
COMMUNICATION SCIENCES

AND

ENGINEERING





XXV. STATISTICAL COMMUNICATION THEORY

Academic and Research Staff

Prof. Y. W. Lee Prof. J. D. Bruce Prof. D. E. Nelsen
Prof. A. G. Bose Prof. A. V. Oppenheim G. Gambardella

Graduate Students

T. Huang R. W. Schafer J. L. Walker
V. Nedzelnitsky J. E. Schindall J. J. Wawzonek
L. R. Poulo F. P. Tuhy C. J. Weinstein
A. E. Rolland D. H. Wolaver

RESEARCH OBJECTIVES

1. Investigation of Switching Systems

There is an increasing need for systems that handle analog signals but operate in a
switching mode. Such switching systems offer efficiency, size, and weight advantages
over conventional analog systems. The analysis of these systems, however, is compli-
cated by the fact that they often take the form of closed-loop nonlinear systems. Analy-
sis and synthesis procedures are necessary in order to optimally design these systems
and to determine their ultimate performance capabilities.

The principal efforts during the past three years have been devoted to static analysis.

An exact static analysis has been achieved by A. G. Bose 1 and has provided useful design
guidelines. The noise analysis has been carried out for the special case of a tunnel-

diode switching circuit by D. E. Nelsen. 2

Work is now under way to determine the dynamic performance of these systems.
During the coming year it is hoped that a better understanding of the transient response
and spectrum properties will be obtained. We also plan to extend the noise studies to
other switching devices and circuits. An eventual goal in this project is to obtain noise
models for switching devices in much the same way as we have done for noise models of
devices operating in the linear mode.

2. Modulation Noise in Tape Recording

Modulation noise in tape recording is a wide-band noise whose intensity increases
with increasing recorded signal on the tape. The phenomenon has been well documented,
but adequate explanations and models are not available. We hope that a proper model
will aid in the development of lower noise tapes.

Extensive experiments have been made to isolate noises of other origins (electrical
and mechanical) from the modulation noise. The spectral properties of modulation noise
have been measured under varying conditions of recording and playback. A theoretical
model has been derived which relates the modulation noise to particle interaction on
the tape.

*This work was supported by the Joint Services Electronics Programs (U.S. Army,

U.S. Navy, and U.S. Air Force) under Contract DA 36-039-AMC-03200(E), the National
Aeronautics and Space Administration (Grant NsG-496), and the National Science Foun-
dation (Grant GK-835).
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Further experiments are necessary to correlate the predictions indicated by the
model with physical observations on tape noise. Recommendations for reduction of the
noise will be made after verification of the noise model.

3. Recording and Reproduction of Sound

The design of loudspeakers and of recording techniques has remained a controver-
sial and poorly understood area for decades. Standards committees have not been able
to agree upon an acceptable design criterion or measurement technique for evaluation
of the commom loudspeaker. This subject is complicated by the fact that objective cri-
teria are desired for transducers whose ultimate use involves subjective evalution.

A design criterion has been developed which makes use of Green's function to pro-
duce recordings of sound as they would be heard if reproduced in a room through an
ideal transducer. A computer-aided design program has yielded the design of a practi-
cal transducer whose performance is subjectively indistinguishable from that of the

ideal transducer.3

Efforts will now be directed toward problems in the recording of sound. The effects
of the normal mode structure of the recording environment will be investigated and the
constraints that this structure imposes upon the techniques and procedures of recording
will be determined.

4. Optimum Quantization

Exact expressions for the quantization error as a function of the quantizer param-
eters, the error-weighting function, and the amplitude probability density of the

quantizer-input signal have been derived by J. D. Bruce.4 An algorithm based on these
expressions, which permits the determination of the specific values of quantizer param-
eters that minimize the quantization error (with respect to some particular error-
weighting function) has been developed. The error expressions and the algorithm have
been extended to the case in which the quantizer-input signal is a message signal con-
taminated by a noise signal.

During the past year studies have been concentrated in two particular areas.

a. Subjective evaluation of speech quantizer levels is small and there are require-
ments of high intelligibility and naturalness.

b. Theoretical investigation of optimum quantizers for qUantizer-input signals that
are message signals contaminated by noise.

Results have been obtained in each of these areas and are being reported.5, In
particular, it is now possible to characterize a quantizer by certain of its properties
so as to be able to say whether or not it is desirable for use in a speech-transmission
system. Also, these same properties classify the type of distortion that the quantizer
will introduce. With respect to the second area, results have been obtained for the
case in which the message signal is discrete. These results are identical to those
obtained from the ideal observer point of view in classical decision theory.

