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RESEARCH OBJECTIVES

The interest of this group ranges over a wide variety of problems in the processing
and transmission of information.

One current activity is the statistical investigation of information sources. The main
objective is to estimate the rate at which the sources generate information and to deter-
mine how to encode their output economically in order to decrease the channel capa-
city required for transmission. The group is currently continuing such an investigation
on pictures as information sources by recording the pictures in digital form for analysis
and processing on a digital computer.

A second current activity is the investigation of channels for information transmis-
sion. This includes study of the fundamental theoretical relationships between trans-
mission rate, error probability, delay, and equipment complexity, and the construction
of suitable coding procedures, especially for binary channels. Efforts are being made
to extend some of the results on binary channels to continuous channels, particularly
with respect to communication over a time-varying multipath medium.

An interesting problem in the processing of information is the selection of subsets,
called "bibliographies," from a set of stored documents. A bibliography may be heuris-
tically defined as a set of documents pertinent to a particular topic. The model that is
being studied consists of assigning a multivariate probability distribution over the set
of documents which can be used to measure the coherence of a subset. The probability
distribution will be based on such data as the relative frequency of simultaneous occur-
rence of a reference of a subset in reference lists and the relative frequency of con-
comitant requests of documents by users of a library. The subsets that yield relative
maxima of a coherence function are the bibliographies. The problems of operationally
defining the probability distribution and choosing suitable coherence functions in such
a way that the bibliographies can be economically generated by computing systems are
being investigated.

In the design of coding and decoding devices, finite-state binary logical circuits play
a critical role. A binary circuit can be considered as a transducer that transforms an
input stream of binary digits into a related output stream. In the process, information
may be lost and the coded form of the stream changed drastically. Thus a finite-state
circuit is a rather general information channel. Study in this area is aimed at under-
standing how the loss of information in a finite-state circuit depends upon the logical
structure of the circuit and upon the solvability of the equations that show how the output
is related to the input.

From an alternative point of view, any finite-state circuit classifies each of the
infinitely many possible input sequences of digits into one of the finite number of states.
Studies made of minimal descriptions of finite-state circuits and of approximate models
thereof are important, in that they show how to describe efficiently the patterns of digits
in a sequence. More closely applicable to the pattern-recognition problem is a study
of logical circuits whose description is most conveniently made in more than one dimen-
sion. For example, the study of circuits whose logical elements can be arranged in a
uniform planar array like that formed by the squares on an indefinitely large chessboard
is particularly pertinent to possible schemes for filtering and logical processing of an
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ordinary black and white photograph.
A model for an infinite-state logical circuit is the Turing machine. A study is being

made of the dependence of the length of a computation on the capacity of the channel
connecting the memory to the control of a class of Turing systems.

P. Elias, R. M. Fano, D. A. Huffman

A. SOLVABILITY CRITERION FOR SIMULTANEOUS LOGICAL EQUATIONS

If we have been given n simultaneous equations that are functions of n binary

variables, the question of whether or not a set of solutions exists corresponds directly

to the question of whether or not the logical network which produces the functions (as

outputs) from the variables (as inputs) is information-lossless. That is (in either case),

if a set of values of the functions is given, can the corresponding set of variable values

be uniquely determined?

Any binary function can be expressed as the modulo-two sum of terms involving a

constant, the single variables, their products taken two at a time, their products taken

three at a time, and so forth. For example, any three-variable combinational function

can be expressed as

f = C + C X + C Y + C Z + C XY + C XZ + C YZ + C XYZ
o x y z xy xz yz xyz

where the C's are eight binary coefficients whose values determine which of the
3

2 8
2 = 2 = 256 functions of three variables is being described.

If we adopt the notation af/x for fx=0 + fx= 1' we find that

af SC + C Y+C Z +C YZ
8x x xy xz xyz

That is, as far as the symbology is concerned, we can compute af/ax as if f were

a function of continuous variables. In the same way, we obtain

a2f =C + ZC
axay xy xyz

83f
axayaz xyz

We adopt the notation

af
x ax

8f af 82
a - + + (1)
xy ax ay axay

2 2 2 3af + f 8f a f + 8f + a8f a f
xyz - ax ay a az axay axaz ayaz + axayaz
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and similar meanings for a , a , axz, and ayz. Now consider three functions a, b,

and c of the variables x, y, and z. Let

S =a b +c +ab +ac +b c +abc

S =a +b +c +a b +a c +bc +a b c (2)
xy xy xy xy xy xy xy xy xy xy xy xy xy

S =a +b +c +a b +a c +b c +a b c , etc.xyz xyz + xyz + xyz + xyz xyz + xyz xyz + xyz xyz + xyz xyz xyz etc.

