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A. THE FUNCTION DISPLAY PROGRAM

1. Introduction

The Function Display Program (1) is designed to facilitate the investigation of

computer-human synergism - in particular, develop a four-dimensional intuition by such

close cooperation. This program provides a means for displaying plots of cross sec-

tions of a function of three variables, f(x 1 , xZ , x3 ), on the cathode-ray tube of the

IBM 704 computer. The operator can vary the range and magnification of these plots

by appropriate use of the sense switches.

Typical objectives for the operator might be to locate relative maxima or minima or

to investigate points that might be singular points. It should be pointed out that the dis-

tinctive feature of this program is the rapid communication link from the human being

to the computer and from the computer back to the human being. It is desirable to study

the efficiency and possible advantages of such computer-human systems. We hope, for

example, that the operator of the program will develop an intuition or "feeling" for the

four-dimensional surface that a function represents. Then, too, visual inspection and

human guidance might speed up the search for relative maxima or minima, especially

in badly conditioned cases. There are other problems, especially those of design, in

which the displaying of intermediate results, for the purpose of human intervention,

could lead to speedier solutions. If this program is a success, a person will be said

to have "learned" about a function with the aid of a computer. How much the learning

process can be speeded up, in general, by the use of a computer is an interesting ques-

tion (2).

2. General Description

Any function of three (or fewer) variables can be displayed, as long as a subroutine

exists for calculating the value of the function (in floating point) for any values of the

independent variables. The function may be thought of as a surface in four-dimensional

space - three dimensions for the three independent variables and a fourth for the value

of the function. Initially, we consider the region of the four-dimensional space for

which al < xl < b I , a Z < x2 < bZ , a3 < x 3 < b3 , L < y = f(x, , x2 , x 3 ) < M; that is, for
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a four-dimensional rectangle. The initial values of the parameters al , bl, a Z .... , M are

read in with the program. The operator, by properly setting the sense switches, chooses

any two of the independent variables to be held constant temporarily. One of the vari-

ables, x i , that is so chosen is assigned the value x i = (a i + bi)/2. The function is then

calculated and plotted on the cathode-ray tube as a function of the other independent vari-

able over its range. If for any point the value of the function is greater than M or less

than L, the plot is made as if y = M or y + 1, respectively.

The operator, on viewing the plot, may decide to move, to expand, or to contract

the plot. He can move the plot to the left or right, up or down, or expand or contract

it in the x or y directions, and each of these operations can be fast or slow. For each

kind of action there is an appropriate setting of the sense switches. Each action changes

either a and b (for the current variable) or M and L; and new calculations of the func-

tion may be needed. Expansion or contraction is accomplished by holding the center

of the x or y range fixed and varying the magnitude of the range. Each action is per-

formed repeatedly until the appropriate "action" switch is pushed down. The two action

switches are called "move" and "size" (expand or contract). The other four sense

switches (called the "description" switches) are used to describe the manner in which

the action is to be performed (as well as to show which is the current variable). Thus

the observer sees the plot continually moving or changing size when an action switch is

pushed up. The current variable can be changed by properly setting the description

switches, and then the action switches. Thus a complete set of operations for viewing

any region of the function is provided.

3. Comments on Operation of and Improvements For the Function Display Program

The program has been coded and tested, and various difficulties have been ironed

out. It works properly and will be submitted as a SHARE distributed subroutine.

In carrying out the program we found it easier to make a detailed investigation of a

region that was entirely within the specified x and y ranges rather than of a region that

was not so restricted. For instance, it was easier to locate relative maxima or minima

than to investigate poles.

To improve the practicality of this program, it is advisable to include routines for

recording certain information on film or typed print-outs. In future routines it may be

well to use the fact that people already have good three-dimensional intuition by drawing

three-dimensional displays with the use of perspective techniques.

Experience in the Functional Display Program indicates that the 704 computer lacks

some facilities for direct communication with the operator. Some suggested improve-

ments are: more sense lights and sense switches, including switches of the momen-

tarily depress type; a direct input typewriter, a "light pen" to sense whether or not a

particular spot on the cathode-ray tube is illuminated; and inputs through controls set
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in analog fashion should be provided. With such devices ranges could be set, and inter-

esting portions of the display (including cross sections in which more than one variable

is varying) could be picked out much more rapidly and conveniently.