Studies in both of these areas will continue during the coming year.

5. Localization of Acoustical Phenomena

For some time, there has been evidence to indicate that the pinna (external ear)
plays a primary role in the localization of acoustical phenomena. It is proposed that
this role be studied in the forthcoming year with a view toward modeling the exter-
nal ear and simulating its role in localization.
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6. Superposition in a Class of Nonlinear Systems

In 1964, a new characterization of nonlinear systems was developed, and its appli-
cation to problems in nonlinear filtering was suggested by A. V. Oppenheim. 7 This
approach to nonlinear filtering represented a generalization of the linear filtering prob-
lem and appeared to be particularly suited to the nonlinear separation of signals that
have been nonadditively combinded.

Specific cases of interest, at present, are in the application of this technique to the
separation of convolved signals and the separation of multiplied signals. The need for
such techniques arises, for example, in the processing of signals after transmission
over multipath and fading channels, the removal of echoes from recorded speech and
music, and the analysis and bandwidth reduction of speech. It also appears, at present,
that the ability to apply these techniques to speech and music suggest some fundamen-
tally new means for modifying their characteristics and for preprocessing before
recording or transmission to enhance their quality.

Primary empahsis during the past year has been directed toward the separation of
convolved signals. The filter was simultated on a digital computer and initial studies
were carried out with both artificially generated waveforms and speech. A preliminary
investigation of the effect of additive noise on the processing was initiated.

Work will continue on a study of the separation of convolved signals. In particular,
speech with artificially generated echoes will be processed to recover the original
speech. Uncorrupted speech will also be processed in an attempt to separate the glot-
tal waveform and the impulse response of the vocal tract.

Attention will also be directed toward the extraction of the low-frequency envelope
from music and the processing of waveforms that have been subject to low-frequency
fading.

7. Wiener Theory of Nonlinear Systems

The study of this theory was initiated at the Research Laboratory of Electronics in
1949. Many doctoral theses and technical reports have been written on the subject by
members of this group. The latest doctoral thesis on the Wiener nonlinear theory was

8written by R. B. Parente. It contains the first solution of the dynamic stability prob-
lem of a magnetic suspension device associated with inertial guidance systems. Pres-
ent work is directed toward other applications, and the relationship between differential
equation representation and functional representation of nonlinear systems.

Y. W. Lee
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A. TRANSFER FUNCTIONS FOR A TWO-STATE MODULATION SYSTEM

1. Introduction

Bose 1, 2 has described the simple two-state modulation system diagrammed in

Fig. XXV-1 and has demonstrated that the average of the output switching waveform is

approximately equal to the negative of the input voltage for fixed values of input signal.

The system has application as an efficient switching amplifier, or can operate as a

voltage regulator by having the input fixed at a reference voltage and powering the out-

put switching element from the voltage that is to be regulated.

In this report, transfer functions for the modulator are derived for fixed- and ramp-

input waveforms. Other aspects of modulator operation are being explored; this work

will not be reported here.

2. Transfer Function, Static Input

First, consider the modulator of Fig. XXV-1 with zero delay, and denote the fixed

input xo. It is expedient to visualize the averaging of the two-state output waveform y(t)

as taking place in two stages. This is diagrammed (with representative waveforms) in

Fig. XXV-2. The two-state waveform y(t) is first passed through a lowpass RC net-

work, with the same time constant as the RC network appearing within the modulator

feedback loop. The intermediate signal, Yi(t), which results - identical to the modulator

feedback signal f(t) - is then passed

through an ideal lowpass filter to yield
R

Routput y. Of course, y(t) could just

_c as well be passed directly through the

FEEDBACK COMPARATOR DELAY ideal lowpass filter to yield the same
w OUTPUT ±h d TWO-STATE

t) OUTPUT y as does the two-stage filtering pro-
INPUT

-hu xph h-w cess; however, the modulator error is

graphically evident by examination of

Fig. XXV-1. Two-state modulation system. the intermediate waveform yi(t).
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Fig. XXV-2. Modulator waveforms with two-stage output filter (zero-delay).

Since Yi(t) is identical to f(t), the operation of the modulator loop contrains it to

vary between -x - w and -x + w in an exponential manner. This is shown in Fig. XXV-2.

