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RESEARCH OBJECTIVES

The research objectives of the Physical Acoustics group were described in
Quarterly Progress Report No. 51 (p. 95). In connection with the program on
nonlinear problems mentioned there, a new experiment on scattering of sound by
sound, and measurements of nonlinear acoustic effects in liquid helium are in
preparation.

U. Ingard

A. SIMPLE EXAMPLE OF MAGNETOMECHANICAL WAVE MOTION

By means of simple mechanical systems, such as a periodic one-dimensional line

of masses coupled magnetically, some of the elementary features of magnetohydro-

dynamic waves can be demonstrated. Such a simple mechanical system is illustrated

in Fig. XIX-1. It consists of a series of coils that are free to move in a magnetic

field (loud-speaker coils and magnets). Each coil

consists of two separate windings. The individual
d

coils are connected electrically with each other to

Sform a periodic line. If one of these coils is set

[s] I[] sl 7s in motion, the voltage produced gives rise to a
(M-I) (iM) (m) current that flows to the neighboring coil and sets

Fig. XIX-1. it in motion. The motion of this coil, in turn,

generates a new current that is sent to the next

neighbor, and so on. The phase velocity of the wave disturbance which is produced in

this way can readily be calculated and shown to be analogous to the phase velocity of a

transverse (Alfve'n) wave in a conducting, incompressible fluid.

If the particle velocity of coil number n is denoted by un, the mass and inductance

of each coil by M and L, respectively, the magnetic field by B, and the current flowing

into coil number n by i n , we obtain the following equations of motion:

du
n

M dt B(i - i )
dt n n+l
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di
L dt- B(U 1 - Un)

That is,

2du 2n B 
SML(Un + u 1 - 2u)dt Z  ML n-1 n+l ndt

In these equations we have assumed that the length of the coil is unity. If this is not the

case, the magnetic field B in these equations should be replaced by B multiplied by

the length of the coil.

If the phase shift in one period is described by un-1/un = e , by inserting this

expression in the last equation, we obtain

2
w ML

cosf - 1  - 2
2B

Z

At low frequencies the expression for r is then

2
2 ML

B
2

If the distance between two coils in the lattice is d, we can introduce the mass and

inductance per unit length as m = M/d and I = L/d, respectively. Furthermore, if

we get r = wd/V, where V is the phase velocity of the wave, we obtain

B
V -1/2

It is interesting to notice that this expression for the phase velocity in the magneto-

mechanical system is analogous to the phase velocity of the well-known Alfven wave (1)

in an incompressible, conductive fluid of infinite conductibility,

B
Va -p )1/2

where p is the density of the medium, corresponding to our mass per unit length, and

[. is the magnetic permeability of the medium, corresponding to our inductance per

unit length. (Note that the coil winding in the model was assumed to have unit length.)

This mechanical lattice, of course, can be generalized to include "compressibility"

of the medium by linking the coils with mechanical couplings of various kinds. Whatever

mechanical lattice we produce can always be represented by an electrical network

analog. Such an analog may prove quite valuable, particularly in the study of magneto-

mechanical wave motion in an inhomogeneous magnetic field.

U. Ingard
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B. MODE COUPLING ON A STRING IN A MAGNETIC FIELD

In Section XIX-A a magnetomechanical system involving a number of discrete masses

coupled magnetically (and mechanically) was studied. As another simple example of the

magnetomechanics of a continuous elastic system, we shall select a conducting string

oscillating in a magnetic field. The string is mounted in a magnetic field and made to

oscillate in a direction perpendicular to the magnetic field, as shown in Fig. XIX-2.

77

z

Fig. XIX-2.

The terminations of the string are clamped and connected electrically through an elec-

tric circuit that may be a combination of inductive, capacitive, and resistive elements.

If we introduce an x-coordinate axis, as shown in Fig. XIX-2, and let the magnetic

field be described by a function B = B (x), and if we let the electric load be a pure

resistance R, the small amplitude equation of motion of the string can be written

a2_ c 2 820 B(x) 

at 2 x 2 pR
al B(x) dx

In this equation 7 represents the vertical displacement of the string; p is the mass

per unit length; c = (T/p)/2, the natural wave speed on the string (with B = 0); and

T is the tension in the string.

Now, if we consider free motions of the string without any external driving forces,

we can express the displacement of the string as the sum of normal modes with time-

variant amplitudes as follows:
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r(x, t) = m (t) sin k x

my~

km d (d = length of string)

We shall consider a magnetic field of the form

B(x) = Bn sin k x

When the magnetic field is zero, these mode amplitudes r m are time-independent

and their values depend only on the initial conditions of the string. In the presence

of the magnetic field, these amplitudes will not only be time-dependent but they

will be coupled with each other. As the amplitude of one mode decreases, the

corresponding energy is partly transferred into other modes. The quantitative

description of this coupling is immediately obtained from the equation of motion

and found to be

02
rm amn n

n

The mode coupling coupling factor a is found to bemn

d
a = B B

mn 2pR. m n

which, with a constant magnetic field, becomes

8d B 2  1
mn 2 pR mn

If we can approximate the magnetic field by one single mode B Z B sin k x, only
th m mthe m mode of the string will be affected by the field, and it will decay at a rate

given by exp - (a t/2), where a = B 2 d/2pR. The decay will be aperiodicmn mn m

when Bm d > 2(pR)1/ 2

Similar equations can readily be obtained for other types of electric load, each

with its own special characteristics. We shall not give a detailed discussion of these

characteristics but merely set down the general equation of motion which corresponds

to an inductance, a capacitance, and a resistance in series. If this resonant circuit

is specified by its characteristic frequency 2 and damping constant 8(5 = R/2L), the

differential equation governing the coupling between the various modes can be shown

to be
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d 2 n d
2  2  dtd

dt dtmn dt2
n

The solution to this equation has been studied in the special case in which there is

coupling only between two modes and the load is inductive (all magnetic field Fourier

coefficients equal zero except B 1 and B2). The string is started from 7 = 1 sin (Trx/d)

and released. The growth of the second harmonic with time and the continuous change

of shape of the string can then easily be found.

