B. SADDLEPOINT METHOD OF INTEGRATION

1. Introduction

Many problems that arise in network transient analysis yield frequency-domain

solutions with time transformations that are either complicated or do not exist in closed

form. Such solutions are often valueless to the engineer, since they do not allow him

to estimate system behavior as a function of either parameter values or time. Since

important classes of problems (e. g., waveguide and matched-filter transient responses)

yield frequency-domain solutions of this kind, there have been several attempts to for-

mulate general methods of approximating inverse transformations.

A means of approximate integration in the complex plane, known as the "extended

saddlepoint method" (or "method of steepest descent") has been used by several authors

to obtain solutions to specific problems (1, 2, 3). More recently, attempts have been

made to extend the method to general transient analysis (4, 5, 6). In particular,

Dr. M. V. Cerrillo's papers have presented the essential elements of saddlepoint inte-

gration.

The saddlepoint method of integration, as extended by these authors, gives the engi-

neer a tool for rapidly estimating and interpreting integrals of the type

g(x) = F(y) ew(x, ) dy

'iy
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Fig. X-2. Brl and a topologically equivalent contour.

directly in the complex y-plane. The frequency with which this integral is used in

analyzing transients, obtaining probability distributions from characteristic functions,

and determining autocorrelation functions from power spectra makes the method an

extremely valuable one. However, its mathematical development has tended to obscure

the method's simplicity of application. Moreover, there has been little published work

(7) either on methods of reducing the approximation errors or on complex-plane inter-

pretations.

In view of these facts, three topics that are related to the saddlepoint method of

transient analysis have been investigated:

1. Redevelopment of the method, which emphasizes the concepts used in the approx-

imation procedure, illustrated by examples of its application to problems. A discussion

of the relationship between the time and complex frequency behavior of a function has

been included in this work.

2. Consideration of methods of reducing the approximation errors. Several methods

of error control have been investigated, and two of them have been formulated. The

objective has been the development of error-control techniques that can be readily

applied to common problems, rather than the development of completely general proce-

dures.

3. Exploitation of the complex-plane interpretations in problems of "equivalence"

between distributed and lumped systems. It appears possible to describe this equiva-

lence in terms of one of the parameters of the approximation. One example has been

prepared, but no general study of this topic has been undertaken.

2. Elements of the Saddlepoint Method of Transient Analysis

In Laplace transform theory the operationY- 1 [G(s)] = g(t) is defined by

g(t) = G(s) est ds (1)

Br
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where Brl is the contour of integration shown in Fig. X-2. If we replace G(s) by

G(s) = F(s) e (s )  (2)

then Eq. 1 takes the form

g(t) F(s) est+ (s) ds (3)

Br 1

In order to approximate g(t), we wish to choose a contour of integration, ys, which is

topologically equivalent to Brl, but along which an approximate integration can be

readily performed.

An obvious way to perform the approximate integration is to choose a set of points

in the s-plane, expand both F(s) and [st + (s)] about the points in power series, and

then integrate along a contour, topologically equivalent to Br 1 , which passes through

the points in such a way that it always lies in regions of adequate approximations, as

shown in Fig. X-2. The number of points and the number of terms that are needed to

approximate F(s) and [st + c(s)] in the neighborhoods of the points depends upon the

choice of locations for the points. In the saddlepoint method of approximate integration

we attempt to locate these points in such a way that a minimum region of accurate

approximation is required about each point.

A small region of accurate approximation about a point of expansion can be used if

we so choose the point, and its associated contour, that exp[st + (s)] behaves along the

contour as

A(t) -rne e (4)

where r is arc length. In this case exp[st + 4(s)] acts as a weighting function in Eq. 3,

and concentrates the contributions to the integral in the immediate vicinity of the point.

Since st + 4(s) can be expanded in a Taylor series about any point, sc, of analyticity,

we can say that

c(S) 2
st + (s) = s t + (s )+[t+ '(sc)](s-s C )+ (s-s ) +...c c c c c

in the vicinity of sc . We cannot establish a contour that passes through sc so that Eq. 4

is satisfied if [t + '(sc)] t 0, since only one line radiates from sc along which

{[st + (s)] - [sct + (sc)]}is real and negative when the coefficient of (s - sc) is nonzero.