The equations that relate a, b, and c to x, y, and z can be solved if and only if

SSS S S S = 1 (3)x y z xy xz yz xyz

The conditions in Eqs. 1, 2, and 3 (which involve the partial "derivatives" of each

of the functions with respect to the variables) serve the same function for n simul-

taneous logical equations as does the conventional Jacobian test for equations in con-

tinuous variables.

The correctness of these manipulations should not mislead the reader into believing

that, even notationally speaking, all operations involving partial "derivatives" are

performed on modulo-two equations in the same way that they are performed on equa-

tions with continuous variables. For example, in the binary case we have

a(a * b) ab aa aa ab
ax ax ax ax ax8x

D. A. Huffman

B. ZERO ERROR CAPACITY FOR LIST DETECTION

Shannon (1) has defined C o , the zero error capacity of a channel, as the least upper

bound to rates of transmission that are attainable with blocks of length N and zero

error probability. He does not evaluate Co in general. He also defined CoF, the zero

error capacity for block coding when a noiseless feedback channel is available, and

evaluates it explicitly as follows.

a. CoF = 0 if, given any pair of input letters, there is at least one output letter

that both can cause (i. e., to which both are connected on the graph of the channel).

b. Otherwise, CoF = -log Po, where

P = min max P.
o p j

i S.

Here S. is the set of input letters connected to output letter j, 1 j < s, and P. is
J 1

an assignment of probabilities to the input letters i, 1 < i < t. Thus Po is the largest

amount of input probability to which any output letter is connected, when the P. are
1
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selected so as to minimize this largest amount.

The purpose of this note is to show that if list detection (2, 3) is used, then C o for

block coding without feedback is also -log Po as in expression b, but without restriction

a. We define CoL(k) for a block code as the least upper bound of rates for codes in which

the transmitter selects one of kM input words, each of length N input letters, and trans-

mits it, and the receiver produces a list of k input words which is guaranteed to include

the one which was in fact sent. The rate for such a scheme is then

R > log kM - log k log M
N N

Next, we define CoL and obtain the following theorem.

THEOREM: CoL lim C oL(k ) =-log P
k-o0

PROOF: Shannon (1) has an argument that shows that CoF -log Po, which still

applies in this case. Thus we need only show that there are block codes for

which the rate with list decoding and zero error probability approaches -log Po
for sufficiently large k and N. We use a random coding argument.

Consider the ensemble of codes constructed by selecting kM sequences of N

input letters each, using the probabilities P. of expression b, and selecting each

letter of each word with statistical independence from this distribution (or from

one of the minimizing distributions if there is more than one). We shall bound

the probability that a set of k + 1 of these words has first letters, to all of which

some received letter is connected.

First, consider any particular received letter, say j = 1. This letter will

distinguish between the given k + 1 words unless all of their first letters fall in
k+l

the set S = S1, which is an event of probability in the ensemble < Po , by the

definition of P in expression a. This result obviously holds for any j: each
ok+

particular received symbol can cause confusion only in a fraction < P of the
0

cases, and one or more of the s possible received symbols will cause confusion
k+l

only in < sP of the cases.
0

Now, for k+ 1 input words of length N to have a received word in common

requires that all N sets of k + 1 corresponding letters have a received letter in

common. In the ensemble the probability of this event is < (spk+l )N And

there are only

kM (k+1)k+l Mk+1/(k+1)!

different sets of k+ 1 words to consider. The probability Pc that one or more

of these sets has a code word in common is then bounded.
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(k +l)k+ 1Mk+1 sPk+1 N

c (k+ 1)!

Now, if Pc < 1, there is a positive probability of picking a code with the

property that no set of k + 1 of its input words has an output word in common.

Then there must be at least one such code, and it is obviously a zero-error code

for list decoding at list size k: Given any received word, k at most, of the pos-

sible transmitted words are consistent with it. To make Pc < 1, or log Pc < 0,
take logarithms in Eq. 1 above and divide by (k+1) N. This gives P < 1 if

og 1 1g(k+)log -log P - log s 1- loog(k+1)
N o k+ 1 N k+ 1

Q. E. D.
P. Elias

References

1. C. E. Shannon, The zero error capacity of a noisy channel, Trans. IRE, vol. IT-2,
no. 3, pp. 8-19 (Sept. 1956).

2. P. Elias, List decoding for noisy channels, Technical Report 335, Research Labora-
tory of Electronics, M. I. T. (in press).

