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Foreword
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Random Theory," which was started in the Quarterly Progress Report of April 15, 1958,
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Y. W. Lee, A. G. Bose

A. NONLINEAR PROBLEMS IN RANDOM THEORY (continued) by Norbert Wiener

Lecture 3

Orthogonal Functionals

I am going to discuss the hierarchy of orthogonal functionals. Suppose that we

have a second-degree function K(T, T Z). In order for us to have sufficient hypotheses

to work with (although we shall remove some of these hypotheses later), let us take a

finite sum for K(T 1 ,2 T)

K(T 1,T 2 ) = an n (T1 n(T2 ) (3.1)

Thus we avoid all troubles of rigor.

form

ffK(T1, 2 ) dx(T 1 , a) dx(T 2 , a)

Now, I shall be working with an expression of the

(3.2)

The function K(T 1I 2) is assumed to be symmetrical, by the way, although there is no

restriction in considering a function of this sort symmetrical. If it is not symmetrical,

I interchange the T 1 , T 2 , add it to itself, and divide by Z. This does not change the final

quantity in expression 3. 2. Similarly, given a functional such as

ffK(T1 T2 T3 ) dX(T 1 , a) dx(T2 , a) dx(T 3 , a) (3. 3)
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I can symmetrize it, and so on.

Now notice the following: The sum of any two expressions of the form of expression
3.2 is an expression of the same sort, and similarly, the sum of any two expressions of
the form of expression 3. 3 is an expression of the same sort. The functionals in expres-
sions 3. 2 and 3. 3 are homogeneous polynomial functionals of the Brownian motion. The
homogeneous functional of zero order is K o. The homogeneous functional of the first
order is given by

f K(T) dx(T, a) (3.4)

The homogeneous functional of the second order is given by expression 3.2, and so on.
I can now get nonhomogeneous functionals of the Brownian motion of any degree I desire.
For example, I shall call

f Kl(T) dx(T, a) + K (3.5)

a nonhomogeneous functional of the first degree. These functionals will be functions of
a belonging to L 2 . We have no trouble in proving that, if the kernels themselves are
functions in L 2 .

I now want to do the following things: First, to take the constant and normalize it;
then to take a first-degree homogeneous functional plus a constant, make it orthogonal
to all constants, and normalize. Next, I shall take the homogeneous expression of the
second degree plus a homogeneous expression of the first degree plus the zero th degree.
I make that orthogonal to all constants and functionals of the first degree, and so on. In
this way, we get a hierarchy of functionals of different degrees, each of them orthogonal
to all functionals of lower degree. This is important because it enables us to express
a given function of a in terms of orthogonal functionals of different degrees.

Let us start with the zero degree, Ko, which is a constant. The mean of the square
of Ko is Ko, and its absolute value is 1 (I am dealing here with reals); that is, K is ± 1.0 'th o
We then have the zero -degree normalized functional.

Now let us consider the first-degree expression as given in expression 3.5. I want
this to be orthogonal to all zero-degree functionals. But notice that changing Brownian
motion into its negative does not change the distribution of Brownian motion. Therefore,
it follows that if we multiply the first term of expression 3. 5 by a constant and average,
the average will be zero. Then multiplying expression 3,5 by a constant C and aver-
aging, we get CK . It must be zero if expression 3. 5 is to be orthogonal to all constants,
which is the case only if K° = 0. Therefore, all first-degree homogeneous functionals
are orthogonal to all zero-degree homogeneous functionals. The constant term will have
to be zero to make expression 3. 5 orthogonal. We now normalize the first-degree
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orthogonal functional:

SKI(T) dx(T, a) (3.6)

Now

da Kl(T) dx(T, a = KI(T) dT (3.7)

Thus we have our category of (homogeneous) first-degree functionals, orthogonal with

respect to a to all homogeneous zero-degree functionals. These will be represented by

fK( T ) dx(T, a) (3.8)

where

f K (T) dr = 1 (3.9)

So now we have two hierarchies: the zero-degree functionals that are normalized; and

the first-degree functionals that are orthogonal to all zero-degree functionals, and are

normalized.

The computations now become a little more complicated. I consider a second-degree

functional like

ffK2(T 1 )dx(T1 a)dx(T, a) + K(T) dx(T, a) + K (3. 10)

where K2 is symmetrical. I am assuming that K2 can be represented as the sum of

products, as in Eq. 3. 1. Now I want expression 3. 10 to be orthogonal to every constant,

so it is enough to say that it is orthogonal to 1. To say that expression 3. 10 is orthog-

onal to 1 is to say that the average of expression 3. 10 multiplied by 1 is 0. This yields

K2 (T, T) dT+ K = 0 (3.11)

We also want to make expression 3. 10 orthogonal to any expression

f C(T) dx(T, a) (3. 12)

If we do that, the first term in the product of expressions 3. 10 and 3. 12 is third degree

and has a zero average. The second term is second degree; the last term is first degree

and has a zero average. We then get
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Kj(T) C(T) dr = 0 (3. 13)

That means, since Eq. 3. 13 is true for any C(T), that K 1 (T) = 0. Also, from Eq. 3. 11,
we have

K - iK (T, 7) dT (3 14)

Therefore, the expression that is orthogonal to every zero-degree and first-degree

expression is

ffK2 ( 1 T) dx(T1 .a) dx(T, a) - K 2 (T, ) dT (3.15)

We have orthogonalized expression 3. 15 to every zero- and first-degree expression,
and we shall now normalize it. I square expression 3. 15 and integrate with respect to

a from 0 to 1:

da fK 2 (,1 T) dx(T 1, a) dx( 2,, a) - K2 (T, d) dT (3. 16)

This becomes

1 da K2lll (l T 2) K3( 3' T4) dx(T lI a) dx(T.' a) dx(Tr3, a) dx(T4' a)

-2 K(T, ) dT fK 2(i T ) dx(T1, a)dx(., a) + K(T, ) dT) (3.17)

Now remember our rule: We identify the variables by pairs and integrate. There are

three ways of identifying the variables T1, T2 , T 3 , and T4 in the first term of expression

3. 17 by pairs: T1 and T2, T3 and 4 ; 1 and 73 , T and T; 1 and T4,  Z and T3 . Remem-

ber that K2 can be, and is chosen, symmetrical. From expression 3. 17 we get

K2 (T, T) dT + 2 fK (T 1 ,I 2 ) dT 1 dT2

-2 [fK 2(T, ) dT + [fK (T, T) dr] (3. 18)

where the first two terms result from identification of the variables T 1, T 2 , T 3 , T 4 in var-

ious combinations. Summing, we get



(VII. STATISTICAL COMMUNICATION THEORY)

2 K(Tl' T2 ) dT1 d 2  (3. 19)

So now we have the second category of orthogonal functionals. In this category we have

ffK (TT 2 ) dx(T1 a) dx(, a) - K2 (T, r) d, (3.20)

where

2 fK Z(T1 ' T2 ) d d 2 = 1 (3.21)

I shall construct the third category in order to give you the feel of this. Then I shall

go over to the general theory. We take

fffK 3(T 1 T2 , T 3 ) dx(T 1 , a) d(T 2 , a) dx(T 3 , a)

+ ff K2 ( 1, 2) dx(T 1 , a) dx(T 2, a)

+ fKI(T) dx(T, a) + K o  (3.22)

where K 3 is symmetrical. This is the third-degree nonhomogeneous functional of x(t, a).

This is to be orthogonalized to a constant, to a first-degree functional, and to a second-

degree functional. First, consider the constant. The average of the first term of expres-

sion 3.22 is zero because it is third degree; the second term of expression 3. 22 yields

K Z(T, T) dT (3.23)

The average of the third term is zero, and the last term gives K o . Thus we have

f K 2 (T, ) dT + K = 0 (3.24)

Also, expression 3.22 is supposed to be orthogonal to any expression

C (T) dx(T, a) (3. Z25)

So, we multiply expression 3.22 by expression 3. 25 and average. Since K 3 is symmet-

rical, all of the ways of dividing T 1, T 2 ,T3 in pairs are alike, and we obtain
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3ff K3 (T1 1 ,1) T1 C(T)dTdT 1 + fK(T) C(T) dT = 0 (3.26)

for all C(T). And since C(T) is arbitrary, the function that is orthogonal to every func-
tion C(T) is zero. Therefore, we obtain

3 K 3 (T 1 1 , T) dT 1 + Kl(T) = 0, for all T (3. 27)

That is the necessary and sufficient condition for orthogonality with linear functionals.
Next, we multiply expression 3. 22 by

f C(o- 1  2) dx(o-1 , a) dx(oT2, a) (3.28)

where C(O-l,Z) 2 is symmetric, and then average. That gives us a fifth-degree expres-
sion. The first and third terms of the fifth-degree expression have zero averages. We
then get

fC(-, -)do K 2 (T, T) dT + 2 ffC(T1,T 2 )K2 (IT 2 )dT 1 dT 2

+ Ko fC( -, T) do = 0 (3.29)

where the first term results from identifying -'s and T's among themselves, and the
second term results from identifying -'s with T's. Then if we use Eq. 3. 24, we see that
the first term plus the third term in Eq. 3.29 is zero. Now, whatever C(- 1 ,0 ) is,
Eq. 3.29 must be zero. Also, any symmetric function orthogonal to all symmetric func-
tions is identically zero. Therefore, any K 2 is identically zero, and from Eq. 3. 27 we
have

K 1 (T) = -3 f K 3 (T T 1 , T) dl, for all T (3. 30)

Using Eq. 3. 30 in expression 3. 22, we find the third-degree functional to be

ffK 3 (T1, T2, 3 ) dx(T 1 , a) dx(T, a) dx(T3 , a)

3 ff K3 (T1 T1 , T) dT 1 dx(T, a) (3.31)

This has been orthogonalized to every constant, linear, and quadratic functional, but
it has not yet been normalized. So we want
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1 = da f IK3 '(T l
2 
2, 3 ) dx(T 1 , a) dx(T 2 , a)dx(T3, a) -3 K3 r, T 1, TT) dTr dx(T', a 2 0: da K3 (T1 , ", T 3 ) K3(T 4 , T5 , 6

X dx(T 1, a) dxxT 2 , a) dx(T), a) dx(T, a) dx(T1, a) dx(T 6  a) -6 f6 K(TI, T?, T ) K 0-11, 01, T) do- dX(T, a) dx(T 1 , a) dx(T2 , a) dx(T3 , a)

+ 9 fff K 3 (T1  T1"2) K 3 (T 3 , T 3 , ) drT1 d 3 dx(T2, a) dx(T4 , a) (3. 32)

The first term on the right-hand side of Eq. 3. 32 is a sixfold integral, and we can iden-

tify the variables in a number of different ways. One of the things that we can do is to

identify every T in the first parentheses with some 7 in the second parentheses. There

are three ways of dealing with the first bracket; and after that, there are only two ways

of picking the second and one way for the third. So we get

3 ! K (71 2' T 3 ) dT1 dr 2 dT 3  (3. 33)

for the first combination. The second combination is obtained by identifying one T in the

first parentheses of Eq. 3.32 with another T in the first parentheses. This means that we

have one T left over which will be identified with one T in the second parentheses, and

there will be two T's left over from that. Then we have

fffK 3 ( 1, r) K 3 (T 2, T) dr 1 drT dT (3.34)

as a typical term. How many ways are there of obtaining that term? The single term

in the first parentheses of Eq. 3.32 can be picked out in three ways. The single term in

the other parentheses can also be picked out in three ways. So we have nine ways of

doing it. Thus, the first term of Eq. 3. 32 yields 9 times expression 3. 34 plus expres-

sion 3. 33. Now we take

- 6 f0 da fffffK 3 (T 1 , T 3 )K 3 (0-1, T) do-1 dx(T, a)

X dx(T1, a)dx(T2, a)dx(T3, a) (3. 35)

which is the second term result in Eq. 3. 32. Now, T will have to be identified with

one of the T1, T 2 , T 3 , for there is no other way to do it. That means that the two remaining

T's are to be identified with one another, and we get exactly the same thing as expression

3.34 except for a scale factor of -6 X 3, or -18. There is left the last term of Eq. 3. 32.