The desired output, -x o , is the midpoint value of Yi(t). The ideal lowpass filter yields

output y as the average value of Yi(t). Because of the unequal curvature associated

with the charge and discharge portions

Ye (t) of the waveform Yi(t), the average is

to h+xm equal to the midpoint only for xo =0.

/ In fact, it is apparent that the discrep-

d -- -- ancy between average and midpoint

gdt) (the modulator error) increases as IXol

and as w (the half-width of the exponen-
t

tial window) increase and acts to pro-
duce a modulator gain or transfer

A function slightly greater than unity.

tc  tOd -h+xn Consider an exponential waveform

charging and discharging toward h and

Fig. XXV-3. Exponential-error waveform. -h between limits -Xm + d and -xm- d,

where -x is the midpoint of the

exponential window, and d is the half-

width of the window. The object is to derive an expression for the average value

of this waveform in terms of its midpoint value and its half-width. To avoid masking
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the output error, consider subtracting the midpoint value -x m from the exponential

waveform. The resulting waveform y (t) has midpoint zero and varies exponentially

between d and -d as sketched in Fig. XXV-3.

The average of Ye(t) is precisely y - (-x m). During the charge portion of the cycle,

f (t) = (h+xm ) + (-h-x m-d) ec m m

fc(tc) = d = h + m + (-h-xm-d) e

and

h+x +d
t T In m
c h+x -dm

From (1) and (3),

f (t) dt = Tc
(h+x ) In h+x +

h+ x m _+ x m

Similarly, for the discharge portion of the cycle,

t +t
tc d fd(t)

t _

h -x + d
dt = -7 (h-x ) In m

m h-x - dm-m

The average over a cycle is given by

1 +t + t d y (t) dt=
t c tc

Expanding, since ln =+ 2

tc+td

c d 0O

h+x +d
m

(h+x ) In h x --dm
h-x +d

- (h-x) In h x
m

h+x +d h-x +d
In m + In m

h+x -d h-x -d
m m

+ 35 - )5 + ... for - I< 1, we have

dxm d d + d
(h+x)2 + +." -(h-xm)2 + +'"

h+x 3h+x h-x hx
Ye(t) dt = 3

+ d d d 1 d2 + +x +2 +
h+x 3 h+xmh 3 h-x

mm mm
(7)

Combining terms, to second order we obtain
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Y= -xm + 2 (9)

1- m

which is the desired transfer function. The result of (9) is under the assumption that

d d
h ±x << 1, in that terms of the order of have been neglected. The "excess-

m m

gain" error term is of order and contains a nonlinearity of the form i -(
For the case of static input and zero delay, the exponential window waveform Yi(t)

has midpoint -x 0 and half-width w. For this case, then, (9) leads to

y = -x 0[+ T (10)
3 2 (10)

1-

Now the effect of nonzero delay in the modulator loop will be considered. Because

of the delay, the output does not change until Td seconds after the feedback waveform

has reached -x + w or -x - w. During this time, the feedback waveform and the inter-
o o

mediate waveform Yi(t) overshoot. The effect of delay on Yi(t) is to enlarge the

y (t)

Td to h

m2 ------

-Xo+W

Fig. XXV-4. Intermediate waveform,
static input.

-xo ,t

fd (t)fc(t)

- 0 -W 

C- Td to-h

exponential window and to displace its midpoint from -x . This is diagrammed in

Fig. XXV-4. Notice that the delay-induced overshoot is more pronounced on the steeper

of the two exponential segments, tending to displace the midpoint of the waveform

toward the more distant asymptote and thus decrease the magnitude of the modulator

gain. From Fig. XXV-4,

fd(t) = -h + (h-x o-w) et/T, (11)
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so

-Td/T
m = -h + (h-x o-w) e

Similarly,

-Td/T
m2 = h + (-h-xo+w) e

The midpoint of the exponential window, -x m , is given by

m 1 + m 2  
-Td/T

-x -x e
m 2 o

The half-width of the exponential window, d, is given by

m - m -Td/T) -Td/T
d 2 = h 1-e d + w e

d= 2 =

(12)

(13)

(14)

(15)

Substituting the delay-altered values of midpoint and half-width from (14) and (15) in

Eq. 9 gives

-Td/T
7 = -xo e0

2
+ 3

-Td/
The modulator gain is reduced by a factor of e

(16)

from the zero-delay case, while

the nonlinearity and parameter dependence of the result, introduced by the second term

in brackets, are increased. Under the assumption that - << 1,
T

(16) can be written

Td)

Ty = -x 0 1

And, for use of the modulator as a symmetric regulator, (17) predicts

x
oh

T x 2
d + -

T h 2~h

2

h2 2
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3. Dynamic Transfer Function, Ramp Input

An explicit expression for the modulator transfer function with arbitrary dynamic

input waveforms cannot be obtained. The problem arises because the modulator switches

at time ts in such a manner that the exponential feedback waveform added to the input

signal equals w or -w. This produces an implicit transcendental equation for t s which

admits an explicit solution for ts only when the input signal is a constant.