3. J. M. Wozencraft, Sequential decoding for reliable communication, Technical
Report 325, Research Laboratory of Electronics, M. I. T., Aug. 9, 1957.

C. LIST DECODING

The computation of bounds on the probability of error behavior of codes designed
for communication over binary symmetric channels has been carried out in great detail
by Elias (1, 2, 3). This report covers an independent derivation, in weaker but less
complicated form, of one of Elias' results (3).

The specific problem under consideration is that of obtaining an upper bound to the
ensemble average probability Pm(e) that a message actually transmitted will not be
included when the receiver prepares a list of the m most-probable messages. It is
assumed that block coding and maximum-likelihood decoding procedures are used. The
average value Pm(e) is computed over the ensemble of all possible block codes n digits
long; we are then assured that at least one code exists for which the actual probability
of error is as small as this.

In a typical experiment, let Mk be the number of possible transmitter messages
that differ from the received message in k or fewer digits. Then, averaging first over
the ensemble of codes, and next over the ensemble of binary-symmetric-channel
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transmission-error patterns, we have

n

Pm (e) = Z P[do = k] P[MIk >m] (1)
k=O

where d is the actual number of errors introduced by the binary symmetric channel.

First, we bound P[Mk > m]. If the number of possible transmitter messages is S,

then over the ensemble of all such message sets we have

P[Mk m] < P (Sm (2)

where Pk is the probability that any particular incorrect message differs from the

received message in k or fewer digits. As Elias points out (3), this bound follows from

the facts that retention by the receiver of at least m incorrect messages certainly

implies the retention of exactly m, and that the right-hand side of Eq. 2 represents the

sum of all possible disjoint ways in which the latter event can occur. Expanding the

binomial coefficient in Eq. 2, bounding, and applying Stirling's approximation, we

obtain the successive inequalities

(SPk m 1 eSPk m
P[Mk > m] < < m ((3)

Evaluation of the right-hand side of Eq. 3 is straightforward. As Shannon first

showed (4), application of the Chernov bound, specialized to binary variables (5), leads

to the result that

-n -H (
Pk< 2 (4)

where H is the usual entropy function.

H(x) = -x log 2 x - (l-x) log 2 (1-x) (0< x < 1) (5)

For convenience, we now define an auxiliary parameter pt in terms of the message set

size S and word length n, by means of Eq. 6:

n[1-H(pt) 
(6)

Finally, substituting Eqs. 4 and 6 in Eq. 3, we obtain the desired bound on P[Mk > m].
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P[Mk > m] <
1

(2rm)1/2

(em-nm LH(pt)-H (1) ]
k < npt <Z)

< 1 (otherwise)

Next, we require a bound on P[do = k].

transition probability. Then

Let Po be the binary-symmetric-channel

(qo = 1 - po )

When we apply Stirling's approximation to Eq. 8, we obtain (5), for po 0, 1,

-n [H(po)~- H +- po log,2
P[do = k] < 1

2Tr(n-k) k )

(k > nPo0 )

1 (otherwise)

At this time we also note for future reference that Chernov's bound also leads (5) to

the similar result:

P[do > k I =

nj=kl

j=k+1
P[do = k] < 2

The final step is to substitute Eqs. 7, 9, and 10 in Eq. 1, and thus break the sum-

mation into three ranges

n

Pm(e) = P[do = k] P[Mk > m] (1)

k=O

np
o

Pm(e) = P[Mk ,m] +

k=O

npt

k =np +1

P[do = k] P[Mk a>m] + P[do = k] (11)

k=npt+1

The largest term in the first summation occurs for k = nPo, and a sum is bounded

by the product of its largest term and the number of terms. Therefore,

np
o

k=O

-nm [H(Pt)-H(Po) ]
(12)n(2 )/2

For the second summation, we have

-n[H(po)-Hk+(k po log 2 p 0
(k > npo )

(10)

P[do = k] = pk qn-k0
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1

(2Trm) 1/2

me
(m

-n H(po)-H()+( - p
2

log 2 0
o

-nmH(Pt)-H(k) 1 (13)

Over the range of summation,

1

2r(n-k)( k 1/2
n

(2 npoqo ) 1/2

and we have

npt

Y
<)_ 

-n[H(p)-p

M 20

qo
log

Po
-mH(pt)]

k=np o+1 2n(nm p qo)1/2

npt

X
+n(l+m)H -k log2 P

(-!nS - p
(15)

k=npo+1

By differentiation, the exponent in Eq. 15 is found to have a maximum value at

k = nPcri t , where we define
m

q + 1~/l+m
m

Pcrit m

(16)qcrit - Pcrit
m I

The exponent is monotonically increasing for k/n < Pcrit
the largest term is the last one, and m

npt

k=npo +10

e)m n(p- po) _n[H(po)-H(ptWp o) log qo

Z(n0 p2q o l/ 2

2ir(nm p 0 1/2

The third summation has already been bounded by Eq. 10.