4. Conclusions

We have not been able to satisfactorily evaluate the efficiency of the computer-human

synergism or the possibility of developing four-dimensional intuition from this program

because of the small amount of computer time that has thus far been used for running the

program. A reasonable evaluation can only be made after several hours of operation by

different operators under controlled conditions. Indeed, an evaluation of such an ill-

defined concept as "intuition formation" would be exceedingly difficult in any case.

Nevertheless, some statements can be made. The program does allow the operator

to view any permissible cross section of a function in a fairly rapid manner, if we con-

sider the limitations of the equipment which have been mentioned. In this sense, the

synergism part of the program has been demonstrated: There is a rapid, convenient

(for both human being and computer) communication link that carries information in both

directions between man and the machine. Neither half of the system has to wait too long

for the other to do its job.

It is harder to say anything about the usefulness of the program. It should be pointed

out that this is only a first attempt, and many improvements are possible, as we have

indicated. Still, it seems clear that this program, or a refined version of it, represents

a powerful and untried tool for the researcher which might enhance his intuition and

extend his learning capability.
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B. SAMPLING THEOREMS FOR LINEAR TIME-VARIANT SYSTEMS

Under certain conditions, a sampling theorem and a corresponding delay-line model

can be found for linear time-variant filters. These filters may prove useful in studying

communication through multipath media.

First, we introduce some definitions and assumptions, after which the sampling

theorem is derived for a particular case; from the sampling theorem a delay-line model

is deduced. Finally, the sampling theorem and delay-line model for a second case are

briefly discussed.

1. Definitions

One method of characterizing a linear time-variant system is by its impulse response.

This is usually given as hi(t, T) - the response at time t to an impulse input at time T.
An equivalent description, which, as will be explained later, is more useful for our pur-

pose, is h 2 (z, T) - the response after z seconds to an impulse input at time T. The

relation of these forms is given by

h l (t, T) = h2 (t - T, T)

h (z, T) = hl(z + T-, T)

For h (z, T) we have the Fourier transforms

00

H (z, jZ ) = h Z(z, T) exp(-j2Z'rLT) dT

00HZ(jc, T) =-- hZ (Z, r) exp(-j2 rwzz) dz

H (jW, j0) = f h f (z, T) exp(-jZ·rrwz) exp(-jZrr.rT) dz dT
00 00

where 4 and w have the dimensions of cycles per second. The variable ý1 corresponds

to the system variation; to this variation we assign a lowpass bandwidth W . W is

a measure of the rate at which the system is varying: if h 2 (z, T) changes rapidly with

T, Wo will be high; if hZ(z, T) does not change with T (i. e., if the system is time-

invariant), Wo is zero. On the other hand, w is the usual frequency variable corre-

sponding to the elapsed time and is the only one that arises in a time-invariant system.

The advantage of specifying the system by hZ(z, T) is that this direct physical interpre-

tation of the Fourier transform variables is not possible with hl(t, T). With hl(t, T) we

have the complication that t > T, and it is hard to visualize the physical meaning of its

Fourier transform with respect to t, with T fixed. The introduction of h 2 (z, T) gives
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the mathematically more tractable constraint of z > 0, and now the Fourier transform

with respect to z, with T fixed, has the significance of the usual frequency-domain

variable.

Given h (z, T) and H (jZ, jp.), we can make different assumptions about z and T, o

and 4 - for example, z time-limited, 1j band-limited - and derive sampling theorems.

Two practically useful cases, which are the only ones considered here, are

a. w band-limited (-W, W) and [j band-limited (-W , W ), which is the lowpass case.

b. wc band-limited f - f + and y band-limited (-Wo, Wo), which is the

highpass case.

The assumption of band-limited c can be interpreted as meaning that we are inter-

ested in the impulse response of the system over only a finite specified bandwidth, and

the delay-line model and sampling theorem that we shall derive will be valid representa-

tions of the system over this bandwidth only. This assumption of finite bandwidth may

sometimes be necessary because of the limitations of our measuring equipment.

We shall need a pair of definitions for defining Fourier-transform pairs for periodic

functions (1):

cc

repT h(t) = h(t - nT)

n=-oc

combl/TH(f,) = H () 6(f -

n=-oo

By using a Fourier-series expansion of repT h(t),

F{repT h(t)} = combl/T H(f)

we can derive the relation

That is to say, if a nonperiodic function h(t), which has a transform H(f), is shifted in

time by all integral multiples of T and the results are added together, the spectrum of

the resulting periodic function will be obtained by picking out the values of H(f) at inter-

vals 1/T. And conversely,

F{combT h(t)} = IIrePl/T H(f)

Another useful pair of Fourier transforms consists of the rectangular function and

its spectrum. Woodward uses the notation

rect t =
1, ItI < 1/2

0, It > 1/2

for the pulse, and
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sinc f = sin Trf/f for its spectrum.