There we identify T 2 and T4 and obtain

9f [fK 3 1TT1 ) 1 ) dTll dT (3.36)

Equation 3. 32 becomes
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3! K2 (T1 ,TT 3 ) dT 1 dT2 dT3

+9 fffK 3 (T1 ,TT)K 3(T 2 ,T T)dl dT 2 dTd T

- 18 I K3(T ,T1 , T ) K 3 (T2 ,  T) d Tr dT

+ 9f [fK3 T 1,TT) d 1 2 dT (3. 37)

The last three integrals in expression 3. 37 are the same - just check out the variables.

So we get

f K 3 (T T1 , T 3) dx(T 1, a) dx(T, a) dX(T 3 , a)

- 3 fK 3(T 1, T ) dT1 dx(T, a) (3. 38)

where

3! f K2f (T ,T2 T3 )dT drT d 3 = 1 (3.39)

I have given you the first three orthogonal functionals. Actually, I could construct

the fourth. The fourth-degree functional will contain the fourth-order, second-order,

and zero th-order terms, and so on. In any case, the leading term (the term of highest

order) will determine the other terms; and the integral of the square of the orthogonal

functional, if it is not normalized, will be the integral of the square of the highest sym-

metric term, with respect to the three variables multiplied by 3!, or, more generally,

with respect to the n variables multiplied by n!

Consider, once more, the second-degree-functional case (the third-order case will

be similar). Notice that this function of a (expression 3. 15) is related to a normalized

symmetric function of T1, T2 in such a way that if we divide K2 in expression 3. 15 by

Z , the integral of the square, expression 3. 16, will become the integral of the square,

Eq. 3.21, and will be 1. I now employ the Riesz-Fischer theorem. Suppose that we

have a sequence of symmetrical second-order functionals {KZn(T1 T2)}. Then if

2 -
lim K2 ( 1 2) -K ( I.T) d dT = 0 (3.40)m, n-0o [ ]2
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the functions Kn converge in the mean to a function KZ(T 1' T2). It follows that the

expressions of the form of expression 3. 2 converge in the mean in a to a limit that is

independent of the sequence chosen. This means that although I have started with rather

special functions K(T 1' rZ), as in Eq. 3. 1, which are finite sums of products of functions

in L , convergence in the mean of these functions will define an operator on a that will

be the limit in the mean of the approximation. I shall define this operator as

G (K2 , a) = ffKz( Tl2 ) dx(T 1 , a)dx(T2 , a) - K(T, T) dT (3.41)

Notice, then, I shall define a functional G2 (K 2 , a) for every function K2 which is symrnet-

rical, or can be made symmetrical, and which is L . I shall have to be a little careful

here. It does not follow that I can immediately use the representation in Eq. 3. 41, for

the following reason: The second term of Eq. 3.41 may not exist even if K2 is in the

class L in the two variables together. Therefore

K 2(T, T) dT < 0 (3.42)

is an added requirement. However, we can still define G (Kz,a) as a well-defined function

of a belonging to L2 when K 2 is any symmetrical function of T1 ,T 2 belonging to L . Simi-

larly, we can define G 3 (K 3 ,a), G1 (KI,a), and G (K ,a); the last does not actually depend on a.

I am now going ahead of the game and assume that I proved this for general n, which

I shall, in fact, do later. Thus, I can define a hierarchy of functionals of a. Further-

more, it is easy to see that all of the functionals at each level are a closed set in them-

selves; that is, the sum of any two functionals at each level will be a limit in the mean

of functionals at this level because of the convergence in the mean property. In other
2

words, we obtain a series of classes of functionals of a which are L . Every functional

in each class is orthogonal to every functional in every other class. If in each class we

are given a definite K o , K 1 ,K 2 .... , we have a hierarchy of functionals of a. Further-

more, I say that it can be proved that this is a closed set of functionals, that every func-

tion of a belonging to L2 can be approximated by a polynomial functional of this set, and

that, since the G's are orthogonal, these approximations represent the projections of the

function of a on successive classes or spaces - spaces of all functions of a. In other

words, we can represent the function of a completely in this way. (We shall go over that

at the next lecture.)

Then, given any function F(a) belonging to L2, F(a) can be represented in a unique

way as

F(a) = 1. i. m. [Go(Ko, a) +G 1 (K 1 , a)+ ... + GN(KN, a)] (3.43)
N-oo



(VII. STATISTICAL COMMUNICATION THEORY)

Furthermore, previously determined terms are not changed by taking more terms in the
approximation to F(a). This is just like ordinary orthogonal development, except that
here we have an orthogonal development in whole classes of functionals - something that
will give us a canonical development of any function of a that belongs to L . We are
going to find that this canonical development in a functional of a random function is
extremely useful, and we shall go into that in more detail next time.

Now, we actually have more than the mere knowledge that we can get a development
of the sort that we obtained in Eq. 3.43. Indeed, we have a technique by which, given a
function of a, we can pick out the respective components. This means picking out
Ko , K 1 , K2 ..... This is the next thing that I am going to talk about.

I want to call your attention to the fact that this development is analogous to the
Fourier integral theory, which is a development of a particular sort in which we get
the coefficients of the "expansion" of the function by an integration process. Here we
have a development of another sort which depends upon x(t, a). But x(t, a) is a well-
defined function. We have already defined it. The present development is different
from the ordinary Fourier integral development in the following way. We have a denu-
merable set of functionals, but nevertheless, the general problem is the same: namely,
given a function of a, get the development.

Next time I shall show you how to develop explicitly any function of a in L2 in a
canonical development. We shall then use that development for various problems
arising in connection with random functions. In particular, we shall use it for the
following. Suppose that we have a function not of a alone, but of Tta, where Tta is
obtained by taking x(T, a) and changing it to x(t + T, a). We have already seen that this
is a measure-preserving transformation of a. I am going to show you that when we
make this transformation, each term in the development of F(T ta) comes from one
term in the development of F(a), and they do not mix. I shall then be able to compute

f da F(Tta) F)(a) (3.44)

using the fact that orthogonality and normality in a for the G's goes over to orthogonal-
ity and normality for each one of the G's, with shifted arguments of the kernels in their
respective set of variables. Under these conditions, we shall be able to get the auto-
correlation function of nonlinear operators on Brownian motion and their spectra.
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Lecture 4

Orthogonal Functionals and Autocorrelation Functions

Today I am going to discuss the general theory of the development that I gave at the

last lecture.

We have

Fri(a) = f ... Kn(T1 . T... n) dx(T1, a) ... dx(-rTn, a)

+ . Kn-( 1  . n l) dX(T,a) . . . dX(Tn-l,a) + .. +Ko (4.1)

I am assuming, by the way, that Kn has all smooth properties, since I am dealing with a

particular case. I shall take Kn as given. The other K's are to be determined so that

F n(a) is orthogonal, as a function of a, to every integral

f... / Q(T1 m) dx(T1,a) ... dx(Tm, a) (4.2)

for which m < n.

That being the case, I am interested in obtaining

f1 F(a) da (4.3)

From our assumptions, it follows at once that

1F (a) da = da ... Kn( -1 ... n) dx(o-1, a) ... dx( n, a)

X f... K .n .. T n ) dx(T 1 a) ... dx(Tn, a)+ lower terms (4.4)

since all of the lower-order terms will be orthogonal to Fn(a) over (0, 1). In order to

perform the integration, we take all of the o- variables and all of the T variables, make

identification of variables by pairs in all possible ways, integrate, and add. Notice that

if we identify two a- variables, then we get an expression of lower degree. The integral

of such a term multiplied by Fn(a) will be zero. Therefore, the only things that are left

are those identifications in which we identify each a- variable with one of the T variables.

We can only identify each ar variable with a T variable in the first term of Fn(a).

There are n! ways of doing this. Thus we get
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1 F (a) da = n! ... K2 ( (T1  .. Tn) dT 1 ... dT (4.5)

In other words, without actually computing the expression, I have obtained the formula
thfor the integral of the square of the n -degree orthogonalized F n at least in the case in

which K is the finite sum of products of L 2 functions.
n

I can now use the argument that I gave before. If we have given any limit in the mean

(1. i. m.) of expressions of the form of Eq. 4. 1, then a necessary and sufficient condition

for the limit in the mean to tend to a limit will be that the K tend to a limit. Under thosen
conditions, we shall still get the relation of Eq. 4. 5.

The general function that I shall get from Eq. 4. 1, I shall designate as Gn(Kn, a),
where Kn is a symmetric function of n variables. I now extend this by the limit in then2
mean to all Kn that are L in the different variables. Any Gn(K , a) is orthogonal to any

Gm(Km, a) for which m # n.

The next question is the closure of these functions, but we have really settled that

question. All the sets of the Gn are closed, as will be shown. Do you remember how

we got the a's ? We took x(t, a) and defined it in terms of a permutable binary number.

Suppose that we have any function

4[x(t 1, a) x(t 2 , a) ... x(t n , a)] (4.6)

where the t are binary numbers of a certain order. You remember that when I definedn
the curve that goes through a set of "holes," I defined it in terms of the x's only. In other

words, I defined the measure of a in terms of the functions that depended on x(t, a) at

a larger and larger binary number of points. It is easy to use that to show closure of
functions of a at these points.

However, because of the closure of xn exp(-x ), it is easy to show that c can be
approximated by polynomials that pass through the given points. Therefore, any func-

tion of a belonging to L2 can be approximated in the mean by polynomials depending on
x's, or differences between x's, at a finite number of points. Since the approximating

polynomials can be approximated by orthogonal polynomials, we have at least one approx-

imation of this sort. Therefore the G form a closed set if K runs through all functionsn n
that are symmetrical and LZ in n variables.

In summary, any function of a can be approximated by a sum of orthogonal G func-

tions. Furthermore, if we take the sum of two G's of n th degree, we get a term of

nth degree. If we take the projection of F(a) on all terms of lower degree than n, where

n is the degree of the highest term in an approximation to F, this projection does not

change as we increase n. The projection of a projection will still be the same projec-

tion.

From the preceding discussion we can come to the conclusion that if F(a) belongs to



(VII. STATISTICAL COMMUNICATION THEORY)

L
L" we can write, uniquely,

N

F(a) = 1.i. m. Gv(K, a)
N-co

v=0

(4.7)

where the best representation for each choice of N does not change the lower-order GV
but only introduces new ones.

Now comes the problem of determining the G , which means determining the K's.

Suppose that we take

(4.8)G (Q , a)

where G is a given G (Q , a). Any expression of that sort will be orthogonal to all of
the terms in Eq. 4. 7 except the th

the terms in Eq. 4.7 except the F , and we have

f da F(a) G (Q , a) = 1 G (K ,a) G (Q, a) da

All other terms will vanish. We have already obtained our formula for this integral. It is

f 1 (4.10)da F(a)G (Q , a) = !