The requirement

t + '(sc ) = 0 (5)

must, therefore, establish the locations of the desired points of expansion. Equation 5

defines the saddlepoint locations of [st + c(s)].
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Fig. X-3. Behavior of exp{[st + 4(s)] - Fig. X-4. Primary and secondary
[sst + 4(Ss)]} along lines of saddlepoints in a typical

steepest descent from s configuration.

If we call the desired points of expansion s s , they are defined by

-1
s = ¢' (t) (6)

The contours that pass through these points along which { [st + p(s)] - [sst + (ss)]} is

real and negative are called "lines of steepest descent." An example of the case in

which Eq. 6 defines only one saddlepoint is shown in Fig. X-3.

Naturally, not all of the saddlepoints defined by Eq. 6, with their associated lines

of steepest descent, will always be needed in the establishment of a topologically equiv-

alent contour. For instance, in Fig. X-4 we need only compute the contributions from

integration through the regions about ss1 and s2 since yl and y2 form a contour topo-

logically equivalent to Brl . We then refer to s and ss as primary saddlepoints.

Once we have established the primary saddlepoints, we can approximate the behavior

of st + (s) in their vicinity, integrate the approximate functions along the approximate

lines of steepest descent from each saddlepoint, and then sum these contributions to

obtain g (t).

In the simplest case we assume that I1(ss)I >> j'(1'(ss)I, so that

st + c(s) = sst + (s s ) (s - s) 2 (7)

This implies that the contour y is a straight line through the saddlepoint, and

"(s ) r
[st + (s)] - [ss t + (ss) ]  - !

e = e
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Fig. X-5. Orbits of two first-order saddlepoints.

along ys. In the example of Fig. X-3 this approximation involves a change of the con-

tour of integration to one tangent to ys at s s and an idealization of the bell shape of the

exponential term along that contour.

Finally, we note that Eq. 6 defines saddlepoint locations that are functions of t. The

primary saddlepoints follow loci in the s-plane as t varies. These loci are referred to

as saddlepoint orbits, an example of which is given in Fig. X-5.

If we assume that I'(s )I >> "'111(ss) , the solution for the integral along the lines

of steepest descent from a saddlepoint is easily obtained. The solution will depend upon

the behavior of F(s) in the vicinity of the saddlepoint. The three basic types of behavior

in the vicinity of s s are:

(a) F(s) F(s s )  NEUTRAL

(b) F(s) = F'(s s ) (s - s a) ZERO

Res s k
(c) F(s) Res POLAR

s - sk

For these behaviors, g"(t), the integral through a particular saddlepoint s, is

s si

F(s ) e
a. g' (t) = (8)

2 1 ("ss.

if F(s) varies slowly in the vicinity of ss.
1

F'(s ) (s - s ) s t+4(s )
b. g (t) e (9)

if F(s) has a first-order zero at s which is close to s .
1

c. gi(t) = Rke 1 + erf- (10)c . g it)= Rk eZ1
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where

t + ' (s k )

2c"(sk)

if F(s) has a first-order pole at s k , which is close to s .
1

3. Example of Saddlepoint Integration

As an example of saddlepoint integration, consider the function

1
G(s) -s + a

Rewriting it, so that a c(s) exists, we obtain

G(s) = F(s) e (s ) = e - 1n(s + a)

The saddlepoints are determined by

t + c'(s)=0 t -d (s) 1
ds s + a

1
5 .s -a

s t

In this case there is only one saddlepoint, whose orbit is the real s-axis between o0

and -a. It can be shown that the lines of steepest descent from the saddlepoint form a

contour that is topologically equivalent to Brl; hence we may use saddlepoint integration.

Since F(s) = 1, form 8 is applicable. Thus

1
c(s ) = -in(s + a) = -in = In(t)

1 t2

1"1(ss) 1 1 2 t
(s + a)

S- a) t +In t

1 
le

V2 T t t e -at
- V e

g': (t) 1.08 e-at

The actual inverse transform is e , which Eq. 15 closely approximates.