2. Sampling Theorem

The method of deriving sampling theorems differs according to whether the region

of interest is a lowpass or a highpass frequency range. In both cases, however, it is

convenient to use Woodward's compact notation and method of deriving sampling repre-

sentations (1). This may be regarded as a translation into compact analytical form of

the point of view that regards sampling as impulse modulation (2). The great advantage

of this view is that it enables the use of conventional Fourier analysis. Although

Woodward's method may appear, at first sight, somewhat artificial, a physical justifi-

cation of the steps can be understood by bearing in mind that sampling is analogous to

impulse modulation.

3. Lowpass Case

We assume that the frequency w is restricted to a band (W, W) around the origin (3).

Since 4 is restricted to the range (-W o , Wo ), then, clearly, we can write

HZ(z, jý) = rep2 W H (z, jp) rect Z2
o o

Transforming both sides gives

h2 (z, ) = combl/2W0 h2 (z, T) * sinc ZW T

in which the asterisk denotes convolution. Therefore

h2 (z, T) = h2 (z, s) 6s sinc ZWo(T-s) ds
oo m

= 2W sinc 2Wo -W (1)
m

Next, for the variable o, which is restricted to (-W, W), we can write

H2(jo, T) = repZW H 2 (jW, T) rect 2W

If we transform both sides, we obtain

h (z, T) h= h T sine ZW z - (2)

n

Substituting for h 2z ( , n from Eq. 1, we then obtain the desired sampling representation:
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h2 (z, T) Z hz -' sine 2Wo - sine W(z -
n m

Using the relations between hz(z, 1) and h 1 (t, 7), we can also write

hl(t, T) = h1  +ZW' W sine 2Wo 2W sine ZW t - T- W)

n m

4. Delay-Line Equivalent

The usefulness of these relations lies in the fact that they enable us to obtain a delay-

line representation of the time-variant system, as shown in Fig. 1, in which the fn(t)

represent time-variant gain controls.

The ideal filter is assumed to have zero phase shift; assumption of linear phase

shift will only introduce a constant delay.

The equivalence of the delay line and the original time-variant filter is proved by

calculating the impulse response of this model. If an impulse is put in at t = T, the

output will be

fn (+ )2Wsin c2W t- --
n

= Z h( sine 2Wo - sin ZWt - -nm
n m

=h Z•, sinT e 2W 7 - sine ZW z -

n m

= h2(z, T)

when z = t - T. Since two linear systems that have the same impulse response have the

same output for any excitation, it follows that they are equivalent as far as terminal

characteristics are concerned. A significant characteristic of a time-variant system

is the frequency expansion that it produces, and at this point it is reasonable to inquire

how this enters our analysis.

If an input of bandwidth ZW' is put into the system, the output bandwidth will be

2W' + ZW (or less). If the largest allowed input bandwidth is ZWin, the maximum pos-

sible output bandwidth of the system will be ZW. + ZW . Our ZW is equal to ZW. + ZW ,in o In O
which is now justified. We know that (time-domain) sampling at intervals closer than

the reciprocal of the bandwidth still gives the original function when we reconstruct from

these samples by using sinc functions that correspond to the sampling interval that is
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OUTPUT

IDEAL
FILTER

M \
2w 2\2w 2wo 0jw'_ 2w 2w

Fig. VIII-1. Delay-line model for the lowpass case.

used (2). Too frequent sampling gives no trouble - it is only when samples are farther

apart than 1/2W that we are unable to reconstruct the original function from its samples.

Thus closer spacing in the delay line (when it does occur) is not a source of error.

Since the impulse response of the delay line is frequency-limited, the line must the-

oretically be of infinite extent. It can be shown, however, that a finite length can be

used at the cost of an error that can be made arbitrarily small by prolonging the line

sufficiently. We remark again that this model is not a total equivalent of the time-

variant filter; it merely simulates it over a specified frequency range.

5. Highpass Case

In this case the frequency range of interest is not centered at the origin but is a band

of high frequencies, say c - ' c +  , in which we is the center frequency of the( c c
band, and W is its width.