A useful approach is to select a particular input waveform appropriate for charac-

terizing the modulator behavior, and seek an approximate solution for this excitation.

For a linear system the sinusoidal response provides an effective characterization. In

nonlinear systems such as the two-state modulator, however, the sinusoidal response

is difficult to express (it is a function of the amplitude and DC level of the input, as well

as its frequency) and provides no general information about the system (since superpo-

sition does not apply).

The main effect of a dynamic input on modulator operation is that the modulator

must track or "keep up" with the time rate of change of the input waveform. This time

rate of change, or slope, is characterized by a ramp waveform. With this motivation,

characterizing the dynamic response of the modulator by its ramp response leads to an

unexpected bonus: although the equations describing the transfer function are transcen-

dental, they can be manipulated to yield an accurate and explicit solution for the partic-

ular case of a ramp input. It should be noted that many waveforms can be adequately

modeled as a series of ramp segments, each segment being one modulator switching

period long.

Derivation of the modulator transfer function with a ramp input is facilitated by

characterizing the ramp as altering the effective width and midpoint of the exponential

window function Yi(t). Because the modulator operation is asynchronous, one cannot

specify or predict "charging" or "discharging" operation of the modulator at any partic-

ular instant of time. The desired transfer function will first be obtained by assuming

input mean x 0 to take place at the center of a modulator charge cycle to give tc(xo) = tco;

then assuming the same mean, x , to have occurred at the center of a modulator dis-

charge cycle to give td(xo) = tdo; and taking the output to be

t -t
co do (19)

Yht +t (19)co do

This is plausible in view of the asynchronous operation of the modulator. It will then

be shown that (19) remains unchanged when the output is defined more rigorously as the

average of y(t) over a complete cycle, and xo is taken as the input mean over the com-

plete cycle.

Consider an input ramp x(t), with mean x 0 and slope x' during the feedback charge
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cycle. The resulting exponential window waveform is plotted in Fig. XXV-5. The

switching limits plotted are the loci of Yi(t) = -x(t) + w and Yi(t) = -x(t) - w; the

Yi(t)

m2 -Td H to h

- Xo+ W- tx

- X to-h

- .- -o-tx Fig. XXV-5. Intermediate waveform,
ramp input.

-xo-w-tx'
tc tc
2 2

tc

t=O

overshoot occurs because of the delay Td. From Fig. XXV-5,

m = -h+ h -x - w+x + dx' e (20)

S(t - Td/

2 = h+ h -x+ w - x + T e (21)

Therefore

m 2 -i M (e-T d / T
) -Td/T xI d/T

d z = h1l-e +w e t e co (22)

m +m -Td/ /
-x = 2 -(x-x'Td) e (23)

Similar values of d and xm are obtained by regarding xo as the mean of the input ramp

during a discharge cycle.

The problem is that d is expressed as a function of t o, hence (22) and (23) cannot

be plugged directly into (9) to obtain an explicit expression for 3.

Recall that (9) arose from the expression

h+x +d
t =T n (24)tco h + x - d

m

Or, to second order, since In a-E 2 + ( 3 +

2 Td
co h+x (25)

m
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If the implicit expressions for d and xm are substituted in Eq. 25, we have

t
co

2T[h ( -eTd/ +wde /TI

h + [Xo-Tdx'] e a"

Iterative substitution for tco yields a rati

t
co

t =

[ (
ZTLh \1-e +we - ]

h + [Xo- TdX'] e d

2T[h (-Td/T) w-T d/

Ixe-Td/TItco

-Td/T

h+ [xo-Tdx'] e

o series

1

1 + Tx'e
1+

h + [x o-TdX'] e
-Td/T

h + [Xo+ (T-Td)x']e

Comparison of Eq. 28 and Eq. 25 enables identification of equivalent midpoint and half-

widths, denoted xe and d , in explicit form:
e e

xe = [Xo+ (r- Td) X' ] ed (29)

de = [h(l-e -T d/ +we d/. (30)

Now equations (29) and (30) may be substituted in Eq. (9) to give the desired transfer

function.

