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A. A COMMENT ON SHIFT REGISTERS AND NEURAL NETSt

Shift registers, linear and nonlinear, can be regarded as a subclass of neural nets, 1

and, therefore, the results of the general theory of neural nets apply to them, not vice

versa. A useful technique for investigating neural nets is provided by the state transi-

tion matrix. We shall apply it to shift-register networks. The notation will be the same

as that previously used. 1

Let an SR network be a neural net of N neurons and M external inputs, defined by a

set of N Boolian equations of the form

Yl(t) = fl(xl(t-1),x2(t-1),... ,xM(t-1); Yl(t-1), .. ,YN(t-1))

y 2(t) = y 1(t-1)
(1)

YN(t) = YN-l(t-1),

where fl(x 1 ,x2, ' .. 'XM; Y1 2' " " YN ) can be any Boolian function of the external inputs

X 1 , x 2 , ... , xM, and of the outputs yl', y2' ", y N. The SR network corresponds to a

shift register of N delay elements, which is linear or nonlinear, depending upon the

nature of the function fl.
The state transition matrix of the SR network, obtained by applying Eq. 5 of a pre-

vious report, 2 is

(X)i j = f 1 (X;a,b,. . . ,d,g) P  a . . dt, (2)
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where (a,b,...,d,g) and (p,q,..., s,t) are the strings of O's and l's defining S. and Sj,
1 j

respectively.

Since the term a * ... dt is 0 unless

a = q, . .. , d = t, (3)

it follows that the only W(X)i j terms that may be different from 0 are those for which S i

and Sj satisfy the conditions of Eqs. 3.

For every S i = (a, b,... , d, g) there are only two states Sj that fulfill the conditions

above, namely, S. = (0,a, b,..., d) and S. = (1, a, b,. . , d). Thus, every state of an SR

network can only go to one of the two corresponding states, instead of being able to go
to any state, as in a general neural net. Similarly, any state S. = (p, q,..., s,t) may

only be reached from either state (q,..., s, t, 0) or (q,..., s,t, 1).

For example, the state transition matrix of an SR of three delays may have terms

that are 1 only in the positions marked with an x in the following matrix

S.

000 001 010 011 100 101 110 111

000 x x

001 x x

010 x x

011 x x
S

i 100 x x

101 x x
110 x x
111 x x

Conversely, any network of N neurons whose state transition matrix has 0 terms every-
where except for pairs Si, Sj which satisfy Eqs. 3, is an SR network of N delay elements.

The number of possible modes of oscillations for an SR network of N delays is consid-
erably lower than for a general neural net of N neurons. For example, for an SR network
of three delays, there are only two modes of oscillation of length 8, whereas a general
neural net can have 7! = 5040. There is also a limitation in the sequences that can be
obtained, under constant input, out of a neuron in an SR network. For example, the se-
quence 11110000 cannot be realized in an SR network of three delays, whereas it can be
obtained out of a neuron in a network of 3 neurons. Actually, for an SR of 3 delays there
are only two possible sequences of length 8, which correspond to the two possible modes
of oscillation, namely, 11101000 and 11100010. Other sequences of length 8 that cannot be
realized by an SR network of 3 delays, but which are obtainable out of a neuron in a net-
work of 3 neurons are 11010100, 00101011, 11011000, 00100111, 00101101, and 11010010.

A neuron in a general net can produce any sequence of length up to 2N if the number

QPR No. 87 192



(XIV. NEUROPHYSIOLOGY)

N-i
of O's and the number of l's in the sequence are not larger than 2N . The rules to

synthesize a neural net of N neurons that realizes any of the possible sequences are

easily obtained from the state transition matrix, and will be given in a future note.

R. Moreno-Diaz
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B. THE COLORS OF COLORED THINGS

Part I. The Inductive Argument

This report appears in two parts. In the first, I present the grouping of phenomena

and psychological opinion that I believe to be relevant.

In the second part I show a model of the receptors that yields an output from which

the conversion of C1 to C 2 can be derived.

The first part is necessarily abundant because the material has not been brought

together in this manner elsewhere, and I felt that the reader ought to know what is being

modelled by the theory.

1. Introduction

Judgment of color (including brightness) seems not to depend on extension. We can

see red star points, Mars, and red fields, the sky in a dusty sunset. For a red spot

on the gray wall, its redness seems to us most primitive: the redness is like nothing

else but itself, it cannot be decomposed or described, but only exhibited; it is a

simple. Color is an absolute judgment - the spot is red in itself, not relatively red with

respect to something else. Even when we induce a "color illusion" making a "gray" spot

turn "red" by "contrast enhancement," that spot is absolutely red, not merely redder than

the background or in any other wise contingently red. With our tradition it is natural

to suppose that the perception expressed as that red spot on that gray wall is put together

out of sensations that come prior, e. g. , redness, grayness, etc. , in the same way that

sentences are composed of words. In this view sensations of color come prior to per-

ceptions of colored things, and a red spot is bounded redness. But what seems to come

before and what after in our introspections need not reflect a similar order in the under-

lying physical causation. Thus, even if sensations are to be taken as psychological prim-

itives, they ought not to be confused with sensory events or supposed to be more

reflective of them than perceptions.

Sensations, insofar as they are introspectively abstracted from perceptions, are

apperceptive. Sensory events, insofar as one can detect the working of sense organs,
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are not accessible to perception directly but only through channels that pass outside the
system. For example, I could imbed a microelectrode in a single nerve cell of my eye,
and listen to its pulsing as I look at different things, but I should not be able to identify
the sensory events with the sensations I infer from my perceptions. Even if there were
a direct causal chain, say, "red" neurons whose discharge rate went pari passu with
how much redness I saw - even then there would be the distinction between my seeing
a red thing, my sensitivity to whatever in me represents the nervous activity, and my
listening to the actual nervous activity that meant "red." The three representations are
different, however well they might map each other. It has been a strong hope, however,
that such a mapping might be found to give anteriority to sensations over perception -
and where this false hope has most intruded has been in color theory. But that is
because the criteria for a color theory are most often improper.

A color theory must account for the absolute judgments that are the colors I see. It
need not account for how I perceive, nor need it solve the mind-body problem, but it
should at least present a model that utters the same judgments as a man whom I examine

with arrangements of colored patches. In the past, from Helmholtz on, there has been the
feeling that one could pass from a theory of sensory events to a theory of color sensa-

tions, provided one could first define a distance element in some representation of
the space of sensory events. Experiment shows that such a rigid transformation is not
sufficient. The most revealing recent studies have been those of Dr. Land who revived
the question of simultaneous contrast.

To understand the work of Dr. Edwin Land, we must first review the elements of
the sensory space of color. Dimensional arguments about sensory events are important,
for if it can be shown that sensory events, constrained to two degrees of freedom, gen-
erate sensations with three degrees of freedom, then we are driven to suppose noncausal
relations between our perceptions and what occasions them, and we may as well forget
about a physiological psychology. It is almost such a question that Land poses. But to
understand the problem more fully we shall have to revert to a common-sense argument
about the purpose of a color system, for I think it can be shown that, historically, we
have erred in what we take to be the nature and use of color. Such a discussion is neces-
sary, for teleology plays an important part in the analysis of informational systems, and
it is only a positivist superstition that gives it a bad name in biology.

I shall present the account inductively.

a. Sensory Mechanism

Our present theory of the sensory events that underlie the seeing of color was devel-
oped almost in its final form by Isaac Newton. Indeed, all of the later emendations and
exactnesses contribute no new ideas to the basic notion as set forth in Opticks. The
relevant sections in that book are cursively written, a delight to read after the slow,
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data-weighted approach of a modern textbook. Newton's theory has now been confirmed

by the discovery of those pigments embodying the processes conceived by Young to be

entailed by Newton's model. This work has been done at several laboratories, but most

convincingly by Marks at Johns Hopkins.

After Newton had decomposed sunlight and candle light and analyzed the spectrum,

he addressed himself to the question of how color can be a function of the spectrum. He

intuited the barycentric model and did the crucial experiments to show its aptness.

Slightly modified, the notion is as follows.

Lay the spectrum out along a weightless wire. Bend the wire around into an open

plane curve. Let us call this figure the spectral-line boundary. To get the color of a

ray of light, we attach weights to the wire at every point, each weight proportionate to

the flux at that point in the spectrum. The center of gravity of the figure will then

represent the chromaticity (color independent of brightness). There will be a set of

points corresponding to different mixtures of spectral extremes, and these will lie along

an imaginary straight line connecting the two spectral extrema, the ends of the wire.

Those hues that lie along this straight line are called nonspectral hues. The hue bound-

ary is thus closed.

A uniform distribution of flux along the spectrum (as in "white" noise) yields hueless-

ness or white, the "middling color between all colors." Flux concentrated at one point

of the spectrum yields a pure spectral hue. Fluxes concentrated at both extrema of the

spectrum yield nonspectral hues or purples that vary according to the ratio of the two

fluxes. Thus, as one moves along the spectrum from one end to the other and then back

through different ratios of extrema, the hue changes continuously. There exists no hue

that does not correspond to a value on the hue boundary; huelessness corresponds to the

center of the enclosed area.

