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A. NORMAL WAVE SURFACES FOR ELECTROMAGNETIC WAVES IN A PLASMA

Many papers that consider the effects of terminal motions, finite Larmor radius,

collisions, and so forth on the propagation of plane waves through a plasma in the

presence of a magnetic field have recently appeared (1, 2, 3, 4). The necessary mathe-

matics obscures the origin of many of the predicted phenomena, and as these also

depend critically on the range of frequency, plasma density, and the magnetic field

that is considered, it has seemed worth while to view the complete range of these last

three variables in the simple limit in which there are: (a) no density gradients; (b) no

collisions; and (c) no thermal motions. The thermal motions affect mainly the slow

waves whose phase velocity is comparable to the thermal motions. For this reason,

among others, we shall be particularly interested to note the conditions under which

slow waves exist.

Under these restrictions, the mobility of an electron or ion in a magnetic field is

a tensor quantity (5) that is particularly simple when it is expressed in components of

the electric field which are either parallel (ip ) or rotating about the magnetic field in

a right-handed (4r) or left-handed (q_) direction. In terms of the mobility tensor, we

obtain the plasma conductivity,

S= nq ji (1)

by summing over the species of charged particles, and hence the effective dielectric

coefficient

KT jKH 0

K = -jKH KT 0 = 1 + (2)
jw0 o

0 0 K
p

where

2K K + KT r
(3)

2K = K - K
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The tensor (Eq. 2) is written in Cartesian, nonrotating coordinates. Kp and K T are

the components parallel and transverse to the magnetic field, and K H is the component

that gives the Hall effect. The last two components are given in terms of the rotating

components by Eqs. 3.

For the particular case of a collisionless, cold, three-component (ions, electrons,
and neutral molecules) gas the components of the dielectric tensor are

K =1-a 2

p

Kr = 1- a2/(1 + p)(1- _) (4)

K = 1 - a2/(1 - +)(1 + p )

They are expressed simply in terms of the ratios

2 p ne(m + m_)

2 2

(5)

Sb± eB

where a is a measure of the plasma density n, P of the applied magnetic field B, and

a, P+, p_ all vary inversely with the circular frequency w of the electric field.

We now study plane waves by assuming that all quantities are proportional to

exp jw(t - n - r/c) (6)

where n_ is a vector normal to the wave whose magnitude n is the index of refraction

for this direction of propagation. There should be no confusion in the use of the same

letter in formula 5 because the plasma density will only appear implicitly in the symbol
a. The phase velocity is

cnu = 2 (7)
n

Substituting expression 6 in Maxwell's equations, we obtain

n X (n X E) + K E = 0 (8)

This equation, among others, has been considered by Astrom (6). To obtain solutions,

the determinant of its coefficients must vanish, and this gives the dispersion equation
for the index of refraction n. This equation would, in general, be bi-cubic but, because

the temperature has been neglected, the sixth degree terms cancel and we have the
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bi-quadratic equation

An 4 _ Bn 2 + C = 0 (9)

with

2 2
A = KT sin 6 +Kp cos 2

B = KK sin2 0 + KpK T (I + cos o)

C =K K rKf

whose discriminant is

D 2 = 4K2 K2 sin 6 + (KK -KK ) cos (10)

Here o is the angle between the wave normal n and the applied magnetic field B.

Because collisions have been neglected, the discriminant D Z is always positive.

Therefore, n2 is always real, and n either real or pure imaginary. This sharp dis-

tinction between conditions of propagation or attenuation exists in virtue of assumptions

(a), (b), and (c).

The solutions of Eq. 9 are the indices of refraction

S 2A (11)

associated with the two polarizations, but it is easier to understand the solutions of Eq. 9

if it is solved for the direction of propagation, 8, in terms of the index n:

tan2 0 Kp(n 2 - Kr) (n 2 - K) (12)tan 0 =- (12)
(n 2 - K )K Tn 2 

- KrK)

In this form it is clear that for propagation along the magnetic field (0=0) there are two

waves

2
n =K

r r
(13)

2
n = Ka

that may be either propagated or attenuated according to the signs of K r and Kp,

and the subscripts on the dielectric components indicate that they are right and

left circularly polarized.

Similarly, for propagation at right angles across the magnetic field (6 = 1-/2)

there are two waves
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2
n =K

o p

2
nx = KrK/K
nX r T

of which the first is polarized with the electric field parallel to the applied magnetic

field. We shall call this wave "ordinary" because it is not affected by the magnetic

field. The second wave, which we shall call "extraordinary," is transverse to the mag-

netic field but not transverse to the direction of propagation. It is made up of electric

vectors rotating right- and left-handed around B, describing an ellipse in a plane per-

pendicular to B which contains the direction of propagation. Thus

2 1 1
2 2 2nx nr nl

(15)

The extraordinary velocity is intermediate between the right- and left-handed velocities.

For intermediate directions (0 < 0 < T/2) the index is intermediate between the

"principal indexes" given by Eqs. 13 and 14. If we make a polar plot of the phase

velocity i, we obtain two surfaces, called "normal wave surfaces," like those shown in

Figs. II-1, 11-2, and 11-3. Since D is never zero, the two wave surfaces do not intersect.