Accordingly, if pt <

(Pt -< Pcrit )

Pcritm

(17)

All that remains

to be done is to note that the exponential factor in Eq. 17 must be larger than

that in Eq. 12. This follows from the fact that the exponent of Eq. 13 reduces

to the exponent of Eq. 12 for k = npo < npt. We therefore loosen the bound in

Eq. 12, and write, instead,

npt

k=np +1
o0

npt

k=np o+1
0

1

n

(14)

Po)
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npo -n H(po)-H(pt)+() g2 o

Zo (2rm)l/2 m
k=0 (2m)/2

(18)

Finally, substituting Eqs. 10, 17, and 18 in Eq. 11, and simplifying, we obtain the

ultimate result

-n [H (poP (e) < I + Pt - Po ( n 1

(2 np 0qo)1/2 (2 m)1/? m

P <Pt Pcrit<)m

where

S =2n[l-H(t) ]

and

1
q c1+m

crit o
m

The significance of this result arises from comparison with the bounds on the proba-

bility of error previously obtained by Elias (1, 2) for the case in which m = 1 (that is to

say, in which the receiver selects only the single most-probable message). The first

of these earlier results bounds the ensemble average probability of error.

-n[ H(p)-H(pt(pt-po)log L0]

Pl(e) < A 2 
O

po < Pt < crit <

and At is a function that decreases (slowly) with n as 1/n 1 / 2  The second result gives

for large n an asymptotic lower bound to the best possible error probability, Pl(e)opt'
that is obtainable with a given channel, code-word length, and number of possible

messages.

for
(19)

(6)

(16)

where

2qcrit-1 o 2

Pcrit1 o1

1r (20)

(21)

q
)-H (pt) pt-po)log2

0,
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-n[H(Po)-H(Pt)+ (Pt-Po)lg o

Pl(e)opt > A 2 (22)

where Aoptalso decreases as /n . For the symbol >, read "is asymptotically
where Aop t .
greater than.. . for large n."

It is seen that all of these expressions have the same exponential behavior. But

when the number of possible messages S is so small that pt is greater than Pcrit l'
Elias (1, 2) shows that the exponential behavior of the ensemble average error proba-

bility pl(e) is not so good as that of PI(e)opt. Essentially, for high transmission rates

pt < pcrit ), the probability of error is dominated by the probability that too many

channel errors may occur during transmission. Appositively, the ensemble average

error probability for low transmission rates (pt > Pcrit 1) is dominated by the probabil-

ity that two or more messages in a randomly selected transmitter set may differ too

slightly from each other.

The purpose of the derivation presented here is to show that by allowing the receiver

to select the m most probable messages, instead of only the single most probable one,

this deficiency of random coding is removed. By making m sufficiently large, random

coding can always be made exponentially as effective as optimum coding, in the limit of

large code-word length. Furthermore, as shown by Eq. 16, in usual practice m need

not be large in order to achieve this result.

J. M. Wozencraft
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D. PICTURE PROCESSING

A large general-purpose digital computer provides a flexible means for studying

characteristics of pictures. In order to exploit the capabilities of the Whirlwind

computer, equipment has been constructed to scan a black-and-white photograph, sample
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the scanner output, and record the samples in digital form on paper tape. Tapes can

also be reconverted to photographic images on photosensitive paper. Specifications for

the terminal equipment are as follows:

Scanning rate: 96 lines/inch

Sample rate: 93/inch

Scanner aperture: 0. 01 inch square, approximate (for both recording and

reproducing)

Quantization: 64 levels.

The effect of scanning without sampling or quantization is shown in Figs. XII-la and

XII-2a. In Figs. XII-lb and XII-2b the pictures have been reproduced from digital

data recorded on paper tape. In the examples presented there are 240 lines in the

shorter dimension and 320 samples per line in the longer dimension, the direction of

scanning.