For any distribution of flux along the spectrum the center of gravity will lie some-

where between the hue boundary and the white center. There is an infinite set of distri-

butions that will yield the same center of gravity. These are called metamers. A

unique metamer in each set will be that consisting of the mixture of a uniform distribution

of flux along the spectrum, together with flux concentrated at one point on the hue bound-

ary. It is this metamer that corresponds to the color that we attribute to the set - we

see the color as having the hue of the point on the boundary and the enhuedness (or satu-

ration) corresponding to the ratio of the flux at that point to the flux uniformly distributed.

In other words, white is the most desaturated of all colors, and any color can be repre-

sented by a mixture in varying proportion of white with a maximally saturated hue,

spectral or nonspectral. Incidentally, no two spectral lines, when mixed in any propor-

tions, can yield a color more saturated than the color of the single spectral line (or com-

bination of extremum spectral lines) that has the same hue as the mixture. Thus the hue

boundary is everywhere not concave.
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This wonderful conceit makes vectors of colors, and the rules for composition of

colors reduces to the rules for composition of forces in three-space, as Grassman later

pointed out. Thomas Young remarked that the closed hue boundary could be bounded

by a triangle, whence the transformation of light to color required but three different

sensitive processes in the retina. His comment was taken up by Helmholtz and is known

as the Young-Helmholtz trichromatic theory. But, indeed, it only says explicitly what

is implied by Newton's model.

What remained was to establish the metameric sets, and by matrix inversion to

compute the local stretching and condensation of the spectrum along the hue boundary,

and the curvature of the boundary in at least one projection of it. This purely algebraic

job on psychological measurements was done within the last hundred years, begun by

Maxwell and finished by committee.

You will notice that this is a theory of the transductive or sensory process only

and takes indiscernibility to establish identity according to the dicta later expressed so

well by Helmholtz. Whatever are the processes that lie behind the sense organs, they

have no access to the world save through the sense organs, so that if two stimuli are

unaidedly indistinguishable under all circumstances, they must set up identical repre-

sentational processes. If sensorily indistinguishable events can be distinguished by

physical measurements, then one can write a degenerative transformation that carries

the measurements into their sensory representation. Implicit in this outlook is the con-

viction against occasionalism - no information about the world can occur save through

the senses.

Thus, Newton's theory states the rules of the sensory processes involved in seeing

color. It does not establish what colors we shall see, but only what spectral distribu-

tions of flux we cannot tell apart. Only if we insist on a rigid transformation that carries

the space of sensory events into the space of sensations, can we say we now have a color

theory. But the adequacy of such a transformation can be disproved by experiment.

To reduce confusion in the rest of this paper, I shall call Newton's color space C 1 ,
the vectors in this space, colors. The space of the colors we see I shall call C 2 ,

the vectors in this space, COLORS.

In summary, color space, C1, can be described as a three-dimensional, uniform

and homogeneous vector space. Three arbitrary reference vectors can be calculated

(as one of a set of triads) by matrix inversion from lists of indistinguishable action

spectra and the intensities at which they cannot be distinguished. The space is usually

described in conical coordinates. Hue corresponds to 0, saturation to , and bright-

ness to r. The chromaticity is defined by 0 and 4.
Thus chromaticity is well-defined. Brightness is a no more difficult matter in C 1.

On a matching basis, where the test color must be matched both in chromaticity and

brightness, r is linear. Brightness, used in this way, is contrary to common usage,
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for I distinguish it from BRIGHTNESS in CZ, which is a far more complex quality to dis-

cuss. Brightness, however, is not simply the incident flux of light on the retina, rather

it is a function of that flux given by the colorimetric references - the three processes

of Young's hypothesis.

I am a little reluctant to try to give a precise, general account of C 2 . Where 0 in C 1
can be given in terms of hue, i.e., X, or, in the case of purples, the ratio of fluxes for the

two extremum X's, 6' in C 2 is given in terms of HUE as given by HUE names. Where c

in C 1 can be given in terms of saturation, the ratio of flux at a hue point to flux at the

chromaticity of the action spectrum chosen as white for a sample of light of any spec-

trum, in C 2 SATURATION is the distance of a COLOR from ACHROMATICITY. Finally,

where r in C 1 is brightness, r' in C 2 is BRIGHTNESS, and by this I mean what is called,

usually, "lightness." All three parameters in C 2 are subjectively absolute judgments;

but insofar as they can be related to C1, the sensory space, they are order judgments,

i. e. , they are relative. From the subjective point of view, furthermore, it is as if the

coordinate system of C1 is not that of C 2 but that some correspondence exists between

them. That is to say, the COLORS are definite and differ only by HUE, SATURATION

and BRIGHTNESS between a variety of patches that do not differ in texture or other

surficial quality, and these three parameters are, subjectively, laid out not in a coni-

cal coordinate system, but in a spherical one.

To make reading easier, henceforth I shall use lower case for color names in C 1,
such as "blue," to indicate 0, rather than, as is more proper, some X; and I thus set

them off from, e. g. , "BLUE," the name of a COLOR that I see.

The carrying of C1 into C2 is further confounded by the existence of COLOR names

that do not correspond to colors. For example, BROWN is a color that we distinguish

from YELLOW rather more strongly than we distinguish a dark RED from a bright RED.

But BROWN is the name for a YELLOW that is much less bright than other COLORS

around it. It is a contextually judged COLOR, as you can determine for yourself by

Helmholtz's test of looking only at a BROWN patch through a tube coated black on the

inside. It looks yellow then.

Newtonian color space, C1, does not require that white be given as equal flux through

the spectrum. Any flux distribution can be called white, or the achromatic axis of the

conical coordinate system. All of the spectral points along the boundary can be given

their X numbers rather than color names, and the points along the nonspectral line can

be given "complementary" numbers, obtained by the intersection of that line with another

line produced from a particular X through the white point (described as a particular flux

distribution). Thus all identities could be established without using COLOR names.

Indeed, the method used for constructing C 1 must not use COLOR names.

This method, called colorimetry, is substantially as follows: A subject is con-

fronted by a large GRAY wall through which two holes are cut. Behind each
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hole at a short distance is a diffusely reflecting white surface (i. e. , it has
uniform reflectance across the spectrum), a field. One field is illuminated by a
particular color of light. The subject is then given intensity control of three non-
coplanar chromaticities of light (i. e., no combination of any two will look like the third).
He may add the three together on the other field, or he may take any one of the three
and add it in varying intensity to the field illuminated by the test light. The object
of the manipulation is to make the two fields indistinguishable in respect to COLOR.
This can always be accomplished by a unique combination of colors (a unique combination

of the intensities of the given chromaticities). If only two chromaticities are used for
matching a third, most matches cannot be done. If four chromaticities are used for
matching a fifth, the combination for matching is not unique. Hence, C 1 is three-
dimensional.

What is interesting, subjectively, is that when a color match is done, the COLOR
of the match may be ambiguous. The uniform field of COLOR if yellow, may appear
YELLOW or ORANGE or YELLOW-GREEN. It fluctuates, but the matching of the two
halves is not destroyed. The identity of the match is not affected by the absolute COLOR
that it evokes. All of what I have said thus far follows from Grassman's laws.

1. Any mixed color, no matter how it is composed, must have the same appearance
as the mixture of a certain saturated color with white.

2. When one of two kinds of light that are to be mixed together changes continuously,
the appearance of the mixture changes continuously also.

3. Colors that look alike produce a mixture that looks like them. (I add: When
the mixture is reduced to the same brightness as the component colors.)

The reason that HUE names are used for hues is, of course, obvious. Spectral lines
at the longest X's most often appear RED, etc. , so that we can ordinarily talk of the red
end of the spectrum, or the blue end, and not be misunderstood. But, e. g., BLUENESS,
as will be shown, does not depend on blue light being present.

Defects in color vision are of several types. The simplest ones are dichromacies
wherein it appears that one of Young's processes is absent. Dichromats can accomplish
most color matches with two spectral lines as the chromaticities that are varied in
brightness.

Another type is the anomalous color-seer who may have the three processes,
but one or more of the processes does not have the action spectrum that is most
common, or else the processes are not combined in the normal way. The matches
made by such a person will differ from the normal: his C will have a changed

boundary. Such people can, for example, distinguish colors that are metameric for most

others - as happened in the recent Arab-Israel war when the protective coloration of
Egyptian forces was penetrated by an anomalous Israeli bombardier. (At the same time

we can distinguish many of the spectral distributions that they cannot distinguish.)
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b. Purpose of Color Vision

The second comment that I must make before going on to Land's experiments con-

cerns the visual advantage that shapes color vision. In a world of generally opaque

objects seen by changeable illumination, the invariant by which we could track a surface

from one place to another, from the yellow light of noonday sun through the blue light of

the sky when only the sun is overcast, from the red of setting sun through the green

shadows of leaves, is not the light that is reflected from the surface, but rather the

reflectance itself. That is, if we could know both the spectral composition of light inci-

dent on a thing, as well as that reflected from that thing, we could make a judgment that

would be largely independent of the accident of illumination.