In crystal optics the term "ordinary" is used for waves that obey Snell's law, that

is, those for which the wave surface is spherical. In our case neither surface is

spherical except in limiting situations. The term "ordinary" does not apply to either

2,
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Wave normal surfaces of a plasma in a magnetic field.
(Effect of electrons only.)
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Fig. II-2. Wave normal surfaces in the vicinity of a = 1.
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Fig. II-3. Wave normal surfaces of a plasma in a magnetic field,
including the effects of ions.
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complete wave surface; we use it in a different sense, and only for propagation normal

to the magnetic field. (This is also Russian, but not Swedish, usage.) If we want a term

for characterizing an entire wave surface, we should use "right-handed" and "left-

handed," because this characterizes the direction of rotation of E around B for the

entire surface. We must be cautious here, too, because the wave that we call "right-

handed," rotates left-handed about the direction of propagation when it propagates along

-B. A more satisfactory notation for an entire wave surface would be to denote it (rx),

(to), (x), and so forth.

We now wish to investigate the matter of which values of the parameters a, P_, and

o give propagation (n2 > 0), and which give attenuation (n2 < 0). The boundaries of these

regions are obviously the lines along which n2 = oo, u = 0, which we call "resonances,"

and those along which n2 = 0, u = oo, which we call "cutoffs."

The principal resonances are given by

K r = oo, P_ = 1, Electron cyclotron resonance (16)

K = 00, + = i, Ion cyclotron resonance (17)

2 _ (1 (i -P)
KT = 0, a 1- P+ Plasma resonance (18)

The first two justify our definition of "resonance." The third is an extension of the con-

ventional use of "plasma resonance" which applies when there is a magnetic field, but

note that "plasma resonance" does not occur at the "plasma frequency" w . For high fre-

quencies (+ << 1) plasma resonance occurs at

2 2 2
S= + bp (18a)

and is represented on a plot of p2 against a2 (Fig. II-1) by a diagonal straight line. In

general, it is represented by a hyperbola

4 2 2 2 + 2 = 2 (18b)
- p Ob- b+ (0p b+wb) b+ b-

one branch of which goes through the points (b- = 0, W= W ), and (wp = 0, = b_) and

the other branch through (p = 0, w = Wb+) and (w = , = ob+ b- ). This last resonance,

which occurs for large plasma densities (n(M+m) c >> B • H), is sometimes called the

"hybrid cyclotron resonance" but its relation to the cyclotron frequencies is accidental.

At large plasma densities the electrons and ions must move together in the direction of

the wave normal, otherwise charge separation would occur, but this is prevented by

Coulomb forces; however, they may move parallel to the wave surface. At the partic-

ular frequency w2 = W b+wb- the equations of motion (7) show that the electron and ion
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displacements in the direction of E are identical

- E = eE 2 /( m - M) (19)

whereas at right angles to E the electrons have large displacements. The resonance

occurs because Coulomb and electromagnetic forces independently make the electrons

and ions move together along E.

There is no resonance for the ordinary wave but there are resonances along direc-

tions other than the principal directions. These are found by setting n = oo in Eq. 12:

tan2 res = -K p/K Tp T
(20)

and occur whenever Kp and K T have different signs. For a given plasma these direc-

tions occur on a cone whose axis is along B and whose angle 6res depends on the fre-

quency. In directions neare the resonant cone the phase volocity is slow and hence

Cerenkov radiation is possible. Any electron in the plasma can have a "bow wave" which

will be near the resonant cone (Fig. 11-4).

RESONANT CONE

Fig. 11-4.
V
Cerenkov radiation near the resonant cone.

The resonant directions are also the directions in which plasma oscillations may

occur, since it can be seen from Astr6m's expressions for the components of the

electric vector that this vector becomes normal to the wave surface at any resonance.

The principal cutoffs are given by
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Kr 4 = 1 - P)1 - Cyclotron cutoffs (21)

2
K = 0, a = 1, Plasma cutoff (22)

p

2 2The two cyclotron cutoffs form a continuous curve which is a parabola on the p - a

plot. The ordinary wave cuts off at the plasma frequency. There is no cutoff for the

extraordinary wave. Neither are there cutoffs in other than the principal directions,
2 2

because setting n = 0 in Eq. 12 yields tan2 0 = -1.

We are now ready to make a map of all possible wave surfaces by plotting 32 against

a2 for all the principal resonances (Eqs. 16, 17, and 18) and cutoffs (Eqs. 21 and 22).
Increasing the magnetic field would produce upward motion; increasing the plasma

density would produce motion to the right; and decreasing the frequency for a given

plasma and field would produce radial motion from the origin. Figure II-1 shows only

the high-frequency range (+ << 1), in which only the electrons can follow the oscillations.

As a resonance or cutoff line is crossed, one or two of the waves in the principal direc-

tions disappears, or reappears, and hence the shape of the wave surface changes radi-

cally. Within each of the eight areas in which the plane is divided we have plotted the

corresponding normal wave surface with the direction of B parallel to the p-axis, cal-

culated for some specific point in the area. The free-space light velocity is given by

the dotted circles as a reference. There is one area in which there is no wave surface,

as all waves are attenuated in this area. In the remaining seven areas there is propaga-

tion in some directions, but in only two of them do the two waves exist for all directions.

Thus a plasma is largely opaque or largely transparent according to the way in which

you look at it. Three of the areas have figure-eight, or figure-infinity, wave surfaces.

These are the areas where Kp/KT is negative and there is a resonant cone. The two

points at (p = 0, a = 1) and (a = 0, p_ = 1) are extremely singular because both resonance

and cutoff lines intersect there. Only the presence of a magnetic field removes the con-

fusion about whether the plasma frequency wp is a resonance or a cutoff. The ordinary

cutoff line at a = 1 is itself quite singular because on the low-density side of this cutoff

the left-handed and ordinary waves are on the same wave surface, but on the high-density

side it is the extraordinary wave that connects with the left-handed one. The transition

is shown in Fig. 11-2, in which four wave surfaces close to the plasma frequency are

shown. At the plasma frequency the wave surfaces consist of a sphere close to the

velocity of light

i/n2 = 1/n2 = 1 - P/P_ -( (23a)

but the polar points on this sphere are missing. They are replaced by two external points
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1/n2 = 1/n2 = 1 + 1/_ (23b)

and two internal points (if they are real)

1/n 2 = 1/n2 = 1 - 1/p (23c)

On the left of a = 1 the sphere has dimples that connect with the internal points (or the

origin). On the right of a2 = 1 the sphere has projections that connect with the external

points.