In order to show this, I first work with (Q1 + K ) in Eq. 4. 5, then with (Q - K ), sub-

tract the results, and divide by 4. Dividing by FL!, I obtain

dTl .. . dT K (T .. T ) Q i(T1, .. ) 1 da F(a) G (Q ,a) (4.11)

Equation 4. 11 can be used for many purposes. One of the simplest is the following. Let

us consider Q (a) to be a particular Q , which we define as

tk + E

(4. 12)

1, for every Tk(1 < K k ), tk < k

0, elsewhere

That is a symmetrical function. If we take this particular Q , Eq. 4. 11 reduces to

Sfda F(a) G (Q a)[1 0 11 ý K (T ... , T )dT 1 ... dT

From Eq. 4. 13 we obtain

1 da F(a) G (Q, a)

(4. 9)

= tl+E

t 1i

ft +E
• , • .

(4. 13)

(4.14)

dT 1 . .. fd K (T1 .. . )T Q(, ... ,T )
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as the multiple average of K over the E interval. If K is a function belonging to L it

can be proved that the average will converge in the mean to K . Therefore, we have a

procedure by which we can explicitly determine the K and the expansion of F(a).

To summarize: We have here an expansion in terms of which, given F, we can, by

integrating F times the known G's and going to the limit in the mean, determine the dif-

ferent K's and the different terms in the development. This, then, is a formulation anal-

ogous to the Fourier integral development in that, given any function belonging to L2 , I
can not only say that there is a development like that of Eq. 4. 7 but I can determine,
explicitly, the coefficients by a limit in the mean of certain integrals. This is the expan-

sion that is important for nonlinear work, just as the Fourier integral is important for
linear work.

There are other particular cases that I can work out. One important case is the one
in which we have

G (T 1 ... T 1) (T1) (T )... i2 (-( ) (4.15)

where the c's are a normal and orthogonal set of functions.

By the way, it is not necessary for G to be symmetrical. It can always be

symmetrized. Some of the ýIs may be the same, and some of them may be differ-

ent. I can still get the development of the K's in terms of the ý's. I am going to

use that later.

Now suppose that we start with

o00

F(a) =1. i. m. Z Gn(Kn, a) (4.16)

n=0

and suppose that

K = Kn(T71  T ) (4.17)

Let me replace Eq. 4. 17 by

K = K (t + T, ... , t+ T n ) (4. 18)

I think that it is clear that this replacement is generated by a measure-preserving trans-

formation of a. I think that it is also clear, from the way in which the different terms

are formed, that each Kn in Eq. 4. 17 will go into the corresponding K in Eq. 4. 18 under

the same transformation, and that the G will go into the G under the same transforma-n n
tion.

If we designate the transformation of a as Tt then



o00

F(Tta) = Gn(K , a)

n=O

where

Kn ( .. T ) =  (t+T ... , tn 1' n n 1'
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(4.19)

+ T ) (4.20)

First, I shall work with a real case, then say a word or two about the complex case. It

follows that

1 F(Ta)F(a)
0oo

da= n
n=0

! ... Kn . Tn)Kn(t+1 ... t n)dT 1 ... dT (4.21)

If the K's are complex,

will be:

cc
F(T a) F(a)da= n

n=0

we can separate real and imaginary parts, and the final result

dT1 ... dn (4.22)1.. n

There is no problem in proving that.

Equation 4. 22 is an autocorrelation obtained by averaging on a, but we now go back

to a certain ergodic argument. If we change x(t, a) to x(t + a, a) - x(o-, a), we change the

Brownian motion in the following way (remember that t runs from -00 to oo): Instead of

referring the motion to the origin, we refer it to the point P, as shown in Fig. VII-1.

We still get a Brownian motion with the same distribution. I think I showed you the other

P

Fig. VII-1.

day that, when we obtain our new a by

This transformation can be written as

"cutting down," the measures will be the same.

Jl

... fK n(T ... , T n)Kn(t + T ... t + T n)



(VII. STATISTICAL COMMUNICATION THEORY)

x(t +ar, a) - x(cr, a) = x(t, T a ) (4.23)

and is a measure-preserving transformation of a generated by translation. It is such a

measure-preserving transformation that is a condition for what is known as metric tran-

sitivity.

I shall first state the ergodic theorem in general, then I shall apply it to this case.

Suppose that we have a variable a and a measure-preserving transformation Ta. As a

matter of fact, I am going to consider a group Tta which is such that

t t t +t
T aT a =T a (4.24)

is a measure-preserving transformation of a. If I assume that I have a function F(T ta)

which belongs to L 2 and is measurable in the pair of variables t and a, then the Birkhoff

ergodic theorem says that

I A
lim - f(Tta) dt exists for almost all a (4. 25)

A-ccA

It can be proved that the set of values of a for which this integral lies between 0 and 00

is a measurable set, and it can be proved that this set is invariant under every transfor-

mation Tt.

If the transformation Tt has the property of having no invariant measurable set of

measure other than 0 or 1, then for almost all a the limit of expression 4. 25 is the same.

This is called metrical transitivity. It is also known as the ergodic hypothesis. Then,

under the ergodic hypothesis, it follows that for any metrically transitive transformation

we have

lim A f(Tta) dt = C (4. 26)
A- ooA 0

for almost all values of a.

What is C? Let us integrate with respect to a:

C da = C = lim - dt da f(Tta) (4. 27)
0 A-0- 0 0

Then, f(a) is absolutely integrable, and we can interchange orders of integration. Inte-

grating first with respect to t, we get

1 f
C = lim - f(Tta) dt = f(a) da (4.28)

A-oo A 0 0
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Hence, if we have a metrically transitive transformation, the time average, for almost

all values of a, will be the a average.

From this we deduce that if the metrically transitive hypothesis is fulfilled

F(Tta) F(a) da = lim 1 F(Tta) F(a) da (4.29)
0, A-0 A 0

since

F(Tta) F(a) (4.30)

is obviously a function that will be L , being the product of two functions in L . There-

fore, if we can establish metric transitivity for this particular transformation, we shall

have established the time autocorrelation of F(a) for almost all values of a.

Let us go back to the question of metric transitivity. My statement is that the trans-

formation of a which is generated by a translation in time of the Brownian motion is, in

fact, metrically transitive; that is, if a set S, of values of a, is invariant under all trans-

formations Tta, its measure is either 1 or 0. I shall sketch the proof.

Consider a set S, of values of a, and assume that S is measurable. There is a

theorem for infinite dimensional space which states that if we have a measurable set of

values of a, it can be approximated by a finite number of intervals on the a line. A

finite number of intervals can, furthermore, be approximated by a finite set of intervals

corresponding to the binary subdivisions of the a line. Accordingly, given the set S,

there is a set Sf, depending only upon a finite number of points, which is such that

m(S Sf + Sf S) < E (4. 31)

Given any measurable sets, that is the case.

If we take Tt Sf and T7 is large enough, then Tt Sf is independent of Sf and S. This

means that if we take the logical products (S T Sf) or (T Sf S), the measure of the logi-

cal product is as close to the product of the measures as we wish. Also, since m(S) is

invariant under all transformations Tt, m(Sf) will be nearly invariant. Using these facts

in expression 4. 31 we obtain, in the limit, since m(Sf) i m(S),

m(S) m(Tt S) + m(Tt S) m(S) = 2{m(S) - [m(S)] 2} < E (4. 32)

for any E. Therefore,

m (S) - m(S) = 0 (4. 33)

which means that the measure of S is either 0 or 1. Therefore, the translation operator

is really a metrically transitive or ergodic transformation.

Summarizing, we can use the Birkhoff ergodic theorem, and we can show that for
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almost all values of a (and that's all we have to do) the time autocorrelation of F(a) is
what we have obtained by our integration formula as the average of the closure.

We are now in a position to go ahead and obtain actual spectra of certain time series
that depend nonlinearly on x(t, a). There are two cases of nonlinear spectra that I am

going to discuss in later lectures. There are many others that this method will apply to,
but I shall discuss these two cases in some detail.

One of these cases is the following:

exp iK(t-T) dx(T, a)) (4.34)

That is essentially what we get, physically, when we have a clock with a locating hana,
but the hand is loose and subject to Brownian perturbations. As a matter of fact, expres-
sion 4. 34 represents a linear Brownian motion of rotation that depends on the parameter

x. We are going to take that up at the next lecture, and I shall discuss the spectrum of
the motion described by expression 4. 34.

This is a very important thing physically; for example, in the sort of problem that

Professor Jerrold Zacharias is dealing with - that

is, highly perfect clocks. He does not have a per-

fectly accurate time measurement. The time meas-

urement depends on the clock, as it were. If you

have an inaccurate time measurement and a highly

perfect clock, how will the time inaccuracies affect

the spectrum? We are going to show that the spec-

w trum is as illustrated in Fig. VII-Z. Although I

have drawn this spectrum centered about zero fre-

quency, I can have it centered at any frequency.
Fig. VII-2.

The effect of inaccuracies is to take the spectral

line and spread it into a band. Actually, the char-
acter of this band is not Gaussian, as we shall see.

The next question is similar but one order higher. We have a Brownian motion

affecting the speed of a clock in a quadratic way.

expi fK 2 (t + t+T 2) dx(T1,'a) dx(T2 ,, a (4.35)

What is the spectrum going to be ? I shall tell you in general terms, and we shall com-
pute it at a later date.

Expression 4. 35 will give us a line at zero frequency in the spectrum. In addition,
there will be sidebands. Their profile will sometimes appear like the one that is shown
in Fig. VII-3. However, I am going to show that in certain specified cases the profile
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ow

II

-w

Fig. VII-3. Fig. VII-4.

of the sidebands will be a little different. It will have a dip at the origin, as shown in

Fig. VII-4.

The reason that I started this work was that I ran into the case of a spectrum in which

there certainly must have been a random element, with sidebands that dip at the center.

This came about in my discussion of brain waves. As you know, the electroencephalo-

gram gives a voltage as a function of time. We can get the spectrum of such a function

by a method that is familiar to us, and we can get it to a high degree of accuracy. I did

this experimentally. I found this dip phenomenon occurring. I tried to think of a possible

explanation of it and to get a working model of a system that would exhibit it. The thing

that led me into this work was the attempt to get a working model.

The fact is that we do get something of this sort. We are going to begin the evalua-

tion of it at the next lecture.

Lecture 5

Application to Frequency Modulation Problems - I

Today, I want us to consider the function F n(a) as given by Eq. 5. 1.

Fn(a) = ... Kn (T .i ' Tn) dx(T1 , a) ... dx(Tn, a) (5.1)

I want to represent F n(a) in what we call canonical form:n

Fn(a) = z Gk[Lk1(T1 T Tk), a ]  (5.2)

k=O

where the {Gk} are the orthogonal functionals. I want to determine the Lk(T 1' ... I k)

explicitly. In order to do that, I use a certain lemma.

