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Abstract

Mode filtering is most commonly implemented using the sampled mode shape or
pseudoinverse algorithms. Buck et al [1] placed these techniques in the context of
a broader maximum a posteriori (MAP) framework. However, the MAP algorithm
requires that the signal and noise statistics be known a priori. Adaptive array pro-
cessing algorithms are candidates for improving performance without the need for a
priori signal and noise statistics. A variant of the physically constrained, maximum
likelihood (PCML) algorithm [2] is developed for mode filtering that achieves the
same performance as the MAP mode filter yet does not need a priori knowledge of
the signal and noise statistics. The central innovation of this adaptive mode filter is
that the received signal's sample covariance matrix, as estimated by the algorithm,
is constrained to be that which can be physically realized given a modal propagation
model and an appropriate noise model.

The first simulation presented in this thesis models the acoustic pressure field as a
complex Gaussian random vector and compares the performance of the pseudoinverse,
reduced rank pseudoinverse, sampled mode shape, PCML minimum power distortion-
less response (MPDR), PCML-MAP, and MAP mode filters. The PCML-MAP filter
performs as well as the MAP filter without the need for a priori data statistics. The
PCML-MPDR filter performs nearly as well as the MAP filter as well, and avoids a
sawtooth pattern that occurs with the reduced rank pseudoinverse filter. The second
simulation presented models the underwater environment and broadband communi-
cation setup of the Shallow Water 2006 (SW06) experiment. Data processing results
are presented from the Shallow Water 2006 experiment, showing the reduced sen-
sitivity of the PCML-MPDR filter to white noise compared with the reduced rank
pseudoinverse filter. Lastly, a linear, decision-directed, RLS equalizer is used to com-
bine the response of several modes and its performance is compared with an equalizer
applied directly to the data received on each hydrophone.



Thesis Supervisor: Dr. James C. Preisig
Title: Associate Scientist with Tenure



Acknowledgments

I would like to thank everyone who helped me with my thesis, particularly Jim Preisig

and Andrey Morozov, my two research advisors, as well as my academic advisor,

Arthur Baggeroer. This work was supported by the Office of Naval Research through

grants N00014-05-10085 and N00014-06-10788, and through the WHOI Academic

Programs Office.





Contents

1 Introduction 13

1.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Objectives ........................... 14

1.3 Organization ........ .................... . 15

2 Background 17

2.1 Normal Modes and Signal Model ................... . . . 17

2.2 Narrowband Mode Filters ........ ............... 21

2.2.1 Sampled Mode Shape (SMS) Mode Filter ........... . 22

2.2.2 Pseudoinverse (PI) Mode Filter . ............. . . . 22

2.2.3 Minimum Power Distortionless Response (MPDR) Mode Filter 23

2.2.4 Maximum A Posteriori (MAP) Mode Filter . ......... 24

2.3 PCML Method for Spatial Covariance Matrix Estimation ....... 25

2.3.1 PCML Covariance Matrix Estimate . .............. 25

2.3.2 Algorithm Initialization ................... .. 27

2.3.3 Covariance Matrix Update .................... 27

2.3.4 Power Spectrum and Noise Power Updates ........... 28

2.4 Broadband Processing ........ .......... ...... . .... 31

3 Simulation and Experimental Results 33

3.1 Complex Gaussian Random Vector (CGRV) Simulation Setup . . .. 33

3.2 Application of the PCML Algorithm to the Underwater Environment 35

3.3 CGRV Simulation Results ............. .. ...... 38



3.4 RAM Simulation Setup ......... ............... 45

3.5 RAM Simulation Results ....... ...... .......... 47

3.6 Shallow Water 2006 Experiment Setup . ................ 59

3.7 Shallow Water 2006 Data Processing Results . ............. 60

4 Mode Equalization 71

4.1 Equalizer Setup . .................. . . ..... . 71

4.2 Equalizer Results ............. . . . ........... 73

5 Conclusion 83

5.1 Summary ....... ........ . ..... .. ... .. 83

5.2 Suggestions for Future Research ................... .. 84



List of Figures

2-1 First four modes of an isovelocity waveguide . ............. 18

2-2 Group and phase velocity curves for an isovelocity waveguide showing

the frequency dependence. The curves for mode 1 are near the center

and mode 6 is on the top and bottom . ................. 19

2-3 Arrival times for a 20 km transmission path for the first six modes of

an isovelocity waveguide. Mode 1 is at the bottom and mode 6 is at

the top. ....................... .... ......... 20

2-4 Modal dispersion for the first six modes over a 20 km transmission

path for an isovelocity waveguide. . .................. . 20

2-5 Multiplicative Update ....... .......... ..... . . 30

2-6 PCML algorithm by Kraay and Baggeroer [2] . ............ 30

2-7 Block diagram of the broadband framework used to generate the modal

time series ...... .................... ..... .. 31

3-1 Large values of A and small values of B cause ripple in the steady state. 36

3-2 Small values of A and higher values of B require a larger number of

iterations for the algorithm to converge. . ................ 36

3-3 Large values of a and/3 cause ripple in the steady state. ....... . 37

3-4 Small values of a and/3 require a larger number of iterations for the

algorithm to converge. ........................ ... 37

3-5 Likelihood of the 50 received data snapshots as a function of the white

noise power estimate, 2 ...... . . .............. .. . . . 38



3-6 Varying the number of snapshots used in the MPDR filter, with and

without the PCML algorithm . ......................

3-7 Comparison of various mode filtering methods, SW noise ........

3-8 Comparison of various mode filtering methods, KI noise........

3-9 SW noise, low SNR.............................

3-10 SW noise, high SNR . ...........................

3-11 KI noise, low SNR . . ..................

3-12 KI noise, high SNR.. ...........................

3-13 PI filter performance in the presence of KI noise . ...........

3-14 PI filter performance in the presence of SW noise . . . .

3-15 Sound speed profile and 200 Hz mode shapes for the shallow water

environment used in the CGRV simulation and at the receiver location

of the RAM simulation . ......

3-16

3-17

3-18

3-19

3-20

3-21

3-22

3-23

3-24

3-25

3-26

3-27

3-28

3-29

3-30

Channel impulse response as generated by RAM . . . . .

Estimated channel impulse response using 80 hydrophones.

Estimated channel impulse response using 80 hydrophones.

Estimated channel impulse response using 80 hydrophones.

Estimated channel impulse response using 9 hydrophones.

Estimated channel impulse response using 9 hydrophones.

Estimated channel impulse response using 9 hydrophones.

Estimated channel impulse response using 9 hydrophones.

Estimated channel impulse response using 4 hydrophones.

Estimated channel impulse response using 4 hydrophones.

Estimated channel impulse response using 4 hydrophones.

Estimated channel impulse response using 9 hydrophones.

Estimated channel impulse response using 4 hydrophones.

Mode covariance matrix of the signal at the receiver location.. . . . .

Mean-square-error in estimating mode 1 with 9 hydrophones instead

of 80. . . .. . .. . . . . . . . ... . . . . . .. . . . . . . . . . . . . .

