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A. SOUND EMISSION FROM KARMAN VORTICES

As reported previously, I the intensity of the Karman vortex street produced behind

a cylinder in a flow is amplified to a high degree when the frequency of the vortex

shedding is coincident with one of the transverse cross resonances in the pipe in which

the cylinder is placed. This strong reaction of a sound field on the flow field about the

cylinder at the Karman vortex frequency seems to give rise to an increase in effective

flow resistence of the region of the pipe which contains the cylinder. This has led us

to believe that the presence of the transverse sound field at the Karman vortex frequency

will produce an increase in the drag force on the cylinder produced by the flow. To

study this, a drag-force balance and associated wind-tunnel test section have been built.

The completed arrangement is shown schematically in Fig. VII-1.

TUNNEL
SECTION

Fig. VII-1. Schematic diagram of the experimental arrangement.

The duct test section is built from 0. 5-in. Lucite plates so that the entire duct is

transparent, enabling us to make visual observations of the flow by means of smoke

streamers. The cross-section area of the tunnel is 12 in. X 12 in. and the length is

48 inches. This test section is to be attached to an existing low-turbulence wind tunnel.
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The balance is arranged to measure horizontal drag forces, and consists of a frame-

work supporting the cylinder C and resting on a knife-edge at point A. The sensitivity

of the balance can be changed by adjusting the vertical position of the counterbalance

B, and the drag force fd on the cylinder can then be directly measured by a known

weight W on the pan. Two types of measurements will be made. In the first set, the

cylinder and the balance will be placed at the exit of the test section, and the cylinder

will be exposed to a variable transverse field produced by an external sound source.

The Karman vortex frequency, measured by a hot-wire anemometer, as well as the

drag force, will be measured as functions of the frequency and amplitude of the external

sound field.

In the second set of experiments, the cylinder will be placed inside the duct, and the

drag of the cylinder will be measured in the range of flow speeds for which the coinci-

dence between Karman vortex frequencies and cross resonance occurs.
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B. STABILITY OF PARALLEL FLOWS

The three-dimensional Navier-Stokes equations yield time-stationary parallel-flow

solutions in the simple form

V 1 = V Z = 0, V 3 = W(x l , x Z),  P = x3P o ,

where W(x 1 , x 2 ) is a polynomial of degree two, at most, in xl and x 2 . The stability

problem for parallel flows consists in discovering whether those solutions of the Navier-

Stokes equations which at some time are "close" to time-stationary ones will approach

boundedly such a stationary solution as t tends to infinity.

If we write

V1 = u l, V 2 = u2 , V 3 = W(x 1 ,x 2 ) + u 3 , P = x 3P o + p,

then the (linearized) equations for the u. take the form
1

-1 VV u + W 1 -- u + u (la)8t i x3 8x i3 1 x2

au.
1

ax o. (Ib)
1
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The free-field propagating kernel for the left-hand side of (la) has been found. We may

without loss of generality write

2  2
W(x 1, X2 ) = V + V1X1 + Ulx1 + V2x2 + U2x2

in terms of which the propagator takes the form

Sdk exp (ik(x 3 -Y 3 -Vt) - vk2t)
-_ j= 1,2

tan J. 2

exp -ik Uj(x +y ) + Vj + y2 +

s-.t

4rrv sin t
3

4 Jt ,

4vkU.

j i

Were it not for the constraint (lb), we could solve at once the free-field initial value

problem for (la), in the form

u (, t) = $3
E

u3 (, ) YE3

d3y K(*, -, t) u 0)(_) -
1 0

0
_ap(, t aw aw 1

ay 3  ay 1  1 (Yt') + ayZ 2 (6, t ]

The integrals in (3) will converge for t > 0 if the u(0) and are in any of
1 x.