-Td/7 1 - e + e
y= - [Xo+ (T-Td) x' ] e 1 + 2

x +(T-Td
) x']e

1- I

(31)

It will be demonstrated next that (31) remains valid if a complete modulator cycle
t -t

is considered, with output y = hc t and input mean x over the complete cycle.
cThe input mean during t

The input mean during tc, from Fig. XXV-6, is
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1
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x =x - x 1.
oc o 2

And, during td the input mean is

t
C

X = x + x'.
od 0 2

Rewriting (28) in terms of the charge and discharge means yields

t
c

t =
d

2Td e

-Td/T td -Td/T
h + [Xo+ (T-Td) x'] e x' e

2Td
e

h - [xo+ (T-Td)X'] e
-Td/T tc -Td/T

2x e2

Recalling that was defined as the charge period with input mean xo , and tdo

y(t),x(t)

Fig. XXV-6. Complete modulator cycle,
ramp input.

as the discharge period with input mean xo, we can rewrite (34) and (35) as

t =tc co

td =tdo

-Td/T
X' e

co 4Td d
e

1

-Td/T
l-t x'e t

do 4Td tc
e
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-Td/T
By identifying x d = A, iterative substitution gives
By identifying 4Td

e

1
t = t (38)
c co 1

1 - At t
codo - At tdo I -At

co dodo

-1 - At t
co 1-cAto dootdo

It is sufficient to note that
t = Bt (40)

td = Bt do (41)
d do 1

S c - h co h co do (42)do

y=t + t Bt + Btdo t + t
c d co do co do

This is the desired proof that the output average over a full cycle in terms of the

input mean x0 during this cycle is the same as that obtained by superposition of the

charge-cycle and discharge-cycle results, each taken separately to have input mean x .

It should be pointed out that most of the transfer functions obtained here can

also be obtained by direct brute-force algebraic expansion and approximation meth-

ods on the transfer function obtained by Bose. Indeed, it was not until direct alge-

bra and computer evaluation had predicted the form of the result that the procedure

described in this report was developed. The exponential window technique presented

here is, however, simpler to apply, more intuitive, and yields results of a higher

order of accuracy than could be obtained by using direct methods and a finite quan-

tity of paper.

A computer program has been written to check the accuracy of the transfer func-

tion given by Eq. 31. For a given set of parameter values, the result predicted by (31)

is compared with the exact output found by numerical analysis methods. Results of

the program will be outlined in greater detail at a later date; however, it will be

mentioned here that over a wide range of parameters the error in (31) is typically

less than 0.2 per cent of the modulator hysteresis height. Even for the rather poor

operating values of h = 1, = 0.05, Td/ = 0.05, = 0.2 and x = 0.95, the output
d h o
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predicted by (31) is only 0.006 higher than the exact result, y= 0.716.

The exponential window approach can be applied to evaluate a broader class of sys-

tems than the two-state modulator. For example, the response of a bang-bang servo-

mechanism can be effectively characterized by utilizing this technique.

J. E. Schindall
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B. A NEW APPROACH TO ECHO REMOVAL

In many situations one is faced with the problem of processing signals that have been
combined by convolution. Such signals occur in high-fidelity recording, sonar, multipath

communication channels, and seismology. In general, the problem is one of extraction
of one signal from the convolution of two or more. For example, if a signal s(t) is passed

through an environment that introduces echoes, the result is a signal x(t) of the form

x(t) = s(t) + as(t-to). (1)

This signal can be thought of as the convolution of s(t) with an impulse train as in Eq. 2a
and Eq. 2b.

x(t) = s(t) & u (t) (2a)

ua(t) = uo(t) + auo(t-to). (2b)

If the signal s(t) is to be recovered, the impulse train must be removed. Alternatively,
if only information regarding the presence and the timing of the echo is required, it might
be desirable to remove the signal s(t) and recover only the impulses.

The system shown in Fig. XXV-7 has been proposed for the purpose of separating

convolved signals. 1 It has been shown 2 ' 3 that such a system is a member of a larger

class of nonlinear systems called homomorphic systems which obey a generalized prin-

ciple of superposition. In Fig. XXV-7a, the system L is a linear system obeying super-
position in the conventional sense, and the system Ag is specified by Fig. XXV-7b,

where X(f) is the Fourier transform of x(t), and

X(f) = log X(f).