The first computer program used in this work was designed to generate a piecewise-

linear approximation to the amplitude of the picture signal along scan lines. Relations

between samples in the direction normal to scanning are not considered in this opera-

tion. For all computations, the picture is assumed to be surrounded by a completely

black region with an initial sample value of zero for each line.

The operation of the linear approximation is explained with reference to Fig. XII-3.

From a straight line with zero as origin and the second picture sample as terminus, a

new quantized value is computed for the intervening point. The actual sample value is

compared with that from the straight line. If the magnitude of error at the intervening

point is less than the criterion chosen (3 levels for the example), the straight-line

samples are temporarily stored. Then samples are computed for a new line with the

same origin but with its terminus moved one sample interval in the direction of scanning.

The procedure is repeated until the error at one or more interval points of the line first

exceeds the criterion. When failure occurs, the samples from the last successful line

are permanently recorded. A new straight-line approximation is now started with the

terminus of the previous line as its origin. In order to limit the computation, the maxi-

mum length of line allowed is 32 sample intervals. The total number of runs of each

length is counted as computation proceeds. From the frequency of occurrence of the

various line lengths, a probability distribution of run length can be computed. The dis-

tribution in Fig. XII-4 is an example.

The term "source rate" is defined here as the minimum channel capacity required

for transmission of the data for a given reproduction. An estimate of source rate is
Hr + N

easily calculated by using the formula: Source-rate estimate = - bits/sample,

rwhere Hr is the entropy of run-length distribution in bits; N is the number of binary

digits used to specify sample value at the end of the run; and r is the average run length

in sample intervals.



(a) (b)

(c) (d)

Fig. XII-1. Tests from picture with little detail: (a) scanned; (b) scanned,

sampled, quantized, 6 bits; (c) processed, criterion 3, 1. 29 bits;

(d) processed, criterion 5, 0. 97 bits.

'-- ---~--- LCI -~ -- ~



(a) (b)

(c) (d)

Fig. XII-2. Tests from picture with detail: (a) scanned; (b) scanned, sampled,
quantized, 6 bits; (c) processed, criterion 3, 3. 34 bits; (d) processed,
criterion 5, 2. 79 bits.



- FINAL SUCCESSFUL RUNS

= UNSUCCESSFUL RUNS

FIRST PICTURE

SECOND PICTURE
, SAMPLE

SAMPLE-
INTERVAL

SCANNING DIRECTION

Fig. XII-3. Piecewise-linear approximation. (Maximum magnitude for
quantized approximation error is 3 levels.)

03

Hr 9 638 BITS

T 7 46 INTERVALS

02

01

005

0.01

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
RUN LENGTH IN SAMPLE INTERVALS

Fig. XII-4. Typical run-length probability distribution. (This example
was obtained from Fig. XII-lc.)
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Tests have been performed with criteria of 3 and 5 for computing approximations

to the quantized pictures shown in Figs. XII-lb and XII-2b. Source-rate estimates for

the reproductions of Figs. XII-1c, Id, XII-2c, and 2d are given in Table XII-1.

Table XII-1. Source-Rate Estimates.

Figure Picture Source-Rate Estimate Average Run Length
(bits) (samples)

Quantized Pictures 6 1

XII-lc Girl (Criterion 3) 1.29 7. 46

XII-id Girl (Criterion 5) 0.97 10. 12

XII-2c Crowd (Criterion 3) 3.34 2.48

XII-2d Crowd (Criterion 5) 2.74 3.21

The effects of other methods of approximation for picture transmission are being

investigated.
W. A. Youngblood

E. ALGEBRAIC DECODING FOR THE BINARY ERASURE CHANNEL

An algebraic decoding procedure for the binary erasure channel is being investi-

gated. This procedure is interesting because the application of this scheme to convolu-

tion parity-check codes requires an average amount of decoding computation per digit

which is bounded by a given number, even though the code length is arbitrarily large

and the probability of error is arbitrarily small.

The transmitter of a binary erasure channel can transmit only the binary symbols

0, 1. The receiver of the channel either receives the transmitted digit correctly or the

digit is erased and an X is received. To decode, the transmitted values of the erased

digits must be determined.

Elias (1) has shown that parity-check codes can be coded with an amount of computa-

tion per digit that is proportional to code length and that the probability of error for

codes with a given rate decreases exponentially with code length. If, in addition, the

algebraic procedure is used to decode, we have a complete coding-decoding procedure

which requires little computation and behaves almost as well as the best possible code.

