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A. SUMMARY OF RESEARCH PROGRESS: THEORY OF THE RETICULAR

FORMATION

Research on the functional organization of the reticular core of vertebrate control

nervous systems has reached a significant landmark. Our problem is as described in

Quarterly Progress Report No. 76 (page 313), but our progress has been achieved with

a somewhat different model than that mentioned there.

The new model is enclosed within heavy lines in Fig. XXII-1, with everything outside

only for generating an appropriately structured environment for computer simulation.

The yij in Fig. XXII-1 are all 3-variable symmetric switching functions of the binary a-..

The typical module interconnection scheme is suggested by the M 5 hookup. Each module

in Fig. XXII-1 is a hybrid probability computer, with schematic as shown in Fig. XXII-2.

It receives 4-component probability vectors Pgi from above and Pai from below, as well

as generating a corresponding Pri from its Nia part. The jth component in each case is

the probability as computed by the module of origin that the over-all reticular formation

model's present yij input-signal configuration is properly a mode j one. The Pai' Psi'
and P .vectors are passed componentwise through an f function as shown in Fig. XXII-3,

and weighted in the subsequent 'Av' units according to formulas of the type

CP +CP +CP
r Tr aa 66

rT a 6

where C = C C Q, with all factors variable and determined according to two module

decoupling principles and a potential command principle which demands that information

This work was supported by the National Institutes of Health (Grant NB-4897-03),
the U.S. Air Force (Aerospace Medical Division) under Contract AF33(615)-3885, and
by a grant from The Teagle Foundation, Inc.
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Fig. XXII-l. Simulation model (S-Retic).
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Fig. XXII-2. A typical M i of Fig. XXII-1.
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Fig. XXII-3. The f(p) function.
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constitute authority. The h, T, h-1, N, and UD blocks in Fig. XXII-2 are to insure that

every Pi is an appropriately normalized and delayed probability vector. Figure XXII-4

shows our Fig. XXII-1 model's output model detection scheme.

The model has been successfully simulated on the Honeywell Computer at Instrumen-

tation Laboratory, M. I. T. , in collaboration with J. Blum, W. L. Kilmer, E. Craighill,

and D. Peterson. The model converged to the correct output model indication in each

of approximately 50 test cases, and always in from 5 to 25 time steps. This is just what

we had hoped for.

We are now concentrating on the functional design of a considerably enriched model

that can handle conditioning and extinction in a satisfactory time-domain sense. The

design will again be programmed for simulation on the Instrumentation Laboratory com-

puter.

W. S. McCulloch, W. L. Kilmer

[Dr. W. L. Kilmer is now at Michigan State University, East Lansing, Michigan.]
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B. REALIZABILITY OF A NEURAL NETWORK CAPABLE OF ALL POSSIBLE

MODES OF OSCILLATION

1. Introduction

Dr. McCulloch has called our attention to the need for investigating the modes of

oscillation of neural nets with feedback and under constant input. The question "How

many possible modes of oscillation are there for N neurons?" has already been

answered by C. Schnabel. 1 There are (K-1) K possible modes of oscillation.
K=2

The next question is, "Are all of these modes realizable with a fixed anatomy?" The

answer is affirmative, provided there is a minimum number of input lines to the net-

work. The proof is presented here.

*This report was prepared at the Instrumentation Laboratory under the auspices of
DSR Project 55-257, sponsored by the Bioscience Division of National Aeronautics and
Space Administration, Contract NSR 22-009-138.
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2. Y-Networks

Consider N formal neurons with interactions of afferents (those described by

McCulloch in "Agathe Tyche"2) forming a one-layer network with M binary inputs, and

in which each neuron binary-output feeds back to the same neuron and to all the others.

The number of inputs to each neuron is, then, M + N. At any time t the output (or state)

- 0 or 1 - of any neuron is determined by the value of its inputs at time t - 1. Therefore,

the state of any neuron at time t is determined by the states of all of the neurons and the

inputs to the network, both at time t - 1. At any time t, the state of the network is

defined as the array of N zeros and ones that indicate the state of each neuron at this

time. Thus, we can say that the state of the network at time t is determined by the

state of the network and the input configuration, both at time t - 1.

For a network of N neurons, there are 2N possible states. We can imagine some

particular networks in which some of these 2N states are never reached. We are inter-

ested in those networks in which any of the 2N states may be reached from any initial

state by at least 1 input sequence. Such networks are here referred to as Y-networks.

Thus, an 2 -network is a network of N neurons forming one layer in which the output

of each neuron is connected to itself and all of the others, and any of the 2N states may

be reached from any initial state by some input sequence.

Consider the set of all possible states S = (Si' S2 ' .. S, SN) and the set of all possible

configurations of the inputs S = (W 1 ,W 2 ,... ,W2M) of an Y-network with M inputs.

