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A. EXACT SOLUTION OF THE SMALL-SIGNAL, ONE-DIMENSIONAL, GAP INTER-

ACTION FOR NEUTRALIZED, RELATIVISTIC, ELECTRON BEAMS

In our studies of gap interaction in electron-beam waveguides, we have achieved a

formulation and solution to the problem of a circuit field weakly coupled to an electron-

beam waveguide for arbitrary relative charge densities (w /w) in the beam. 1, 2 The

exact solution (that is, without the weak coupling assumption) of the two-dimensional

gap interaction problem, although it is readily formulated, requires a considerable

amount of computation for evaluating the results.

The one-dimensional problem, on the other hand, can be solved and evaluated exactly,

and also under the assumption of weak coupling. We have already presented the weak-

coupling solution of the one-dimensional gap interaction problem, for arbitrary (w /w). 3

In this report we shall give the exact solution for arbitrary (w /w), and compare the

results with those of the weak-coupling theory.

The system under consideration consists of a cold, collision-free, electron stream

that has its motion constrained to one direction only, the z-direction; this constraint is
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Fig. VI-1. One-dimensional electron-beam and gap circuit.
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assumed to be provided by a z-directed magnetic focusing field of infinite strength.

Furthermore, we assume that: (a) the electron stream is uniform in all planes trans-

verse to the z-direction; (b) in the absence of perturbations the space charge is neutral-

ized by stationary ions that are unaffected by perturbations; and (c) in the unperturbed

state the electron stream has a uniform velocity v o , and a uniform charge density p .

Consistently with the one-dimensional character of the electron beam, the gap circuit

must also be chosen as one-dimensional. Thus we assume a circuit that is uniformly

distributed throughout space in a region Iz < d, as shown in Fig. VI-1, having a uni-

formly distributed current density K(amp/m2) flowing through it. The electron beam

is assumed to pass, without interception, through this "permeable" distributed circuit.

Only the small-signal interaction problem will be considered here.

We assume a time dependence of eJwt for all small-signal quantities and proceed

to describe the small-signal system for 1z < d. From Maxwell's equation of Ampere's

law we have

jcoEoE(z) + J(z) = K. (1)

From the relativistic small-signal force equation and Eq. 1 we obtain

(e +E) U(z) =jZopJ(z) + joE (2)

and from the small-signal equation of conservation of charge we obtain

e + z) J(z) = jYo pU(z). (3)

In Eqs. 2 and 3 we have introduced the following symbols and auxiliary definitions:

e o (4)

p

p v(5)p v

2 epo
- (6)p mpE o

m = m o R
3  (7)

v 2]-1/2
S( - (8)

Yo O op R(R+1) V w Pop
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(10)
m f

U(z) = - v v(z)
e 0

where v(z) is the complex amplitude of the small-signal electron velocity, e is the elec-

tron charge, and m 0 is the electron rest mass.

Equations 2 and 3 can be regarded as the equations describing the beam driven by

the circuit. An equation describing the circuit is obtained by integrating Eq. i over

the gap length, which gives,

jWCoV - K. K, (11)

where

V = d E(z) dz (12)

(13)

(14)

K = - J(z) dz
i -d

Eo

o - 2d

The circuit relationship of Eq. 11 is illustrated in Fig. VI-Z.
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Fig. VI-2. The circuit variables of Eq. 11.
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The interaction described by Eqs. 2, 3, 11, 12, and 13 is that of a linear three-

port. Two of the ports are associated with the electron beam at z = -d and z = d,

and the third port is the circuit. Because of the assumed unidirectional flow of the

unperturbed beam, all signals on a one-dimensional beam travel in this same direc-

tion. Hence for the electron beam the independent variables are the beam excitation

at z = -d,
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1 uI] (15)

and the dependent variables are the beam excitations at z = d,

B = (1 6)

At the circuit terminals we have a freer choice of dependent and independent variables.

For the three quantities in Eq. 11 we have a total choice of six sets of variables. The

transformation from any set of variables to any other is obtained with the aid of Eq. 11.

We shall first choose one set of circuit variables which will give the simplest form for

the solution, and then transform to another set of circuit variables for which this exact

solution can be easily interpreted and also easily compared with the weak-coupling solu-

tion obtained before.