. . . . . . . 46

.. . . . 47

. . . . . . 48

. . . . . . 49

. . . . . . 49

. . . . . . 50

. . . . . . 50

. . . . . . 51

. . . . . . 51

. . . . . . 52

. . . . . . 52

. . . . . . 53

. . . . . . 54

54

55

56

o



3-31 Mean-square-error in estimating mode 2 with 9 hydrophones instead

of 80 .. . . . .. . .. . . . . . . . . . .. . . . . . . . .. . . 57

3-32 Mean-square-error in estimating mode 3 with 9 hydrophones instead

of 80. ... .... . . . . . . . . . ................... 57

3-33 Bit-error-rates when filtering with mode 1. . ............... 58

3-34 Bit-error-rates when filtering with mode 2. . ............... 58

3-35 Bit-error-rates when filtering with mode 3. . ............. . 59

3-36 Shallow Water 2006 experiment area and bathymetry [3]. ....... 60

3-37 SW06 impulse response estimate day 219, mode 1 ............ 61

3-38 SW06 impulse response estimate day 219, mode 2. . ........ . . 61

3-39 SW06 impulse response estimate day 219, mode 3............ 62

3-40 SW06 impulse response estimate day 219. . ............. . 62

3-41 L2 norm of PI weights for mode 2 on day 219. . ........... . 63

3-42 SW06 bit-error-rates, day 219, mode 1. . ................. 64

3-43 SW06 bit-error-rates, day 219, mode 2. ................. 64

3-44 SW06 bit-error-rates, day 219, mode 3. . ................. 65

3-45 SW06 impulse response estimate day 231, mode 1........... . 66

3-46 SW06 impulse response estimate day 231, mode 2............ 66

3-47 SW06 impulse response estimate day 231, mode 3............ 67

3-48 SW06 impulse response estimate day 231. . ............. . 67

3-49 SW06 bit-error-rates, day 231, mode 1. . ................ 68

3-50 SW06 bit-error-rates, day 231, mode 2. ......... .. ....... 68

3-51 SW06 bit-error-rates, day 231, mode 3. . ............... . 69

4-1 Equalizer setup .................. ........... . 72

4-2 BER for RAM simulation with 3-tap equalizer ............. 74

4-3 Soft Decision Error (in dB) for RAM simulation with 3-tap equalizer. 75

4-4 BER for SW06 Day 219 with 3-tap equalizer. . ........... . 75

4-5 Soft Decision Error (in dB) for SW06 Day 219 with 3-tap equalizer. . 76

4-6 BER for SW06 Day 231 with 3-tap equalizer. . ........... . 76



4-7 Soft Decision Error (in dB) for SW06 Day 231 with 3-tap equalizer. .. 77

4-8 Soft Decision Error as a function of A, RAM simulation using all 9

hydrophones. ........... ................. .. ....... 78

4-9 Soft Decision Error as a function of A, SW06 Day 219 using all 9

hydrophones. ....... .... . .... . . ... .. 79

4-10 Soft Decision Error as a function of A, SW06 Day 231 using all 9

hydrophones. ....... .... . .. ..... . ........ 79

4-11 Inverse Covariance Matrix Condition Number, RAM Simulation. . . . 80

4-12 Inverse Covariance Matrix Condition Number, Day 219 ........ . 81

4-13 Inverse Covariance Matrix Condition Number, Day 231........ . 81



Chapter 1

Introduction

1.1 Motivation

In underwater acoustic communication, the delay spread of the acoustic channel is

one of the primary obstacles to reliable, high-rate communication. However, the delay

spread of a given mode of propagation is significantly less than the delay spread of

the overall acoustic channel. This thesis proposes mode filtering as a pre-processing

method to reduce the delay spread of the communication channel and to reduce

the number of independent channels that need to be equalized. Having a shorter

impulse response reduces the inter-symbol interference encountered between symbols

and having fewer independent channels means there are less taps that need to be

adjusted in an equalizer. A smaller number of taps means fewer snapshots are required

to estimate the data statistics, which allows an equalizer to more quickly adapt to

changing channel conditions. The end goal is to communicate faster with lower bit

error rates.

There are both adaptive and non-adaptive methods to estimate the signal propa-

gating in a particular acoustic mode. Many of the adaptive methods, such as a filter

based on the minimum power distortionless response beamformer, require knowledge

of the spatial covariance matrix of the array. The true value of this matrix is not

known in practice, and the sample covariance matrix is often used instead. However,

a large number of snapshots are required for this matrix to converge close to its true

_ _ _IXI_~ *Ilis-X--.-.lli_--~--_II



value. A physically constrained, maximum likelihood method, originally developed

by Kraay [4], is proposed to take advantage of the known structure of the vertical

pressure field and accurately estimate the covariance matrix with significantly fewer

snapshots. Mode filtering reduces the number of independent channels that need to

be equalized since the number of energetic modes is usually less than the number of

available hydrophones.

The experimental setup analyzed in this thesis is one transmitter and a fixed ver-

tical array of receivers located 19 km away in shallow water (80 meters depth). Low

frequency sound signals centered at 203 Hz were used. One application of the pro-

cessing techniques described in this thesis is autonomous underwater vehicles (AUVs)

that want to communicate information back to a central base station as they navigate

an area. In this application, the sound source is mounted on the AUV and the re-

ceive array would be deployed in a central location. The general application of mode

filtering is much more widespread, however, as it can also be used to process signals

transmitted across the entire ocean, such as during the Acoustic Thermometry of

Ocean Climate experiment [5]. Mode processing is attractive in these applications

because the signal energy is trapped in the ocean acoustic waveguide and can travel

long distances without bottom or surface interactions.

1.2 Objectives

1. Apply a physically constrained, maximum likelihood method for covariance ma-

trix estimation to adaptive mode filters.

2. Demonstrate broadband mode filtering as a pre-processing method for under-

water acoustic communication.

3. Evaluate the performance of an adaptive equalizer to combine the response of

several modes after mode filtering.



1.3 Organization

Chapter 2 will present the concept of acoustic normal modes and how narrowband

mode filters are used to estimate them. Chapter 2 also describes the physically con-

strained, maximum-likelihood method for covariance estimation developed by Kraay

[2]. Chapter 3 presents results from two simulations and results from the Shallow Wa-

ter 2006 experiment, comparing several mode filtering methods. Chapter 4 evaluates

the performance of a linear, decision-directed RLS equalizer both on the outputs of

the mode filters and on each hydrophone directly. Chapter 5 describes the conclusions

of this work and directions for future research.

_LIL-~- .L-. .-.l. XI . --- ^--~~~1
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Chapter 2

Background

This chapter provides an introduction to the underwater acoustic environment, includ-

ing representing the vertical pressure field as a sum of normal modes. The chapter

describes several narrowband mode filtering techniques. Lastly, a physically con-

strained, maximum likelihood method for estimating the spatial covariance matrix is

presented.

2.1 Normal Modes and Signal Model

Modes are physically motivated, orthogonal basis functions for the vertical sound

pressure field. They are derived from solutions to the wave equation and are depen-

dent on frequency and environmental conditions, such as water depth, temperature,

salinity, and bottom properties [6]. Modes are only dependent on the local properties

of the waveguide, however, and not on the environment between the transmitter and

receiver. Equation 2.1 shows the pressure field written as a sum of modes, where

p(z, f) is the complex acoustic pressure at frequency f and depth z, dm is the mode

coefficient of the mth mode, and Om(z, f) is the mth mode shape.

p(z, f) = E dm(f)Om(z, f) (2.1)
771



Figure 2-1 shows the first four modes of an isovelocity channel that has a pressure

release surface and a hard bottom. In this case, the modes are pure sinusoids.

Group velocity is the rate at which signal energy propagates in the horizontal

Mode I Mode 2 Mode 3 Mode 4
0 0 0 0

20 20 20 20

40 40 40 40

S60 60 s 60

80 80 80 80

1000 0.06 0.1 .1 0 0.1 10.1 0 0.1 4.1 0 0.1
Amplitude Amplitude Amplitude Amplitude

Figure 2-1: First four modes of an isovelocity waveguide

direction, and is defined in general as cg = - , where w is the frequency in radians

per second and kr is the horizontal wavenumber. Each mode has a particular group

velocity associated with it at a particular frequency and can be calculated analytically

for an isovelocity waveguide. Equations 2.2 and 2.3 express the group velocity of a

particular mode in an isovelocity waveguide as function of frequency. The phase

velocity is the rate at which the phase of a wave propagates and is defined as cp - ,
where k, is the horizontal wavenumber [6]. In the following equations, co is the

medium sound speed, m is the mode number, D is the depth of the waveguide, f is

the frequency, and k, is the horizontal wavenumber.

kr = (27rfl/co)2 - (mlr/D)2  (2.2)

Cg cok, C (2.3)
c /k + (mr/D)2 - 2rJ

Figure 2-2 shows the group and phase velocities for the first six modes of an isovelocity

waveguide, with mode 1 at the center and mode 6 at the top and bottom. The

lower order modes have the fastest group velocities, and the higher order modes have



slower group velocities. Therefore, the lower order modes will arrive first in this

environment. The lower modes have a smaller change in group velocity over a given

frequency band, which means they have the shortest dispersion. For each mode, group

velocity decreases with decreasing frequency, until it reaches a cutoff frequency where

its group velocity becomes zero. For frequencies below this point, the mode is said

to be evanescent and its amplitude decays exponentially with range. Figures 2-3 and

2-4 show the effect of the varying group velocity on the modal arrival times for a 20

km waveguide.

Modal Group and Phase Velocity, Modes 14
1650 ....... ..... ...

.. e -Group Velocity

PhaseVelocty1600

1 t60 *

""0"Model

1400 .

Frequency (Hz)

Figure 2-2: Group and phase velocity curves for an isovelocity waveguide showing the

frequency dependence. The curves for mode 1 are near the center and mode 6 is on

the top and bottom



Mode Arrivals: Frequency vs. Time, Modes 1-6

13.j50 200
Frequency (Hz)

250

Figure 2-3: Arrival times for a 20 km transmission path for the first six modes of an
isovelocity waveguide. Mode 1 is at the bottom and mode 6 is at the top.
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Figure 2-4: Modal dispersion for the first six modes over
for an isovelocity waveguide.
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Equation 2.4 shows a narrowband signal model used to represent the vertical

sound pressure field,

p = d + n (2.4)

where d is a vector of complex valued mode amplitudes and n is noise. Both are

assumed to be zero-mean. b is the sampled mode shapes matrix,

[01 (Z) ... OM(Z1)

- = •(2.5)

L1(ZN) O M(ZN)

Two noise models are considered in this thesis, spatially white (SW) and Kuperman-

Ingenito (KI). Both of these noise models assume the noise is complex and zero mean,

and therefore the noise correlation matrix is the same as the noise covariance matrix.