As we approach the line a = 1 from the right above cyclotron resonance, or from

the left below cyclotron resonance, the resonance cone becomes very narrow. Thus

although a = 1 is not a resonance, it is always very close to a resonance for propagation

very nearly along B.

The entire range of frequencies is shown in Fig. 11-3, but logarithmic scales have

had to be used and this obscures the simple shape of the resonance and cutoff lines.

Even so, a small mass ratio of 4 had to be chosen so that the two small areas near ion

cyclotron resonance would remain visible. There are now 13 areas with 12 distinct

wave surfaces.

In the limit of low frequencies the figure-eight in the upper right-hand corner becomes

two spheres tangent at the origin, and the elliptical figure becomes a sphere tangent

externally to the two previous spheres. This sphere obeys Snell's law and is called the

"ordinary wave" by Astrom. We denote it (rx), and we have

S 12 n(M+m)
1 1 (24a)

2 2 B* H
u c
rx

where (B. H/n(M+m))1/2 is the Alfven velocity. The other, termed "extraordinary wave"

by Astrom, is given by

2 2 2 (24b)
S= Urx cos 4

In regions where n2 is negative the exponential (B) may be written

exp (jwt - 2TnR* -r/\o) (25)

where X is the free-space wavelength and 2Trn* = 2lTjn is the attenuation per free-space

wavelength. This attenuation is nowhere shown on our diagrams, but it is evident that

n* 2 rises linearly beyond any cutoff and jumps from zero to infinity at any resonance

(Fig. 11-5). Because we have removed all absorption mechanisms from our theory,
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Fig. 11-5. Variation of attenuation between
cutoff and resonance.

CUTOFF RESONANCE

a semi-infinite plasma will be perfectly transparent when n2 > 0, and perfectly

reflecting when n2 < 0. A slab of plasma whose thickness is a finite number of

free-space wavelengths will still be perfectly reflecting near a resonance, but near

a cutoff considerable radiation may be transmitted.

W. P. Allis
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B. MICROWAVE RADIATION FROM PLASMAS

In Quarterly Progress Report No. 54, page 4, we employed an extension of Nyquist's

theorem to compute the microwave power P radiated from a plasma. For a plasma of

arbitrary shape situated in a waveguide, the form of the theorem used was

P = kT A dc0/2w (1)

where A is the fractional absorption suffered by a test wave that illuminates the plasma,

T is the radiation temperature, and k is Boltzmann's constant. Here we shall verify

this result for the case of a uniform plasma slab in a rectangular waveguide by con-

sidering in detail the individual emissions and their subsequent transport through the

boundaries of the plasma slab.

Our procedure is to decompose the current associated with an electron's thermal

motion between collisions in both space and time: its assumed square time pulse is

Fourier-analyzed; its assumed delta-function spatial dependence is expanded in

/'
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Fig. 1I-6. Schematic diagram of a current sheet in the waveguide.

current sheets appropriate to the waveguide modes. Only the current sheet exciting

the dominant mode and the frequency components within the chosen interval will be

retained.

For an electron at position (x , Yo, z ) moving with y-component of velocity vy, the

spectrum density of the TE 0 1 mode current sheet (see Fig. II-6) is

- is i n 
J() = Jy sin 

(2

where J = ev /ab for -T/2 < t < T/2, and is zero elsewhere. The intensity spectrum
y y

density I(w), defined as the power per frequency interval per unit area radiated into a

1-ohm load impedance is then found, after averaging over the distribution of collision

times exp(-Tvc), with Vc the collision frequency assumed constant.

2 2
e v V 2 Yo (3

I(w) = 2 2 sin d
Ir(ab)

2 v + w2  b

The contribution to the intensity radiated from an elemental slice dz about z of the

plasma slab containing n electrons per unit volume, assumed to be radiating incoher-

ently, is

a b nevc v

I dz dx dy n I(w)= 2 abY -do dz watts/m
v +w

0 0 c

where Tis the transfer impedance for a single radiative event, defined as the intensity,

I, reaching the observer per unit intensity I(w). We obtain the power dP flowing down

the waveguide from the slice dz by integrating over the waveguide cross section; this
2 2

yields dP = (kT dw/2r)0r Jdz watts, after substituting v = v /3 = kT/m (with T, the
r y

2 F /2 2'\1
electron temperature in degrees K), and r = ne v/ m v2 + W (with Tr, the real

part of the plasma conductivity T = or + jTi).

For a tenuous plasma = Z exp[-a(L- zo)], where Z = (o/Eo)1/2(K - X/4a2)- 1/2 is the

waveguide impedance; K, the plasma dielectric coefficient assumed as close to unity; and

a, the absorption coefficient of the plasma-filled waveguide. Integrating over all slices and

I E
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in the limit aL << 1, we obtain the total power from the slab

kT aL dw
P = watts (5)

2,(-X /4a2) I/ 2

since Tr a(Eo o/ ) 1/2 when r/oi << 1. It is seen that the power radiated increases with

wavelength as cutoff (X = 2a) is approached. Equation 5 is, of course, invalid near cutoff

where the assumption that the plasma is tenuous does not hold.

In order to find J-for a plasma of arbitrary opacity, it is necessary to solve the

boundary-value problem of a current sheet in a uniform dielectric slab in a waveguide.