Suppose that I have an expression

A
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n f.. k ( T .,T k) dx(T1, a) ... dx(Tk,' a) (5.3)

k=O

and I want to multiply this expression by

f... fKn (-1....1 n) dx(l, ) .dx(, a) dxrn, a) (5.4)

and integrate over a from 0 to 1. If I bring the integration on Kn( 1' ... ' -n) inside the

summation, the expression to be evaluated becomes:

n

01 da f.. . f Kn(i- ..1 T n) Rk(Tl ... Tk)
k=O

X dx(r-1, a) .. dx(-n , a) dx(T1 , a) . . . dx(Tk, a) (5.5)

You remember how we integrate this term by term. We have here (k+n) variables in

each term. We divide them into pairs in all possible ways, identify the variables of

each pair, and integrate. Since n is greater than or equal to k, it is quite clear that

when we identify variables by pairs, we must identify variables by pairs among the c-'s

alone for a certain distance, before we begin identifying variables between the cr's and

the T's, because there are more c-'s than T's. I think it is clear that when I do this, and

integrate over only the -r's that are paired with themselves, I shall obtain in each term

of the sum an expression,

f ... f Kn( -I, . .. k, -k 1, kl , .2I , P 2', . v, ) dk I ... dV (5.6)

where n = k+2Zv. Then I have to begin identifying the cr's with the T's and carry on the

rest of the integrations. It is quite clear that I will get exactly the same results in this

two-step integration as I would if I integrated over all the pairings of cr's and T's in one

step. How many times does expression 5.6 enter into each term of the sum? Well, in

the first place, how many ways are there for choosing 2v variables out of n variables ?

I think it is clear that there are n ways, where (n ) is the binomial coefficient,

(n n! (5.7)2v (Zv) !(n- 2v)!

In addition to choosing the 2v variables I have to identify them in pairs. This gives me

(Zv - 1)(2v - 3) ... (1) additional terms. Hence, in the integration of expression 5.5, in

each term I can replace
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... f Kn(1.... ' n) dx(o-1 , a) ... dx(- n , a) (5.8)

by

/.. n (Zv- 1)(Zv- 3) ... (1) ... K ( 1 ,. .kX1,X1,...,vXv)

X dk 1 ... dX dx(-!, a) ... dx( k , a) (5.9)

I can next simplify the coefficient as follows:

(n' n! (2v)!

2  )v (2v)!(n - 2v)! (2v)(2v -2)...(2)

n! 1 (5.10)
(n-2v)! 2 v!

From the results of this lemma, it follows at once that if expression 5. 3 represents a

G-function, we can apply the lemma to the following integration:

1 da . . Kn(T1 ... T n) dx(TI , a) . .. dx(Tn, a) Gk[Mk(1 . k), ]

(5.11)

We shall get exactly what we would get if we replace K in expression 5.11 by expression

5. 9. I know that this will be

K! fn... fn 2v K! K(Tl .... Tk)lXl,'XZXZ' ... vX 'v)

XdX ... dX Mk (T1' T ) .dT1 ..,dT k  (5.12)

Remember, expression 5.11 is equal to expression 5.12 only when k is of the same

parity as n. When k is of different parity from n, expression 5. 11 is identically zero.

From this, it is easy to come to the conclusion that, for the Lk of Eq. 5. Z, the Lk

in which k is of different parity from n do not come into the expression. That is,

Ln-Zv-1 is identically zero in all cases, and the Ln-Zv are

Ln-2v(rl ' ' T n-Zv)= v! Kn(-' " "T n-Zv' a-' o-G1' . .. - v
(n-d2v)! 2 vv

X du do (5.13)
1 v
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Equations 5.1, 5.2, and 5. 13 can be combined and written as

[n/2]

... f nKn ... Tn)dx(T1, a)... dx(Tn,a) = n!
v=0 (n-2v)!2 v!

X Gn-Zv K... Kn ..... n- ,v, ,1.1 T ' -. v)dr- l ... dov, a

(5.14)

where [n/2] = n/2 if n is even and equals (n-1)/2 if n is odd. From this I have obtained
the homogeneous polynomial development in terms of the orthogonal functionals that
belong to it. These orthogonal functionals are all of the same parity as the Kn, and, for
example, in the case of G , are obtained by taking the variables of K beyond v, identi-
fying by pairs, and integrating.

Now, I shall go directly to the use of this development for the study of frequency
modulation. I want to study the spectrum of an expression like

exp [i f f(t+T) dx(T, a)] (5. 15)

Notice, of course, that we shall get two terms here, the cosine and the sine, but they
can be discussed in terms of expression 5. 15. Thus, we have a message that is the
response of a linear resonator to a Brownian input, and we are looking for its spectrum.
To get the spectrum, we have seen that it is enough to express this sort of thing in terms
of the fundamental orthogonal functionals. Now, I am going to make this a bit more gen-
eral. We shall introduce into the exponent a complex number "a," which, for conven-
ience, will include the factor i; f can now be considered normalized. Hence,
expression 5. 15 becomes

exp [a f P(t+T) dx(T, a) (5.16)

where

f 2 (T) dT = 1 (5.17)

I want the development of expression 5. 16 in terms of orthogonal functionals. That
is easy. It can be represented as a sum of homogeneous polynomial functionals by sim-
ply using the exponential development
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... ( 1 ) ... (Tn ) d x (T1 , a ) ... dx(T n , a )

n=0

(5.18)

where I have let ( be a function of T alone. Later on, I shall reintroduce t. Now, I

use Eq. 5. 14 for the expression in terms of the orthogonal functionals of each term of

the sum of Eq. 5. 18, and I obtain

oo
exp a f(T)dx(T, a)] =

n=0

[n/2]

anz
v=0

1 Gn-v[ 1[ n(Tn-2v), al

(n- 2 v)!Zv v!

where we have paired ('s, integrated, and applied Eq. 5. 17. Rearranging Eq.

and letting p. = n-2v, we obtain

00a 0+2v

- G [•[(l) "'" (T),a] a

z0 v2 v!
ýL=0 v=O

Equation 5.20 can be simplified a great deal. Summing on v, it becomes

0o

exp a fp (T) dx(T, a)] = a exp() G[((T 1 ) '" ), ]
p.=0

(5.19)

5. 19,

(5.20)

(5.21)

I have now given, for the FM case, the development in orthogonal polynomial functionals.

I am going to do two things with this development. I am going to apply it immediately to

the FM spectrum, and I am going to use it as a general tool for handling more compli-

cated cases. First, replace a by ai. We obtain the following function of a:

f(a) = exp [ai f ((T) dx(T, a)] = pi! exp 2  G [,( 1)... z(i.),a]
4=0

(5.22)

If we now replace T by t + T, we obtain a function of both t and a:

f(t, a)= exp ai f (t+T) dx(T, a) = exp (a G [ (t + - 1 ) ... + (tT), a]
•p=0

(5.23)

Next, perform the following integration, using the formula that we have for the integral
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of the product of two G's.

00
f(t + s, a) f(s, a) da Z (ja,) 2 exp(-a 2 ) 2! [f() (t+T) dT]

= exp(-a 2 ) exp [a2 f 4(t+r) (T) dT = exp (a2 [f(t+T) ) d-- 1 (5. 24)

where f(t, a) is the conjugate of f(t, a). Equation 5.24 is, by the way, the autocorrelation

taken on the a-scale, and we have seen by the ergodic theorem, that this is almost always

the autocorrelation taken on the t-scale. Hence, Eq. 5.24 gives the autocorrelation

explicitly in one of the simple FM cases.

We now want to make a harmonic analysis of this FM case. When we expand Eq. 5.24,

we obtain a series of powers of the autocorrelation of p. If we take the Fourier trans-

form, we obtain the power spectrum as a sum of terms which involve the spectrum of c

and its respective convolutions. Letting h(t) represent the autocorrelation of p and H(W)

its power spectrum,

h(t) = (t+T) (T) dT (5.25)

1
H(w) 1/2 h(t) exp(iwt) dt (5.26)

(2, r1/

I take repetitions of H(w), H (w) ..., Hn(w), where

H1(w) = H(w) (5.27)

and

Hn(W) = Hn-l(w+±ý) H(1 t) dii (5. 28)
-coc

Then we obtain the spectrum as a series in the repeated H(c)'s. This gives us the

explicit form for the spectrum of frequency modulation.

I think that the next thing for me to do is to state in ordinary language what I have

done. I have treated a message that is the response of a linear resonator to a Brownian

input. (The actual messages that I send are not like that, but their distribution will not

be too far from that.) Suppose that I send this message by frequency modulation. What

would be the spectrum of the transmission? This is the problem that I have solved, and
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it is a large part of the FIMV problem. I can go much further than this. Suppose that I

have a known message and that to it I add a random error distributed in frequency. I

want to determine how the random error in the accuracy of the message will affect the

frequency modulation. This problem can be solved by similar methods. I am going to

leave this now, but I shall use the results as a tool.

Now I want to discuss a more complicated case:

exp i ffK(t+Tt+T 2) dx(Ti, a) dx(T, a) (5.29)

We may call this case "quadratic FM." The first thing to do is to realize that in a large

number of cases, K(T 1 , T 2), a symmetric function, can be written:

K(Tr1 T 2 ) = Z an ýn(Tl) nn(TZ) (5.30)

where the n are the characteristic functions of the kernel, K(T 1,TZ), and the an
are the characteristic numbers. This is the bilinear formula. In these cases, the

ýn are real and orthogonal, and the an, under certain restrictions which I shall

assume at the start, are real and positive. Then, expression 5.29 becomes, at least

formally,

exp i ff K(t+T 1 ,t+TZ) dx(Tl,a) dx(T2 , a)]

= II exp i a n  n(t+T) dx(T, a)]') (5.31)

The first case to handle, then, is simply

exp i an fn(t+) dx(T, a ) (5. 32)

I shall obtain the spectrum by means of the method used in the linear FM case. The next

thing is to multiply. When we multiply, there is one very important thing. If we have

K's composed of different p's, the product of orthogonal functionals of these K's is an

orthogonal functional. Next time I shall go into a general discussion of the spectrum and

get phenomena that are more complicated than those that have occurred in the simple

FM problem.
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Lecture 6

Application to Frequency Modulation Problems - II

In the previous lecture I proved that

exp [a f (t) dx(t, a)1 a exp
V1

f 2(t)I dt = 1

and

Re(a) < 1

This time I want to study

exp (b [fý(t) dx(t, a) (6.4)

which equals

(6.5)

Then we see that, when we go to the G-functions, expression 6. 5 equals

n=0
C2n GZn 1 l ) ... ( Zn), a (6.6)

The problem here is the determination of the Cgn. This could be done directly, but I am
going to use a method of generating functions. Multiplying Eq. 6. 1 by expression 6.4 on
the left-hand side and by expression 6.6 on the right, and integrating over a, we obtain

da exp a (t) dx(t, a)) exp b [fo(t) dx(t, a)]2 = Z
n=O

n exp Ca expi-y)Czn

The right-hand side of Eq. 6. 7 follows because

where

(6. 1)

(6.2)

(6. 3)

1
fo (6.7)

b (T1) dx(T1, a) ...
n=0

(T Zn ) dx(Tg n , a)

ý(T 1 ) . " ' v), a
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1 v! for 2n=vJ da G [(T)1 . (T V ), a] G 2 n 1(T 1 ), .. *(n), a] = otherwise (6.8)

Now let

u = (t) dx(t, a)

and remember that u has a Gaussian distribution. Also,

1 u da = 0
0

and

12
u da = 1

0

(6.9)

(6. 10)

(6.11)

Therefore

01 da exp(a f4(t)dx(t, a) exp (b [ (t) dx(t, a)]z)= 1 da exp(au) exp(bu )

exp e2 u (au+buduexp( -;exp(au+bu ) du (6.12)
1 f0

1/2 1-0oTr)T

where we have made use of our knowledge of the distribution of u, and have obtained an

expression that we can integrate. Let

v = u(1 - 2b)1 / z (6.13)

where we must work with b less than 1/2. This is no difficulty because we want to work

with small values of b. Notice that if b is imaginary we can work with large values of

b. Now, Eq. 6.12 becomes

1 ( )
(2w)/ -

2 av dv
v

exp - +

S (1 - Zb) / (1 -2b)1/2

and completing the square, we obtain

1

(2T) 1/2

00

f-oo exp -

(6.14)

a

2(1 - 2b)
dv

(1 - 2b)1/2

(6.15)
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Now we have

a 2(v
1 (1 - 2b) 1 / 2S exp- dv = 1 (6.16)

(21)1/2 J 2
(21T) 0

because, even in a complex plane, moving v up or down as well as right or left does not

change that integral. In order to show this, we use the Cauchy theorem. We are inte-

grating an expression along a line, and it makes no difference that we integrate it along

a parallel line because the integrand goes down to 0 very rapidly as we go to co. Also,

there are no singularities inside. So, we use the Cauchy theorem, and the integral is 1.