If the string is made to oscillate in a plane that makes an angle with the plane of

the magnetic field, it is clear that only the component that is perpendicular to the field

will be affected. Consequently, this component can be damped out by making the

electric load a small resistance. This feature might be of interest in eliminating

whirling of a string that is vibrating at large amplitudes. It also offers the possibility

of turning the plane of "polarization" of a wave passing through the magnetic field

into the plane of the magnetic field lines.

The scattering of a wave on a string by a magnetic field (the portion of the string

in the magnetic field is part of a closed electric circuit) has the feature that not only

are the shapes of the scattered and transmitted waves different from the incident pulse

but the transmitted pulse will start as soon as the incident pulse enters the magnetic

field. Further details regarding this scattering problem will be described in a later

note.
U. Ingard

C. ACOUSTIC NOISE SOURCE DISTRIBUTION IN A TURBULENT JET

A recent report by Ribner (1) presents an analysis of the noise source distribution

in a jet, in which Lighthill's general equations of sound production by turbulence are

used. It has been found that the source distribution in the fully developed turbulent

region of the jet should decrease as the seventh power of the distance from the jet

nozzle. The purpose of this note is to give an alternative, simple derivation of this

result. The derivation is based on the following observation.

In a perfectly laminar flow, there is no "loss" of energy, apart from that caused

by the comparatively small viscous stresses. Under such conditions a loss of kinetic

energy shows up as a gain in potential energy in the fluid. On the other hand, whenever

the fluid breaks into turbulence, energy is "lost." Energy is taken from the ordered

motion of the stream and is converted into the random motion of turbulence, which

sooner or later is converted into heat. Whenever such a conversion of energy into

turbulence occurs, a certain portion of this energy is transferred into sound. The

efficiency of this sound production increases with the velocity of the turbulent
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fluctuations (and hence with the velocity of the stream) and is proportional to the fifth

power of the Mach number, which is a well-known result from the theory of turbulence.

Let us now apply these general considerations to the jet. In the fully developed

turbulent region of the jet, it is well known that a jet from a circular nozzle spreads

out in conical fashion in such a way that the diameter of the jet increases in proportion
2

to the distance x from the jet. Consequently, the area of the jet increases as x .

Experiments show that the average flow velocity decreases as i/x. Therefore, the

kinetic energy flux E through an area of the jet a distance x from the nozzle is pro-
2 3

portional to x u . Since u /x, we then have E 1 I/x, and the loss of energy per

unit length becomes IdE/dx = /x 2 . A certain fraction of this mechanical energy loss

is converted into sound, and because the efficiency r1 of generation is proportional to

the fifth power of the velocity it follows that the sound power output per unit length of
5 -5 -2 -7

the jet is W = IdE/dx I u IdE/dx = x x = x ,which is Ribner's result.

U. Ingard
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D. ACOUSTIC AMPLIFIER

The nonlinearities of the acoustic wave equation can manifest themselves in a great

number of ways. A study is being made to determine the systematic behavior of some

of these manifestations of nonlinearity. In particular, we consider the equation

Sp o a2 pu2=

2+ 2 2 0 f(p) (1)
at ax

(The damping term (w0/Q" 8p/at) is strictly phenomenological and includes effects of

viscosity, and so forth, so that Q is frequency-dependent.) Considering a resonant

system with frequency wo and Q >> 1, we see that Eq. 1 will show instability if f(p) has

the same time phase as 8p/at and

f(p) > 0 - (2)Q at

In other words, the driving term will be greater than the damping term.

One interesting example of this situation is an acoustic parametric amplifier. We
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consider three sound frequencies o l , 6 2 ' w3 (l 2 = 3) and a cavity tuned at both

W1 and w2 . If three sound fields, pl at wl, p 2 at w2, and p3 at w3 , are considered as

satisfying the conditions Ip 3 1 >> pI PI I 2, then p3 can be considered as given, and

Eq. 1 for pl and p 2 becomes

82  a2 2 2(uu) (y-) c 2 a2( p 3)2 Q 2+ 2 2 o o 3

at2  + Q at + 2 P2  axo + 2po axt 2x o  8x 2

(3)
2 1 1  1 2 2 (uu) (y-) c o 2 p 3+ = +
at2  Q1 at +  Po ax2 2p 2

(Note that the terms on the right-hand side contain both sum and difference frequencies,

but only one frequency will drive the resonance on the left-hand side. The equations

have been taken as one-dimensional to make them clearer.) If we find solutions with

the terms on the right-hand side of Eq. 3 in phase with the damping terms on the left-

hand side, it is immediately apparent that the condition for instability of pl in the

presence of p3, with Ip 3 1 >> P 1J, is

I P312 64
P2 QQY 2 (4)
po QQ 2 (y+ 1)

This means that such a device will act as an oscillator that produces sound of frequency

W1 and w2' provided that sound of frequency w3 is pumped in.

The cavity can be analyzed as a circuit element coupled to waveguides. The ordinary

microwave methods and terminology can be used, and this analysis shows that for values

of p3 which do not satisfy Eq. 4 the device acts as an amplifier with gain given by

4
G= 2 22

Q Q Q2 P3 (-y+l)

1oe Q 64p )
where Qo is the exit Q for p1 , and Qe is the entrance Q for pl.

P. Gottlieb
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