For the purpose of illustration, we can apply the procedure to a block parity-check

code. In a block parity-check code of length n and rate k, nR information digits are

encoded into a transmitted message of n digits as follows. The first nR digits of the

message are the information digits (see Fig. XII-5). The last n(l-R) digits of the

message are the check digits and they are determined by Eq. 1 and the matrix a ,

whose elements are either zero or one.

100
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nR

a.. Ij = C. (mod 2) i = 1, 2 n(-R) (1)

j-1

In transmission the digits are erased at random with a certain probability p that is

characteristic of the channel (see Fig. XII-6). Usually, some information and some

check digits will be erased. The decoding is done by means of the received message

and the parity-check equations. The values of the unerased digits of the received mes-

sage are inserted into each parity-check equation to form the constant, and the erased

digits are treated as unknowns. When this has been done, we have n(l-R) linear modulo-

two equations in the erased digits. By means of the modulo-two analog of the Gauss-

Jordan procedure, we can find out if the erased digits are determined by the parity-check

equations. If the equations determine the erased digits, the procedure will solve for the

values of these digits (see Fig. XII-7). The average amount of computation for decoding

a block of n digits is proportional to n 3. This means that the average number of com-

putations per digit is proportional to the square of the block length, so that as the block

length becomes infinite the average number of computations per digit becomes infinite.

The most important result of this investigation arises from the application of this

new algebraic decoding procedure to convolution parity-check codes. A convolution

parity-check code of length n is a code in which information and check digits are inter-

mingled, and the check digits are determined by parity checks on some of the informa-

tion digits in the preceding n digits. Figure XII-8 illustrates a convolution parity-

check matrix and Eq. 2 represents the equations for such a code, in which p(i) is defined

as the position of the i t h check.

p(i)-i

d p(i) a.. dj (mod 2) i= , 2 .... (2)

j= p(i)-n

In the decoding procedure for the convolution code digit 1 is decoded first, then

digit 2, then digit 3, and so on. This decoding procedure is similar to the decoding

procedure developed by Wozencraft (2) for the binary symmetric channel. Because

digits are decoded in sequence, digits 1, 2, ... , m-1 are known, and all terms in the

parity-check equations that contain these digits are known, when digit m is being

decoded. This fact leads to the important result that decoding a given digit is essen-

tially the same as decoding any other digit. Therefore, the following discussion is

limited to the problem of decoding a typical digit.

A given digit is decoded in a series of steps. Thus, we attempt, first, to decode

with one equation, then, with two equations, and so on. The process terminates when

the digit is decoded. In the step in which m equations are used the computational dif-

ficulty is the same as for a block code of length m/l-R and the number of computations
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Information Digits

1 1 1

0 0 1

1 1 1

Parity-Check Matrix

I l 12 13 C1 C 2 C3
1 0 1 0 1 1

Transmitted Message

Fig. XII-5. Coding at the transmitter.

I I 12 13 C1 C2 C3
1 0 1 0 1 1

Transmitted Message

Binary

Erasure I 1 2 13 1 C C 3
Channel 1 X 1 0 1 X

Received Message

Fig. XII-6. Transmission through the channel.

I I 12 13 C1 C 2 C3
1 X i 0 1 X

Received Message

12' C 3 Erased

1 X 1 0 1= 0

0 0 01= 1

1 X 1  0-X 2
Decoding Equations

X =0

X 2=12 1 0 1

Solution Information Digits

X1 = 12; X2 = C 3

Fig. XII-7. Decoding at the receiver.

dl d 2 d 3 d 4 d 5 d 6 d7 d 8 d9 d10

I 1 C 1 12 C 2 13 C 3 14 C 4 15 C 5

1 1

1 1 1

0 1 1

1 0 1

0 1 1

Fig. XII-8. Convolution matrix of length 4. (Blank spaces are zero.)

102



(XII. PROCESSING AND TRANSMISSION OF INFORMATION)

required is proportional to m3. With the help of Elias' (1) results, we can show that

the probability of reaching step m decreases exponentially and can be bounded by

ce-am. Thus the average number of computations needed to decode one digit is equal

to the sum, over the maximum number of steps possible, of the average number of
3 -am

computations needed for each step and is bounded by Z cm e . This sum is bounded

by some finite number B, which is independent of the code length but depends on the

channel capacity and the rate of transmission, since these factors determine the con-

stants "a" and "c" in the exponential bound. Hence, the average number of computations

needed to decode any given digit is bounded by B, regardless of the convolution code

length.
M. A. Epstein
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