It is well known that our perceptions of the COLORS of objects in a welter of objects

is remarkably stable under change of lighting. The COLORS of sweaters, frocks and

other artefacts, subtle skin tones, facial makeup, etc. , do not change markedly as one

goes from outdoors into a tungsten-lit or even a fluorescent-lit room, although the

colors change. If, in a tungsten-lit room we change the chromaticity of the light by fil-

ters that only bias the distribution of flux but preserve the wide band, we are fairly

insensitive to the resulting change in chromaticity of the surfaces seen by that light.

In Helmholtz' words it is as if we "subtract the illuminant." More exactly, it is as if

we treat the illuminant as WHITE, as the middling COLOR between all the COLORS seen.

This phenomenon is called "color constancy."

It is quite true that when we go from broadband light to monochromatic light, or light

of very few spectral lines, noticeable changes begin to occur when the action spectrum

gets very rough, but over an extraordinarily wide range of action spectra with a smooth

contour, COLOR constancy does hold.

Subjectively, then, we see things as were we sensitive more to their reflectances

than to the light reflected from them, and, at first guess, we might suppose that we are

also sampling the illuminant so as to compute reflectance automatically. This cannot

be true, however, for we neither look at the sun nor at light bulbs to achieve color con-

stancy.

Referring chromaticities (colors independent of brightness) to the color triangle we

do note some alternatives. If the reflectances and illuminants are relatively smooth

functions of the spectrum, then, for a given set of uniformly lit reflectances the reflected

lights from which shown as a cluster of points inside the chromaticity triangle, a change

of common illuminant moves the cluster about inside the chromaticity triangle, con-

densing it in one direction or another, but always preserving "mutual order. "Our COLOR

constancy reflects either that we are sensitive to the "mutual order" of the points or else

that we do a barycentric operation on the point cluster, call the center of gravity white,

and see colors according to some rule that takes 0 into 6'. But a quality more related
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to reflectance than to reflected light is what is embodied in the "mutual order."

(Disruptions of the order can, obviously, be done by the use of "notch" filters, ones

that exclude a band of light. A very interesting 6tude is to get a sheet of cellophane that

excludes from yellow-green to green or green-blue, and walk outside looking at grass

and yellow-painted trucks, etc. Grass looks red, some yellow objects look red, others

white. It is possible, if you use metamers with rough-action spectra for protective

coloration, to break that protection with such a notch filter, or even a simple "highpass"

or "lowpass" filter with a steep step gradient, e. g. , such as exists with the oil droplets

in bird eyes.)

Suppose that we take it as an engineering problem, that we are confronted by an array

of patches of colored paper lying helter-skelter overlapping each other. Let this array

be illuminated in such a way that we have no assurance that incident light is the same

either in intensity or action spectrum from one broad region to another. About the

only thing that we can say confidently is that the distribution of lighting is not correlated

with the distribution of patches. Finally, we are not to be permitted absolute references

of any sort. Of these stipulations, the last arises from the physiological and psychological

studies over the last century. It is a most restrictive constraint. Question: How reliably

can we track a patch as the array is shuffled and the illumination changes? It is a most

restrictive constraint. In this problem we cannot use shape or size of a patch because in

the shuffling different overlaps will occur. But we shall assume that all papers have the

same texture.

Our initial attempt will, of course, be photometric. We will have restricted the engi-

neer to an array of photocells imitating an arrangement of rods and cones, but put no

stipulations on the cells. They can have a flat spectral sensitivity curve. Now the image

of the patch array is cast on this surface. We can pass this image through filters each of

which passes only one N. There are at least two strategies that come to mind instantly.

1. We can divide the total flux at XI coming from each patch by the area of the patch,
or else average the response of the photocells inside the image of the patch if the cells

are linear transducers. Then we can order the patches with respect to this intensity

function. The trouble with this method is that the chromatic order of the patches will

not be invariant under spatial variations in the action spectrum and intensity of the

illuminant.

2. We can take the ratios of flux at 1I across every boundary using only the photo-

cells close to a boundary. Since the spatial variations in illumfnant are not correlated

with patch boundaries, we take the local order of patches given by ratios of the patch to

its bounding patches, and, having done this for all patches, set up the global order of

all patches with respect to reflectance of X . This method yields an invariance of the

order under any spatial distribution of intensity of Xl providing some flux of X1 is

available from each patch. Background counts as a patch, and an isolated patch on the
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background, of course, has a boundary. But if we have the ratios across the whole

boundary of a patch reported point by point along the boundary, we must take all points

reporting identical ratios and divide by the number of those points and do this for all

different ratios across the boundary. Alternatively, we can report only the ratios of

these ratios at those singular points, the vertices along the boundary, where the ratios

change. This verticial operation is the easier, requires less "data processing."

The second strategy using boundaries is certainly preferable to the first using areas,

and, for a minimal system, the verticial measure is preferable to averaging measures

along boundary segments.

Having done this operation X by X for n wavelengths, we can now set up an

n-dimensional ordering of all patches in the same way as they would be ordered if we

knew the reflectance of each patch X by k. The more X's used, the more patches in

the array and the more different reflectances they exhibit, the closer does the order

derived from mutual comparisons of reflected light approach the order these patches

would have in a "reflectance space."

Finally, if we now applied to this exhaustive measure the degenerative transformation

that carries the spectrum into color space, we would have a chromatical ordering of

the patches that would be relatively invariant under smooth local fluctuations of intensity

and action spectrum of broadband illumination. Alternatively, and more simply, if we

took the separate ratios of each of the fundamental retinal color processes across bound-

aries, measured the changes of these ratios at vertices around the boundary of each

patch, and ordered each of them globally, we would have a tendency to chromatical

invariance under changes in the color of the light and the shuffling of the patches. (This

invariance would obviously be most marked if we use but three k's widely spaced in the

spectrum so as to make ourselves insensitive to local roughness in the action spectra

of the reflectances.) Such a global ordering process is what Land means by his

"retinex," and such a profound invariance or CHROMATICITY constancy is what he

shows with restricted illumination. It is important to remark here that COLOR con-

stancy holds over a much narrower range than CHROMATICITY constancy.

You will note, however, that the preferred strategy, whether using X by X or using

the three reference chromaticities of color space, violates the last condition that we

gave at the beginning of the discussion (the use of an absolute spectral reference, we

know which X is which, or which reference chromaticity is which over the whole plane

of the image) unless we import extensional information into "getting" C 1 to C2, given

that C 2 is devised for determining invariances related to reflectances.

This extensional information involves, depending on the method you choose:

1.) averaging the color over an area (that must be defined) so that this, the color of that

area can be compared with the colors of other areas; 2.) averaging the ratio of colors

along a boundary (whose length must thereby be known) so that this ratio can be compared
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with other ratios; or 3.) taking the change of ratios at vertices along a boundary (where-

upon a vertex must be defined as the intersections of boundaries, thus requiring bound-

ary recognition). I only mention these obvious matters to point out that the sensation of

REDNESS in a real RED SPOT (that stays stubbornly RED as we change the light by

which we see it), if extensionless in quality, does not imply that it is generated without

use of extension.

c. Land Experiments

I shall give Land's first studies in their simplest form initially. Suppose you have

three bright light sources, say tungsten bulbs. And suppose you choose three filters,

say Wratten Nos. 25, 95 and 47, passing red, green and blue respectively with but

little overlap. Each light is covered by one of the filters, and there are no other sources

of illumination. Now provide yourself with a set of highly colored papers which you

arrange on a table so that they overlap each other every which way. If you now restrict

yourself to viewing the array under each of the lights separately, you will discover that

there is practically no variation of HUE. If you view only by light through filter #25, the

array will be predominantly RED. Areas that reflect little if any light will appear a

GREENISH-BLACK. Slightly lighter areas will appear GRAY, but most will be a variety

of RED. This had been already remarked by Helmholtz. Similar effects will occur with

light coming only through the #95 filter or the #47. Now, when you turn on light through

all three filters, you will see a wide variety of HUES at different SATURATIONS and

BRIGHTNESSES. These may not be the COLORS of the papers that you would see under

white light, but then you have restricted the conditions of viewing greatly. What is

important is that your COLOR judgments will have three degrees of freedom - to be quite

exact, you will see various GRAYS, and WHITE and a BLACK as well as differently

saturated HUES, if you have included achromatic papers in the array. Now you can

assure yourself of the phenomenon of COLOR constancy- for if you have further pro-

vided a stop, or occluder (such as a sheet of cardboard) by which you can reduce the

light from any of the three sources, or any two of them, you will see that over a wide

range, the CHROMATICITIES are not dependent on the relative amounts of the different

lights striking the array.

But now a miracle! Instead of partially occluding the light through filter #47 (blue),
you turn off that light entirely. To your astonishment you will see very little change in

COLOR. There will still be BLUES, PURPLES, WHITE, GRAYS, BLACK as well as

REDS and GREENS. In other words, from a coplanar set of points in Newtonian color

space you are getting sensations that are trivariantly distributed in C 2 . For surely

BLACK and WHITE are not coplanar with all three, RED, GREEN and BLUE, in per-

ceptual color space.