Similarly, by using Woodward's elegant method of deriving bandpass sampling theo-

rems (3), we can obtain

h (t, T) = h( + rn m sine ZW( - m
S1 Z 1 ZW o ( Wn m o o o

n m m

-Z h( + 2W sinc ZW ( -W

n m

sine W - T -n sine o(t - n

as a sampling representation for the system impulse response that is valid over the

frequency range (c - W' c +

Here hi(t, 7) is the Hilbert transform of hl(t, T) with respect to t.
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S0 h (s + T, T)ds
t-T-S

-00o

Several different, but equivalent, forms can be written in this case, and corre-

spondingly different delay-line models can be obtained. One such model is shown

PUT

2W W 2wo 2wo 2w,

nt) h ( + - ) sinc 2wo ( t -)
n 2w m w 2Wo' 2w• W 2W0

Fig. VIII-Z. Delay-line model for the highpass case.

in Fig. VIII-2. The filters are assumed to have zero phase shift; as before, the

assumption of a linear phase shift serves only to introduce a time delay. Once again,

the length of the delay lines is (theoretically) infinite, and the tap spacing is the recip-

rocal of the "max-max" bandwidth.

T. Kailath
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C. PICTURE PROCESSING

The digital system and test pictures that were presented in an earlier report (1)

have been used in several exploratory studies of coding pictures for transmission. These

studies are summarized in the following sections.

1. Two-Dimensional Second-Difference Pictures

At a sample point in a picture, the two-dimensional second-difference is defined as

the sum of the intensities at the preceding, succeeding, and two laterally adjacent sample

points, minus four times the intensity at the sample point in question. Transmission

of the two-dimensional second-difference for each sample point is sufficient to permit

the receiver to reconstruct the picture if the transmitter and receiver have agreed upon

a common set of boundary conditions at the start.

If there are long sequences of zero values for the two-dimensional second-difference,

the signal can be coded for transmission in terms of run-lengths of zeros and the values

of the first nonzero second-difference at the end of each run. To extend the lengths of

runs, all two-dimensional second-differences that are smaller in magnitude than a

chosen value can be changed to zero. Unfortunately, because of the limited dynamic

range of most reproducing systems, the errors introduced into the reconstructed signal

at the receiver by the modification of the difference signal are not acceptable.

This difficulty can be avoided by resynthesizing the intensity values at the trans-

mitter from the modified two-dimensional second-difference signal in the same way that

the receiver would resynthesize them. Then the two-dimensional second-difference to

be transmitted can be obtained from two lines of resynthesized data plus a new line of

actual data from the picture. This difference signal is modified by setting all values

not greater than the chosen reference criterion to zero. In this method the errors

inserted by approximation at any point are not propagated to the remainder of the pic-

ture, since they are accounted for in the difference computation along the next line

before the next approximation is applied.

For this coding scheme, the source rate can be estimated by using the formula

H +N+3
Source-rate estimate r

r

where Hr is the entropy of the run-length probability distribution, N is the number of

binary digits used to specify a sample value, and r is the average run length. The

3 appears because the two-dimensional second-difference can be four times as much as

the largest intensity value in magnitude and can be either positive or negative. Thus

three more digits are required to specify the two-dimensional second-difference than

are needed for the intensity itself.

The results obtained by this procedure are given in Table VIII-1; the pictures
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(a) (b)

(c) (d)

Fig. VIII-3. Pictures reproduced from modified two-dimensional second-difference

signals: (a) and (c), criterion 3; (b) and (d), criterion 6.

obtained are shown in Fig. VIII-3. These results are not particularly promising.

Although the assumption of a uniform probability distribution for the values of the second-

difference is probably far from correct, it does not appear that an exceptionally large

saving in channel capacity requirements could be achieved even by accounting for this

distribution. However, there is an interesting effect that is especially noticeable in

Fig. VIII-3b. Although a grainy effect appears because of the method of approximating
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Table VIII-1. Source-Rate Estimates for Two-Dimensional Second-Difference Pictures.

H
Fig. VIII-3 Criterion r r Source Rate Estimate

(N=6) (levels) (bits) (samples) (bits/sample)

Picture a 3 1.74 2.16 5.0

Picture b 6 1.96 2.43 4.5

Picture c 3 1.11 1.42 7.3

Picture d 6 1.45 1.65 6.3

the second-differences, it is not particularly objectionable. In some of the pictures

reproduced by means of the piecewise-linear approximation of reference 1, the actual

intensity errors were much smaller, but undesirable distortions were more noticeable.