(15)

4. Error-Reduction Techniques

Although we have only sketched the procedure used in obtaining saddlepoint approx-

imations, two sources of error are apparent. By assuming that Eq. 7 is an adequate

(11)

(12)

(13)

(14)

g (t)
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W"s,t
e 2 !

Fig. X-6. Actual and approximate lines
of steepest descent from a
first-order saddlepoint.

Fig. X-7. Actual and approximate
behavior of exp[w(a, t) -
W(s, t)] along ys"

approximation of [st + (s)], we imply that

(a) The lines of steepest descent from s s can be approximated by a straight line

through s s , tangent to them at that point.

(b) exp[st + 4(s)] - [s st + (s)] = exp -k s - ss 2)along these approximate lines of

steepest descent.

Unless both of these approximations are valid, errors are introduced into the solu-

tion. There are methods of dealing with each of these approximation errors, which,

although they are not completely general, work in a large number of practical problems.

Consider the first approximation. If the actual lines of steepest descent are curved,
st + c(s) - [sst + (ss)]

as shown in Fig. X-6, the function e is no longer real along y s
2 s

Its approximation by exp(-kr ), or even by the exact behavior along ys, will not yield

the proper contour integral, since dsl * ds . However, suppose that it is possible

s
to find a transformation of coordinates s = f( ), so that in the -plane the lines of

steepest descent are approximately straight. In the transformed coordinate system it

would then be possible to approximate

g(t) = H( ) eW( ' t) d (16)

more closely, if the second assumption is valid, since d] = d I .

This process of changing coordinates, so that integral 16 has associated with it lines

of steepest descent from primary saddlepoints that are approximately straight in the

region of interest is called the "coordinate transformation method of error control."

EXP [W (Ct)-W( (,,t )]

I 1S e -cr
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There exists no specific technique for selecting the proper transformation for a particu-

lar problem. However, once the actual lines of steepest descent in the s-plane are

known, reference to Kober's "Dictionary of Conformal Representations," or to a simi-

lar source, will usually suggest the appropriate choice.

Relationships for the integral through a saddlepoint of w( , t) can be derived in a

similar manner. This has already been done (4).

Assuming that the actual lines of steepest descent and the approximate lines lie

close to each other, we are still left with the second assumption. We must adequately

approximate exp[w(, t) - w( s t)] along , in order to keep the error in g (t) small.

The two functions, exp[w(, t) - w(s, t)] and exp - s might vary,

as shown in Fig. X-7, along y .
The most obvious approach to this problem of representation would be to use more

terms in the power-series approximation of w(, t) in the region about is. However, in

order to ensure close approximation of the actual behavior at large distances from is'
many terms may have to be kept. Also, we already know the integral associated with the

behavior of exp(-kr2). So, instead of approximating w(g, t) by a power series, we shall

approximate exp[w(, t) - w( s , t)] by

w( , t) - w( , t) n -k - i2
e Z A e (17)

V
v=l

along y~ (i.e., we approximate exp[w( , t) - w( s , t)] by a sum of "normal" curves with

properly selected "means" and "variances"). Substituting Eq. 17 in Eq. 18, and inter-

changing variables, we obtain

n -k - Z

S(t) = AH() e (18)

v=l

Each term in this series represents a saddlepoint, located at V, where H(S) has

been replaced by A H( ) for the purpose of evaluating the integral. The general saddle-

point integral is already known (Eqs. 8, 9, and 10), so we need only sum these solutions

to obtain g (t).

Each of the saddlepoints that is introduced in the approximation improvement pro-

cedure is called a "satellite saddlepoint," since its existence is a mathematical fiction

and it always lies on the lines of steepest descent from the actual primary saddlepoint.

The method of error reduction is referred to as "satellite saddlepoint error control."

C. E. Wernlein, Jr.

[See following page for references.]
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C. EXPANSIONS FOR SOME SECOND-ORDER PROBABILITY DISTRIBUTIONS

Barrett and Lampard (1) have shown that certain second-order probability density

distributions may be expanded in a single series of orthogonal polynomials. This class

of distributions, denoted by A, include some important distributions that occur in phys-

ical problems. It also has been demonstrated (1) that distributions in this class

satisfy the invariance property (2). For example, the second-order gaussian probability

distribution and the second-order distribution of a sine wave are both in A. In the

following discussion the expansions for two additional distributions in A, and two related

expansions are presented. The notation used follows that of Barrett and Lampard (1).