Consider (K/jwc ) to be the independent circuit variable, and K. the dependent vari-

able. Comparing Eqs. 2 and 3 with our previous report 3 we find that we can write the

solution of Eqs. 2, 3, and 13 at once

S(17)K 0Y_0 I i c (i07

where I is the two-by-two identity matrix, and

cos pd jZ 0 sin pd jP
D= e e (18)

jYo sinP pd cos pd

K = (19)

= [YoN M] (20)

Y = G + jB (21)

G = YMN = Y (M - M_) (22)Mo 40 +M -

1 Y M cos p+d - 1 M cos P_d - (23)

4 pd P-d
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M =2 (M + M_) (24)

N = -(M- M) (25)

sin 3±d
M sin d (26)

P± = .e p" (27)

The circuit variables chosen for Eq. 17 are interpretable from a Th6venin equivalent

of Fig. VI-2, as shown in Fig. VI-3. This makes them rather inconvenient. With the

K
IWCo

jic o  
Fig. VI-3. Th6venin equivalent of the circuit

-V + in Fig. VI-2.
C

aid of Eq. 11 we can transform Eq. 17 so that the circuit variables are the more natural

ones, K. and V . We obtain

B D 0 GB
i------ ---- (28)

K .. .. c e 1 . c8

in which we have written

G K I K ZKr KI=c =ii+ y __ (29)
r Y Y r Y

Y/jG 0  _ec __ Y __ Y
Y/J Co Yel Yel 1. (30)

Y= -j]c Y
1 -(Y/jc ) jwco Y

Equations 28-30 give the exact solution of the one-dimensional gap interaction

problem. All of the matrix elements are determined by Eqs. 18-21. The param-
3

eters M, YoN, and Y, which determine Eqs. 18-21, have been given as a function

of ( e2d) with ( p /) a parameter. From these, the matrix elements of Eq. 29 can
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Gap parameters of the interaction matrix.
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Fig. VI-4.
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Gap parameters of the interaction matrix.
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Gap parameters of the interaction matrix.
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be calculated. These parameters are shown in Fig. VI-4, with the following notation

G= Z L (31)10 A

ccS0cc
K = (32)-C YN

c [YNc Me] (33)

Yef = Gef + jB ek" (34)

The solution for the gap problem obtained from a weak-coupling theory 3 can be

derived from the exact solution as follows. Comparing Eqs. 2 and 3 with Eqs. 1 and 2

in our previous report, 3 we note that their solutions are identical if we can identify

K/jwo with E, which corresponds to identifying K/jc with V Such identification

is possible when jwco oo (see Fig. VI-3), which is the limit in which the circuit is

shorted out (see Fig. VI-2). In this limit coupling with the circuit can exist if at the

same time we allow K - 00 so that (K/jwc 0 ) -Vc . Hence, in the weak-coupling approx-

imation the solution for the gap interaction is provided by Eq. 17 with (K/jw co) = Vc'
or equivalently by Eqs. 28-30 with y = 0. This is precisely the result of our previous

report.3 (The notation there is only slightly different: Ig K.cr; V = V ; Y = Yr, with
g 1 g c el

a a cross-section area of the system.)

A comparison of the gap parameters for the exact solution, Fig. VI-4, with those

of the weak-coupling solution (see Figs. VI-11 to VI-14 in the previous report) 3 leads

to the following conclusions:

(a) The weak-coupling theory gives a good approximate description of the gap inter-

action for ( e2d) < w and (p /w) < 0. 5. Hence the one-dimensional weak-coupling

theory is strictly speaking also a weak space-charge theory.

(b) For gaps with transit angle (~ 2d) < 2. 6 radians, the electronic loading con-

ductance, G e , increases with (w p/w), reaches a maximum, and then decreases; the

shorter the gap, the higher the value of (w op/w) at which Gef reaches a maximum.

(c) For (wop/w) > 0.5, the voltage coupling coefficient M , for (p e 2d) < T2, shows

a marked increase over the value unity and, for ( e2d) > rr2, a sharp cutoff accompanied

by a large out-of-phase component M..