-1
The system A is simply the inverse of A . From the definition of A, it canbe
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shown that if

x(t) = x 1 (t) @ x (t),

then

x(t) = x1 (t) + xz(t). (3)

In this report, some results pertaining to the removal of echoes, by using the sys-

tem of Fig. XXV-7a, will be given and an example will be discussed.

A L A
x(t) (t) () W(t)

(a)

FOURIE INVERSE

TRANSFORM log ( ) FOUIER
x() X (f) x (f) TRANSFORM X (t)

(b)

Fig. XXV-7. (a) Canonic form for convolution filter.
(b) Realization of the system A .

In order to understand how to choose the linear system L in any filtering application,

it is necessary to characterize the signals that will be present at the output of system A®.
Some results will be given without proof for some typical signals that arise in the removal

of echoes from speech signals. Following the presentation of these results, is a dis-

cussion of their application.

1. Echoes

Equation 2 shows the form of a signal with a single echo of amplitude a and delay to.
From Eq. 3, it is seen that

x(t) = (t) + u (t). (4)
a

The signal u (t) can be shown to bea

00

_ 7 )n+l n
u (t) = (-1) n u (t-nt) if a < 1.

a n= (5)
n= 1
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2. Aperiodic Waveforms

General results are not known about the response of system Aoto an arbitrary

waveform. For an aperiodic function p(t), which is zero for t < 0 and has a Fourier

transform that is a rational function of jZrlf, however, something can be said about

the response p(t) for t > 0.

It is found, that for t > 0, the output of system A is of the form

t -1 j2 Pf) ej2Trft
P(t) -t e -(f df, (6)

-oo

where P(f) is the Fourier transform of the input p(t). From Eq. 6, it can be shown that

if the transform of the input has all its poles and zeros in the left half-plane, then

-bt
I(t) I A t > 0, (7)

where A and b are positive constants, and -b is greater than the real parts of all

the poles and zeros of the transform of p(t). This means simply that although p(t) goes

to zero exponentially, p(t) will go to zero even faster.

3. Periodic Signals

Consider a signal x(t) of the form

M-l

x(t) = p(t-mT). (8)

m= 0

Equation 8 could be rewritten

x(t) = p(t) ® u(t) (9a)

M-1

u(t) = u (t-mT). (9b)

m=0

Such a signal could represent a segment of a speech waveform during an interval cor-

responding to a voiced sound. In this case, p(t) would be an exponentially decaying

aperiodic function, and T would correspond to the pitch period. The response of sys-

tem A® to the input of Eq. 8 is

x(t) = p(t) + ^(t), (10)

where u(t) can be shown to be
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00

(t) = -u (t-nT)

n= 1

00

- uo(t-nMT).

n= 1

The output of system Ag thus consists of the sum of a signal p(t), which is going
1

to zero as in Eq. 7, and two impulse trains for which the areas approach zero as -- and

whose spacings are T and MT.

4. Exponential Weighting of Inputs

Suppose the input given by Eq. 8 is multiplied by an exponential to give

-at
x1 (t) = e x(t).

This expression can be rewritten

M-1

x 1 t) = Pl(t-mT) e - a m T

m=O

where

-at
Pl(t) = e p(t).

The output of system A® then becomes

0 -anT

S (t) = (t) + n u(t-nT) -

n= 1

-anMT
e u (t-nMT).

S n
n= 1

In a similar way, it can be shown that the effect of exponentially weighting an input

containing echoes (Eq. 1) is to produce the output

co -ant
sj I tI)n+ an e o

(t) = (t) + (-1 u (t-nt)

n= 1

(13)

-at
where sl(t) is the response to sl(t) = e s(t).

It can be seen from the results just presented that the effect of system A® is to tend

to produce outputs that occupy different regions of time. In general, aperiodic pulse-

type waveforms produce outputs that approach zero after a very short time, while

impulse trains of finite duration produce impulse trains of infinite duration that go to
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1
zero at least as fast as n-. This suggests that in some situations,the outputs will occupyn 1
different intervals of time so that a "frequency-invariant" linear filter should be used

for system L in Fig. XXV-7a. For example, if x(t) is a speech signal with an echo

x(t) = s(t) ® u (t)

s(t) = p(t) u(t),

(14a)

(14b)

x(t) is the convolution of three signals and the response of the system A( will be the

sum of the corresponding responses to these three inputs

(15)x(t) = p(t) + u (t) + u(t).