Hence, expression 6. 15 equals

1 a2

exp (6.17)

(1-2b) /  Z(-b)

Substituting this in Eq. 6.7, we obtain

2n (a2> a2 \\ 1 ba2

SaZn C2n = exp a exp 2(1 2b) exp (6.18)
n=0 (Z-2b) / 2  ( 2b)i

Remember, by the way, that

C2n+l = 0 (6.19)

Expanding the right-hand side of Eq. 6. 18, we have

Z n  I 2n
a C 2n 1/2 n (6.20)

n=0 (1 - Zb) n=O

Equating coefficients of a n, we obtain

1 b n1
Cn /2 -2b (6.21)

(1 - 2b)

See how we have saved the trouble of adding up a lot of series by using the generating

function.

We can now write
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exp [fi(t) dx(t, a) = n+1/ Gzn[I(T1)' ''(2n), ] (6. 2z)

n=0

Next, I shall replace b by ib; there is nothing in the preceding work that prevents this.

The imaginary case is even more advantageous than the real because of the fact that the

denominator of Eq. 6. 21 becomes infinite as b becomes infinite, and now we shall not

have to worry about coming to a place where the series will fail to converge. So, we have

Z 2 (ib)n n+1/2

exp ib[ (t)dx(t, a) )= n! 1- ib G2 n[(7 1' ... (T 2 n), a (6.23)

n=0

Let us consider

exp (ib K(T 1' T 2 ) dx(T, a) dx(T 2 , a)) (6.24)

where K(T1, 2) is symmetric. For certain cases (cases that represent a generalization

of the ordinary Fredholm equation), we shall find

00

K(T 1 T 2 ) = b v(T 1 ) v (T2 ) (6.25)

v=0

where the v(T) are a set of orthogonal real functions called "characteristic functions,"

and the b are the "characteristic numbers" of the problem. Then expression 6. 24
n

becomes

(ib7 )n /- -n+1/2?G T( a] (6.
n! KG2ib G2 [(, 1). T2 ), I (6. 26)

v n=0

by substitution of Eq. 6. 25 in expression 6.24 and use of Eq. 6.23.

Now we want to rearrange this series in a series of orthogonal functionals of differ-

ent orders, and we go to certain properties of the G's that I have not yet taken up. I want

to say that

Gn[ij( 1 ) T... (T n), a] Gm[k(Tn+l)' , ., k(Tn+m), a] (6.27)

is a polynomial of degree (n + m) that is orthogonal to all polynomials of lower degree.

This is clear because of the independence - any function in one set of variables is
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independent of any function in another set of variables. Also, we know that an expression
of lower degree will have at least one part of lower degree than the corresponding part of
expression 6.27. Hence, when we integrate with respect to a, we get 0. This tells us
at once how we can rearrange expression 6.26 in orthogonal functionals of lower degrees.
Remember that the V are orthogonal to one another. There is an even easier way of

doing this.

When we multiply two orthogonal polynomials together we get exactly the same result
as though we had multiplied their leading terms together. The leading term will be the
leading term, so we consider that there is related to expression 6.26 a function con-
sisting of the leading terms of expression 6.26 - a similar series. We multiply the

series of leading terms together, and then we get the terms with which we are going to
operate in order to get the G's of the desired expansion. So

° (ib )n / +1/2 2n

Sn 2b i fV(T) dx(T, a)] (6.28)
v n=0 v

corresponds to the leading terms of expression 6. 26. When we multiply out, the terms
that we get will be the leading terms of the G's in the desired expansion. Let us explore
what this is. Expression 6.28 is

1 exp () dx(T, a) i i (6. 29)
v (1 - Zib v)1/ 2

which represents the generating operator. I am now going to expand this operator and
get a sum of homogeneous operators of the different orders. Then I shall replace these
homogeneous operators by the GTs of the same leading terms and obtain the desired
series. But this leads to a discussion of the functions

1 - ib v(T) dx(T, a) 2 (6. 30)

This expression can be written as a homogeneous second-degree expression

i ffR(. T 2 ) dx(T 1 , a) dx(T 2 , a) (6.31)

just as we wrote Eq. 6. 25. Then expression 6. 29 becomes

1 exp i R(TI , T 2 ) dx(T 1 , a) dx(T., a) (6.32)

v (1 - 2ib )1/
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and this is the function that gives the desired leading coefficients.

The next thing is to investigate

1/2 
(6.33)

v ( - Zib V) I

At least formally, this is,

ln(1 - 2ib )) (6. 34)

To begin with, take

(6.35)ibVi < -

Then

ln(1-Zib ) = -v z
v2

ln(l - Zib ) =v2 Si

L(2ib ) +

z bv2

(2i)
2

2

2 3

2 3

(2i)3
+

3
b 3 +12

Now, remember that

K(TI T2 ) = i b v(T 1) v(T 2 )

v

where the v are a normal and orthogonal set, and the b are real and positive. Then,

at least formally, we have

b = fK(T, T) dT
V

2

C b2 =f;K2(lTIl'lLTZ)dld~

(6.39)

(6.40)

(6. 36)

(6.37)

(6.38)

e 1
exp T

l I
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b3 f =J K(T 1 ' T' ) K(T TT 3 ) K(-3' T 1 ) dr dT2 dT 3  (6.41)

and so on. Therefore Eq. 6. 37 can be expressed in terms of the K's, at least when the

b are small enough; and there is no problem if the b are bigger, for the absolute value
v v

of

1
(6.42)

(1 - 2ib )1/2

is

1
(6.43)

(1 + 4b 2)1/4

and the bigger the b , the better the convergence. Hence, expression 6. 33 is a param-

eter that depends on the K, and this parameter is not going to be of serious importance

to us in discussing the spectrum. It will merely give a constant factor for the autocor-

relation and, therefore, a constant factor for the spectrum that will be the same for all

terms. Therefore, we can confine our attention to

exp (i R( 1 , T) dx(T 1 , a) dx(T, a)) = 1 + i R(T1 T 2) dx(T 1 , a) dx(T 2 , a)

2! fffRTR( 1 . 2 R(T 3, 4) dx(T1 , a)... dx(T4 , a) + ... (6.44)

These integrals are homogeneous functionals and can be reduced to the form in which the

kernels are symmetrical simply by taking all of the permutations and adding. Having

done this, we can build the corresponding G's by the prescription given previously, and

we have the development of the expression

exp(i ff K(T1, T 2 ) dx(T, a) dx(Tr, a) (6.45)

in terms of the orthogonal polynomial. You see how I save trouble by using generating

functions. I did not have to use them; I could have added up the series directly. But

why waste time when there is an easy way? Generating functions are extremely power-

ful tools for doing a whole bunch of work at the same time.
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B. AN ALGEBRA OF CONTINUOUS SYSTEMS

About fifty years ago the mathematician Volterra (1) and others studied a generaliza-

tion of the linear integral equation. This was

x(t) ftt) + h t, T) X(T) dT + f h2 (t, T 1 , T) x(T1 )

x(T2 ) dT 1 dT + ... + f... f hn (t, T 1  n ) x(T n ) ...

X(Tn) dT ... dTn  (1)

In 1942 Wiener (2) applied a similar form to the study of a nonlinear device with a

random input. Since then a number of people have studied various aspects of this

representation. Brilliant (3), Barrett (4), and Smets (5) have developed various prop-

erties and applied the theory to certain nonlinear systems. Cameron and Martin (6),

Friedrichs (7), Wiener (8), and Barrett (4) have considered the effects of such systems

on random signals.

The work reported here is concerned with systems that are composed of linear

subsystems, with memory, which are combined by nonlinear no-memory operations.

The operations are basically multiplication operations. We call this class of systems

the "Continuous class." It is required that all nonlinear operations shall be expressible

in terms of power series.

An algebra is developed for describing these continuous systems, and from this

algebra many of the basic properties of the systems can be developed. Representation

of the systems, by means of the generalized convolutions previously mentioned, follows

from the algebra.

The algebra is a condensed notation which is useful for combining and synthesizing

systems. This report is an introduction to the description of Continuous systems by

means of this algebra.

[Editor's note: With the author's permission we have substituted underlined Roman
letters for the script letters that are customarily used in systems notation.]

1. Basic Definitions and Rules

A system is defined as a physical device that acts upon an input g to produce an

output f. Symbolically, it will be represented by an operator H, which is such that

f = H[g] (2)

as shown in Fig. VII-5. The input and output are taken as functions of time, so we have

f(t) = H[g(t)] (3)



(VII. STATISTICAL COMMUNICATION THEORY)

(a) • ADDITION

H

(b) MULTIPLICATION

Fig. VII-5.

(c) - CASCADE

Fig. VII- 6.

This algebra is concerned with the combination of such systems. The basic

combinations are: (a) addition, denoted by H + K; (b) multiplication, denoted by

H . K; (c) cascade, denoted by H " K; as shown in Fig. VII-6. Thus the data for

the algebra are: (a) a set of systems, H, K, L, and so forth; (b) a set of opera-

tions, +, -, and *.

We define ( ) as representing the combination of subsystems into a compound sys-

tem. From a consideration of the physical nature of combined systems, we have the

following basic axioms for the algebra:

Al. H = H (4)

AZ. If H=A and K =A

then H = K (5)

For the addition operation:

A3. H+K=K+H (6)

A4. H + (K + L) = (H + K) + L (7)

For the multiplication operation:

A5. H-K=K H (8)

A6. H" (K. L) = (H K) L (9)

For the cascade operation:

A7. H* (K * L) = (H * K) * L (10)

For combined operations:
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C 1. L (H + K) L H + L K (11)

C2. (H + K) * L = H * L + K * L (12)

C3. (H .K) * L = (H * L) * (K * L) (13)

It is important to note that, in general,

H *K K * H (14)

L * (H + K) # L * H + L * K (15)

L * ( H K) # (L H) . (L -" K) (16)

These axioms hold true independently of any particular representation of the opera-

tor H. They are true for all systems.

We shall now specify a class of systems. This class, which we call the Continuous

class of systems, will contain all systems that can be represented by

H = F[A 1, B ... M1  ... ] (17)

where A 1 , B ... M ... are linear systems. Here, F represents a function of these

linear systems with the operations +, ., and *. For example,

F[A_, B1 , C ] = [(A 1 + B ) C ] A 1  (18a)

is an explicit representation. A generalization is the class of systems in which H

appears implicitly:

G[H, P Q 1... U ,...] = F[A IB 1 B . Mi ... ] (18b)

This class includes systems that involve linear subsystems, together with adders, multi-

pliers, cascade combinations, and nonlinear no-memory elements that are expressible

in terms of power series. For example, lumped circuits containing nonhysteretic,

nonlinear, but continuous, resistors, capacitors, and inductors are contained in the

class. This report deals mainly with the explicit form. One of the most interesting

problems is the representation in the explicit form of a system that is defined by the

implicit equation.