The SW noise model assumes the noise at each hydrophone is uncorrelated with the

noise at all of the other hydrophones. The covariance matrix for this noise model

is Rn = a21. The KI noise model assumes the noise is contained in each mode

independently with varying powers, with covariance matrix

P12 0 ... 0

o P2-
Rn 0 2 .H (2.6)

0 ... 0 P2

where P2...P2 are the powers of each mode in the noise model.

2.2 Narrowband Mode Filters

This section describes several narrowband mode filters and drops the notational de-

pendence of mode shapes on frequency, as this will be implied. Mode filters estimate

the complex amplitude of a particular mode at a particular frequency given the pres-

sure field measured with a vertical array of hydrophones. Equation 2.7 expresses the



estimated mode amplitudes as a function of the received vertical pressure field and a

linear mode filter, H.

d1= Hp (2.7)

The remaining parts of this section will discuss the choice of the filter H to use in

estimating the mode amplitudes.

2.2.1 Sampled Mode Shape (SMS) Mode Filter

The sampled mode shape mode filter is the projection of the vertical pressure field

onto each of the sampled mode shapes. As such, it is spatially matched to each mode

and is optimal for detecting a single mode in spatially white noise [1, 5]. However, the

sampled mode shapes are not orthogonal and the filter suffers from leakage between

modes.

HSMs = = H (2.8)

LVM(ZI) -... VM(ZN)

2.2.2 Pseudoinverse (PI) Mode Filter

The pseudoinverse mode filter results from taking a pseudoinverse of the sampled

mode shape matrix and is the filter that results from choosing d to minimize the

squared error between tbd and p [1, 7].

Hp, = (OH)-1 H (2.9)

The row that filters for a particular mode projects the received array data onto

the subspace that is orthogonal to all the other modes. The PI filter is optimal in

rejecting interfering modes, but is sensitive to spatially white noise. An alternative

that is commonly used is a reduced rank pseudoinversion based on the singular value

decomposition. Let

S= USVT (2.10)



be the singular value decomposition of ib, where S is a diagonal matrix consisting

of the singular values of ib and U and V are orthogonal matrices representing the

eigenvectors of /'T and 1 T, respectively [8].

The pseudoinverse of t can be written as

Hreducedrank = 0+ = VS+UT (2.11)

where S + is the pseudoinverse of the diagonal matrix S, where inverses of the singular

values less than some threshold (1/100 of the maximum singular value in our case) are

set to zero [8]. This mode filter will be referred to as the reduced rank pseudoinverse

filter in the rest of this thesis.

2.2.3 Minimum Power Distortionless Response (MPDR) Mode

Filter

The MPDR mode filter minimizes the filter output power subject to the constraint

that the desired mode is passed with a gain equal to one. It is based on the MPDR

beamformer used in spatial array processing, with a substitution of the mode shape

vector in place of the spatial steering vector [9, 10, 11]. The goal is to minimize

contributions from interfering signals and noise while preserving the desired mode.

The derivation of the filter is as follows. Let the received pressure field be p and the

desired mode be n. w, is the weight vector that filters for mode n, with the output

of the mode filter being wHp. The goal of the MPDR filter is to

minimize IIwHp 112 = wHRpwn such that wHet = 1 (2.12)
Wn

The derivation uses Lagrange multipliers [12, 13]. Let H(w) be the Lagrangian func-

tion:

H(w) = 1/2 * w HRpW + A(OHWn - 1) (2.13)

V,(H(w)) = 0 = Rpw + nA (2.14)



.. Wn = -Rp-1 nA (2.15)

From our constraint,

pHW = 1 (2.16)

n (-R nA) = 1 (2.17)

S= -(,H -1 n)-1 (2.18)

Rp-1 n
W.'. Wn = (2.19)

where Rp is the covariance matrix of the vertical pressure field at a particular fre-

quency. In practice, this matrix is not known a priori and must be estimated from

the received data. The sample covariance matrix is one option for estimating Rp, but

it requires a large number of snapshots to accurately estimate the true value. Section

2.3 will present an alternative method for estimating this matrix. The linear mode

filter H that estimates all the modes together is formed by combining the weights for

each mode:
H

HMPDR = 2 (2.20)

2.2.4 Maximum A Posteriori (MAP) Mode Filter

The MAP filter is derived as the linear minimum mean square error filter, and under

the assumption the mode coefficients and noise are complex Gaussian random vectors

(CGRVs), the filter is also the MAP filter. This mode filter is given by [1, 7]

HMAP = (Rd - 1 + OHRn-1)-1bH Rn - 1 (2.21)

where Rd is the covariance matrix of the mode coefficients and Rn is the noise co-

variance matrix. In practical experiments, neither of these matrices is known exactly

and they must be estimated in some way. Chapter 3 discusses this issue further.



2.3 PCML Method for Spatial Covariance Matrix

Estimation

This section describes a physically constrained, maximum likelihood (PCML) method

for estimating the spatial covariance matrix used in adaptive filters. This method

was proposed by Kraay in 2003 [4]. For a given linear array, the ensemble covariance

matrix is not known in practice and the sample covariance matrix, Rdata, is often

used in its place.

Rftdata = X1 (w)X(w)H (2.22)
I=1...L

where XI(w) is an array snapshot vector at frequency w [9]. This matrix is the

unconstrained maximum likelihood estimate of the covariance matrix [14]. However,

an inaccurate estimate of the true covariance matrix results in poor performance of

the adaptive algorithms that make use of it. R1data is a good approximation of the

true matrix only when a large number of snapshots are used. Various reduced-rank

methods have been developed to address this problem, including diagonal loading and

dominant mode rejection [4, 9].

The goal of the PCML algorithm is to improve adaptive array processing tech-

niques under snapshot-deficient conditions. The algorithm determines the maximum

likelihood estimate of the spatial covariance matrix subject to known physical con-

straints. The physical constraints come from our knowledge that the received signal

is composed of a propagating component plus spatially white sensor noise. As a re-

sult of the physical constraints, fewer snapshots are required to obtain an accurate

estimate of the spatial covariance matrix.

2.3.1 PCML Covariance Matrix Estimate

The signal snapshots are modeled as series of independent, identically distributed

(i.i.d.) zero-mean complex Gaussian random vectors (CGRVs). The joint probability



density function of L such snapshots is [15]

p(Xl, ... ,XL) = I -XHR-'X (2.23)
l=1...L

where R is the covariance matrix of those snapshots and N is the number of elements

in each vector X. The maximum likelihood (ML) estimate of this covariance matrix

given the received snapshots is

fRML = arg max p(X, ..., XL)
R

1 -XHR-'Xl
= arg max 11 RI -NIe R

R l=1...L

=arg max -NLr R-Le -E=1...L -XHR-1Xl
R

=argmax -logIRI - Tr(XH R- 1X)
l=1...L

= arg max - log RI - Tr( 1 E R-XiXH)

R

(2.25)

where L(R, tdata) = -logiRI - Tr(R- 1 dat,) is the log-likelihood function. There

is no closed form solution for the R that maximizes this log-likelihood function when

physical constraints are imposed. It is, however, possible to use derivatives of the

likelihood function in an iterative approach to finding the constrained ML estimate.

Kraay derived this method for a spatial beamformer[4]. The covariance matrix is

separated into its propagating component plus spatially white sensor noise,

[Rj = 2+ 1 +k P(w,k) [v(k)i [VH(k)]jdk (2.26)

where [v(k)], = e- j kTpn is the array manifold vector, p, the position vector for the

nth array element, k the spatial wavenumber, and P(w, k) the frequency-wavenumber



power spectrum. Q(k) is the region of support for the wavenumber field imposed by

the wave equation, Ilkil = 2.

2.3.2 Algorithm Initialization

The PCML algorithm initializes its estimate of the covariance matrix with the sam-

ple covariance matrix, Rdata. The initial frequency-wavenumber spectral estimate,

P(w, k), is estimated using the Capon estimator [11],

1
Po(w, kn) = VDR(kn)RdataWMVDR(kn) = H()l ) (2.27)

A good rule of thumb is to initialize the white noise power estimate as one tenth the

average diagonal value of Rdata.