This one experiment, done cheaply, for the filters are inexpensively got from
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camera stores, instantly wrecks the hopes of finding a rigid transformation that carries

colorimetric color space (Newtonian) into perceptual COLOR space.

Land's next experiment is more difficult to perform. It requires somewhat more

expensive equipment. Take two step-wise gray wedges (where every stripe as you move

from left to right is some multiple as dark as the preceding stripe). These can be made

photographically from ordinary black and white film. Take two slide projectors and,

having registered their projections on a screen, place one wedge in the first projector

so that the stripes run horizontally, and the other wedge in the other projector so that

the stripes run vertically. The resulting image of an array of squares will have a bright

corner and, diagonally opposite, a dark corner. Now place a red filter, say #25, in

front of one projector, and a neutral gray filter, as compensation, in front of the other.

The resulting image is not remarkable. The bright corner is PINK, diagonally opposite

it the dark corner is BLACK, one of the other corners is WHITE, and one is deep

RED. The squares vary in REDNESS through different tints and shades to WHITE and

BLACK. The shades may even look a bit PURPLISH.

You have prepared, however, two other pairs of slides. In one pair you use the same

gray stripes as in the first and unremarkable set, except that you have randomized the

stripes in each. They do not go from light to dark in an orderly way. When you insert

this pair in the projectors, crossed in the same way as the first pair, you are suddenly

confronted by COLORS - REDS, YELLOWS, GREENS and BLUES. They are not viva-

cious, but they are there.

In the final pair of slides you have randomized the squares in the registered image.

This is difficult to do. It means cutting up each stripe into squares on each slide and

distributing the squares randomly in a square array. But the result is worth it. The

registered images from the two projectors yield squares in a riot of COLORS.

You will note that in this experiment every combination of relative intensities of red

and white light that occurs with one pair of slides occurs with the others. All that differs

between the slide pairs is the degree of spatial order applied to the combinations. Why

is it that so little COLOR is provided by the first pair, so much by the last? To answer

that this is a case of "contrast enhancement" or "contrast induction" or "simultaneous

contrast" is to substitute one mystery for another.

To continue on Land's studies, it is an obvious application of the first experiment

mentioned to photograph a scene on one piece of black and white film through a red filter,

and then photograph it on another piece through a green filter. The projection of the

resultant first photograph through a red filter and the second through a green filter with

registration of the projected images yields a fully-colored picture. As a result of the

second experiment one can say that colors ought be equally present if we leave off either

the red or the green filter in the projection. Land then shows that the HUES are

invariant whether one doubles (uses two identical copies in series) either of the two
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slides projected. Thus, what he establishes is that under these circumstances HUE is

given by rank orders rather than by exact ratios. In a last experiment Land uses in his

projectors two monochromatic yellows, 1 mi apart, the shorter wavelength in place

of the green light, the longer in place of red, and one can see dimly all the HUES - in

pastel or washed-out water-color SATURATION, but definite.

The display of HUE constancy under restricted illumination is one of Land's most

spectacular shows. Consider the colored patch array under red, blue and green light.

We saw that turning off the blue light did not much alter the HUES seen. Now, too,

we can vary the ratio of red illuminant to green illuminant over a wide range and still

the HUES do not change. Thus, if patches A and B are different COLORS under one

illumination ratio, and the illumination ratio of red light to green light is then changed

so that the light that comes from B now is what came from A before, or vice versa,

patches A and B are unaffected in HUE by either change. Thus HUE in this case

is quite independent of the absolute action spectrum and utterly dependent on the rela-

tions between the action spectra of contiguous areas.

The vividness of the COLORS seen in this case where the absolute action spectra do

not independently determine color leads us to ask why COLORS are so predominantly

connected to colors in ordinary experience.

The major paradox brought out by these 6tudes has been mentioned. Furthermore,

it is lawful in this sense, that everybody with normal color vision confronted by these

pictures names the seen COLORS in the same way. The COLORS are not ambiguous.

There are many changes that can be rung on Land's theme. One can seek minimal

configurations. Such experiments are tedious because temporal boundaries (blinking

the eyes) can be exchanged for spatial boundaries vis-a-vis COLOR, and so, too, can

afterimage boundaries, as we know from comparing simultaneous and successive con-

trast; nevertheless, these configurations can be made; four COLORS that are distinctly

not coplanar can be assigned to a configuration of only four areas, the background

serving as one of them.

d. Some Interpretations Made by Land and by Yilmaz

Land's demonstration controverts any theory, such as that of Yilmaz, that tries to

account for the production of all HUES from the use of two chromaticities by means of

a rigid transformation of C 1 to yield C 2 . Yilmaz supposed that the coplanar set of all

colors in the field of vision was tilted (a translation and rotation of the coordinate sys-

tem of C 1 by a Lorentz transformation). In his theory, however, one of the three vari-

ables, BRIGHTNESS, HUE, or SATURATION, will be dependent on the other two globally.

Furthermore, in Yilmaz' model the rotation of the coordinate system depends on color

at every point in the image. That is, the COLORS become area-dependent, for he explic-

itly remarks that the COLORS are weighted by area.
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A theory of "retinexes" has been put forth by Land. It has some good features and,

at first sight, seems to save some of the phenomena. Briefly, it is this: Suppose, using

only black and white film, you photograph a scene with a filter of chromaticity A, say

red, and then do the same with a filter of chromaticity B, say green. If you now exam-

ine the first photograph, you will, on inspection, be able to order the areas in subjective

BRIGHTNESS, called by Land, lightness. So, for example, a white bit of paper in the

shade of a tree will have a lightness (BRIGHTNESS) greater than a gray bit of paper in

the sunlight, although the amount of light coming from the first may be much less than

what comes from the second. Lightness, done as a purely subjective judgment in full

context, can be written down as the order of areas from light to dark for A, and then

can also be written for B. Land, then, says that if there are three processes in the

eye, red, blue and green sensitive, each process acts as an independent sheet, like a

photograph, and you, behind the three sheets, take the red lightness, the green lightness

and the blue lightness, and from this get a three-dimensional order. But you will note

that while this seems to explain the results of presenting an array of squares ran-

domly colored with two chromaticities as opposed to the same array spatially

ordered with respect to both chromaticities, it does so by a deus ex machina,

a judger of "lightness" sitting behind everything, who takes contexts intelligently

to issue his judgments. But, what is more to the point, it does not get us around

the problem of how one actually goes to a trivariant sensation from a divariant stim-

ulus except by arbitrary laws - such as, the rules for taking lightness differ between

the green retinex and the blue retinex. Recently Land has been looking at the effects

of boundaries in ordering "lightness."

e. Contrast Phenomena

The experiments just described have been taken as only a special case of what

has been known as simultaneous contrast for over a century, and, in general,

treated most extensively by Helmholtz. Even when he is not explicitly mentioned,

it is his argument that is used, and rightly so, for there has never been a more

astute and critical psychologist. Helmholtz has magnificent chapters on Contrast

(Chapters 23 and 24) in Vol. II of Physiological Optics. I know of no better handling

of the phenomenology anywhere, and, unless one is driven to consult for other

reasons the equally admirable essays of Purkinje, Chevreul, Fechner, Plateau and

other natural philosophers of the 19th Century, Helmholtz' essay suffices for the argu-

ment. The experiments he describes are simple and revealing. In this one section

he discusses and explains in part what, much later, were called Mach bands. He

notes and explains in part the fading of stabilized images on the retina, and in

general gives so rich and original an account that psychologists have still not mined

it to the limit.
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It is tempting to launch directly into making a model for C 2 on the assumption that
everyone has read the Physiological Optics. But, unfortunately, this is not the case,
even among contemporary color theorists, since many have accepted, in the main, his
conclusion that pure simultaneous contrast, the essence of Land's demonstrations, is
attributable to a "change, not of sensation, but of judgment." Helmholtz felt that certain
contrast COLORS arose from a Kantian judgment, an unconscious decision on evi-

dence rather than from an obligatory color-COLOR transformation in perception.

Thus, some psychologists even now talk of "memory colors," etc., as if thereby to
explain Land's findings. But this is nonsense, since some of the demonstrations use
only polygons, and there is no intrinsic reason why everyone ought "remember" that
an L-shaped patch ought to be, say, RED as an apple is. What seems to be remembered
are Helmholtz' conclusions but not the arguments and evidence. Therefore we must
review them. They contain an oversight that led to error.

The experiments that I will now mention occur on pp. 271-293 in the English version,
Southall's translation. All can be done out of hand with minimal equipment.

2. Colored Shadows

1. Take two ordinary lamps, play them on a white surface from different

angles. Put a colored filter over one of the lights. Introduce a pencil upright on the white
surface. Of the two shadows cast, one has the COLOR of the filter, the other has the
complementary COLOR. So, for example, if you use a red filter, the shadow it casts
is a bright, vivid GREEN. If you turn off the unfiltered light, the GREEN shadow goes
BLACK. As soon as the unfiltered light is turned on again, that shadow goes GREEN,
and no movement of your eyes, no application of your will to see it otherwise, makes
it aught but GREEN. (If you introduce a green filter over the unfiltered light, the shadow
becomes a deeper GREEN.)