We shall now show that an ordering can be defined on this (explicit) representation.

If we have

H = A * B (19)

or

H[x] = AI[X] • BI[x] (2 0)

then
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H[Ex] = A,[Ex] Bl[cX]

E2 A [x [x

= 6l [xl

since A and B are linear systems. Therefore

H= A 'B

will be called a pure second-order system, and it will be denoted by

It = useful to define

It is useful to define

Then

H2 [x]H [xx] = H[x2

2 2and it is found that H[x is linear in x .
2-L^

H [(x+y)2 ] H, [x2 + 2 H [xy + H; [y2

That is,

(25)

Hereafter, the prime will be dropped, and this symmetry can be taken as being implicit

in the algebra, so that we have

H [x ] = H'[xx] = H~[x 2 ] =H 2 [x2] (26)

This equation can be generalized to give

[x = H[xn ] = _[xn] (27)

n
which is linear in xn, by taking

H'[X xn] =  n1H n [xi xn] (28)E-n' Ix1.' xn= n nx. * *xnl
where the sum is over all of the ways of arranging x1 ... , x n
we shall write

[x ] =H' [xn ] = H [x n ]

It can be shown that

H 1 H =H-m -n -m+n

If x I = x2 = ... = x ,

(29)

(30)

(2 1)

(22)

(23)

(24)

H2[xy]= 1(Al[x]. B[y] + Al[y I" Bl[x])
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and

H H = H-m -n --mn
(31)

which illustrates the effect of elementary operations on this ordering.

systems of this class will have the property

In general, all

(32)H= H + H + H + ... + H +... = H i- -O -1 -- n

The zero-order system, Ho, is just a constant. In much of the later work it will be

assumed that the systems are defined about their dc operating point so that H°o = 0.

2. Special Systems

Of particular interest is the nonlinear no-memory system.

braically by

f = N[x]

and described functionally by

f = n(x)

alx 2 n
a1x + a x + +. a+x n+.

This is denoted alge-

(33)

(34)

that is, by a power series. A particular member of this subclass is the identity

system I:

f = I[x]
=x (35)

The zero system O is defined by

f = O[x] = 0
In algebraic equations, 0 denotes the 0 system

3. Rules for Combining Systems

Let us take

H =H +H1 +H ... + Hn
- -1 -2 -n

K = K +K + . . . + K1 -2 -m

and

(36)

(37)

(38)

(39)

as the resultant system.

The sum system
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L=H+K

will have

L. = H + K.
-1 -- 1 -- i

The product system

L=H K

will have

L. = H.* K.
-1 - -1-jr J -

The cascade system

L = H * K

gives rise to a complicated expression for L..
-- 1

L= H *K
j

(40)

(41)

(42)

(43)

(44)

However,

(45)

and

H. * K = H [(K_ +... +Km)J] (46)-3 - - 1 -m

= Hj[Kp -K ... .K ] (47)
-J -p -q -r

where the summation is the result of expanding

(K +... +K )j (48)

Generally, it seems best to expand H in more basic linear subsystems and no-memory
nonlinear systems and calculate L step by step. Then it will be necessary to compute
either

L= N * K N.* K
-1 -

(49)

S(K )j =(K * K ... K)-p -q -r

as before, and the sum and product rules can be used, or

L=A *K
- -1

in which case

L. = A * K.
-- 1 -1 -1

(50)

(51)

100



(VII. STATISTICAL COMMUNICATION THEORY)

4. Generalized Convolutions

A large class of linear systems can be described by the convolution integral. That is,

f(t) = H1 [x(t)1 (52)

is equivalent to

f(t) j h(t-T) x (T) dT (53)

where the integral can be taken from - co to + co. But

f(t) = H1 [x(t)] • Kl[x(t)] (54)

is equivalent to

f(t) = h(t-T) x(T) dT) k(t-) x(T) dT

= fh(t - T1)k(t - T )X(T1 )X(T)dT1 dT (55)

Hence, associated with HI ' K we have the kernel

h(tl) h(t2) (56)

However, in view of the previous symmetrization, and this is where the symmetrization

comes in explicitly, the kernel will be taken to be

I{h(t l) k(t ) + h(t2) k(tl)} (57)

This gives the same result as the unsymmetrical kernel. In general, with a system

H there is associated the kernel-n

h (tl .  t . ' n) (58)

which is symmetrical in tl... tn. Thus when a system has been described by means

of the algebra, the associated kernels can be determined in terms of the kernels of the

component linear systems by use of the following relations:

(a) Hn + K :h(t .... t n) + k(t 1 ...,tn) (59)

(b) H * K :h(tl . .. tn) k(t n+l... tn+m) (60)

(c) H*(1 ...k . m): hl(O) ak(tl - ..... tk -). .Cm(tp+l ... tp+m --)d

(61)

101
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where p + m = k + j + ... + m. Relations (b) and (c) are not symmetrical in this form,

but they can be symmetrized. The viewpoint taken here is that rather than use the

unwieldy general formulas for combining cascade systems, it is better to work through

the systems step by step.

5. Canonical Forms

Consider the basic nonlinear operation

H *.K1 (62)

where H and K are linear. Excluding identity operations I and differentiation, a-1-1
typical term of hi(t) for lumped systems would be

-a.t
hi)(t) = tn e (63)

where a. can be complex. Then we have
1

h i)(to- ) = (t_)n exp[-ai(t--)]

=r (n tr T n-r) exp(-a t) exp(+a a-) (64)

This fact can be used with relation (c) to show that

L (H *K1) =. A(k) . B(k) (65)
1 1 -1k

where L is linear, and A(k) and B (k)1 is linear, 1k ) are computed directly by the use of relation (c).

Generalization shows that any system of this class can be represented in canonical

form by

H = •D1  (66)

that is, by the summation of products of linear systems, and the D can be computed

directly. From this it is possible to show that

H= N*F 1  (67)

where the N's are nonlinear no-memory systems as previously defined, and the F I

are linear systems. If the system input is directly into no-memory operations, then

H = N(1) * F * N(2) (68)

Other methods can be used to include I operations and differentiation operations, so

the canonical form holds for all lumped systems of the Continuous class.
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6. Solvability Law

Let us consider the cascade equations

H A = B (69)
and

A * H = B (70)

where A and B are known systems and H is to be determined. This work is directly

concerned with certain synthesis problems and also with the inclusion of feedback sys-

tems in the Continuous class. This is the basic problem in defining a system that is

prescribed by an implicit equation, in the explicit form.

With the algebra developed here it is possible to show that

H * A = B (71)

defines a unique H, denoted by

H = B * A (72)

where A-i satisfies

A - 1 * A = I (73)

A - 1 then also satisfies

-l
AA * A- 1  I (74)

Likewise

A H = B (75)

is uniquely satisfied by

-l
H = A - I * B (76)

This leaves three problems unresolved: Does H exist? Is H stable? Can H be

described by means of the implicit representation? The results of work on these three

questions will be presented in later reports.
D. A. George
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C. THE PREDICTION OF GAUSSIAN-DERIVED SIGNALS

This report deals with the prediction of signals that are derived from signals with
Gaussian amplitude distributions by means of certain nonlinear processes. The non-
linear processes belong to the class that can be described by generalized convolutions.

WHITE GAUSSIAN

GAUSSIAN I N OL'NR OUTPUT LINEAR SIGNAL NONLINEAR OUTPUT
MGNAN SGN SS GAUSSIA IN SSIGNAL S ANSIGNAL FILTER SYSTEM SIGNAL

Fig. VII-7. Fig. VII-8.

WHITE
GAUSSIAN SOUTPUT
SIGNAL ( (t) SIGNAL

Fig. VII- 9.

The process with which we are concerned is represented by Fig. VII-7; we want to
predict the output signal. The Gaussian signal is considered as having been obtained
from a white Gaussian signal by means of a linear "shaping" filter. The total system is
shown in Fig. VII-8. In this report the two cascaded systems will be combined, so that
Fig. VII-9 will be the situation that is being considered.

The problem is to find the best estimate of f(t+A), where A is the prediction time,
by a realizable operation on f(t).

Symbolically, the system will be represented by an operator H, where

f(t) = H [x(t)] (1)

The procedure used will be to determine a realizable operation H A so that
f(t+A) = HA[X(t)] (Z)

ft+)= HA[x(t)] z
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where f(t+A) is the best estimate of f(t+A)

system H-1, which is such that
system H ,which is such that

in the mean-square sense. Then the inverse

H- [H[x(t)]] = x(t) (3)

will be found. It is seen that the cascade combination of HA

predictor P.

and H- 1 gives the optimumand H gives the optimum

That is,

f(t+A) = P[f(t)] = H A[H-1 [f(t)]

To represent the operation of the system H, generalized convolutions will be used.

Then

t
f(t) = h 1(t- T 1) X(T 1 ) dT 1 +

+... + ... hm(t -

= H[x(t)]

The following notation will be used:

tft t hZ(t-T1'

-oo _-O
t - T2) X(T1 ) x(T ) dT1 dT2

Tl .... t - Tm) X(T 1 )... X(T m ) dT 1 ... dT m

f(t) = H [x(t)] =
m

Hn[x(t)] = nn=1

Hn(t - T1 .. t - Tn ) X(T 1). .. X(Tn) dT 1 ... dT n = Hn[x(t)]

The kernels H nl(t 1... tn ) may always be taken as symmetrical in t , ... tn.

1. Prediction

Now we shall deal with the determination of H A . The output of the nth order term

at time t is

fn(t) f... I
and at time t + A it is

105

where

f n(t)n

fn(t) = f,

(6)

-00

(7)

h T ) %(7 ) x(T ) dr .dv
}

"

l " n

. . .

1 
n

.
.

l
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t

fn(t+A) f= .. h n(t+A-T
-00

n

r=0

t00 t+A

t

hn(t+A-T1, ... t+A-Tn)X(T 1 )...X(Tn)dT 1 ... dT n

n-r r integrals
integrals

by expansion and use of symmetry. Now consider a single term

t t+A

fn, r(t+A) = .. ... hn(t+A-TI1 ... t+A-Tn)x(T 1)... X(T
-ot

)dT,...dTn I (10)

n-r

the r variables x(T 1 ) . .. X(T r ) integrated over the time range [t, t + A] are integrated

over the future. Therefore, to find the best mean-square estimate, f (t+A), of
n, r

fn, r(t+A), these variables are averaged. That is,

n (t+A)= .. . h(t+A-n, • n

n-r

(11)

where [X(T I ). . X(Tr) ] is the average of [X(T)... X(Tr) ].
(at least when the integrals exist),

f r(t+A) = 0
n, r

It follows from Wiener (1) that -

for r odd

t t

= (r-1)(r-3).. .1 ...
--00 --

n-r

n-r +A) x(T 1 )... X(Tn- r ) dT 1... dTnr

j

, r/2 t-T 1 +A

for r even

(12)
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,...' ,t+A--n) x(T1)... X(Tn)dT1.. dTn

... ,t+Ai -Tn) [X(TI )...X(Tr)

X(Tr+1). . . X(T n ) dT1. . d rn

&

hn(o l1;



(VII. STATISTICAL COMMUNICATION THEORY)

That is, a new kernel h(r) has been developed, such that
A, n

h(r) (h(r) (, ..T Tn) = 0 for r odd and all Ti, where i = 1, ..., n-r

= (r-1)(r-3)... 1f hn(o1, 1' ... O- r/2 r/z T1 +A,

T .. +A) do- . do-r/ 2  for r even and all T. 0

10 for r even and some T. < 0 (13)

This kernel describes a system H(r) which is such that
A, n

fn, r(t+A) = HA, n[x(t)] (14)

and so

fn(t+A) = r )An) [x(t)] (15)

Since

m
f(t+A) = f (t+A) (16)

n=l 1

then

f(t+A) A[X] (17)

where

m n
IA[x(t)] = n=1 r=OnrA[x(t)] (18)

n=1 r=0

Thus, H A has been prescribed.-A

2. Synthesis

The synthesis of the predictor is divided into two parts: the system H A and the
-1 -1

inverse system H . We shall first consider H

Formally, at least, the circuit of Fig. VII-10 can be used to obtain the inverse

system. But since there are some unresolved problems of stability connected

with this system, the following discussion will be limited to a special case. In

this case

H = N *L (19)
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Fig. VII- 10.

x(t) f(t)

Fig. VII-11.