If T << t , the three components of the response essentially occupy different time inter-

vals, as can be seen from Eqs. 7, 5 and 11. For example, if the echo is to be removed,

a "frequency-invariant comb filter," as shown in Fig. XXV-8, could be used. In using

x
r(t) t (

g (t)

g (t)

Fig. XXV-8. Ideal frequency-invariant filter for echo removal.

such a system it is clear that the echo timing need not to be known exactly but must only

fall in the region around t c

It should be pointed out that for speech signals the character of the waveform changes

as time increases, so that it is neither possible nor desirable to perform a Fourier

transformation of a speech signal of long duration, even if the complete waveform is

available (e.g., a recording). For this reason, the Fourier transformation indicated

in Fig. XXV-7b should be replaced by a "short-time" Fourier transform defined as

-00 w(t-T) X(T) e dT.

In Eq. 16, w(T) is a "window" function of finite duration. Such an operation on the sig-

nal X(T) can be interpreted as a Fourier transformation of x(T) when viewed through a
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window that slides along as t increases.

It should be clear that the logarithmic operation in Fig. XXV-7a takes advantage of

the fact that if two signals are convolved, their transforms are multiplied. For a short-

time transform of Eq. 1, it can be shown that

-j2wft
X(f, t) = S(f, t) + aS(f, t-t ) e o

If S(f, t) does not change too rapidly as t changes, we can see that in some sense

X(f,t) z S(f,t) 1+a e o . (17)

Therefore taking the logarithm of X(f, t) produces approximately the same behavior as

before. Intuitively, the requirement that the approximation of Eq. 17 hold is equivalent

to requiring that the window be wide compared with the echo time to.

Whether a short-time transform is required or not, it is necessary to give some

attention to the computational aspects of realizing the system of Fig. XXV-7. A system

of this type has been programmed for the PDP-1 computer and has been used to obtain

results that are consistent with the previous discussion. The Fourier analysis is done

by using the Cooley-Tukey algorithm4 for evaluating the equations

N-1 2 Tr-- -j kt
X(k) = x(t) e k= 0, 1, ... , N-1 (18a)

t=0

N-1 2w
1 N

x(t) = 1 X(k) e t= 0, 1,..., N-1. (18b)

k=0

The results for the response of system A® given in the previous equations assume

that time and frequency are continuous variables. All of these results have their coun-

terparts in the case for which time and frequency are discrete as in Eqs. 18a and 18b.

There are two major differences. First, unit impulses are replaced by unit samples.

Second, because of the sampled nature of the time function and the frequency function,

Eqs. 18a and 18b are actually periodic with period N. This means, for example, that

in the infinite sum in Eq. 5 all values of nt0 must be taken mod N. Therefore a unit
nn n+l

sample of height a (-1) , which is supposed to occur at t = nt with ZN > nt > N,
n 0 0

will actually occur at (nt -N). This aliasing effect is minimized computationally by

exponential weighting of the input, since it is clear from Eq. 13 that the corresponding
n -ant

weighted sample has height (-1) -- e
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As an example of the type of processing that is proposed, consider Fig. XXV-9.

Figure XXV-9a shows a section of the vowel "ah" which has an echo at to = 300 samples

(a)

(b)

(c)

Fig. XXV-9. (a) Segment of the vowel "ah" with an echo at 300 samples.
(b) Output of the system A( for the exponentially weighted

input of (a).
(c) Output of system after the removal of echo.

(sampling rate of 10 kHz). Figure XXV-9b shows the corresponding output of system

A( for the exponentially weighted input. The peaks at t = 300 and 600 are due to the

echo, and the peaks at multiples of 46 (the pitch period) are due to the middle term in

Eq. 12. The points that are due to p(t) are seen to be essentially limited to the region

between 0 and 46. The peaks predicted by the last term in Eq. 12 do not appear because

MT is greater than N and e-aMT is very small. The waveform of Fig. XXV-9c shows the
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output of the system of Fig. XXV-7a when the linear system L is a frequency-invariant

filter with g(t), as shown in Fig. XXV-8.

Many theoretical and computational problems remain to be resolved. The ideas and

results reported here do seem to hold promise of application in a wide variety of

waveform-processing situations.

R. W. Schafer
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