2. Now replace the red filter by a blue one. The colored shadow is YELLOW - very
YELLOW. (If you add a red filter to the unfiltered light, the shadow turns ORANGE.)
And so it is for all colored filters on one light - the addition of white light from the other
lamp to the field turns the shadows the complementary color. Nor need the filters be
brightly saturated. The effects are quite as strong with quite low saturations. And the
COLORS of the shadows do not vary much as the relative intensity of the illuminant
is changed.

3. Put a tube to your eye with, say, the induced GREEN shadow first mentioned and
look only at the boundary of shadow and field. The GREENNESS against the PINK back-
ground is still clear. Now after looking at the boundary for a while, bring the tube to
look but at the GREEN shadow and turn off the light behind the red filter. That place -
now not shadowed, now only a white surface under white illuminant - persists as GREEN
for a while, or until you remove the tube from your eye. What Helmholtz did not say
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is that it does not matter if you move the tube over the white surface after you have

turned off the red light - it looks equally GREEN everywhere and fades equally rapidly

over where the shadow wasn't as over where it was. These effects last a few seconds,

long enough for you to turn switches on and off comfortably. It was the persistence of

the uniform GREEN over an area illuminated only by white light (the shadow) where the

contrast-inducing color had been screened out by the tube a few seconds earlier (moving

from the shadow-field boundary to the shadow alone) that led Helmholtz to feel that the

GREEN was remembered- therefore was not "sensed" but "judged." Thus he illegitimately

ruled out the GREEN as an afterimage of simultaneous contrast.

3. Paper Patches behind Diffusers

1. Against a bright red sheet of paper seen by reflected light, lay in the center a

patch of gray paper of about the same BRIGHTNESS as near as you can judge. Overlay

the array with another white sheet of paper so that the red paper gives a pinkish tinge

to the overlying sheet. Then the gray patch is seen as GREEN.

2. Outline the patch delicately with a fine pencil line. The GREEN vanishes, the

patch turns GRAY.

3. By isolating the patch seen through paper, using a narrow black tube, pick out

from a series of gray papers one that matches the patch seen through the diffuser. Cut

it out in the same shape as the patch and overlay it on the image of the patch through the

diffuser. It is not GREEN.

4. Bring any patch of any sort of gray to bound both pink background and induced

GREEN. The GREEN vanishes or desaturates.

From these findings Helmholtz concluded that if we supposed the superjacent paper

to be uniformly pink, we judge that the underlying gray patch had to be GREEN to appear

GRAY on the surface, and therefore, judging the patch as GREEN, we see it as GREEN.

4. Paper Patches Alone - Not Explicitly in Helmholtz

Suppose in the first experiment of A, leaving the white light and red light fixed, you

match the red light-white light mixture on the field to a pink sheet of paper under the

white light alone. Similarly, match the GRAY in the shadow with a gray patch of paper

under the white light alone. In other words, match the field and shadow separately as

close as you can to a pair that provides the same colors under white light as the shadow-

background gives. Now cut out the gray paper in the shape of the shadow, lay it against

the pink paper and illuminate only with the white light. The gray looks GRAY, not

GREEN, no matter how closely you have matched the values unless the gray patch is

relatively small and the pink paper very large. But when the areas are constrained by

the black tube, then we can always tell one from the other. Indeed, we knew this before

doing the experiment. For if, no matter what filter we used, the shadow was colored,

then certainly some patches of gray against some colored papers ought to appear
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complementarily colored under white light. But they don't (except in the diffuser case) !

Thus, given two pairs of identical colors and two identical spatial configurations,
that the COLORS should be different made Helmholtz think, quite justifiably it would

seem on first glance, that the difference occurred because of a judgment not related to

color at all - namely, our guess as to the nature of the objects - one being a shadow and

the other a patch on the background. Even when I put the tube to my eye so as to see

only a segment of shadow or patch and a segment of the bounding background, and the

COLORS are different though the colors are the same, then, most of all, Helmholtz

would seem to be right. But what if someone else makes the arrangement and still I

see a difference ?

Here, where we are faced with the same paradox as arises from Land's

use of simultaneous contrast, it almost seems that we must now reluctantly

opt for the "judger" using information not supplied by the image vis-a-vis

color.

Let us revert back to the early pages of Chapter 24. We must read these paragraphs

of Helmholtz in the light of a prior discussion of afterimages. When you look fixedly

for a while at, say, a bright red spot against a white background and then close your eyes

sharply, the instantaneous feeling is that the image persists though the eyes are closed -

the spot thereafter persists a short while as RED (longer if the red spot has been very

bright) then fades and at the same time turns GREEN. Very soon you are not aware of

any sensation. But the spot is still there latently. For, if on your closed eyes you play

a light suddenly, the spot stands out as GREEN, then fades; if you turn off the light,
the spot suddenly appears as RED, then fades, and this can be repeated. Alterna-

tively you can open and close your eyes while facing a featureless white surface. These

afterimages slowly fade (unless, like Ritter or Plateau, you gaze fixedly at the sun and

burn a hole in your retina). The afterimage then can be induced for many days. (A

reflected laser flash from an absorbing piece of black velvet once gave me an afterimage

evokable for over half an hour; I was quite worried.)

These are also contrast phenomena and play a part in the induction of color across

boundaries. Helmholtz' description is vivacious, and I shall quote a long passage from it:

"The phenomena of successive contrast, which will be considered first,
are easily comprehended from what has been stated in the previous chapter.
After looking at a field of colour A and medium brightness, suppose the
eye turns to look at another field of colour B. Then as a rule, the
residual stimulation of the impression A will not be strong enough for
a positive after-image to be projected on a second field of medium bright-
ness; and so there will be a negative after-image of A upon the field B.
Thus those parts of the colour B that are like A w11 be diluted. If
B is of the same hue as A, it becomes whiter by contrast; if it is com-
plementary, it becomes more saturated. If it lies on one side or the
other of the colour circle between A and its complementary colour, it
changes into an adjacent hue farther from A and nearer the complementary

QPR No. 87 208



(XIV. NEUROPHYSIOLOGY)

colour. Incidentally, the brighter A was, the darker B looks.
Accordingly, this would be the general law of successive contrast, on the
supposition that the luminosities of the two fields were such that only nega-
tive after-images could occur.

Even in comparing coloured areas with each other that lie side by
side in the visual field, successive contrast, that is, contrast caused
by after-images, is a very important factor, as any one can easily verify.
It has generally been supposed that in these cases it was simply a matter
of simultaneous contrast, because hitherto in the theory of contrast little
account has been taken of a certain characteristic of human vision. Under
ordinary circumstances, we are accustomed to let our eyes roam slowly
about over the visual field continuously, so that the point of fixation glides
from one part of the observed object to another. This wandering of the
eye occurs involuntarily, and we are so used to it that it requires extraor-
dinary effort and attention to focus the gaze perfectly sharply on a definite
point of the visual field even for 10 or 20 seconds. The moment we do it,
unusual phenomena immediately take place. Sharply defined negative after-
images of the objects develop, which coincide with the objects as long
as the gaze is held steady, and hence cause the objects soon to get
indistinct. The result is a feeling of not seeing and of having to strain
the eyes, if we persist in trying to look at the fixed place; and the
impulse to move the eye becomes more and more irresistible. The little
deviations of its position are scarcely noticeable in the strain, but
they are revealed by parts of the negative after-images flashing up on
the edges of the objects, first on one side and then on the other. This
wandering of the gaze serves to keep up on all parts of the retina a con-
tinual alternation between stronger and weaker stimulation, and between
different colours, and is evidently of great significance for the normality
and efficiency of the visual mechanism. For nothing affects the eye so
much as frequent development of negative after-images caused by staring
a long time at surfaces even only moderately illuminated. Strong nega-
tive after-images are, indeed, always an indication of a high degree of
retinal fatigue.

Now let us consider what happens when the eye wanders in this way
over a field where there are different colours or areas of different
luminosity. If we observe a limited coloured field with the eye accu-
rately focused on some point of it, a sharply defined after-image will
be developed, which is therefore easily recognized. If two different
points of the object in the same line of sight have been observed for a
long time, two well defined after-images will be formed partly over-
lapping each other; but without special attention they are not now
easily recognized as being copies of the object. But if the gaze has
moved slowly over the object, without being held on any point, naturally
the after-image will be simply a faded spot, and it is no longer so easy
to recognize, although it is actually there for the attentive observer.
Now if the look is transferred to an adjacent field of another colour,
this colour of course will be altered by the influence of the after-
image, exactly as if we had had these different colours one after the
other in the field of vision. Accordingly, in a case like this, we do
not have simultaneous contrast, at least not by itself; but we have here
also successive contrast, and the phenomena are entirely, or in large
part, identical with those described in the preceding chapter. In order
to have simultaneous contrast alone, special pains must be taken to keep
the fixation of the eye absolutely steady during the experiment.

