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A. IMBEDDING GAIN IN RC NETWORKS BY MEANS OF LINEAR TRANSFORMATIONS

Methods of synthesizing passive RC networks for prescribed driving-point and

transfer characteristics are fairly numerous (1). Also, contrary to intuitive belief, a

passive RC network can be made to approximate any prescribed transfer characteristic

defined along the jw-axis with an arbitrary degree of accuracy, except for a possible

scale factor. Thus if some form of gain can be imbedded in such networks - once they

are obtained by conventional methods - they can enjoy a broader field of usefulness.

Such a scheme that employs linear transformations of the network variables will now

be discussed.

Let us assume that we have a network that is passive and meets all of our desires

as far as its driving-point and transfer impedances are concerned, with the exception

that some of these impedances differ from the desired values by a constant of propor-

tionality. This may mean that the transfer impedance is too low, which results in too

small a gain, or that the driving-point impedance is too low or too high, which loads

down the source (whatever its character) excessively or reduces the effective gain

when the device is being used to provide a dimensionless transfer ratio.

There are several ways of correcting these undesirable conditions. A simple way

is to reinforce the gain with a vacuum tube or to use impedance leveling on the network,

or both. The first technique will work if the tube does not load the network appreciably

(i.e., if the stage isolates). If the use of transistors that do not isolate is demanded,

then the solution is not so obvious. It is this situation with which the present treatment

is concerned.

Most, if not all, of the RC synthesis techniques end with, or can be modified to end

with, one of the two configurations shown in Fig. XIII-1. In this figure the boxes marked

" RC" contain capacitors and, perhaps, some resistors. For the sake of discussion,

RO RC R-----CRC_ RC
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RC RC _ RO RC
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CONFIGURATION B 0 0

Fig. XIII-1. Typical RC passive Fig. XIII-2. Simple coupling network.
configurations.
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let us assume that we are dealing with configuration A, and that we wish to improve this
result by means of nonisolating transistors. If we take configuration B, a dual argument
follows. Focus attention upon the simple coupling network shown in Fig. XIII-2. This
network has the conductance matrix

G ] (1)

Equilibrium is expressed by the matrix equation

I] = [G] E] (2)

where

I E l

I] = and E] = (2a)
I E

Now let us perform a particular linear transformation on E], and another upon I],
as follows.

hE1
E'] = A E] =

k E

(3)
i I

I'] = B I] =
j I

Then [A] and [B] are

[A] (4)
(4)

[B] =[

Taking the inverse of Eqs. 3, we obtain

E] =[A]- E' ]
(5)

I] = [B]- 1I']

If we substitute Eqs. 5 in Eq. 2, we obtain

[B]-1 I' ] = [G] [A] - ' E' ] (6)

and premultiplication of both sides by [B] finally yields
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I' ]=[B] [G] [A]-1 E' ] (7)

or

I' ] = [G' ] E' ] (7a)

where
-1 ih g -ik g

[G] = [B] [G] [A] = (8)
_jh - 1g jk -lg

This new [G' ] matrix is no longer passive or bilateral, as is [G], and it can only be

realized through the use of a vacuum tube, or a transistor, or the like. The reason

behind the introduction of the transformations [A] and [B] is readily seen if we examine

the quantities P and P' given by

P= E I] (9)

and

P' = E' I'] (10)

which, through Eqs. 2a and 3, become

P = E 1 I 1 + E 2 12 (11)

P' = ih E 1 I 1 + jk E 2 12 (12)

P represents a positive definite quadratic form because it is the power delivered to a

passive network; P' might not be of such a character, however, and thus we see that

the new coupling network might be able to improve the performance of the device. In-

deed, a proper choice of the scale factors, h, i, j, and k will enable the coupling network

to accomplish the desired effects that have been discussed. The ideas involved in making

a choice of these constants are much the same as those considered by Guillemin (2).

2

mhos ,foarods

I' G o 2'

(s+1)
Zll1 = 22 s(s+2)

1
zZ = ZZ s(s+)

Fig. XIII-3. Original network of the first and second examples.
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(s+l)ll = = s(s+)

1 2 lO s(s+2) 21 - s(s+2)

(s+l) Z(s+l)
1Z Zs(s+2) 22 - s(s+2)

1 10
zlZ - ls(s+Z) zZl - s(s+l)

Fig. XIII-4. Final network of the
first example.

Fig. XIII-5. Final network of the
second example.