The proofs are omitted here.

Distributions in A are characterized by the general form

00

p(x 1 , x Z ;T) = p(x1) p(x2 ) an(T) 0n(x 1) n(x 2) (1)

n=0

The gaussian second-order probability distribution can be written

x2 + x [(T)]n Hn(x1/-) Hn(X2/ )

p(X 1 , x2 ;T) exp 1 2) n! (2)
) - n

n=0

where Hn(z) are Hermite polynomials.

If a stationary random process with the second-order distribution given by Eq. 2

is passed through a full-wave square-law device, it can be shown that the output
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distribution is given by

00

exp l- )2 z

n=0

[p(T)]2 n (n!) 2 n

L1/2 (y 1 /2 2) L 1/ (y2/2r2)

when yly 2 > 0; otherwise P(yl' Y2 ;T) = 0.

Z -a 1
S ez-a d i  i+a

L.(z) -e i . (e-Z z
dz

are the associated Laguerre polynomials.

in Eq. 1, we have

p(y) =

0 exp )

/2 -Try Go-20

o

The orthogonal polynomials

Comparing Eq. 3 with the general form given

for y > 0

for y < 0

an = [(T)]n

) n! 2 n -1/2 (y/202
n(2n)! n

Thus P(yl,' 2; ) is in A.

The expansion for the second-order distribution of a sine wave of constant amplitude

p is given (see ref. 1) by

P(X1' ;T)= 1 p2
(

p(x 1 ,x 2 21 p

x22
1, 2< 1; otherwise
p

)1/2
x P2

- 1/2 n
- x2 n

n=0

p(x 1 , x 2 ;T) = 0.

Tn(x1 /p) Tn(xg/p) cos n O r

Tn(x) are the Tchebycheff polynomials

of the first kind defined by

T (x) = cos{n cos-1 x}

and

E =n

1 for n = 0

2 for n = 1, 2,

P(yl 2 ;T)

-1/2

2 0

and

2

1when -- <
p

(9)
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If a process with this distribution, see Eq. 7, is passed through a full-wave square-

law device, the output second-order distribution can be shown to have the form

p(yl,Y 2 ;T) = 1 (yly)l/2 1 z - 1
4Tr

(P _ Y 1/z

00

n cos 2n T 2  Tn( /P)

n=O

for 0 -<yl
< p2 and 0 -yz p2; otherwise p(yl,y 2 ;T) = 0, and

(10)

y -1/ 2 p A-1/
Z (p - y)-

p(y)

0

Sn (y) = T 2 n(.)

a (T) = cos 2n T

This distribution is also in A.

A full-wave linear rectification of the gaussian process and the sine wave each pro-

duces a waveform with a second-order distribution that is expandable in a single series

of orthogonal polynomials. However, these distributions are not in A, nor do they sat-

isfy the invariance property. Nevertheless, the expansions still appear useful, since

they separate into products of functions of the three variabes, yl, y 2, and 7, with the first-

order distributions as a common factor.

The full-wave rectification, y = Ix , of the gaussian distribution gives the expansion

2 1
p(y'Py;T) 2 Z exp 1

we z;rco,

_1 2 [p(n)] n 2n(Y 1/-) H 2 n(Y/O-)

S - j n= (2n)!

(13)

for yl ,y > 0; otherwise P(yl, Y;T) = 0. The first-order distribution ass

Eq. 13 is

Sexp(- 2

p(y) =

p(y) =

y <O 0

y<0

ociated with

(14)

The full-wave rectification, y = Ix!, of the sine wave generates a process whose

and

0 _<y < pz

elsewhere

(11)

(12)
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second-order distribution is given by

Y 21/2 ( -21/2
S2p(ylY ) =T

n=O

ETn T2n(Y/P) TZn(y2/p) cos 2 nT

when 0 < y l 
< p, and 0 < y 2 

< p; otherwise p(y 1 ,Y 2 ;T) = 0.

associated with Eq. 15 is

2 (p2 _ )-1/2

p(y) =

(15)

The first-order distribution

0 < y < p

elsewhere

(16)

D. L. Haas
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