Later we shall examine more carefully the phenomena of pure simul-
taneous contrast which continue during steady fixation of the eye. Now
the phenomena will be described that belong partly to simultaneous, but
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mainly to successive contrast, as they are manifested under ordinary
natural conditions of vision. The colour changes that occur in these
circumstances are exactly the same as those already described for pure
successive contrast. In general they are much more distinct and striking
than those of pure simultaneous contrast; and when the two might cause
different results, those of successive contrast invariably predominate
in the natural use of the eye; and when both evoke the same effects, the
alterations of colour always become much more considerable when the
gaze ceases to be steady and begins to wander.

In general, contrast effects are promoted when the inducing colour
is more intense than the reacting one, because then the after-images of
the former are more vivid and more lasting. For example, if a small
wafer of white paper is laid on a coloured sheet, this white will have the
complementary colour. The colouring is more impressive, however, when
grey is used instead of white; or even black, since in these subjective
experiments all black is to be considered as a dark grey. However, as a
rule, a medium grey is more satisfactory for the experiment than black.
In such cases the contrast action may go so far that a tolerably vivid colour
is reversed into the complementary. For example, if a small piece of
orange-red paper (coloured with red lead) is laid on a red glass disc and
held up against the bright sky, the reddish paper looks a vivid green-blue,
that is, complementary to the colour of the red glass, being almost its own
complementary colour too.

Moreover, it is conducive to have the inducing colour occupy a large
part of the visual field, because then the various regions of the retina
will be frequently and continuously stimulated by this colour and fatigued
by it. The result is that the contrast colours are particularly vivid
when the reacting colour occupies a small field surrounded by an extensive
ground filled with the inducing colour. In this case, it is chiefly simply
the colour of the small field that is altered, not that of the large field.
But the contrast effects are not absent even when the two fields
are of the same size; the influence then being a mutual one, and the
colour of each being changed by that of the other.

Finally, the nearer together the inducing and reacting areas are
in the visual field, the greater will be the contrast effect; because
when the eye glides from one space over to the other, the after-image
will be more strongly developed the sooner the gaze encounters the
other field. This is shown very strikingly in the arrangement which
Chevreul has selected for his experiments. From each of two colours, say
yellow and red, he cuts out two similar bands and places them side by side
close to each other. Let us call them Y and R I . Then next the1 1
yellow band Y1 he lays a second yellow band Y2 at a little interval,
and in the same way next the red band Rl another one R 2 . In this case
the contrast action is not manifested anywhere except at the two middle
bands Y1 and RI . The yellow of Y becomes greenish by approaching
blue-green that is complementary to R 1 , and R l looks purple by being
admixed with some indigo-blue that is complementary to Y 1. On the other
hand, the two outside bands Y2 and R 2 are not altered in appearance,
so that there is a good opportunity of recognizing the contrast action.
When the fields in contact are somewhat wider, this is also precisely why
the contrast colouring is manifested particularly at the margins. Every
time the eye sweeps from one field over A into the other field B, those
parts of the retina that have just left the field A will be most fatigued by
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the colour A; and these are the places where the image of the edge of B
falls now. Those parts of the retina which left A a little sooner and
have already moved farther into the field B will be less fatigued; and
hence for them the induced colour is not so strong. Consequently, every
time the eye passes over the field B, the marginal parts of B are most
altered by contrast, and the parts farther from the edge less and less

in proportion to their distance away. Thus, for instance, when a green
and a blue field are in contact, the edge of the green looks a little more
yellowish than the middle, and the edge of the blue a little more violet
than its middle; because in the first case there is an admixture of

yellow that is complementary to blue, and in the latter case an admix-
ture of purple-red that is complementary to green. The play of after-
images at the border of such surfaces can be watched very nicely by
marking several points of fixation, and jerking the eye from one to the
next, after holding it at each place for a brief time. It is easy to see
then the well-defined after-images moving over on the other field.
The earlier images, being shifted on ahead, will be paler, while the latest,
lingering next the border, will be more intense.

If the question involves not difference of colour, but difference of
luminosity, the reacting field will appear to be less bright when it is

adjacent to an inducing field that is brighter than it; whereas next to
a darker field, the luminosity of the reacting field will seem to be
increased.

Incidentally, as compared with the methods of seeing negative images
which were described in the preceding chapter, there are also other factors
in these experiments that are conducive to eliciting the complementary
colour. In general, a coloured object has to be deliberately focused for
several seconds in order to obtain afterwards a distinct after-image that
will persist for some time on a uniformly coloured ground. But in the
experiments on contrast it appears that a tolerably cursory observation
of one colour is sufficient to induce the complementary colour on the
other field, and that this complementary colour is afterwards much more
lasting than an after-image would be which was obtained under the same
circumstances. In order to recognize an after-image on a uniformly
coloured ground, it must be well developed and clearly outlined. It
moves about as the eye moves, and so has to be perceived as any other
subjective phenomenon. Ordinarily, we pay attention only to objective
visual phenomena. But if a faded after-image covers a smaller coloured
field, which has its own objective limitation and always appears under
the influence of the after-image, this influence cannot be immediately
separated in the perception from the other objective phenomena of the
visual field, and hence it becomes much more easily an object of our
attention."

There are many games that one can play with the after-COLORS of successive con-

trast. But the most revealing are those that imply simultaneous contrast too, and here

are two major simple experiments:

1. Take a white disc or stripe against any extended uniformly-enhued surround and

use a fixation point in the center of the white. The white is little, if at all, COLORED

by the surround - there is almost no simultaneous contrast. Now, after looking at the

fixation point for a while, close your eyes. The negative afterimage of the white is not

black, but almost exactly the color of the inducing surround. Once when the sun was

occluded by a translucent cloud and the rest of the sky had a white cloud cover, I tried
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to induce the sequence of afterimages of the sun that Helmholtz discussed. I stood at

a window where my wife had put up translucent and highly saturated red-purple curtains.

These curtains had been drawn aside but not beyond my peripheral vision. The negative

afterimage, to my astonishment, contained the sun, as expected, but as though I were

seeing it on the background of the curtain material.

2. Burckhardt did an even more revealing experiment. If one uses a large colored

disc concentric with a small white disc, the afterimage of the white disc is the COLOR

of the larger disc. If one splits the large disc equally between two colors, the after-

image of the white disc is the COLOR of the equal mixture of those colors. Thus the

afterimage of the white area is the COLOR of its bounding COLORS taken aliquantly.

We are now faced with a further puzzle. Reverting back to the case where we com-

pared the images of the simultaneous contrast and the contrast of papers under white

light, we now arrange two annular displays. In one case we play blue light through a

projector with a slide in it containing a black spot. On the shadow of this on the screen

we can play a spot of white light varying the intensity. In the other case we mount a

large disc of blue paper. On it we place a small gray disc and illuminate with white

light. We can now vary the lights at will and come to what is almost a match between

the two annuli. Nevertheless, at arm's length, the two situations differ. The center of

the annulus of blue light is certainly vivid YELLOW. The center gray patch on blue

paper under white light shows YELLOW edges, a la Helmholtz, but the center never

turns the beautiful uniform clear YELLOW of the other display. Yet in my experience

the afterimages set up by the two displays are very similar. Both centers are BLUE,

then, both annuli are YELLOW.

Thus the two situations are similar in this sense, that both displays are similar in

chromaticity and similar in the after-CHROMATICITIES induced. But they differ as to

CHROMATICITY on direct viewing.

More and more we begin to tend toward Helmholtz' dictum:

"In these last experiments the contrast action no longer depends
simply on a definite distribution of colours in the field of vision. We
have seen that this effect can be exactly the same with two different
simple modifications of the experiment, and yet in the one case the con-
trast effect appears, in the other it does not. The moment the contrasting
field was recognized as an independent body laid over the coloured

ground, or was even divided off enough by something to indicate that it
was a separate field, the contrast was absent. Accordingly, since the
judgment of the position in space, i. e., of the corporeal independence
of the object in question, is the decisive factor in the determination of
the colour, the consequence is that the contrast colour here is not
due to an act of sensation but to an act of judgment. The nature of
this act of judgment by which we reach the perception of objects with
definite characteristics will be more accurately described in Part III
(VOL. III). As the acts of judgment here spoken of are always executed
unconsciously and involuntarily, naturally it is often hard to determine
what chain of impressions is responsible for the final results, and in
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the nature of the case very different circumstances may affect it."

In general, as he pointed out, these simultaneous contrast effects are most striking

if the two areas are quite close in luminosity (brightness) and differ only in chro-

maticity.

There is, however, a tertium quid.

a. Simultaneous Contrast at Vertices

Let us now do a few more easy experiments, variations on the theme set above. Make

yourself a projector of any sort that produces a sharply bounded uniform disc of white

light. Now set up a wide field with another colored light, say with a blue filter over it:

let it be collimated by a lens so as to cast a sharp shadow, and play this colored light

on a white piece of paper, using a dull or black object to cast the shadow. This shadow

will appear quite DARK. If it has a CHROMATICITY, this can't be seen. Then play

your disc of white light, suitably stepped down in brightness, into that shadow but away

from the boundary. The disc has no distinguishable COLOR, despite you are now con-

vinced after playing all day with, simultaneous contrast, that it ought be YELLOW. Then

bring the disc so that it is almost, but just distinguishably not quite, tangent to the inner

boundary of the shadow. Still it is not definitely COLORED. By quickly switching your

eyes from field to shadow you may transiently induce the possibility that the disc may

have a YELLOWISH cast, but it is not very definite. Now bring the disc so that the bound-

ary crosses it diametrically. Mirabile dictu, the half in the shadow is distinctly YELLOW,

that half on the field is distinctly PURPLISH-PINK, and the background is split between

BLACK and BLUE. Then move the disc of white light off the boundary in either direction.