- F

Fig. VII-12.

where L is a linear system, N is a no-memory nonlinear system, and * denotes cas-

cade. This is shown in Fig. VII-11.

f(t) = _N[y(t) ] = n(y(t))

The system N is specified by

= alY(t) + a 2 y 2 (t) + ... + amy m (t) (20)

If the function n specifies a one-to-one relationship between x and y, there exists an

inverse function n- and a corresponding inverse system N-1
inverse function n and a corresponding inverse system N - I

Then

H- 1 = (N " L)-1 = L-1 -N - 1 (21)
-1

as shown in Fig. VII- 12. If L , the inverse of the linear system L, is stable, then
H - l is stable. L may be found by the usual linear techniques, and N - l is a well-

defined no-memory operation.

Now let us consider the system HA.

h(n 1 . . Tn) = an f (T 1 ... "" n)

The nth order system H has a kernel-n

(22)

where Pf(t) is the impulse response of the linear system L.

h r n is given by
A,n

n-r) = (r-1)(r-3)... 1 a n

Sf(T1 + A)... f(7 n-r+ A)

f A

The corresponding kernel

. f Zr/2)do-1." d°r/2j

for all T. >,0 and r even
1 (23)

h ( n ( T 1' ' n-r) = 0 for r odd or some Ti < 01

So f(TI+A) can be synthesized as in the linear predictor and H(r)
A, n

by

(24)

synthesized
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H(r) M L (25)
-A, n -n-r -A

where M is a nonlinear no-memory system specified by
-n-r

M [y] = k ry n - r  (Z6)-n-r n, r

where

kn, r = (r-1)(r-3)... I an A...f A ( 1).. (or/2)do. .. dr/ 2} for r even

= 0 for r odd (27)

and L is the linear system corresponding to f(T+A), which is zero for T < 0.
-A

Since

m n ()
HA[x(t)] = H, [x(t)] (28)

n=l r=0 n

the system HA becomes

H = M * L (2 9)-A A

where M is the nonlinear no-memory system resulting from the summation of all the

M systems by the above equation. That is,-n-r

m n
M = X (n) M  (30)
- lr=O\r -n-r

Therefore the predictor P has been synthesized, and

__P :HA,- 1
P=H H

-A

M L L - 1  N- 1  (31)- -A

This approach can be extended to systems of the form

H = N( 1 ) * L( 1 ) * N(2) * L(2) *... * N(k) * L(k) (32)

where the N( i ) are invertible nonlinear no-memory systems, and the L (i ) are linear

systems with memory. In some cases, the systems

H = H(l) + H(2) + ... + H(h) (33)

can be handled. The H (i ) are of the cascade form shown in Eq. 32.
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3. Example

Let us consider

H =N L

where

N[y] = n(y) = y + y3 = f

(34)

(35)

and

f(t)
exp(-at) - exp(-pt)

S -a
for t >, 0 (36)

Then the inverse function n-l(f) is well defined, and N-l is specified. The transform of

f(t) is

1
L(s) =

(s+a)(s+p)
-1

and the inverse linear system, L-1 with impulse response h(t), has the transform

H(s) = (s+a)(s+p)

Associated with LA is the transformýýA

L (s) =e sA exp(-at) - exp(-t) exp(-st) dt
LA(s) = e- exp(-st) dt

A ( a

(p exp(-aA) + a exp(-PA)) + (exp(-aA) - exp(-pA)) s

(p-a)(s+a)(s+p)

All the k are zero except

A

k3,2 [ (() do-- 1
0 (f3-a

1 - exp(-2aA)

2a

37)

38)

(39)

1 - exp(-2pA) 1 - exp[-(a+p)A]7 (40)
2p a+P

k1, O k3, o

Therefore

M3-Z [Y]= k3, 2 y
MIo[y] = y

M 3 o[y] = y

and
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(t) -1(f) C S yFig. VII- 13.

M[y = (1 + 3k3,2 )y+y 3 = m(y) (45)

--1
And hence M is specified. The system LA L - has the transform

(p exp(-aA) + a exp(-pA)) + (exp(-aA) - exp(-pA)) s
LA(S) • H(s) =

= Cl + c2s (46)

and the predictor P is shown in Fig. VII-13.
D. A. George
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D. A SAMPLING THEOREM FOR STATIONARY RANDOM PROCESSES

Let [x(t)] be a stationary process and [f(t)] a process generated by samples of [x(t)].

We wish to answer the following question:

Given samples of x(t), taken uniformly at a rate 1/To over the time interval

(-NT , NT ), what interpolatory function, s(t), gives us best agreement between f(t)

- the interpolated sample function - and x(t) during the time interval (-NT o , NT o)

for all members of the ensemble [x(t)] ?

By "best agreement during the time interval (-NT o , NT o ) for all members of the

ensemble [x(t)]" we mean that we want to minimize

NT
I = 1 NT E [x(t) - f(t)]2 dt

ZNT
0 -NT

where

This work began in discussions with W. R. Bennett, M. Karnaugh, and H. P. Kramer,
of Bell Telephone Laboratories, where part of the following analysis was carried out by
the writer.

E [ ] = ensemble average of [ ].
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N

f(t) = Z

n=-N

x(nT o ) s(t - nTo)

We shall now obtain a more explicit expression of our criterion.

[x(t) - f(t)]Z = x2(t) - 2
n

N

+ Z
m, n=-N

N

L x(t) x(mTo) s(t- mTo)
n=-N

x(mTo) 0 x(nTo) 0 s(t - mTo) 0 s(t - nTo)

If cX(T) is the autocorrelation of [x(t)], we have

E I[x(t) - f(t)]Z = E[xZ(t)] - 2

m=-N
4x(t - mTo) • s(t - mTo)

xoo

ýx([m-n] To) s(t - mTo) * s(t - nTo)

Since [x(t)] is assumed stationary, E[x2(t)] is a constant, which

The expression to be minimized becomes

we shall call C.

SNT
I 2NT o LC

-NT 0

N

-2 4x(t - mTo) s(t - mTo)

m=-N

4x([m-n] To) s(t - mTo) 0 s(t - nTo) dt

Next we change summation index, letting m - n = k.

NT N
I 2NT o C - 2 px(t - mTo) s(t - mTo)

-NT m= -N

N m+N

m=-N k=m-Nm=-N k=m-N
ýx(kTo) s(t - mTo) s(t - mTo + kTo) dt

The order of summation can be interchanged by the formula
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N m+N 0 k+N ZN N

m=-N k=m-N k=-ZN m=-N k=l m=k-N

We also allow the limits of integration to become infinite by introducing a func-

tion, gN(t), in the integrand; gN(t) is 1 in the time interval (-NTo , NT o ) and is zero

elsewhere.

Interchanging orders of summation and integration, we have

N 00

I - g(t) C- 2(t - mT) s(t -mT ) dt
NT N X 0 0]

m=-N -oo

0 k+N 0C

+ Z x(kTo) s(t-mT0 ) s(t-mT o + kT 0 ) gN(t) dt

k=-2ZN m=-N -o

2N N o

+ _Z x(kTo) s(t - mTo) s(t - mTo + kTo) gN(t) dt

k=1 m=k-N -oo

We now make a change of variable, u = t - mTo, and interchange the orders of sum-

mation and integration.

00
IZNT

0··

LC - Zx (u) . s(u) -
m=-N

gN(u + mTo)

0
+ Z cx(kT o ) s(u + kT o )  s(u) -

k=-ZN

2N
+ Z x(kT o ) s(u + kT o ) • s(u) •

k=l n

k+N

m=-N

N

n=k-N

gN(u + mT o )

gN(u + mTo) du

The expression

N

f(u) =

m=-N
gN(u + mTo)

can be described as follows.
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f(u) = ZN for u l < T

= (ZN - 1)for T < ul Z< 2 To o

1 for (ZN - 1) -I

= 0 elsewhere

S< uI 2 NTo o

k+N

fk(u) =
m=-N

N

m=k-N

gN(u + mTo) for -ZN < k < 0

gN(u + mT ) for 1 ~ k < ZN

= 0 for all other k

Note that fo(u) = f(u), and fk(u - kT = f_k(u).

We can rewrite Eq. 4 as

-001 C - Zx (u) s(u)

ZN

+ s(u)
k=-ZN

x (kTo) - s(u + kT(
1) ZN fk(u) du

A necessary condition for an unconstrained minimum for I (by varying s) is

f(u)
-Zcx(U) ZN

k=-ZN
Kx(kT o ) • s(u + kT o )

(6)fk (u ) fk(u - kTo) = 0
L2N +  2N

Recalling that fk(u - kTo) = f-k(u), we can rewrite Eq. 6 as follows:

f(u)
-Zx(u) 2N +

k=-2N
x (kT o ) - s(u + kTo)

Since f(u), fk(u), and f_k(u) are all zero for lul > ZNT o , s(u) is arbitrary for
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Iul > ZNT . For simplicity we shall let s(u) be zero for lu > ZNT .
Let us now rewrite Eq. 7 for the special case in which 4x(kTo) = 0 for

k = ±1, ±Z, ±3, ... , ±ZN. We then have

f(u) [Zf(u)]-Z x(U) + x(0) , s(u) L = 0

A solution of this equation is

s(u) = 0 for Iu > ZNT0

ýx(U)
s(u) = x(u) for ul ~<ZNT0

f(u )  fk(u)
It can be shown that as N approaches infinity, -N approaches 1, and ZN

approaches 1. More explicitly, given values of u, k, and E > 0, there exists an N1 ,
which is such that

-f(u) <E and 1- fk(u)
ZN ZN

for all N > N 1.
Thus, in the limiting case in which our sampling and reconstructing intervals

become infinite, Eq. 7 becomes

o0

-2ix(u) + Z Qx(kT o ) s(u+ kT o ) = 0

k=-oo
If cx(u) is band-limited to the frequency interval (-W, W) and the sequence x(kTo)

represents samples of x(u) taken at the Nyquist rate, Shannon's sampling theorem (1)

tells us that s(u) = (sin Zrr Wu)/(Zrr Wu).