SON = Tr(Rdata) (2.28)
10N

2.3.3 Covariance Matrix Update

The first iterative step is to obtain a new estimate of the covariance matrix. This is

done by inverse Fourier transforming the frequency-wavenumber spectrum estimate

with respect to the wavenumber k,

[ mn]i = ['slpace(Pm-1(W,k) 
+  m-l)i,j (2.29)

[Rm]ij = + P m-l(W, k)e-jkT (p-P,)dk (2.30)J (k)

where Pm1 (w, k) is the estimate of the power at frequency w coming from the di-

rection specified by the wavenumber k at iteration m - 1. Since Pm can only be

calculated at discrete points, a covariance matrix taper is used to smooth the esti-

mates of propagating energy around the discrete spatial plane wave samples. Each



sample, Pm-1 (w, k), is approximated as a weighted, shifted window in k-space,

Pmi-(w, k) = [Pi(w, k,)W(k - ku)] (2.31)
n

The integral in equation 2.30 then becomes a summation,

[ftm]i = m-j + Pm (W, kn)e - j k (p - p ) Wij (2.32)

where Wij is the inverse Fourier transform of the covariance matrix taper [16, 17].

The taper primarily used by Kraay was a uniform window given by [4]

1, for u <. and < A
W(u) = W(u., uy) = o 2 (2.33)

0, otherwise

where u is the wavenumber vector normalized by and Au is the wavenumber grid

spacing. The inverse Fourier transform of this window is

Wi, = J W(u)e+j2u T (P'-P')du (2.34)
(2rn Au (27r Au

= Au sine A (PiX, - Pj,) Au sinc 7rA (pi, - pj,)) (2.35)

2.3.4 Power Spectrum and Noise Power Updates

The frequency-wavenumber power spectral density (PSD) estimates are updated using

the gradient of the likelihood function (equation 2.24). The gradient with respect to

the power at a given frequency and wavenumber is given by

L(RIm, Rdta) H(k ) lv(ks) + VH(kn) ;nRdata mlv(kn) (2.36)
Pm(w, kn)

and the gradient with respect to the white noise power is given by

L (f1n, Rdata)2 = Tr((R-RRdata - I)R 1) (2.37)



The Hessians are given by

a2 L(I, ldata) = (VH(kn)Rl v(kn)) 2 2(VH(kn)fl ;'v(kn))(VH(k,)l ldataRilV(k ))
(OPm (W, kn)) 2

(2.38)

and
a2L(R-, , R dat)

2L 2 Rdta) = Tr(l' 1 1) - 2Tr(Rl;'RdataR;AL1) (2.39)

which can be used to verify that a maximum of the likelihood function is reached and

not a minimum. The multiplicative update proposed by Kraay provides a convenient

mapping between the gradients of the likelihood function and a multiplicative scaling

factor. The update is chosen such that when the gradient of the likelihood function is

zero, the power estimates remain unchanged. The scale factor increases monotonically

for a positive gradient and decreases monotonically for a negative gradient.

* i (arctan(a OL+1 >0

Pm-1 (w, k.) * e u/ -e 1 + 1 , > 0
Pm (w, kn) =' 8Pm- 1

Pm-W1(w, kn) * [_ a-1 1 + 1 , otherwise

(2.40)

Figure 2-5 shows a plot of this update as a function of A, B, a, and /. A and B are the

scale's upper and lower limits, and a and 3 are parameters that control how quickly

the algorithm steps as a function of the gradient. For the white noise power update,

Kraay used an additive form since it offered better stability for her environment.

=2 =2 + 10-4 A / (02)2 (2.41)
m 2

The PCML algorithm iterates for a number of iterations until the covariance ma-

trix estimate has converged to its most likely value. A diagram of the algorithm

from Kraay and Baggeroer's paper [2] is shown in figure 2-6. The PCML frequency

wavenumber estimates are the values of Pm(w, k) at the final iteration of the algo-

rithm. The likelihood function can be calculated at each iteration to provide an

indication of whether the algorithm has converged.
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2.4 Broadband Processing

This section describes the broadband processing steps that were used on the simulated

data from RAM and on the experimental data from the SW06 experiment. The

broadband received data was first bandpass filtered to mitigate out of band noise.

A linear-phase bandpass filter with a center frequency of 203 Hz and a one-sided

bandwidth of 55 Hz was used. The appropriate narrowband mode filter weights were

calculated as described in section 2.2 every 5 Hz between 135 and 265 Hz, and were

set to zero outside this region.

Downsample
and Decode

Figure 2-7: Block diagram of the broadband framework used to generate the modal
time series

A frequency domain approach was used to implement the filter weights using the

overlap-add method [18]. A Fourier transform of length 512 is taken of a data segment

of length 256, is multiplied by the desired weights at each frequency, and an inverse

Fourier transform is taken. The result is added to the output and the process is



repeated starting 256 samples ahead. This process is done at each hydrophone and

the outputs are added together and demodulated. Figure 2-7 shows a block diagram of

the processing steps. A time domain filter implementation using the Parks-McClellan

method was also tested and gave similar results. Only the frequency domain approach

is presented in this thesis, however, since the results were nearly the same.

A simple decoder was used to process the modal time series, which has been

further downsampled to twice the symbol rate. The decoder was run two times - first

taking every other data sample starting with the first, and then taking every other

sample starting with the second. The offset which produced the smallest bit error

rate was used. The constellation's phase was aligned using a total least squares fit

of the symbols through the origin to rotate them to 0/180 degrees. Equations 2.42

and 2.43 show the total least squares algorithm used to determine the angle the data

points needed to be rotated by [19]. a is a vector of the real parts of the data symbols

and b is a vector of the imaginary parts.

[U S V] = svd([a b]); (2.42)

angle = tan- 1 (-V(1, 2)/V(2, 2)); (2.43)

After rotation by this amount, a decision was made for each sample based on

which side of the imaginary axis is was on. The bit decisions were compared with the

known transmitted data to determine the bit error rate.



Chapter 3

Simulation and Experimental

Results

This chapter applies the PCML method for covariance matrix estimation to the un-

derwater environment. The performance of several mode filters is compared in two

simulations and experimental data.

3.1 Complex Gaussian Random Vector (CGRV)

Simulation Setup

The first simulation analyzed in this thesis models the mode amplitudes and noise as

zero-mean complex Gaussian random vectors (CGRVs). Equation 3.1 is a convenient

way to express the vertical pressure field as a weighted sum of normal modes plus

noise [1].

p(zi) ... O (z) dl n(z1)
= " . I+ (3.1)

p(zN)J L1(ZNN)... 'VM(ZN) d Ln(ZN)

Written in vector notation, p = Od + n, where d is a vector of mode amplitudes, n

is observation noise, and i is the matrix of mode shape vectors. Since mode shapes

depend on frequency, this is only a narrowband model.



In this simulation, the mode coefficient vector, d, is modeled as a zero-mean

complex Gaussian random vector. The noise is modeled as a combination of spatially

white (SW) and Kuperman-Ingenito (KI) noise [20]. Spatially white noise has a

covariance matrix R, = a2I1 and KI noise has a covariance matrix

P 2  0 ... 0

0 P2
= 2 (3.2)

0

0 ... 0 P,

where P2...P are the powers of each mode coefficient in the KI noise model. In this

simulation, the noise power in each mode was proportional to 1, 1, 2, 1, 1, 3, 2, 2, and

2 which was chosen as a representative choice. The real and imaginary parts of d and

n are i.i.d. and Gaussian, and therefore the vectors are proper and their covariance

matrices are real [15]. The simulation is similar to the one described by Buck et. al [1]

for a shallow water environment. The simulated environment had a typical shallow

water sound speed profile and was 80 meters deep. The frequency used for calculating

the mode shapes was 200 Hz. A vertical array of 20 equally-spaced hydrophones was

used. The location of the bottom hydrophone was fixed at 78 meters down and the

depth of the top hydrophone was varied from the water surface to a depth of 40 meters

(half the water column). This gradually reduced the fraction of the water column that

was spanned by the array. 500 trials were run using independent realizations of the

mode coefficients and noise vector. Linear mode filters were applied to the simulated

pressure field to obtain an estimate of the mode amplitudes. The error criteria is

the mean total squared error, Ila - d112, between the estimate of the complex mode

amplitudes and their actual values. The total mode energy is included in plots of the

results for reference, and represents the error that would result from estimating each

mode to have zero amplitude.