From these sets, we form all possible doubles

(Si, Wk),

where Wk E W and Si E S. We have Z 2 N = 2  doubles. We now generate 2 M+N

successors of the form

(SiWk) - Sj

by arbitrarily assigning to each double (Si, Wk) an element Sj E S and only one, and using

M+N
any Sj E S at least once. The set of 2 successors generated in this manner is

referred to as a "set of successors, v(N,M)." We generate all possible sets v(N, M),

and form from them a new ensemble /. Thus, Y' is the ensemble of all possible sets

of successors v(N, M).

Returning to any one Y-network, if S. is the state at any time t - 1, Wk is the input
1M+N

configuration at time t - 1, and Sj is the state at time t, we can form a set, v, of 2 M+N

successors of the form
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which describes completely the behavior of the net. Obviously v E -/. We will prove

that the inverse is also true, i. e. , given any arbitrary v, there is an Y-network that

is described by v.

LEMMA 1. Given an arbitrary set of successors v(N, M) E 'r, it is always possible

to design an Y-network of N neurons and M inputs that verifies v(N, M).

Proof. The proof consists in generating, from v(N, M), N Venn diagrams of N + M

inputs each. The network can be designed from the N Venn diagrams (see Blum 3 ).

We first note that each double (Si, Wk) of each successor (Si, Wk) - Sj of v(N,M)

determines one area in a Venn diagram of N + M inputs.

Let us assume that we have drawn the Venn diagram for the first neuron. Then, we

put a jot in those areas of the Venn represented by all (Si, Wk) for which the S indicate

that the state of that neuron is 1 (fires). We repeat the same for all of the N neurons.

Thus, for each combination (Si, Wk), the corresponding Sj is determined.

3. Modes of Oscillation

Consider a system of N formal neurons and M inputs. If we define the state of the

system at time t as the array of N zeros and ones that indicate the state of each neuron
N

at time t, there are 2 possible states. A mode of oscillation of the system is defined

as any sequence of states that is repeated under a constant input and involves more than

one member state. A k-dimensional mode of oscillation is a mode that passes through

k different states.

The number N of possible modes of oscillation of N neurons is (see Schnabell

k= 2 N

No = ( !
k=2

LEMMA 2. All No possible modes of oscillation of N neurons can be described by

a set of successors v(N, M) such that

k=2

M > log 2  L -(K-i)!

/E

where Ek indicates the maximum whole number that is less than or equal to 2 N/k.
E

Proof. Any k-dimensional mode of oscillation can be divided in k-steps. Each step

can be expressed by a successor

(Si, Wk) - Sj,

where Si and S. are the states of the step, and Wk is the constant input word that
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produces the mode. If we require that two modes with at least one state in common can-

not be specified by the same input configuration, we can insure that for each double

(Si, Wk) there is one and only one S..

Thus the number of k-dimensional modes of oscillation that may result from any one

input configuration is the largest integer that is less than or equal to ZN/k. We denote

this integer by . The number of input configurations necessary to specify all

k-dimensional modes, is

(k-1) ! 2k)

(number of k-dimensional modes divided by the number of k-dimensional modes speci-

fied by each input configuration). The minimum total number of input configurations

then is

and therefore the number of input lines, M, has to be such that
k= 2

2 M> (k-) (2 N)

k= 2 2 )EE

or

M g2  (k-1)! 2N)

Since Z k! Kk) doubles have been used in describing all modes of oscillation,
k=2k=2 2

M+N h N
k= 2 2

- k! doubles. This could be, for example, the state S .... to

k=2

all of the doubles left.
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THEOREM. Given N neurons and M input lines such that

k= 2

M > log 2
k=2

(k-i)! 
2 N)

( N )k
\ k /

2( k E

it is always possible to design an Y-network that verifies all possible modes of oscil-

lation.

Proof. All possible modes of oscillation of N neurons can be expressed by a set

v(N, M) of successors such that

k= 2 N

M > log 2
k=2

(k-1) ! (ZN

(N N)22N (k
E

(Lemma 2).

According to Lemma 1, it is always possible to design an Y-network that verifies any

v(N, M), in particular, that which describes all possible modes of oscillation.

The minimum number of jots, J, per Venn diagram for such an Y-network is the

same for all of the neurons of the network. This number can be computed as follows.

The number of modes of oscillation that pass through any one state is

N
k=2

(k-1)! (kN_

This number gives the number of doubles that correspond to the same S. in all suc-

cessors (Si, Wk) -S.. In describing the first neuron, for example, we put jots in the

Venn areas for which S. indicates that the neuron fires. There are 2 of these states

S.. Therefore, the number of jots, j, for the Venn of that neuron is at least
J

N
k=2

,J/= 2 N-I (k-)

and JI/ is the same for all neurons.

R. Moreno-Diaz
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