The result of this calculation is

1 cos (yzo) + j(k/y) sin yz 2
Z- Re 2 o Z ohms (6)

o 2(k/y) cos (yL) + j(l + (k/) 2 ) sin (yL)

where Z is the empty waveguide impedance, y is the (complex) propagation constant

in the section of waveguide containing the plasma, and k is the (real) propagation con-

stant in the empty waveguide. The power radiated by the slab then follows as P =L
L (kT dw/2i) o- r dz. This result reduces to Eq. 1.

Typical results of such a calculation are shown in Fig. 11-7, together with two exam-

ples of the approximate geometrical-optics solutions (1) discussed previously. The nor-

malized noise power P/P, defined as P[kT(1 - r 1) dw/2]- 1 versus a2, is plotted. Here,

= L is the slab thickness, and a = (4Tr/k) [1 + 0-/j w -(k/2a)2]1/'2, with X , the cutoff wave-

length of the propagating mode. Curve b in Fig. II-7 is the geometrical-optics solution,

and curves, c, d, and e show the results of the exact calculation. In contrast to the

geometrical-optics solution, in which P/Pm is only a function of at, the exact solution

depends explicitly on the collision frequency vc and on the ratio of slab thickness to wave-

length. In the examples shown, the free-space wavelength was 10 cm. When the plasma

slab is sufficiently thick (Fig. II-7c), very good agreement is obtained with the approxi-

mate solution even though the collision frequency is small, and hence reflections from

the plasma are large. The small undulations observed in Fig. II-7c are the result of

internal reflections. If the slab thickness is decreased and the collision frequency

increased simultaneously (Fig. II-7d) agreement with geometrical-optics solution is

good. However, when the slab is very thin and the collision frequency small (Fig. II-7e),

large oscillations occur, and then the exact solution bears no resemblence to the approxi-

mate one. In the limit of small absorption (not shown in Fig. II-7) the geometrical-optics

and boundary-value computations reduce to the exact transparent limit (Eq. 5).

When the plasma is inhomogeneous and not in the form of a slab (which is the case

in our experiments), only geometrical-optics solutions are available. We have chosen for

our example a plasma cylinder of radius R with its axis perpendicular to the direction
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0.1 1.0 10 I00

Fig. 11-7. Radiation as a function of the attenuation coefficient of a plasma
in a waveguide: (a) represents the geometrical-optics calcula-
tion for an inhomogeneous cylinder of radius R with I = 0. 678 R;
(b) geometrical-optics calculation for a slab of thickness I; (c),
(d), and (e), exact calculations for the slab. In (c), f/X 7. 2,

v/w = 0. 0292; in (d), f/X = 1.0, v/w = 0. 292; in (e), I/Xg = 0. 072,
g g

v/w= 0. 0559. (For clarity, curves are displaced vertically 2 db
relative to each other.)

of propagation and to the electric field of the TE 0 1 mode of a rectangular waveguide, and

with a diameter equal to the narrow dimension of the waveguide. The absorption coef-

ficient is assumed to vary in the radial direction r as the zero-order Bessel function

and to vanish at r = R. (This implies that for low absorption coefficients, the electron

density also varies as a Bessel function.) A plot of P/Pm versus at is shown in

Fig. II-7a. Here a denotes the absorption coefficient evaluated on the cylinder axis,

and f a characteristic length that, in this geometry, is given by f = 0. 678 R.

J. L. Hirshfield, G. Bekefi
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C. ELECTROMAGNETIC WAVE PROPAGATION IN A BOUNDED

ANISOTROPIC PLASMA

Theoretical study of the physical properties of electron plasmas through their inter-

action with electromagnetic waves can easily be performed when boundary effects are

minimized. For instance, the propagation properties of an infinite, homogeneous plasma

are fairly well understood in terms of their interaction with plane electromagnetic waves.

The practical problems involved in producing an infinite plasma and making measure-

ments are, however, severe. Consequently, the experimental study of plasmas under

controlled conditions is limited to bounded plasmas. Therefore the propagation prop-

erties of electromagnetic waves must be interpreted in terms of bounded structures

containing plasmas.

The analytical formulation of this problem has been achieved for systems pos-

sessing cylindrical symmetry (dc magnetic field along the axis of symmetry) by

following the procedure of Epstein (1). This formulation has been used for deter-

mining the various modes within a circular waveguide that contains a uniform, cylin-

drically symmetric plasma filament coaxial to the waveguide. When the plasma

only slightly perturbs the propagation properties of the waveguide the effects may

be interpreted either from this exact formulation or from the usual perturbation

theory.

In a case of considerable practical interest - when the plasma does not act as a

slight perturbation on the waveguide - the exact formulation, the interpretation of which

requires numerical analysis, must be used. The eigenvalues (the propagation constant

for a coaxial waveguide and the change in resonant frequency for a coaxial cavity) for

the azimuthally symmetric modes are now being determined numerically by the Computa-

tion Center, M. I. T.

In the analysis, we assume that both the plasma and the bounding structure possess

cylindrical symmetry with a uniform dc magnetic field directed along the axis of sym-

metry (z-axis). If we absorb the properties of the plasma in an effective dielectric

tensor, then within the plasma the electromagnetic field must satisfy

VX H = - E 0' - EO- -
(1)

V X E = + i ° Ho -

where a time dependence of the form exp(-iwt) has been assumed. Here E and H are

the electric and magnetic intensities, w is the angular frequency of the wave, and Eo ,

o are the characteristic constants of free space. MKS units will be used. The tensor

dielectric, constant, E', has the elements
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E 0

E 0

0 E3 3

where the elements are functions of w, the electron density, the magnitude of the dc

magnetic field, the electron temperature and so forth. The determination of these

elements as a function of these parameters is of particular physical interest. Epstein's

formulation is for a gyrotropic medium with the permittivity E, a scalar, and the per-

meability .i, a tensor. The symmetry of Maxwell's equations allows us to introduce

the transformation: E - H, H -* -E, E - t = 4o, and - E E0 f-. The electromagnetic

field within the plasma can be found from Epstein's formulation once this transfromation

is performed.