II Ht 1

classes, with lp (t) locally integrable in t. With similar restrictions on the 8x 8x
2 i 1 ip j

ap
and 8atx.' the claimed solutions (3) satisfy (la) for t > 0 and converge pointwise almost

11

everywhere to the given u( 0 ) as t tends to zero.
Since 0 and

1
xdo not in general commute with the propagator (2), that is,
2

x--K(x, y, t) # K(x, y, t) - (i = 1, 2), the solution (3) cannot be expected to preserve the
1 ayi

condition (lb), even in case the u 0 ) should be differentiable and satisfy (lb). The task

of maintaining (lb) thus falls to the pressure terms in (3). An indication of the proper
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dt' d3y K(-, ., t-t')
ap(, t,)

ay i

i=1,2

dt' sE 3
d3y K(', Y, t-t')

(3 a)

(3b)

the L
p

K(x, y, t) =-

d3y K(, , t) u 3O)()
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form for the pressure terms may be gained by formally taking the divergence of (la)

and applying (ib), with the well-known result

2 W 8ul aW Bu

Vp = auI + aw'. (4)
8x1 x3 8x2 8x3 j

Equation 4 could be used to convert (3) into an integral equation in the u i , but this

procedure does not seem to lead quickly to solutions or estimates, except when the
U. V.

3 J
- and - are small.
v v

In the special case of simple shear flow, with W(x 1, x 2 ) = Vx 1 , we have found the

appropriate expression for the pressure for weakly divergence-free initial velocity

fields, namely

1- 2 3 32 32V 3  r 24V t 3 Vt 3 r
P 4T E 3 d y U(y, t) 4 E3 yt) 4 E 3 a u(, t),

ax3  
3  axlX 3  a ax33 1 3 3

(5a)

where r = x -y, and

-(0)
u(, t) = S d yK(x, , t) u (). (5b)

Substituting (5a) in our solution (3b) for u 3 , we discover after some formal manipu-

lation that the leading term in u 3 as t tends to infinity has the form

u 3 (R, t) ~ 3 S dt' S d 3 y K(', y, t-t') t'2 u(-, t')

3 5 dt' t' u( , t) =t 3 u( , t) = t 3  d 3 y K t) u(0)(). (6)

If u0) EL for 1 < p < 3, that is, if

[I E 3 u 0)d 3 y]1/ <

we may estimate (6), using H61der's inequality and our explicit representation for K.

In the case of simple shear flow this expression reduces to the expression previously

1 pexhibited. The result is that u(x, t) = 0 ( , uniformly in the x i , or

0( 5. (7)u 3 - 0 (t 3 2 -p.(7
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The order relation (7) fails to reveal conditions under which u 3 will remain bounded

as t tends to infinity; it gives at best u 3 - O(Nt) when u(0) is integrable. On the other
(0)

hand, ul will itself tend uniformly to zero as t tends to infinity, provided that u 1 E L
for p < 5/2.

It is easy to provide a counterexample to stability criteria involving only the inte-

grability in some mean of the u(0). If we let ul 0 ) be any bounded, integrable, non-

negative function that vanishes for 1 > 1, then u 3 "uses up" the order relation (7) in

the sense that

Sup 3u31 = O( J-) but Sup u31 #o( -). (8)

x 3 E E x 3 E E

If the formal result (8) is substantiated in the more rigorous version that is now

being worked on, we shall have demonstrated the instability of simple shear flow in the
(0)

free-field case under perturbations u. belonging to the L classes.

The limiting case v-0 of the above-mentioned stability problem is of interest in

elucidating the role of viscosity in stability theory. The inviscid initial-value problem

has solutions (other than those among the Schwartz distributions) only under much more

restrictive conditions than those of the viscid problem, owing to the absence of the

au! °)

regularizing action of viscosity. Solutions exist, provided that x exists for each
ax3

i, and belongs to an L class for
p

p < 3/2 free-field case

p < 2 flow between bounding planes

p < 0o periodic boundary conditions.

The solutions then look like the viscid ones (Eqs. 3) except that the viscid pro-

pagated terms f(1, t) = 3 K(X, , t) f(r) d y are to be replaced by the corre-

sponding inviscid transformations f(xl, x, x 3 ) - f(x 1, x Z, x 3 -Vl 1 t). [Formally,

K(x, y, t) - 8(xl-Y 1) 5(x 2 -y 2 ) 8(x 3 -Y 3 -Vtxl).]
v-0

Specializing as before to the case of simple shear flow, and using the inviscid ver-

sion of (5), we can show that the inviscid shear flow is not stable under any perturba-

tion for which the solution corresponding to (3) and (5) exists. This generalizes the

result previously given for the inviscid Couette flow,2 in which the additional assump-

tion was made that u0) be twice differentiable with respect to x 1.
H. L. Willke, Jr.
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