To illustrate our theory, let us consider the case in which

x(T) = 2 -T for 0,< IT < ZTo

= 0 elsewhere

Equation 7 can then be rewritten as follows, letting N=l,

u 3 3
4 - Z =- s(T - u)+ 4s(u)+ s(u + To) (8a)

for 0 u T

The form of Eq. 7 indicates that we should look for a solution that is symmetric in
u; i.e., we replace s(u - T ) by s(T ° - u).0 0
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U1 1
- T s(u - T)+ Zs(u) (8b)

o

for T < u 1< ZT

We can rewrite Eq. 8b in the form

su 1 s(u) + Zs(u + T ) (9)

for 0 < u < T
o

Solving Eqs. 8a and 9 simultaneously yields

s(u) = 0. 804 - 0. 588 u
S0 < u < T (10)

s(u + To) = 0. Z99 - 0. 353 TT

Substituting the values u = 0 and u To in Eq. 8a and u = To in Eq. 9 gives us the

system:

4 = 4s(0) + 3s(To)

3 32 - s(0) + 4s(To)+ 2 s(ZTo) (11)
S0 2 0

0 = s(T o ) + 2s(ZT )2 0 o

The solution of this system, [s(0) = 0. 85, s(To) = 0. 20, s(ZT ) = -0. 05], does not
agree with the corresponding extrapolated values of Eqs. 10.

Since we would probably want our approximation to x(t) to be as smooth as possible,

the extrapolated solutions of Eqs. 10 should be used. As we remarked after Eq. 7,

s(u) = 0 for u I> T .
Our interpolatory function s(u) may be constrained to be square-integrable and to

be zero for u < 0 by straightforward modification of Eq. 7.
D. W, Tufts
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E. AN ERGODIC THEOREM FOR A CLASS OF RANDOM PROCESSES

We shall consider an ensemble of real signals [m(t)] with the following prop-

erties :
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a.. The sequence of functions

,gN(t)l = +~- m (t + nT ) m (t + nTo + T)

is uniformly bounded and

N

Lim 1 l m (t + nT )m (t + nT + T)= E[m(t) . m(t+T)]
N- N + 1 p o p 0o

n=-N

for all t and i and for almost all m rnp(t). E[m(t) - m(t+T)] is the ensemble average of

m(t) - m(t+T); mp (t) is a particular member of the ensemble [m(t)]; and To and A are

real constants, characteristic of the process. N may take on any of the values 0, 1, 2, ....

b. Lim 1_
T A+T A
A-oo

mA(t) • mA(t+T)dt = cm(T)A A m

exists for all T and almost all mA(t) and is independent of the sequence of values

through which T-oo and A-oo. Such an ensemble will be called cyclo-ergodic. (This

name was suggested by W. R. Bennett, of Bell Telephone Laboratories, with whom the

writer discussed the following result.)

Theorem: If [m(t)] is cyclo-ergodic, the ensemble average of m(t) - m(t+T) is

related to the time average of m (t) . m (t+T) as follows: For all real C and all posi-

tive integers K,

,C + KT I.

E[m(t) • m(t+T)]dt = Lim 12T J
T-oo T

m (t)m (t+T)dt
p p

Proof: Since [m(t)] is cyclo-ergodic,

T
Lim 1 -
T-0 0 -T-T

(N+1)KT +C

m (t)m (t+T)dt = Lim 1
SNcc (ZN+ 1)KT -NT +C

m (t) m (t+T) dtp p

where N is a positive integer.

Next we replace the integral by a sum of integrals to obtain

N (n+1) KT + C
1 o

Lim mp(t)mp(t+T)dt

N-oo 0o n=-N nKT + C

We now make the change of variable u = t - nKT
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N C+ KT

Lim 1 m (u + nKT )m (u + nKT + T)du
Lira (ZN + 1)KT 0p o p o

C + KT N

-Lim •(+ 1) m (t + nKTo)m (t + nKTo + T) dt
N-00 op C n=-N

A theorem of Lebesgue states that if the sequence gN(t) is uniformly bounded in S,

and if Lim gN(t) = g(t) exists almost everywhere in S, we have
N-co

Lim gN(t) dt = g(t) dt
SS S

In our case, we have

N

gN(t) = N + I m p(t + nKT )m p(t + nKT + T)
n=-N

and gN(t) is uniformly bounded on the interval C - t < C + KTo because, by property a,

gN(t) < A for all N and for all t and T.

Also from property a we have

Lim gN(t) = E[m(t) . m(t + T)]
N-co

Thus we can interchange the orders of Lim and integration to obtain
N-oo

C + KT
1
KT E[m(t) ' m(t + T)] dtKT o0 C

D. W. Tufts

F. OPTIMUM NONLINEAR FILTERS WITH FIXED OUTPUT-NETWORKS

A class of nonlinear filters was described by A. G. Bose in Technical Report 309,

Research Laboratory of Electronics, M. I. T., May 15, 1956. The purpose of the present

work is to extend the optimization procedure for these filters to some cases in which

the output of a fixed network is to be optimized by the selection of a filter that precedes

the network, as in Fig. VII-14. This problem was suggested by Professor Bose. The

three types of fixed networks that we have considered are: linear networks with memory,

nonlinear, no-memory networks, and networks with inverses.

The general form of the filter described by Bose is shown in Fig. VII-15. The C's
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(t) y(t FIXED r(t)
FILTER NETWORK

Fig. VII- 14. Filter with fixed output-network.

S(t) NONLINEAR
NETWORK - y(t)

Fig. VII- 15. Nonlinear filter.

Fig. VII-16. Nonlinear filter of Fig. VII-15 with fixed output-network.

are gains. If y(t) is the filter output and z(t) the desired output, then the C's are set so

that the mean-square error

E2(t) = [y(t) - z(t)]Z  
(1)

is minimized. The bars indicate time averages. These optimum C's are to be determined

by measurements in a manner whereby each C can be determined independently of all

other C's. Bose showed that a sufficient condition for this optimization procedure is that

the ('s, which are the outputs of the nonlinear network in Fig. VII- 15, satisfy the equation

4i(t) j(t) = 0 i j (2)

We next consider the question of sufficient conditions for the determination, by inde-

pendent measurements, of optimum C's for the case in which the filter is cascaded with

a fixed output-network. The complete system is given by Fig. VII-16. The mean-square

error, which is to be minimized, is

E2 (t) = [r(t) - z(t)]Z (3)

where r(t) is the system output. Let us define the functional F describing the fixed

network by
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r(t) = F
n=l

C nn)

There are two conditions which, together, are sufficient for determining optimum C's

by independent measurements. They are (a) that r(t) can be written as

N

r(t) = F(C n ýn )

n=l

and (b) that

F(Ci ti) F(Cj cj) = 0 i j

The sufficiency of these two conditions can be shown as follows. Substitution of

Eq. 5 in Eq. 3 gives

N

E2(t) = F(Cn n
) - z(t

n= 1

Expanding the right-hand side, we get

N

E2(t) =

i=l

N

F(C i  ) F(Cj ) - 2
j=l

F(C n n ) z(t) + zZ(t)

The orthogonality condition given by Eq. 6

zero. Hence we have

makes the cross terms in the double sum

N N

EZ(t) = FZ(Cn n) - Z F(C n n ) z(t) + z (t)
n=1 n=l

This equation can be rewritten as

N

EZ(t) = [F(Cn n ) - z(t)] - (N-1) zZ(t)
n=l 1

(10)

It is important to note that Eq. 10 gives the mean-square error as a sum of mean-

square errors, each of which is a function of only one C.

From this analysis it is clear that the procedure for determining the C's is to meas-

ure the mean-square error as a function of one of the C's while holding all the other

C's constant. The optimum value for any C is the value that minimizes the mean-square

error when that C is being varied.
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1. Linear Fixed Networks with Memory

If the fixed network is linear, with impulse response h(t), the sufficient conditions

given by Eqs. 5 and 6 can be satisfied. Equation 5 is satisfied because of the linearity

of the fixed network. Equation 6 can be satisfied by forming a set 4 that is composed

of linear combinations of 4's; that is,

n-1

(t) = b (t) + aj j(t) (11)

j= 1

where the 4's satisfy the equation

1 j=k7

h(T 1 ) (t - T 1 ) dT h( 2 ) k (t - 72) dT = k (12)
0 jfk

To solve for any constant akn of the an 's in Eq. 11, we apply the orthogonality

condition of Eq. 12 to Eq. 11. In so doing we have

n-1

h()(t - T1)d h()bn nt - ) + ajn (t -T) dr z = 0 (13)

j=1

Applying Eq. 12 to the terms in the sum, we get

akn h(T 1 ) 1 (t - T 1 ) dr1  h(T) (t - T ) dT (14)

The term on the right-hand side of this equation can be determined by measurement

with the circuit of Fig. VII-17.

To solve for b in Eq. 11, we apply Eq. 12 to the mean square of that part of the
n ,

output that comes from .n. Thus we obtain

n-1 z1 2

h(T)bn n(t-7) + a. j (t-T) d = 1 (15)
j=1j

and solving for bn , we get

A1 ,

Fb rhI() n n-i 1
b = (T) n(t-T) + ajn (

LL h 1t nr' Z n i

-(16)

(16)
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h(t)

-Okn
X AVERAGE -an

n h
(
t

)  
MULTIPLIER

h(t)

Fig. VII-17. Circuit for measurement of akn*

The average-value term in Eq. 16 can be measured directly in the manner described

for akn.
Note that if the number of c's is N, then the number of measurements necessary

to form the set of ý 's is (N+1)N/2.

2. Nonlinear Fixed Network Without Memory

When the fixed network is a nonlinear, no-memory device, the necessary conditions
given by Eqs. 5 and 6 are satisfied if the 4's are the gate functions that were used by
Bose. If the set of ý's consists of gate functions, then at any instant one and only one
ý is nonzero and that c has unity output. It is this property of lack of coincidence in
time of the gate-function 4's that satisfies Eqs. 5 and 6. In this case, the constants
can be determined by independent measurements to satisfy any mean-function-of-error
criterion in which the instantaneous function of error depends only on the instantaneous
difference between r(t) and z(t). Mean-square error falls into this category, as does
mean magnitude of error.

Example

As an example of the use of gate functions with a fixed nonlinear, no-memory net-
work, consider the problem of determining a nonlinear filter to parallel the bandpass
filter at the input of an FM receiver. See Fig. VII-18. The nonlinear, no-memory
fixed network is the box in which the output of the nonlinear filter is added to the output

Fig. VII-18. FM filter.
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CLIPPER

Fig. VII-19. Desired-signal generator.

r (t)

_ E() E
2
(t) SHORT-TIME E'(t)

SQUARER AVERAGE

Fig. VII-20. Mean-square-error measurement circuit.

of the bandpass filter and then clipped. The input to the system is the signal s(t) plus

the noise n(t). The desired signal output, z(t) - see Fig. VII-19 - is the clipped signal.

The output of box H is a set of gate functions c.

A circuit for measuring the mean-square error is given in Fig. VII-20. To deter-

mine C. in the circuit of Fig. VII-18, vary C i , keeping all the other C's fixed, until
1 1

the minimum value of EZ(t) in Fig. VII-20 is measured.

3. Fixed Networks with Inverses

The methods of this section were suggested by Bose.

If the fixed network F has a realizable inverse F- 1

F(F-l) =
F(F )= I

where I is the identity functional, then by preceding the

F - 1 , we eliminate the effects of the fixed network.
-1

If the fixed network F has a realizable inverse F_2

which is such that

(17)

fixed network by its inverse

which is such that

-1
F 2 (F) = I

then a new desired output z (t) can be defined as

z (t) = F (z)

The C's then can be adjusted to minimize the mean-square error given by

[E (t)] Z = [y(t)- z*(t)]2
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The disadvantage of this latter procedure is that minimizing Eq. 20 does not, in general,
minimize the mean-square error at the output of the fixed network.
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