The methods of impedance leveling which he has discussed are actually special cases of

the transformations of Eq. 3, the constraint being that i = h-1 and j = k-1, which leaves

P' = P. If these constraints, which are required to conserve passivity, are removed,

the process becomes that of simultaneous impedance leveling and power leveling. A few

examples will be used to clarify the use of this idea.

EXAMPLE 1

Suppose that we want to hold the z11 and z 2 2 of Fig. XIII-3 fixed but raise z 2 1 by a

factor of 10. The equilibrium equations are

E] = [Z] I] or E] = : z I]
z21 z 22

and we wish them to become

z12
II' =[z ] It]

22

(13)

(14)

Since

[Z' ] = [A] [Z] [B]

-1
we see that i-1h = 1;

(i-lh) X (ik - 1) (-1k)
by a factor of 1/10.

- i- hz 11 j hz,1
= (15)

i- kz21 -1kzz2

i-k = 10; j k = 1; j h = c. From this it follows that
.-1= j- h = 1/10, and thus we see that z 12 must be lowered

Proceeding, we have

[G] = <
and
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[G' ]=[B] [G] [A]-1  10 (17)
-10 1

The final network is shown in Fig. XIII-4. The capacitors have not been affected because
the input and output impedances stay the same.

EXAMPLE 2

Starting with the same network as in Example 1, we wish to lower z 1 1 by a fac-

tor of 1/2, raise z 2 2 by a factor of 2, and increase z 2 1 by a factor of 10. Now we
-11 -1 -1 - 1- 1 -1see that i h= 1/2; i -lk=10; j k=2; j h=c. Since(i h)(ik )(j k)= j h= 1/10, it

follows that c = 1/10, so that z 12 is lowered by a factor of 1/10. Proceeding, we have

21[G] [: ] (18)
and

10
[G' ] =

-10 1 (19)
2

The final network is shown in Fig. XIII-5. The capacitors have been changed in accord-

ance with the impedance levels of their respective nodes.

' T T mhos,farads
I' 2'

s +3s+lZll = zZ =Z s(s+1)(s+3)

z 2z = z21 s(s+1)(s+3)

Fig. XIII-6. Original network of the third example.

EXAMPLE 3

We wish to increase z 2 1 by a factor of 100 and to lower both z11 and z 1 2 by a

factor of 1/4. (See Fig. XIII-6.) If we arbitrarily keep the impedance level at node b

unchanged and share the transfer gain equally between the first coupling network and

the second, we obtain for the network between a and b
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I . -1
c i-lh -jh

(20)

10 1 i-k j- 1 k-1

with i-1 h = 1/4; i-1k = 10; j- k = 1; and c = j-h = 1/40.

[Gab] = (21)

and thus

4-
[G 10] (22)

ab -40

For the second coupling network,

1 d i-1 h j-1h

w](23)
1 -1 -110 i 1 k jk

with i-1h = 1; i- k = 10; j-1k = 1/4; and d = j-lh = 1/40.

[Gb] K1  (24)

and it becomes

[G'bc] = (25)
40he final network is shown in Fig. X -.

The final network is shown in Fig. XIII-7.

2

2

(s2 + 3s+ 1)
Zll = z22 = s(s+1)(s+3)

100 1
Zl1 = s(s+l)(s+3) z21 = 1600s(s+1)(s+3)

Fig. XIII-7. Final network of the third example.
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Again, the capacitors have been changed in accordance with the impedance levels of

their respective nodes.

We want to point out that the active boxes used here to denote the transformed [G ]

matrices cannot be realized as easily as might be imagined. In all of these examples

the [G' ] matrices are singular. It is difficult, or perhaps impossible, to find a single

transistor or single vacuum-tube circuit characterized by a singular parameter matrix.

However, the usefulness of these techniques is not marred by this drawback. First, if

the resistors do not appear singly, as they did in the examples, but in pairs as an "ell"

or "gamma" (a situation that can often be induced), the same techniques can be used to

produce a nonsingular [G' ] matrix that can be realized by a single vacuum tube or

transistor. At present, no procedures have been worked out for accomplishing this, but

some preliminary investigations have revealed that a procedure can be found. Second,

these techniques are of academic value because they point out in a clear manner how

gain and nonbilaterality are inserted into a network by means of an active device. Third,

transformation techniques can be used backwards in an analysis problem. Here, again,

we are given an advantage in that we can see those factors that contribute to gain as

opposed to those that contribute to nonbilaterality and to other characteristics as the

active network is reduced step by step to a simple passive network.

T. G. Stockham, Jr.
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