3.2 Application of the PCML Algorithm to the

Underwater Environment

Before presenting the results of the CGRV simulation, this section first presents the

application of Kraay's PCML algorithm to the problem of estimating complex mode

amplitudes. For the underwater environment model of equation 2.1, the covariance

matrix of the acoustic pressure field can be decomposed into a propagating modal

component plus spatially white sensor noise. In this case, there are a discrete number

of propagating modes to sum instead of an infinite number of spatial plane waves to

integrate over, so no covariance matrix taper is necessary. Thus equations 2.30 and

2.32 become

i_ = 2I + E P(w, i)Oi Hf (3.3)
i=1...M

The second change is that instead of steering the beamformer to a spatial direction,

it is steered to a particular mode. The steering vector, v(k), becomes

v(kn) = On (3.4)

With these modifications, the PCML algorithm developed by Kraay can be applied

to determine the maximum likelihood estimate of the covariance matrix given the

physical constraint. In Kraay's simulation, the window had a factor of 1/(Au) 2 in it,

where Au is the normalized wavenumber grid spacing of 0.1. This caused the final

PSD estimates to be larger than the initial power estimates since R is scaled by a

window in equation 2.32. The P, estimates converge to 100 times the values they

would have converged to had the factor of 1/(Au) 2 = 1/100 not been included in

the equation. For the underwater environment, there is no window and the initial PO

values are already very close to the final PSD estimates. Therefore, the upper limit of

the multiplicative update used in the PCML algorithm can be set around 1.5 instead

of 125. The PCML algorithm is less sensitive to the choices of a and 0, however these

parameters still need to be small enough to ensure minimal ripple in the steady state

and large enough for the solution to converge in a reasonable number of iterations.



Figures 3-1 through 3-4 show the effect of these parameters on the log-likelihood as

a function of iteration number.

Log-Likelihood, A1 .9, B-0.7, a =0.2, p 0.4
55

.......... ....... ...... ..... ...................... ................

CO

250 10 20 30 40 50 60 0
Iteration number

Figure 3-1: Large values of A and small values of B cause ripple in the steady state.
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Figure 3-2: Small values of A and higher values of B require a larger number of
iterations for the algorithm to converge.

In the spatial simulation done by Kraay, the likelihood function was believed to

be highly multimodal with respect to a2 [4]. The simulated annealing method was

proposed by Kraay as an alternative to the gradient update, and this technique is



Log-Likelihood, A-1.5, B-0.86, -20, p -40

0

V0.

o 340

0 5

o3
.
" 30
0

Iteration number

Figure 3-3: Large values of a and 3 cause ripple in the steady state.
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Figure 3-4: Small values of a
algorithm to converge.

and 3 require a larger number of iterations for the

able to overcome such local maximums in the likelihood function. Though more

computationally intensive, this method provides greater stability and robustness in

finding the global maximum since it has the ability to escape local maxima [21].

However, figure 3-5 shows a plot of the likelihood as a function of the white noise

power estimate for the mode simulation being investigated. The likelihood function



in this case is not multimodal, and the gradient update proposed by Kraay can be

used without concern for getting caught in a local maximum. The curve decreases

monotonically with increasing 62 beyond the range that is shown. The spike in the

likelihood function near zero occurs because of poor matrix conditioning and can

be avoided with a non-zero initialization of the estimate. In this thesis, only the

gradient technique is used since it is less computationally intensive and provides

excellent results.

Likelihood vs. White Noise Power Estimate
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Figure 3-5: Likelihood of the 50 received data snapshots
noise power estimate, &2.

as a function of the white

3.3 CGRV Simulation Results

This section presents the results of the simulation described in the section 3.1. The

filters compared were the pseudoinverse, sampled mode shape, reduced rank pseu-

doinverse, MAP, MPDR, PCML-MAP, MPDR-unweighted, and PCML-MPDR fil-

ters. The total mode energy is indicated with the black '+' line. The MPDR fil-

ter uses the sample covariance matrix formed from simulated data snapshots. The

40

20 -

. true value = 0.002

. i I



MPDR-unweighted filter is the MPDR filter that uses an unweighted sum of the outer

products of the mode shape vectors as its covariance matrix. That is,

Runweighted = > kVHf (3.5)
i=1...9

The PCML-MAP filter uses the mode power estimates from the final iteration of the

PCML algorithm in the variances of d and assumes that the modes are independent.

The filter also assumes there is no KI noise present. That is, the filter uses

P1 0 ... 0

o ^ 2
Rd = (3.6)

0 ... 0 k

and

Rn = 521 (3.7)

in the MAP filter equation (equation 2.21). The PCML-MPDR filter uses the estimate

of the covariance matrix from the final iteration of the PCML algorithm in the MPDR

mode filter (equation 2.19).

In the PCML algorithm, the multiplicative update was used to update both the

mode power estimates and the white noise power estimate. The update amount

was calculated with A=1.5, B=0.85, a=0.2, and /=0.4. The algorithm consistently

converged within about 100-150 iterations using these parameters. 50 data snapshots

were used to initialize the adaptive algorithms used in this simulation, except where

stated otherwise. The signal powers varied in each mode, and were proportional to

1, 2, 5, 6, 3, 1, 0.5, 0.5, and 0.1 respectively in each of the first 9 modes.

The sawtooth pattern in the reduced rank PI and in the unweighted MPDR curves

is a result of the changing number of singular values used in the pseudoinversion as

the condition number of either 0 or Runweighted changes. This effect will be explored

later in the section. The PCML-MAP filter performs within a fraction of a dB of



the true MAP filter. The MPDR filter using the sample covariance matrix requires

tens of thousands of snapshots to perform similarly to the PCML-MPDR filter with

only 50 snapshots. Therefore, there is a significant advantage to using the PCML

algorithm to estimate the spatial covariance matrix used in the MPDR filter. Figure

3-6 shows the effect of the number of snapshots on the MPDR mode filter, with and

without using the PCML method for the covariance matrix estimation. It takes more

than 10,000 snapshots for the unconstrained sample covariance matrix to converge to

its true value. When the PCML algorithm is used, the matrix converges within 20

snapshots.

Total Mode Error, SNR -23 dB
30

-- MAP
. -- MPDR 100 snapshots

20 --- MPDR1000 snapshots
- MPDR 10000 snapshots
- -- PCML MPDR 20 snapshots

S10 PCML MPDR 50 snapshots.. .+..+.+. +.+ .,
+ Total Mode Energy ....

.0

-20

.30
0 6 10 16 20 26 30 36 40

top of aperture (m) out of 80 m depth

Figure 3-6: Varying the number of snapshots used in the MPDR filter, with and
without the PCML algorithm.

Figures 3-7 through 3-12 show the results of this simulation for varying SNR

and noise types. The PCML-MAP filter consistently performs the same as the true

MAP filter, and the curves lie on top of each other. In the presence of KI noise, the

PCML-MPDR filter also performs the same as the MAP filter, however it performs

slightly worse in SW noise. The unweighted MPDR filter uses a pseudoinversion to

compute the inverse of its covariance matrix, and which often results in a similar

sawtooth pattern to that observed in the reduced rank PI filter. Even when the

optimal number of singular values are used with the reduced rank PI filter, it still



does not perform as well as the adaptive methods do when SW noise is present.
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Figure 3-7: Comparison of various mode filtering methods, SW noise.
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Figure 3-8: Comparison of various mode filtering methods, KI noise.
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Figure 3-9: SW noise, low SNR.
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Figure 3-10: SW noise, high SNR.
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Figure 3-11: KI noise, low SNR.
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The last part of this section presents the effect of the number of singular values

included in the reduced rank PI filter. In the figures below, the 'Reduced rank PI

0.5' filter, for example, indicates that singular values within 0.5 times the maximum

singular value were included in the pseudoinversion. With KI noise, it is better to use

more singular values to better null the interfering nodes. With SW noise, it is better

to use fewer singular values so the filter is less sensitive to the white noise. This can

been seen with equation 3.8. If there is no SW noise, then it is best to include all

singular values in the pseudoinversion so b+ will fully cancel. In the presence of

SW noise, it is best to use fewer singular values so the spatially white noise, nsw, is

not magnified from the inversion of the small singular values of b.

d = O+p = b+bd + +OdKI, + +nsw (3.8)

The PI filter still does not do as well as the PCML-MPDR or MAP filters when

SW noise is present even when the correct number of singular values is used.
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Figure 3-13: PI filter performance in the presence of KI noise.
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Figure 3-14: PI filter performance in the presence of SW noise.

3.4 RAM Simulation Setup

Simulations of an underwater environment similar to that observed during Shallow

Water 2006 were run with a Matlab version of RAM (Range-dependent Acoustic

Model). RAM is a parabolic equation based code for simulating underwater sound

propagation [22]. The sound speed profile was range varying and was determined from

CTD casts taken along the transmission path of the SW06 experiment. Figure 3-15

shows a plot of the sound speed profile at the receive location and the corresponding

mode shapes. The environment is assumed to have cylindrical symmetry. The values

of the impulse response, H(z,f), at frequencies ranging from 100-300 Hz and depths

ranging from the surface to the bottom were calculated, and H(z,f) was assumed to

be zero outside this region. The inverse discrete Fourier transform was taken at each

depth to form h(z,t), the impulse response as a function of depth and time.