Carrying out this transformation, we find that the electromagnetic field within the

plasma is given by

E ll.
iE - (z)

H=SH .V711-- H

in which we have used Epstein's notation. The elements of these two tensors are

T. 0

icr 0

o -irk

The scalar 11. has the form 4(x,
3

Helmholtz equation

y) exp i(yz - wt) and must satisfy the two-dimensional

a21. a2l.
3+ 3 2 . 0

x2  ay 2  3

2
where the k are given by

2 2 22 2  f

12 0

with

= (M - M 2  - My2 + 2(M + M 3 )k - My2 K2 2 + (K2 + 4MM 3 K2

and

2 2

7'E = i12

0

j= 1,2

a.

S =-ib
SE

0

ib 0

a. O

0 g

(4)o 1/2 icr
S =-T.

o0 0
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The symbols in these expressions have the following definitions:

2T--Ky

T. M(k +y '-k 2

a I MT - K2 (2 + k] /ko

b -Kk

2 2
gj - M 3 k Tj/ko y (7)

M = ll/d

M 3 = 1/E 3 3

K - -E 1 2 /d

2 2
d E E

11 12

From this formulation we see that the cylindrically symmetric plasma can support

two partial fields. In the absence of boundaries (spatially infinite plasma) these fields

are independent. However, in the presence of boundaries neither field is sufficient by
itself to satisfy the boundary conditions, and so both fields must be used. The question

of the completeness of this formulation has been touched upon by Epstein and will not be

considered here.

We have applied this general formulism to the specific problem of the propagation

of an electromagnetic wave within a circular waveguide of radius r 2 containing a uniform

plasma "rod" of radius r 1 < r 2 . In the region 0 < r < r 1 , the field is given by the super-

position of both partial fields of expression 4. We consider as an example the azimuth-

ally symmetric modes (quasi TEOm and TM0m). Consequently,

II. = Aj J (k r) exp i(yz - wt) j = 1, 2 (8)

Within the region exterior to the plasma the field (2) will be a superposition of the partial

fields derivable from the Hertz potential involving Jo and No , which are Bessel functions

of the first and second kind with coefficients A.(j=3-6). Using Eq. 8, we find that the

field within the plasma (0 < r < r 1 ) is given by
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and

Er = -y [A k 1 a 1 J(k l r) + A 2 k 2 a2 Jo(k2 r)]

E = iby[Alk J'(k 1 r) + Ak 2 Jo(k 2 r)]

Ez = -iy 2 [Al 1 Jo(k1 r) + A 2 g 2 Jo(k 2 r)]

Hr = (E0 /10 )1/2 [A l k 1 J o (k 1 r) + A2 k 2 J(k Z r)] icr

H = -(Eo/) 1/2 [A I T k 1 Jo(k 1 r) + A 2 k 2 2 J0o(k 2 r)]

H z = (oi/)(Eo/1) 1/2 [Al k 1 J (k 1 r) + A2 k 2 J(k2 r)]

(9)

(10)

in which we have suppressed the common factor exp i(yz - wt). The prime on Jo denotes

the derivative with respect to its argument.

The boundary conditions are: at r = r l , continuity of the tangential components of

the electric and magnetic field; and at the waveguide wall, vanishing of the tangential

component of the electric field. The imposition of the boundary conditions results in a

set of six homogeneous equations for the coefficients A.:]

Aj Bjk = 0 (11)

The necessary and sufficient condition for this set to have a nontrivial solution for the

A. is that

det Bj = 0 (12)
jk

The roots of this equation yield the propagation properties of the plasma-waveguide

system. It is this determinant for which the roots will be found numerically. For

reference, the nonzero elements of this determinant are given as follows:

B11 = 1 1(P)

B 1 2 = Jl(P2 )

B 1 6 = (1 - x)1/2 Jo(P2 )

B 2 1 = Nl(P )

B 2 2 =N1(P2 )

B 2 6 = (1 - x2 1/2 No(P 2)
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B 3 2 = -K(kl/k o ) J 1 (k1 r)

B 3 3 =M3 kk2 /k M k/

B 3 4 = (kl/k 0 ) [M (k/k

k2 + x2 - 1 Jo(k 1 r)

+ 2) - 1 J1(k1 r)

B 3 6

B 4 3 = (1 - x2)1/2 Jo(P 2)

B 4 4 = J 1 (P 2 )

B 4 5 =Jo(P 1)

B 53 =(1- x2 ) No(P 2 )

B 54 = N 1(p2)

B 5 5 = No(P1)

B 62 = -K(k2/ko ) J 1(k2 r 1)

B63 =M3 (k /k [M( 2/

B64 = (k2/ko) M(k2/k2

+ x2) - 1] J 1 (k r l)

+ x 2) -
1] J 1 (kz r 1)

B 6 6 -K k/k ° ) Jo(k 2 r1)

Here x = y/k o, P1 = yr2 (1/x
2 - 1)1/2, and p2

=- yrl(1/x 2 - 1)1/2

S. J. Buchsbaum, L. Mower
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D. MICROWAVE LOAD CURVES FOR PLASMA-LOADED CAVITIES

The production of a plasma in a microwave cavity is analyzed here as a circuit prob-

lem in which the plasma is a nonlinear load. In principle, the method is similar to that

used for determining the operating state of a dc discharge from the intersection of the

static load line and the volt-ampere characteristics of the discharge. The details, how-

ever, are more involved because of the interaction of the plasma on the resonance char-

acter of the microwave cavity. We hope that this analysis will eventually lead to an

understanding of our experimental results and to the criteria for maximization of plasma

density.