(d) For (wop /) > 0. 5, the center-gap remodulations of an electron beam (Gc matrix)

when V c = 0 become of considerable magnitude and cannot be neglected, as they are

in a weak-coupling theory.

Conclusions (b), (c), and (d) have important consequences for the proper design
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and possibilities of klystron and other microwave amplifiers employing high-density

electron beams.
A. Bers
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B. GAP INTERACTION IN THE PRESENCE OF A POTENTIAL DEPRESSION -

THIN-BEAM TWO-DIMENSIONAL, SPACE-CHARGE THEORY

Consider an electron beam in a waveguide whose walls are at a dc potential V o . If

the space charge in the beam is not completely neutralized, the potential at the position

of the beam will be less than V o , and vary over the beam cross section. In the presence

of a gap in the waveguide wall the potential of the beam in the vicinity of the gap will

also vary with distance along the beam, as shown in Fig. VI-5.

Fig. VI-5. D-C potential variation along the
Vo beam in the vicinity of a gap.

I

z

so that the potential variation over its cross section is negligible, and consider the gap

interaction in the presence of the longitudinal potential depression in the vicinity of the-[ 0-
interaction in the presence of the longitudinal potential depression in the vicinity of the
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gap. The small-signal equations 2 describing a thin beam of weak space-charge density
are:

"+ U = Zf UJ (1)

( + )J o YqU* (2)

All of the symbols have been previously defined.2 Equations 1 and 2 are approximately
valid in the presence of very gradual dc accelerations; here, we define a local plasma
phase constant q. Under these conditions pe' Pq, and Z0 = 1/Yo are all functions of z.
Expressing the kinetic voltage and current density in terms of the fast- and slow-wave
amplitudes, we have

U 2 (a + a_) (3)

J = J2Y (a+ - a_). (4)

Equations 1 and 2 become

a aa = -j a -(z In Z) a (5)

a_ = - In Z a - jpa_ (6)

where

= e T Pq" (7)

Equations 5 and 6 show that the slow and fast space-charge waves are coupled because
of the longitudinal variation of the dc potential. These equations are analogous to the
equations of an inhomogeneous transmission line.3

The natural solution of this system is obtained by assuming a z-dependence of

e-(z) (8)

where

y(z) = I' dz. (9)

We find two independent solutions for

r, 2 2 - (10)

Here, we have designated the coupling coefficient of the space-charge waves as
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a
c 1 Z = -- (in Zo). (11)

The amplitudes of these solutions are related to the space-charge wave amplitudes by

Al, 2 
= (a± + C±a ) (12)

where

J 1, zC = (13)Scl12

For small values of c 1 2 , C C l2, so that in the absence of a dc potential variation cl2
and C ± are zero and IF,Z = J A, Z = a±, which are the usual space-charge wave pro-

pagation constants and wave amplitudes.

The potential depression resulting from a gap opening in the waveguide will prac-

tically extend over a limited region Iz < k; see Fig. VI-5. Hence for Iz > i the

solutions are described by space-charge waves, while for Izl < f the solutions are

given by Eqs. 8-13.

Consider now the weak coupling between the electromagnetic fields in the guide

caused by an excitation at the gap and the free solutions of the beam. We assume that

the empty waveguide is below cutoff and, consistently with the weak-coupling and weak

space-charge assumptions, we neglect electromagnetic power flow as compared with

kinetic power flow. Furthermore, we assume that the electron flow is confined to the

z-direction so that only the z-component of the electric field, EC(z, b), of the circuitz
at the position of the beam is of importance. Under these conditions, we first determine

the excitations of the space-charge waves at z = I by an impulse-circuit electric field

at z = z', Iz' < i. Then, using the superposition integral, we determine these space-

charge wave excitations for an arbitrary spacial distribution of the circuit field. We find

1 -'Y1, 2 o
a() =--m e (13)

where

S= + E (z ) e ' dz (14)

'1, 2 )  
1, 2 dz (15)

yl, 2 (z) = rl, 2 dz. (16)
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The evaluation of Eq. 14 by approximate integration techniques is now in progress.

C. W. Rook, Jr., A. Bers
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