Figure 3-16 shows a plot of the simulated impulse response of the channel. The

second mode arrives first in this environment followed by the first mode. There

was minimal energy in modes higher than mode 2, which was different from the

experimental results of the SW06 experiment. This is likely because the simulated

environment was only minimally range-varying, and there is only a small amount of



mode coupling. The simulated environment's sound speed profile is specified at three
distinct locations, whereas in the SW06 experiment it continually varied along the
transmission path.

Sound Speed (m/s)
148015001520 1 2 3 4 5 6 7 8 9 10

3 50 -

100-

Figure 3-15: Sound speed profile and 200 Hz mode shapes for the shallow water
environment used in the CGRV simulation and at the receiver location of the RAM
simulation.

A binary phase shift keyed (BPSK) signal with a center frequency of 203 Hz
and a one-sided bandwidth of 51 Hz was generated and convolved with the impulse

response determined by RAM for each simulated hydrophone depth. A combination

of Kuperman-Ingenito (KI) and spatially white (SW) broadband noise was added

to the signals. The simulated receive array had nine equally spaced hydrophones at

depths of 17.25, 24.75, 32.25, 39.75, 47.25, 54.75, 62.25, 69.75, and 77.25 meters, which

coincide with hydrophone locations used during the SW06 experiment. Maximum-

length sequences were transmitted and it is possible to generate estimates of the

effective impulse response of the channel by computing the circular cross-correlation

of the transmitted signal with the output of the mode filter [23].of the transmitted signal with the output of the mode filter [23].



3.5 RAM Simulation Results

This section presents the results of the RAM simulations described in the section 3.4.

One performance metric used to compare the types of mode filters is the estimated

channel impulse response. Since m-sequences were transmitted, this was done by

circularly cross-correlating the output of the mode filter with the transmitted data.

The height and narrowness of the impulse response peak relative to the noise floor is

an indicator of the signal's strength. A second performance metric is the mean square

error between the estimated response of a particular mode and its true response, as

determined by filtering with 80 equally spaced hydrophones in the water column

and bottom. The last performance metric considered is the bit error rate for the

simulated communication channel when a mode filter is used to pre-process the data

before decoding without an equalizer.

The PCML-MAP filter uses an estimate of the noise covariance matrix generated

from a recording of the noise only, which in experimental work would be recorded

immediately before or after a given transmission. As in the CGRV simulation, the
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Figure 3-16: Channel impulse response as generated by RAM.



covariance matrix of the signal's mode coefficients is estimated via the PCML algo-

rithm for this mode filter. The MAP filter uses the true mode covariance matrix

of the signal alone and the true noise covariance matrix, as determined using the

80-hydrophone array. This filter is included for comparison purposes, but in prac-

tice these matrices would not be known precisely. Each of these mode filters was

computed every 5 Hz between 135 and 265 Hz and the filters were applied using the

overlap-add method [18]. A detailed description of the short-time Fourier techniques

used to apply the narrowband mode filters to broadband signals is found in [5] and

[24], and is summarized in section 2.4.

Figures 3-17, 3-18, and 3-19 show the simulated impulse responses for modes 1-3

using the full 80-element array. The plots from all the mode filters except MAP fall

directly on top of each other. Mode 2 has the strongest response, as evidenced by

the height of its peak relative to its sidelobes and by the width of its mainlobe. The

impulse response plots are normalized by dividing by the sum of the squared values

of the noise floor, so the height of thle inmpulse response estimate is an indication of

signal strength.
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Figure 3-17: Estimated channel impulse response using 80 hydrophones.
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Figure 3-18: Estimated channel impulse response using 80 hydrophones.
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Figure 3-19: Estimated channel impulse response using 80 hydrophones.



Figures 3-20, 3-21, 3-22, and 3-23 show the simulated impulse responses using

9 equally spaced hydrophones. The plot for mode 4 is included for reference, how-

ever almost no signal is resolvable in that mode or any higher order modes in this

simulation.
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Figure 3-20: Estimated channel impulse response using 9 hydrophones.
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Figure 3-21: Estimated channel impulse response using 9 hydrophones.
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Figure 3-22: Estimated channel impulse response using 9 hydrophones.
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Figure 3-23: Estimated channel impulse response using 9 hydrophones.



The following figures show the simulated impulse response using 4 hydrophones.

In this case, the mode filters have a difficult time differentiating between the modes,

and some of the signal power from mode 2 is observed in the other modes.
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Figure 3-24: Estimated channel impulse response using 4 hydrophones.
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Figure 3-25: Estimated channel impulse response using 4 hydrophones.
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Mode 3 varying the filter type
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Figure 3-26: Estimated channel impulse response using 4 hydrophones.



Figures 3-27 and 3-28 show the simulated impulse response of the first four modes

using 9 and 4 hydrophones respectively. As the number of hydrophones is reduced,
it becomes more difficult to differentiate between each mode and all the modes begin

to appear similarly.

Impulse response, 9 hydrophones, PI filter

time (s)

Figure 3-27: Estimated channel impulse response using 9 hydrophones.
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6
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S-15 ................1....
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Figure 3-28: Estimated channel impulse response using 4 hydrophones.

Figure 3-29 shows the mode covariance matrix of the signal at the receiver. The

majority of the signal energy is contained in modes 1 and 2 whereas the higher order



modes contain almost no signal energy. This is why, as will be seen later, mode filters

for modes 1 or 3 often do worse when additional hydrophones are added since more

signal energy from mode 2 is filtered out. Furthermore, each mode filter produces a

similar estimate of the channel impulse response. The shape of the response therefore

depends more on the channel and the number of hydrophones used than it does on

the choice of mode filter.
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1 -40

2 -30

3
20

r4
010

:E5

6 0

7 -10

8

2 4 6 8
Mode #

Figure 3-29: Mode covariance matrix of the signal at the receiver location.

Let us now turn our attention to the mean-square-error (MSE) and bit-error-

rate (BER) filter performance metrics. Figures 3-30 through 3-32 show the mean-

square-error in estimating a given mode using 1 to 9 hydrophones instead of 80. The

hydrophones are added from the bottom to the top of the vertical array. The 0 dB

level represents the power of the 80-element array's output, so always guessing the

output is zero will lead to an MSE of 0 dB. The plots below show that the mode filters

using mode 2 are able to accurately approximate the response of the 80-hydrophone

array, but not using modes 1 or 3.

Figures 3-33 through 3-35 show the bit error rates for the overall communication

system. Mode 2 was the strongest mode and the lowest error rates are obtained using

this mode for processing. When filtering with mode 1 or 3, the filters often perform

best when only 3 to 6 hydrophones are used, and then the performance decreases as



the number of hydrophones increases. One reason for this is because the mode filter

is unable to accurately filter for a given mode with only 3 to 6 hydrophones, and

energy from mode 2 leaks into the estimates of the other modes. As the number of

hydrophones increases, energy from the strong second mode is filtered out better and

the overall communication performance degrades. Furthermore, the reduced rank

PI filter often performs worse as the number of hydrophones is increased. As was

observed in the CGRV simulation, this is due to increased white noise sensitivity

as additional singular values are included in the pseudoinversion. When using the

strongest mode to filter with (mode 2), the PCML-MAP filter is able to do almost as

well as the MAP filter which knows the signal and noise statistics a priori.
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Figure 3-30: Mean-square-error in estimating mode 1 with 9 hydrophones instead of
80.
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Figure 3-31:
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Figure 3-32: Mean-square-error in estimating mode 3 with 9 hydrophones instead of
80.
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Figure 3-33: Bit-error-rates when filtering with mode 1.
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Figure 3-34: Bit-error-rates when filtering with mode 2.
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Figure 3-35: Bit-error-rates when filtering with mode 3.

3.6 Shallow Water 2006 Experiment Setup

The Shallow Water 2006 experiment was conducted along the continental shelf off

the coast of New Jersey. The duration of the experiment analyzed in this thesis was

that received from the sound source known as the Miami Sound Machine (MSM). It

consisted of a single transmitter at a depth of 56 m in 75 m of water. The signal

propagated 19.2 km along the continental shelf to a vertical array of receivers. The

203 Hz BPSK signal is analyzed here, which has a one-sided bandwidth of 50 Hz

and a baud rate of 50.9 bits per second. A 127-bit maximum length sequence was

repeatedly transmitted from this sound source [3]. Temperature and salinity sensors

were located on and near the array which allowed the acoustic modes to be calculated

as a function of time during the entire experiment. In this processing, however, the

modes are assumed to be constant for each 90 second transmission interval. A map

showing the location and bathymetry of the SW06 experiment from the technical

report by Newhall et al [3] is found in figure 3-36.
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Figure 3-36: Shallow Water 2006 experiment area and bathymetry [3].