The basic microwave circuit is shown in Fig. 11-8, together with the approximate

equivalent circuit as viewed from a detuned short position in the line. The line imped-

ance is referred to the cavity side of the coupling, where n2 is the impedance ratio of the

MAGNETRON ISOLATOR ATTENUATOR COUPLING

PROBE

CYLINDRICAL
CAVITY

ARTZ TUBE STATIC AXIAL
WITH PLASMA B FIELD

n2Zo

n E I C c -

PLASMA

CAVITY

Fig. II-8. Microwave circuit, cavity, and plasma.

coupling probe. It has been assumed that the loss and reactance of the coupling probe

are negligible. The equivalent capacitance, inductance, and conductance of the cavity

are denoted Cc , L c , and gc, and the inductance and conductance of the plasma are denoted

L and g p. The parameters L and gp can be obtained from theory by calculating the

change in resonant frequency and Q of the cavity.

If it is assumed that the cavity contains a known plasma, then the expression for the

power dissipated, P p, expressed as a fraction of the power available from the line

into a matched load, Pa, is

cp 4 1
cp _ 2 2 (1)
a (1+) 2 1 + 4Q L 6
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where

1
P 2

n Zo(g c + gp

total coupling coefficient

1 2 2 1 1
-=g n Z +gpn Z = +p c p o P p

QL- Q
L +'

loaded Q

1 =w(L + L)(g +Q p c

frequency variable

The amount of the power that is absorbed by the plasma,

P g P
p p cp_

P gp + g Pa p c a

Pp is given by

P 2
P cp _ 42 1

p a p (1+p) 1 + 4QL 6

This function is a normal resonance curve with an amplitude of 4p 2 /Pp(l1+) 2 and a

bandwidth of w/QL. The amplitude of the resonance curve is the largest fraction of the

available power that can be absorbed by the plasma. If we express this fraction in terms

of the initial cavity coupling pc, and the plasma coupling p, we obtain

Pp 4 2 = 4 c (3)
a 6=0 p( 1+p) \c ++ Pc

p 1+ PC

Since Pc is experimentally adjustable and Pp is inversely proportional to plasma density,

a plot of Eq. 3 will show how to maximize the power input to the plasma. Figure II-9

a r°

0.5 1'0 1.5 2.0

Fig. 11-9. Absorbed plasma power versus plasma coupling coefficient.

r
Co
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shows the absorbed power as a function of p p, with Pc as a parameter. This function

has a maximum value of pc/(I + pc ) when p = p/(l + pc ) . From Fig. 11-9 it is clear

that the initial cavity coupling, c' ought to be highly overcoupled. The degree of over-

coupling, however, need not be infinite, since the maximum absorbed power is 90 per cent

for Pc = 10, and 99 per cent for pc = 100. In most cases a 90 per cent efficiency would

be sufficient.

Now that a criterion has been given for setting p c let us consider the use of micro-

wave load curves to determine plasma density. For high-frequency discharges generated

in resonant circuits, the variables of interest are power and frequency. Assume that a

plasma characteristic is given which relates the power required as a function of plasma

density for a given frequency, magnetic field, plasma and cavity geometry, and gas

pressure. Since the change in resonant frequency of the cavity is a function of the plasma

density, the plasma characteristic can more conveniently be plotted as the power required

versus the change in resonant frequency. A typical experimentally determined plasma

characteristic is shown in Fig. II-10. The abscissa is the fractional change of frequency

Pp 4'2
p ( )2 Po --

MICROWAVE
LOAD CURVE

PLASMA
POWER
CURVE

STABLE
b -C

a -- cUNSTABLE

APPLIED RESONANT
FREQUENCY FREQUENCY

Fig. II-10. Microwave load curve construction.

from the empty resonant frequency of the cavity, (w - wro )/

Next, a load curve must be drawn to determine the operating point. Here the details

become involved because the load curve is a function of the plasma density and still it

determines the plasma density. The height and width of the load curve, which is given

by Eq. 2, changes with the plasma density. First, in a simple case, if the plasma density



(II. MICROWAVE GASEOUS DISCHARGES)

is specified, say, at point a of Fig. II-10, then the corresponding load curve is centered

above point a, and the necessary applied frequency to achieve this condition is deter-

mined from the intersection at point b. The more complicated procedure is to determine

the density, and thus wr, if the applied frequency, wa, is given. In this case a trial and

error procedure is followed to determine the load curve that satisfies the condition that

the power into the plasma equals the power required by the plasma. The load curve in

Fig. II-10 satisfies this condition. This construction is revealing in that it shows how

the plasma density shifts the resonant frequency in order to receive the required amount

of power. The excess power, of course, is reflected back into the waveguide. We also

notice another frequency that intersects the load curve at point c and supplies the

required power needs of the plasma. For the slopes of the curves indicated, point c is

unstable because a departure from this point grows. It is conceivable, however, that if

the slope of the plasma characteristic is very steep, point c could, in fact, be a stable

operating point. A study of the stability of operating points b and c is continuing.