We may conjecture that it will be necessary to process pictures in at least as many

dimensions as we view them, not only to benefit from the statistical relations available

for coding, but also to avoid introducing undesirable types of distortion.

W. A. Youngblood
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2. Recoding Pictures by Generation of Lowpass and Correction Signals

The Whirlwind computer was programmed to average the intensity values over blocks

of 25 samples (5 samples by 5 samples) to produce what is called the lowpass signal

from a picture. This lowpass signal requires specification only in the centers of the

blocks if interpolation is used to obtain intervening intensities. The interpolation was

carried out by the computer, and the resulting value at each point was subtracted from

the actual sample value. If the magnitude of the difference exceeded 5 levels, a cor-

rection signal was added, either +10 or -10 levels, as determined by the sign of the

error.

An upper bound to 'he source information rate is numerically equal to the entropy

associated with the lowpass signal plus the entropy associated with the correction signal.

Table VIII-2.

Fig. VIII-4 ZPi log pi Source Rate Estimate
(bits) (bits/sample)

Picture a 0.60 0.84

Picture b 1.47 1.71
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(a) (b)

Fig. VIII-4. Pictures resynthesized by addition of lowpass signal and
recoded highpass signal.

The entropy for the lowpass signal is constant, 6/25 = 0. 24, for a 64-level picture. The

entropy for the correction signal is Zpi log pi, where the pi are the probabilities of

0, +10, -10, the three values of the correction signal. The results for the pictures

shown in Fig. VIII-4 are given in Table VIII-2.

The average number of digits necessary for picture specification depends strongly

on the complexity of the picture. More work will be done in this area in an attempt to

find optimum criteria for allowed error and for the correction signal magnitudes.

J. E. Cunningham

3. Picture Coding by Linear Interpolation

A simple way to reduce the source rate of a digitalized picture is to reduce the num-

ber of quantization levels. However, this process quickly leads to a "staircase" effect

in regions where the light intensity is gradually changing. (See upper left-hand corner

of picture a, Fig. VIII-5.) One way to avoid this difficulty is to interpolate between

levels when the change is gradual. A method for achieving this interpolation has been

programmed and tested.

One line of the picture is processed at a time. The line is broken up into runs, each

of which includes all of the successive samples in the same coarse quantization level.

As shown in Fig. VIII-6, there are sixteen of these. Each run is divided in half. In the

first half, the number of samples in the lower half of the coarse level is counted and
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(a) (b) (c)

Fig. VIII-5. (a) Four-bit picture. (b) and (c) Pictures processed by linear interpolation.

C4  C2

x

CI

RUN LENGTH (N=IO)

Fig. VIII-6. Processing by linear interpolation.
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Table VIII-3. Approximation Criteria.

A>B A<B

C >D C 1  C4

C < D C 2  C3

Table VIII-4. Source-Rate Estimates.

Fig. VIII-5 r H p H

(b) 4. 21 Z. 80 .072 1. 65

(c) 1.89 1.65 .015 3.00

designated A. (In the example of Fig. VIII-6 these are samples in level 20 or 21.)

Likewise, the number in the upper half (here, level 22 or 23) is designated B. Similarly,

C and D are the numbers of samples in the lower and upper halves of the second half

of the run. As determined by the relationships of A to B and C to D, one of four

approximating straight lines, curves C1, C 2 , C3 , or C4 , is chosen (see Table VIII-3)

to give the processed samples. (Of course, C and C 4 can only be approximated,

because of round-off problems.) If the run-length N, the number of samples in a run,

is less than a certain minimum number, No , curve C 1 is automatically chosen.

Thus we can specify the processed version of the picture by specifying successively

the runs by their coarse level, run-length, and approximating curve. Therefore, a

source-rate estimate is

H + logQ + p log C
H= r

r

where Hr is the entropy of the run length distribution in bits, Q is the number of coarse

levels, C is the number of approximating curves, r is the average run length in sample

intervals, and p is the fraction of runs for which N > N o . For the present experiment,

N = 10; and we have

H + 4 +2p

r

Two pictures have been processed (pictures b and c, Fig. VIII-5). The numerical

results are given in Table VIII-4. Picture c shows little, if any, distortion when com-

pared with the original picture. In picture b it is seen that some "streaking" along the

direction of scan has occurred, but the "staircase" effect seems to have been eliminated.

We note that the results are similar to those for the linear approximation method that
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was used by Youngblood. Further investigation should probably be carried out by two-

dimensional methods.

R. S. Marcus
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