3.7 Shallow Water 2006 Data Processing Results

This section describes the processing results from applying the narrowband mode

filters in broadband processing of the data collected during the Shallow Water 2006

experiment. Figures 3-37, 3-38, and 3-39 show the estimated impulse response on day

219, which was a typical time period where mode 2 was strongest. All of the mode

filters generate a similar estimate of the channel impulse response, as was observed

in the RAM simulations.

For comparison, figure 3-40 shows the impulse response estimates directly to three

of the hydrophones. These impulse responses are more dispersed and less intense than

the mode filtered response for mode 2. This highlights how mode filtering reduces

the effective delay spread of the channel.
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Figure 3-37: SW06 impulse response estimate day 219, mode 1.
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Figure 3-38: SW06 impulse response estimate day 219, mode 2.
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Figure 3-39: SW06 impulse response estimate day 219, mode 3.
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Figure 3-40: SW06 impulse response estimate day 219.



The following figures show the communication bit-error-rates for day 219. The

hydrophones used are located at equally spaced depths of 17.25, 24.75, 32.25, 39.75,

47.25, 54.75, 62.25, 69.75, and 77.25 meters. The hydrophones were added from

the bottom to the top of the array. The unweighted MPDR and SMS filters have

the lowest BER out of all the filter types when filtering for mode 1. Since these

filters likely do worse in estimating mode 1, energy from mode 2 leaks into the filter's

estimate of mode 1 and this results in a lower BER relative to the other filters.

Also, we again see the error spike for the reduced rank PI filter as the number of

hydrophones is increased. This is because of increased sensitivity to white noise as

more singular values are included in the pseudoinversion. Figure 3-41 shows a plot of

the L2 norm of the PI weights for mode 2 as a function of the number of hydrophones.

The larger the L2 norm of the filter weights, the smaller the array gain in the presence

of spatially white noise, which results in worse filter performance. The spike in the

L2 norm coincides with the spike in the BER curve for mode 2 in figure 3-43.

1 104 L2 Norm of the Pseudoinverse Filter Weights

8-10o 6 .......... .......... .... ... ................ .............. .. ....

4

4 ........... "....... ....... . ................ .... . . ...

1 2 3 4 5 6 7 8 9
Number of hydrophones

Figure 3-41: L2 norm of PI weights for mode 2 on day 219.
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Figure 3-42: SWO6 bit-error-rates, day 219, mode 1.
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Figure 3-43: SWOG6 bit-error-rates, day 219, mode 2.
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Figure 3-44: SW06 bit-error-rates, day 219, mode 3.
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Lastly, the following figures show the results from day 231 during an atypical

transmission period when there was a large amount of internal wave activity [25].

Mode 1 is strongest mode during this time period. Figure 3-48 shows a plot of

the impulse response directly to three of the hydrophones without mode filtering for

comparison. As expected, the direct impulse response has a longer dispersion and is

not as intense as the mode filtered version.
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Figure 3-45: SW06 impulse response estimate day 231, mode 1.
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Figure 3-46: SW06 impulse response estimate day 231, mode 2.
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Figure 3-47: SW06 impulse response estimate day 231, mode 3.
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Figure 3-48: SW06 impulse response estimate day 231.
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Figure 3-50: SW06 bit-error-rates, day 231, mode 2.
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Figure 3-49: SW06 bit-error-rates, day 231, mode 1.
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Mode 3 BER vs I of hydrophones
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Figure 3-51: SW06 bit-error-rates, day 231, mode 3.
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Chapter 4

Mode Equalization

The mode filtering results from the previous chapter only make use of one the energy

contained in one particular mode of propagation at a time. This chapter proposes a

linear equalizer for combining the outputs of several mode filters together so signal

energy contained in several of the first few modes is used. The mode equalizer is

compared with an equalizer directly applied to the received data at each hydrophone.

An exponentially weighted recursive least squares (RLS) algorithm was used to update

the equalizer weights and is discussed in [26, 27].

4.1 Equalizer Setup

The equalizer setup is shown in figure 4-1. X is the transmitted binary data which is

passed through a noisy channel, Y is the received data, and X is the hard decision

estimate. Two versions of the equalizer were used. The first was a direct equalizer

on the received data at each of the hydrophones and the second was an equalizer on

the outputs of the mode filters for each mode. In the first case, the input data to

the equalizer consists of the past N data points from each hydrophone stacked in a



vector. In other words, the input vector is

Y1

Y2

Ynh

(4.1)

where each y is a vector of the last N temporal samples from the ith hydrophone:

yj [n] =

yj [n]

yi[n- 1]

[yi[n - N + 1]

(4.2)

Figure 4-1: Equalizer setup.

In the second case of the mode equalizer, the input is instead a vector of the past

N taps from the re-aligned output of each mode filter (for mode 1, 2, 3, etc). The

mode filter outputs are re-aligned by introducing a delay into each output based on

its offset relative to the offset of mode 1. This compensates for the different group

velocities of each mode and allows for fewer temporal taps to be used. The offset is

determined by the maximum of the circular cross-correlation of the filter output with



the transmitted m-sequence. Y is formed from the outputs of each mode filter and

not from the hydrophone signals directly. An exponentially weighted RLS algorithm

[27, 28] is used to update the filter coefficients. It is important to use enough modes

in the equalizer to capture most of the transmitted energy, but beyond a certain point

there is no additional benefit from including more modes. Using four modes in the

equalizer was generally sufficient to capture enough of the signal energy. The number

of hydrophones was varied prior to mode filtering and equalization, and these results

are discussed in section 4.2.

The input data, Y, advances by two points for every one transmitted symbol,

since the received data is downsampled to twice the bit rate. Three temporal taps

were used on each channel (1.5 symbols) for both the mode equalizer and the direct

equalizer. 200 bits of training data are sent before the equalizer switches to decision

directed mode. The BER was very low for the cases studied, and so little error was

introduced by using the decision directed mode. The transmitted data is cyclic every

127 bits since the same m-sequence was repeatedly sent. The coarse alignment of the

transmitted data with the hard decision estimates was manually set to be that which

produced the smallest soft decision error.

4.2 Equalizer Results

Figures 4-2 and 4-3 show the bit error rates and the steady-state soft decision error

for the mode equalizers and the direct equalizer in the RAM simulation. The direct

equalizer on the hydrophones performs best when fewer hydrophones are used, and

the mode equalizer performs best when all 9 hydrophones are used. This is likely

because the mode filters have a difficult time accurately estimating the response of a

particular mode when few hydrophones are used, but do better as more are added.

Also, there is a dimensionality advantage with the mode equalizer as the number of

hydrophones is increased. The number of taps to be equalized remains fixed at the

number of modes times the number of temporal taps per mode, whereas the direct

equalizer must adjust the number of hydrophones times the number of temporal taps



per hydrophone. Four modes were used in the mode equalizer, whereas up to nine

hydrophones were used in the direct equalizer.

Even though the mode filter that uses one hydrophone is unable to resolve any

modes, it still produces an output that is different from its input because of the

broadband processing performed on the signal, described in section 2.4. This is the

reason for the performance difference between the direct equalizer and the mode

equalizer for the case of one hydrophone.

Equalized BER vs I of hydrophones
10L

10 ~.... .PCML-MPDR

--..........Direct Equalizer........
10 . . , .

number of hydrophones

Figure 4-2: BER for RAM simulation with 3-tap equalizer.

Figures 4-4 and 4-5 show the BER and soft decision error when filtering with the

mode equalizers and the direct equalizer for a typical day during the SW06 experi-

ment. Both the mode equalizer and the direct equalizer do significantly better than

straight decoding of a mode filter output does, and reach zero BER within the first

few hydrophones. However, the direct equalizer on the hydrophones has a smaller

soft decision error than the mode equalizer does.

Figures 4-6 and 4-7 show the results for day 231 during a period of abnormally

high internal wave activity. The plots are similar to those from day 219. The reduced

rank PI filter suffers from conditioning issues when 6 or 8 hydrophones are used.
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Figure 4-3: Soft Decision Error (in dB) for RAM simulation with 3-tap equalizer.
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Figure 4-5: Soft Decision Error (in dB) for SW06 Day 219 with 3-tap equalizer.
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Figure 4-6: BER for SW06 Day 231 with 3-tap equalizer.
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Figure 4-7: Soft Decision Error (in dB) for SW06 Day 231 with 3-tap equalizer.
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The forgetting factor (A) in the RLS algorithm determines the effective window

length of the data used for the equalizer [29]. Smaller forgetting factors represent

shorter effective window lengths. A general rule of thumb is that the effective window

length is approximately 1-1A samples for the exponentially weighted RLS algorithm.