Besides the fact that the shape of the load curves is density-dependent, they can be

shifted vertically by changing the power level with the attenuator in Fig. 11-8. Since the

actual Q of the load curve is much greater than the sketch shows, changing the available

power Pa has a very small effect on the density. Changing the applied frequency, on the

other hand, has a large effect on the density because the difference a - wr cannot change

radically. If, by increasing the applied frequency, the density is increased to the level

at which points b and a are coincident, the peak of the load curve is tangent to the

plasma curve. A further increase in the applied frequency will extinguish the plasma.

In fact, the plasma curve is deduced, in this manner, by measuring the incident power

and coupling coefficient when the plasma is extinguished. Measurements are being made

at the present time to determine the plasma curve as a function of density and magnetic

field.
D. R. Whitehouse, J. D. Coccoli

E. MICROWAVE RADIATION FROM A PLASMA IN A MAGNETIC FIELD

Synchrotron radiation near the cyclotron frequency wb/21T = eB/2rm, for individual

charges undergoing a centripetal acceleration vw b , with v the component of particle

velocity normal to the magnetic field strength B, suggests that plasma radiation should

be enhanced by this effect. Several recent calculations (1, 2, 3) emphasize that this effect

is a strong mechanism for energy loss from a plasma. Here, it will be shown that this

mechanism has been included automatically in the general approach that we have already

applied to isotropic plasmas (4) with the advantage that the ordinary Bremsstrahlung

of interparticle free-free transitions, as well as the effects of plasma opacity, are

included.
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We assume that detailed balancing applies, so that, again, the emission from a

plasma is computed from its absorption coefficient through Kirchhoff's radiation law

and applied to an anisotropic medium as discussed by Rytov (5) and Bunkin (6). The

plasma absorption coefficients for the three possible waves propagating along a given

direction, 0, with respect to the magnetic field have been discussed (7) extensively.

We shall deal, in this report, with the low-temperature limit, wherein v2/c 2 << 1, c

representing light velocity, so that the plasma wave is neglected and zero-temperature

values are used for the other two waves.

This approach is exemplified by calculating the radiation carried by the right-hand

circularly polarized wave, that is, the wave propagating along the magnetic field, whose

polarization rotates in the same sense as the electrons. For this wave, the absorption

coefficient a is

a = [(L + M L2)1/2c
(1)

2 2
1 ( - wb) + Vco +VVc

L=- b ( - C b)

where = (ne2/mEO )1/2 is the plasma radian frequency, and vc is the collision fre-

quency for momentum transfer. Strictly speaking, a term v' should be added to the
22 3

collision frequency to include radiation damping, v' = 2 e/6T mc . However v' can

be shown to be negligible compared with vc under usual plasma conditions.c

When the plasma is sufficiently tenuous, that is, when w p/wb Vc << 1, Eq. 1 reduces

to a = vc/c ( - ob)2 + V-1. Application of Kirchhoff's law in the Rayleigh-Jeans

limit thus leads to the emission into a solid angle dQ along B. We have

2 2
S o V kT

j(w) dC = p b c dw dc d watts/m 3  (2)
81T c (W - b 28Tr3C2 (Cob)+ 2

This is seen to be a Lorentzian line shape that is typical for collision-broadened

line spectra. We can show that Eq. 2 applies to emission into a solid angle in a

direction a with respect to B simply by multiplying 1/2(1 + cos 2 0). The total power is

obtained by integrating over all solid angles and over all frequencies, which gives J =

ne (vCob)/6rEOc watts/m3. We see that both the magnitude and the angular distribu-

tion of the radiation from a tenuous plasma as computed here agrees with what would

be calculated as the energy loss from n incoherent electrons resulting from radiation

damping (8). This result, in spite of our neglect of radiation damping in the absorption

coefficient, is not surprising, however, because under our assumptions, the ordinary

Bremsstrahlung has given way to a Bremsstrahlung arising mainly from charges
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accelerated harmonically at a frequency b/2Tr.

Extension of Eq. 2 to include small thermal effects can be approximated by replacing

Sb with the Doppler-shift resonance frequency ob(1 - v/c), with v/c << 1. Here v repre-

sents the component of random velocity in the direction of the observer. The resultant

must be averaged over the velocity distribution function. When Doppler and collision

broadening occur simultaneously, tabulated functions give the resultant line shape (9).

The relative importance of these two effects is seen by comparing v/c with vc/c b . For

a magnetic field of 1070 gauss, v/c is equivalent to 2(T )1/2 gauss (T is the electron

temperature in volts), and v/wb is equivalent to p/8 gauss (p is the helium pressure in

i Hg).

With the use of the Dicke radiometer previously described (4), and of a horn in

the far field of the plasma for receiving

the radiation at 3000 mc, cyclotron radia-
1 25

10, tion has been observed experimentally

0,75 for waves propagating both along, and at

05 right angles to, the B field. A typical
S025

resonance curve for 0 = 00 is shown in
1200 100 1000

MAGNETIC FIELD GAUSS Fig. II-11. This curve was obtained at

a helium pressure of 20. Hg so that its
Fig. II-11. Observed cyclotron-resonance

radiation from a transparant half-width of approximately 40 gauss is
plasma. probably indicative of the inhomogeneity

of the magnetic field because even the

algebraic sum of the estimated Doppler plus collision "widths" is only approximately

13 gauss. Graphical integration under the line, with the electron-density value of 1.4X9-3

109 cm 3 deduced from mobility data used, gave an electron temperature of 32, 0000 K.

This illustrates an application of Eq. 2.