Back totally inside the boundary it is possibly just faintly YELLOW, totally outside the

boundary it is definitely PURPLISH-PINK. The ambiguity of the COLOR totally within the

boundary is much lessened, not only by moving the eyes from field to shadow but by

switching the field light, the BLUE, on and off. However, what is more astonishing

is that if you bring the disc from almost tangent to the inner margin of the shadow to

where the shadow forms a just perceptible chord, the definiteness of the YELLOW

instantly appears and stays.

You will note that in this experiment we have, by shadows, evoked a non-coplanar

set of COLORS in C 2 , BLACK, BLUE, YELLOW and PURPLISH-PINK. The latter

three are not colinear, therefore determine a CHROMATICITY PLANE, for not one is the

result of mixing the other two, and BLACK is more DARK than the DARKEST of any of

the three other COLORS.

If instead of an opaque object to make a shadow, you use a sheet of gray film that

only cuts down the light through it by about 10X or less, then the shadow background is
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not BLACK but rather GRAY or GRAY-BLUE, the YELLOW turns YELLOW-ORANGE,

the PURPLISH-PINK becomes PINKER and the BLUE stays BLUE.

You can play variations on this theme with different filters in chromaticity and gray-

ness.

It seems quite a complex matter when we construct vertices rather than simple

boundaries using colored shadows. Let us consider one such vertex made by intersecting

two shadows. The rule is relatively simple and we shall see later how it derives from

the facts of adaptation. There are four phases in the experiment given, the colored light

in the shadow of the white source, the white in the shadow of the colored source, the

shadows of both sources, the colored light and white light added together. Ordinarily

in simultaneous contrast, using shadows, only the second and fourth combinations are

taken. The former is then the COMPLEMENTARY COLOR to the latter.

Let us call the chromaticity of the colored light A, and of the white light W. The

full light from both on the white sheet is A l + W 1 , in the shadow for A, the light is

A 0 + W 1, in the shadow for W, it is A 1 + W 0 and in the mutual shadow it is A 0 + W 0 .

The shadows need not come from complete opacities so that A 0 and W 0 may both be set

up by simple attenuating neutral filters. If A is blue, then A l + W 0 is BLUE, A 0 + W 1
is YELLOW, A l + W1 is PURPLISH-PINK (very DESATURATED) and A0 + W 0 is DARK

GRAY or BLACK. Of course, if W 1 instead of being white has a hue, other and even

more vivid COLORS appear. It is worth playing in this way with COLORED shadows to

get an insight into mechanism for the simplest case. For it is instantly apparent that

the COLORS, whatever HUE for A, are not coplanar in C 2 ; the line in C 2 that joins

A 0 + W 0 with A 1 + W 1 cannot but be skew to the line that joins A 1 + W 0 with A 0 + W1,

e. g., both DARK GRAY and BRIGHT, DESATURATED PURPLISH-PINK cannot be in

the same plane as BLUE and YELLOW.

When we look more generally for the action of vertices in seeing COLORS, we come

across cases fairly readily. Whoever has gone to an "Op Art" show knows that the con-

temporary colorist has gone in for doubly-bounded areas, concentric annular arrays of

color or long, long parallel stripes of it. And indeed, that quality that they feel makes

the painting "alive" is a kind of ambiguity or uncertainty that one feels on viewing such

fields. The COLORS are not settled, they fluctuate. Most of this effect can be instantly

abolished by putting a boundary, as with a piece of cardboard, diametrically across the

annular arrays or stripes and attending to that boundary. If you try to produce the Land

effects with annular arrays, the results are poor, and it will be that the two borders of

each annulus will be differently COLORED so that the area does not have a single COLOR

as when there are singly-bounded areas bounding each other.

5. Some Facts Leading to Explanation

There are two mechanisms (among a great many others that we have no room to

discuss here) that enter into an account of simultaneous contrast; adaptation and
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Mach bands. Adaptation is a variety of smoothing operation applied to the image. Mach

bands are evidence for a kind of sharpening operation similar to, but not exactly, a

second spatial derivative of some function of the distribution of flux.

a. Adaptation

Your ability to see a change in lighting, spatially or temporally, depends on the level

of lighting itself. Thus, subjectively, objects that bound each other maintain their

relative BRIGHTNESS as you change the level of lighting - just barely discriminable

patches of GRAY at low lighting become slowly better discriminable as the lighting

increases - but in general the lightness values are better described as were you sensi-

tive to ratios rather than to differences in flux. This is reflected in our language. One

thing is several times as BRIGHT as another - not two lumens (imagine a vernacular

equivalent !) BRIGHTER.

When you are exposed to a uniformly bright field, and then plunged into a dark milieu,

your ability to discriminate BRIGHTNESSES immediately thereafter is low, as if that

light were still present, and, as it were, added to the light coming from objects. Your

discrimination then improves gradually as if that light equivalent were fading. You have

been light-adapted. Initially, however, your discrimination is as poor as if, while you

were at an outdoor movie someone added his headlights to the image on the screen. This

is why Helmholtz used the term "intrinsic light" in discussing adaptation. When you

come to the best resolution you can in the crepusculation, you are then dark-adapted.

Now if the lighting is suddenly increased, you are dazzled, everything is too bright to

discriminate, as if your visual system were saturated. Very soon your discrimination

returns to an optimum, and then you are light-adapted again. Your level of adaptation

is defined in terms of the equivalent background light necessary to account for your

ability to just see a test light.

There are two species of adaptation - one for the cones, and one for the rods. The

cones dark-adapt much faster than the rods. Our color mechanism is predominantly

cone-dependent. There are three varieties of cone, each containing one of the three

pigments used in color vision.

Very little is known about cone adaptation as compared to rod adaptation. For the

latter the best work in humans has been done by Rushton and his collaborators. Rods

have a special pigment, rhodopsin, that bleaches with light. Rushton found that the abso-

lute threshold for light in the rods was related simply to how much bleached rhodopsin

there was per rod in an area of rods. He expresses the relation as

I ay/Yo
-eI

D

where a is a constant, y is the amount of bleached rhodopsin, yo is the amount of

rhodopsin, I is the absolute threshold for light under the bleached amount y, and ID is
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the absolute threshold, i. e., the sensitivity to a step of light against a background field
acted as if the incremental threshold could be given as a fixed ratio of AL/L for a wide
range. Adaptation, thus, is not to be expressed simply in terms of how much pigment
is bleached. Clearly other factors enter, nervous and chemical.

Rushton and Westheimer, working only peripheral to the fovea, then showed that if
they produced a stabilized grating of light in sharp focus on the retina, thereafter the
same level of adaptation, set up by the light where it hit, spread 1/20 of visual angle
away without significant attenuation. The angle of spread increased as they moved away
from the fovea. Thus there is a spread of light adaptation for rod mechanism.

Despite the great dissimilarities of rods and cones, certain crude features are held
in common between their effects. Cones also light-adapt and dark-adapt and there is
also a spread of adaptation, although it is not a simple one. The time constants are sub-
jectively easily appreciated. In the colored shadow intersection experiment just sub-
stitute suddenly another chromaticity B for A and watch the change of events.

Thus at a boundary I will take it that the level of adaptation, whether because of
spread or eye-jiggle, corresponds to some operation like adding the colors that meet at
the boundary to yield a reference color of adaptation there at the boundary and to either
side. At a vertex it is all the colors that meet there that yield this reference color.

It was Helmholtz who pointed out that, in the absence of certainty (whatever that can
mean) about the illuminant, it was this level of adaptation, called by him "fatigue," that we
could take as the ACHROMATIC reference for the COLORS seen in the area fatigued.

Now, before we consider Mach bands we must look at some of the implications of
what we already know about after-images.

Let us suppose you have fixedly looked at a spot of bright yellow light, a pure spec-
tral line, in a darkened room. You have suddenly closed your eyes. For the first
instant the YELLOW spot persists as had you not closed your eyes (the positive after-
image), then, after a short indescribable period, it turns BLUE (the negative after-
image). Then it fades. While your eyes are closed, the yellow spot has been expanded to
a large and much dimmer area on the screen. It remains monochromatic. You open your
eyes and suddenly see the afterimage spot as BLUE against the background. The spot
fades - you close your eyes and it appears as YELLOW. This can be repeated several
times if the inducing spot was very bright.