The following figures show the effect of the choice of A on the soft decision error

when filtering with 9 hydrophones. For the RAM simulation, the optimal forgetting

factor is as large as possible since the channel is not time-varying. This results in a

longer averaging window and a better estimate of the RLS inverse covariance matrix

since more data snapshots are averaged in. For the SW06 data, the optimal forgetting

factor is about 0.99, corresponding to an effective window length of about 100 samples.

This suggests that, for the time scales on which we are adapting for this experiment,
the channel is very slowly varying. In a rapidly fluctuating environment, the optimal

forgetting factor would be much lower.
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Figure 4-8: Soft Decision Error as a function of A, RAM simulation using all 9
hydrophones.
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Lastly, figures 4-11, 4-12, and 4-13 show the condition number of the inverse co-
variance matrix used in the RLS algorithm as a function of the number of hydrophones

used. For the direct equalizer on the hydrophones, the condition number increases as
the number of hydrophones is increased. This is because the number of taps in the

equalizer increases with the number of hydrophones, and since the effective number

of data samples going into the covariance matrix remains constant, there are fewer

snapshots with which to estimate the matrix. For the mode equalizer, the number of
equalizer taps remains constant as hydrophones are added. We have a better estimate

of the response of each mode as hydrophones are added, making the mode estimates
more independent and the inverse covariance matrix better conditioned.
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Figure 4-11: Inverse Covariance Matrix Condition Number, RAM Simulation.
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Figure 4-12: Inverse Covariance Matrix Condition Number, Day 219.
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Figure 4-13: Inverse Covariance Matrix Condition Number, Day 231.
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Chapter 5

Conclusion

5.1 Summary

This thesis examined mode filtering as a preprocessing method for the equalization

of underwater acoustic communication signals. A physically constrained, maximum

likelihood method for adaptive mode filtering was presented. Chapter 2 reviewed

acoustic normal modes in the context of an underwater communication system and

presented the sampled mode shapes and pseudoinverse mode filters. The MAP mode

filter requires statistics of the signal and noise to be known a priori. The MPDR

filter was derived for the case where the spatial covariance matrix is known. The final

section of chapter 2 presented the PCML method for covariance matrix estimation

developed by Kraay [4] for the case of a spatial beamformer.

Chapter 3 applied Kraay's PCML method to the underwater acoustic pressure

field model through the MPDR and MAP mode filters. A simulation similar to the

one performed by Buck et al [1] was used to compare the performance of the adap-

tive MPDR and MAP mode filters with the PI and SMS filters. With the PCML

method, the estimated covariance matrix converged in orders of magnitude fewer

snapshots than the unconstrained sample covariance matrix did. Results from the

RAM simulation and Shallow Water 2006 experimental data were used to compare

the performance of the mode filtering techniques, and demonstrated the strong per-

formance of the PCML-MPDR and PCML-MAP algorithms.
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Chapter 4 applied a linear, decision directed equalizer to the outputs of several

mode filters to make use of the signal energy contained in multiple modes. Because

the mode filters reduce the delay spread of the channel and since there are typically

less energetic modes than there are hydrophones, there are fewer degrees of freedom

to equalize in the mode equalizer than in the direct equalizer.

5.2 Suggestions for Future Research

One area of future work is to better explore the noise model used in the PCML

algorithm. It may be possible to use statistics from a noise recording before the

transmission begins instead of assuming the noise is spatially white. The covariance

matrix model would be modified as follows:

R = W P(w, ,)ib H + 2Rn (5.1)
i=1...M

where R, is the covariance matrix from a nearby noise recording, instead of the

identity matrix.

Lastly, the mode processing techniques could be expanded if a vertical array of

sound sources was available. With multiple vertically aligned transducers, it would

be possible to use mode filtering algorithms to transmit orthogonal signals on several

modes in a MIMO application. Instead of sending different signals on each transducer,

different signals would be transmitted on each mode. Since the delay spread of a given

mode is shorter than the overall delay spread of the channel, each signal transmitted

on each mode would have a shorter delay spread than if all the modes were excited

at once.



Bibliography

[1] J.C. Preisig J.R. Buck and K.E. Wage. A unified framework for mode filtering

and the maximum a posteriori mode filter. J. Acoust. Soc. Am., 103(4):1813-

1824, 1998.

[2] A.L. Kraay and A.B. Baggeroer. A physically constrained maximum-likelihood

method for snapshot-deficient adaptive array processing. IEEE Transactions on

Signal Processing, 55(8):4018-4063, 2007.

[3] A. Newhall et al. Acoustic and oceanographic observations and configuration

information for the whoi moorings from the sw06 experiment. Technical Report,

Woods Hole Oceanographic Institution, 2007.

[4] A.L. Kraay. Physically constrained maximum-likelihood method for snapshot-

deficient adaptive array processing. Master's thesis, Massachusetts Institute of

Technology, 2003.

[5] A.B. Baggeroer K.E. Wage and J.C. Preisig. Modal analysis of broadband acous-

tic receptions at 3515-km range in the north pacific using short-time fourier

techniques. J. Acoust. Soc. Am., 113(2):801-817, 2003.

[6] M.B. Porter F.B. Jensen, W.A. Kuperman and H. Schmidt. Computational

Ocean Acoustics. Springer-Verlag New York, Inc., 2000.

[7] C.W. Miller C. Chiu and J.F. Lynch. Optimal modal beamforming of bandpass

signals using an undersized sparse vertical hydrophone array: Theory and a



shallow-water experiment. IEEE Journal of Oceanic Engineering, 22(3):522-

532, 1997.

[8] G. Strang. Linear Algebra and Its Applications. Thompson Brooks/Cole, fourth

edition, 2006.

[9] H.L. Van Trees. Optimum Array Processing, Part IV of Detection, Estimation,

and Modulation Theory. Wiley-Interscience, 2002.

[10] B.D. Vanveen and K.M. Buckley. Beamforming: A versatile approach to spatial

filtering. IEEE ASSP Magazine, 1988.

[11] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proceedings

of the IEEE, 57(8):1408-1418, 1969.

[12] O.L. Frost. An algorithm for linearly constrained adaptive array processing.

Proceedings of the IEEE, 60:926-935, 2003.

[13] D.H. Brandwood. A complex gradient operator and its application in adaptive

array theory. IEEE Proceedings, 130(1):11-16, 1983.

[14] J.R. Guerci.

2003.

Space-Time Adaptive Processing for Radar. Artech House, Inc.,

[15] D. Tse and P. Viswanath. Fundamentals of Wireless Communication. Cambridge

University Press, 2005.

[16] J.R. Guerci. Theory and application of covariance matrix tapers for robust

adaptive beamforming. IEEE Trans. Signal Process., 47(4):977-985, 1999.

[17] F.J. Harris. On the use of windows for harmonic analysis with the discrete fourier

transform. Proceedings of the IEEE, 66(1):51-83, 1978.

[18] J.R. Buck R.W. Schafer and A.V. Oppenheim. Discrete Time Signal Processing.

Prentice Hall, second edition, 1999.



[19] G.H. Golub and C.F. Van Loan. An analysis of the total least squares problem.

SIAM Journal on Numerical Analysis, 17(6):883-893, 1980.

[20] W.A. Kuperman and F. Ingenito. Spatial correlation of surface generated noise

in a stratified ocean. J. Acoust. Soc. Am., 62(6):1988-1996, 1980.

[21] P.M. Pardalos and M.G. Resende. Handbook of Applied Optimization. Oxford

University Press, 2002.

[22] Ram Matlab Code. http://909ers.apl.washington.edu/twiki/bin/view/Main/RamMatlabCode.

retrieved August 8, 2008.

[23] S.W. Golomb and G. Gong. Signal Design for Good Correlation: For Wireless

Communication, Cryptography, and Radar. Cambridge University Press, 2005.

[24] K.E. Wage. Broadband Modal Coherence and Beamforming at Megameter

Ranges. PhD thesis, Massachusetts Institute of Technology and Woods Hole

Oceanographic Institution, 2000.

[25] J.C. Preisig A.K. Morozov and J.C. Papp. Modal processing for acoustic com-

munications in shallow water experiment. J. Acoust. Soc. Am., 124(3):177-181,

2008.

[26] J.G. Proakis and M. Salehi. Digital Communications. McGraw Hill, fifth edition,

2008.

[27] M.H. Hayes. Statistical Digital Signal Processing and Modeling. John Wiley and

Sons, 2002.

[28] G.V. Moustakides. Study of the transient phase of the forgetting factor rls. IEEE

Transactions on Signal Processing, 45(10):2468-2467, 1997.

[29] S. Haykin. Adaptive Filter Theory. Prentice Hall, 2001.