When the plasma is not tenuous radiation must be computed by using the full form

of the absorption coefficient (Eq. 1). The effects of opacity can be included in a typical

way by using the approximate results for the radiation emitted normal to an infinite

uniform slab of thickness L, where the power emitted has been shown (4) to be P =

kTdw(1-)( - e-aL )/ watts/m 2 , in which r is the reflection coefficient. We have

previously discussed the limitations of this solution for isotropic plasmas. Figure II-12

shows the results of a calculation of P/P = 1 - e- aL for L = /(2 Z rr) and for various
2 m

ratios of vc/w. The curves for w p/ = 0. 01 are generally representative of Eq. 2, and

in each case half-widths are indicated. The effects of collisions and space charge are

obvious. It is interesting to note how the curves approach those calculated in the limit

v -* 0. In this limit the absorption coefficient computed from Eq. 1 does not represent

true absorption at all; it merely describes the evanescence of a cutoff wave.

The frequency spectrum of radiation as described above is shown in Fig. II-13 in the
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Calculated radiation from a plasma in a magnetic field.Fig. II-12.
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4-

31

2-

0.1 1.0 10

Fig. 1I-13. Frequency spectrum of black-body radiation.

limit of small vc/w. In the crosshatched region, the plasma radiates essentially as a

black body at temperature T; otherwise it is essentially transparent. The lower branch

of the curve is the contribution from the left-hand wave. As p/Wb increases, the plasma

radiates as a black body at frequencies up to w = wb so that here the effect of the mag-

netic field is completely obscured by the plasma space charge. This condition can

be shown to be independant of e.
J. L. Hirshfield
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F. A LIMITATION OF RF CONFINEMENT

The time-averaged force on a charged particle in a high-frequency field is given by

2

f - 2 VE (1)4 2
mw

Equation 1 is valid when collisions are negligible and there is no external dc magnetic

field. The force given by (1) acts to move particles toward weaker field strength regions.

A particular confining field pattern in a cylindrical cavity that has been previously

considered is the TM011 mode. The electric field, in the transverse direction, of this

mode is in the radial direction and increases with distance from the axis. According

to Eq. 1 charged particles have a force tending to repel them toward the axis. The

question arises though whether this type of field pattern will confine a low-density

plasma. Since single particles are confined, the effect of the plasma on the rf electric

field must be considered.

If one plots the unperturbed radial electric field of the TM 0 1 1 mode, it appears as

shown in Fig. II-14 (for points near the axis). On the other hand, if the plasma is

confined by the electric field, it will have a density distribution somewhat like that shown

E

Fig. 11-14. Unperturbed electric field. Fig. 11-15. Confined plasma density.
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in Fig. 11-15. The electric field must satisfy the boundary condition of continuous EE,

since the plasma has an effective dielectric constant E . We have

E E 1 - (2)
p 2

and thus

E = E E (3)
pp oo

For low-density plasmas (w < W), p < Eo, and thus, in order to satisfy Eq. 3, E > Ep p o p o
The resultant field pattern then is as shown in Fig. 11-16.

Since the electric field of the con-

fining electric field decreases at the

Eedge of the "confined" plasma, every

particle that arrives at the plasma

boundary will experience a force out-

ward. This is an unstable situation and

the plasma, in reality, cannot be con-
Fig. 1I-16. Field pattern of low-density fined, because the boundary will move

plasma in the TM 0 1 1 mode.
outward. Thus, low-density plasmas

(Wp < ) cannot be confined by electric fields that are perpendicular to the plasma

boundary. The solution to this restriction is, of course, to use electric-field pat-

terns that are entirely tangential to the plasma boundary or to obtain plasma densi-
2 2

ties high enough so that w2 > 2w .

P R.B. Hall

G. PLASMA DIAMAGNETISM

In an effort to verify the theory of plasma diamagnetism proposed by W. P. Allis (1),

two experiments have been performed. These experiments were performed with long

cylindrical dc discharges, and hence involved axial electric fields and currents with

resulting azimuthal magnetic fields. However, over the range of our experiments these

effects were theoretically shown to be negligible.

With the use of the small-signal approximation, the magnetic field depression is

B= - 0 +1B Z2 o ne(T+ + T-) (1)
I + + Bo

where L+ is the ion mobility, i_, the electron mobility, o, the free-space specific

permeability, T, the temperature (electron-volts), B , the externally applied magnetic

field, n, the electron density, and e, the electronic charge.
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Plasma diamagnetism of helium.Fig. II-18.
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Fig. 11-19. Plasma diamagnetism of helium.
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Fig. 11-20. Pulsed diamagnetic measurement system.

Because of the experimental difficulties involved in varying the magnetic field, we

decided to vary the plasma density. In order to measure the change in magnetic field,

a pickup coil was used in the radial plane. In the first experiment (Fig. 11-17), the

density was varied sinusoidally by modulating the applied potential across the discharge.

The output of the pickup coil was detected synchronously by using the modulation source

as a reference. Data were obtained for the diamagnetic depression as a function of neT
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and the applied magnetic field. Representative samples of the data are shown in

Figs. II-18 and 11-19.

Many difficulties were encountered in determining the density distribution. Longitu-

dinal striations formed at low pressures (< 200 microns). At these low pressures, a

large depression and an equally large augmentation of the applied magnetic field were

observed. There seems to be no obvious explanation for this anomaly which occurs only

over a very narrow region of the applied field. This anomaly has not been included

in Fig. 11-19.

In the pulsed experiment (Fig. 11-20), a condenser bank was discharged through a

cold-cathode tube to produce the plasma, and oscillograms were made of the output of

the pickup coil. The B coil was used to cancel the spurious pickup of the axial field.

The data obtained qualitatively follow the results of the first experiment described.

If the validity of Eq. 1 is assumed, the computed mobilities do not agree with the

accepted values. Further experimentation must be carried out to satisfactorily estab-

lish the theory.
R. Glosser, G. Huguenin, P. Johansen
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