Now the blue process is very little excited by this light if it is excited at all. The
dichromat who misses the blue process will not see BLUE as a negative afterimage. We
are faced with the fact that to sense BLUE, the blue process must be present even if
unaffected by the light. Thus the unbleached blue process must signal its presence and the
state of its dark-adaptation relative to the two other processes. The same, of course,
must be true for the other two processes. Thus our receptors must each have two
degress of freedom in their action on the subsequent retinal stages.
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The afterimage BLUE adds with other COLORS. If you produce it by the yellow spot

and look at a red screen, the negative afterimage looks PURPLE against a RED

background. Thus, given a reference adaptation level, the impression of BLUER than

it arises from the measure of less yellow than it, and so for the other processes. This,

in every sense, is an opponent mechanism, and one does not need to recast the Young-

Helmholtz trichromatic theory into the Hering account. Such a notion is, however, only

a development of Helmholtz' idea of "intrinsic light."

Simultaneous contrast produced by shadows is not much affected by slightly defocusing

the image as with a diffuser or with poorly-marked shadows, and this is true also for

Land's pictures. But both it and successive contrast are sensitive to diffusion in the case

of "real" boundaries. Thus we are brought to consider the arguments from Mach bands.

(Example - a gray patch of paper against a not-too-wide red background looks gray

until you defocus, looking at it, or diffuse the image. The afterimage shows the patch as

red, the background as green. If you use a red light on a white sheet of paper and have

a patch shadow and throw some white light on the paper from a different angle, the patch

is vivid GREEN. The afterimage is the same as for the "real" gray patch against a

"real" red background.)

So far we have considered only the light coming from surfaces, and while boundaries

have crept in, they have not been handled explicitly.

b. Mach Bands

Helmholtz remarked, and, of course, it had been known earlier, that if two slightly

different BRIGHTNESSES of GRAY bound each other, the LIGHTER looks BRIGHTER

at the boundary than over the rest of the area, and the DARKER is even MORE DARK

at the boundary than elsewhere.

"Incidentally, it comes out plainly in the capricious results of these
experiments, how hard it is for us to make accurate comparisons of lumin-
osity and colour of two surfaces that are not directly in contact with
each other and have no border between them. In the case of photometric
methods we saw that the only certain and exact way of making the compari-
son was when there was nothing to distinguish the border between the two
fields except difference of colour or illumination. The farther they are
apart, the more inexact the comparison becomes; so that in such a case
there is distinctly a wider latitude for the influence of accessory circum-
stances on our judgment of luminosity or colour. In the experiments
which have been described the difference between the induced and inducing
surfaces is brought out under the most favourable conditions; but the in-
duced surface has to be compared with other surfaces lying off to the side
in the visual field, so that this comparison can only be very imperfect.

This is shown still more plainly in the experiments now to be
described, where the induced surface is in contact with two different
colours on opposite sides. Then it will have the complementary colour
on the corresponding edges. Or when the induced surface touches a
darker surface on one edge and a brighter one on the other, the first
edge will look brighter and the second edge darker. However, these con-
trast phenomena are likewise not distinct unless the only distinction
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between the inducing and induced fields is simply the difference of colour
or luminosity, with no other border of any kind.

The experiments can readily be performed with transparent paper
covers. Pieces of green and pink-red paper are fastened together so as
to make a single sheet, half one colour and half the other. On the
border line between the two colours a little strip of grey paper is
attached; and over it all is laid a sheet of thin letter paper just large
enough to cover it. The grey strip, where it touches the green, will
now look pink-red, and where it touches pink-red it will look green.
In the middle of it the two colours fuse into each other through an
indefinite hue which perhaps is really grey, although it cannot be
definitely recognized by us as such. The phenomenon is much more
vivid when the length of the grey strip is oblique to the line of separation
of the colours. Then the part of the grey that projects into the green
may look just as vividly pink-red as the pink-red ground of the other
side. The contrast colour is fainter, yet distinctly perceptible, when
the middle longitudinal line of the grey strip is directly over the line
of separation of the colours. Then the lateral edges of the grey appear
coloured with a narrow border of complementary colour faded out
towards the middle."

It was Mach who systematically showed that these effects were due to our sensitivity

to the Laplacian of some function of brightness in the brightness distribution over an

image. The effect is as if we take the value of brightness at every point in the image

and compare it with the brightness of its surround weighted inversely by radial distance

away from the point. In a word, a sharpening mechanism. Such a mechanism, given

high resolution of the image on the retina and high sensitivity, should distinguish not

only boundaries but the character of a boundary extremely well. Ratliff has translated

Mach's papers into English and written a physiological, psychological and philosophical

exegesis thereon. It is well worth the reading.

Various workers have studied the subtlety of boundary detectable by this mechanism.

The most penetrating among them has been B6k6sy. O'Brien and Cornsweet separately

have devised illusions based on Mach's work. In general, we are very sensitive to the

actual curve describing the change of intensity with distance across a boundary. (This

curve, you must understand, ought to be considered in view of the image-smearing due to

the dioptrics of the eye. Westheimer has a stimulus star point imaged into a blur falling

off to half intensity in several cones diameter under optimum focus and pupil diam-

eter. )If we propose to construct a GRAY that varies smoothly from one place to another,

we must keep the derivative of the local change of intensity everywhere minimal. Two

grays of different BRIGHTNESS may be made to seem the same BRIGHTNESS by the use

of "false" Mach bands. The BRIGHTNESSES can even be reversed over the brightnesses

thereby. You must remember only that large values of the Laplacian are somewhat more

weighted than small values.

What is most astonishing about O'Brien's and Cornsweet's illusions is that the value

of gray for a patch is mostly determined by the Laplacian at its boundary if there is not

too great difference of brightness across the boundary. Cornsweet's illusion is,
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possibly, the easiest to produce. Against a uniform gray field a sharp difference between

a darker and a lighter gray is established along a line bisecting the field and then shaded

off with constant, or close to constant, second derivative of intensity to the gray of the

field within about a centimeter or so.

If the two half-fields are several centimeters wide over the great majority of their

expanse, they are the same in brightness save close to the boundary. Nevertheless they

seem fairly different in BRIGHTNESS and uniformly so. Cornsweet used a whirling disc

with a black sector to yield the uniform gray. He then picked a point midway up the

radius on one side of the sector, and drew a small arc concentric to the disc part way

across the sector, part way across the white. He then blacked in a short smooth curve

on the outer annulus flaring out the black sector to the arc and whited in under a similar

short curve on the central part, flaring out the white background into the black sector.

When this figure is whirled, the uniform gray is interrupted by a sharp boundary between

darker and lighter grays than the background, and both shade into the background. The

result is startling. The inner disc is uniformly LIGHT GRAY, the outer is uniformly

DARK GRAY away from the sharp boundary. This effect can be got, however, much

more easily. Sharply crease a clean piece of white paper with your fingernail so that

the crease remains after you open the paper up. Tack the paper, crease upright,

against the wall so that the creased part projects outward and so that at about 1-inch to

either side of the crease the paper is a flat surface. From there the paper curves

smoothly to the crease. Illuminate it from a distant diffuse source at about a 450 angle

to the wall. The crease toward the light is brighter than the background; away from the

light it varies from deep shadow at the crease to background illumination. Stand back

far enough, about 5-6 feet, so that local markings on the paper do not intrude, and you

get the two GRAYS.

One additional experiment is worth doing. Intersect two creases, one completely

across the paper, the other at right angles and only part way, extending from one edge

of the paper to the crease. You can now induce three shades of GRAY with a proper rota-

tional position of the sheet on the wall. You find that the sequence of BRIGHTNESS induced

by these "false" Mach bands is independent of the color of light by which you view. Thus,

probably all three processes in the retina, certainly at least two, exhibit this effect.

The false Mach bands can be used to give colors as well. The method of the crease,

given opaque enough white paper (so no reflections come from the wall in back) and with

both leaves coming to the same plane on each side of the crease, allows you to use two

illuminants, say red and green lights, coming one from one side of the crease, the other

from the other side, both playing on the paper. Then you see a PINK field to one side of

the crease and a GREEN field to the other, and the effect is quite marked if the wall

is of dark material. Now, too, you can use the three fields set up by the inter-

secting creases to give you three distinguishable COLORS with proper arrangement
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of the crease angles vis-a-vis the lights. This experiment shows that COLOR depends

not only on what light comes from the surfaces, but what bounds the surfaces. This is

a case of simultaneous contrast between identical areas identically illuminated save at

the boundaries. True, the COLORS are not vivid, but they are there.

The two functions that have been adduced psychologically have their physiological

counterparts. These two functions are a smoothing operation inferred from the nature

of adaptation and a sharpening function inferred from the Mach bands. The former cor-

responds to a long spatial period operation, a lowpass filter across the retina sensitive
to uniformities in brightness, relatively indifferent to sharp spatial changes in brightness

except as they are accompanied by longer period changes (as if the image were

defocused, and the more defocused when the higher the brightness). The latter corre-

sponds to a short spatial period operation, a highpass filter, indifferent to uniformities

and sensitive to spatial changes in brightness.

It is pleasant, then, to find in the optic nerve of vertebrates that the majority of

fibers by far report as were they taking a Laplacian of some function of brightness.

Some vertebrates have fibers that report a smearing function, or adaptation mea-

sure, as well, notably the frog. (Paper by Shin-Ho Chung and myself in prepara-

tion.) In mammals this adaptation can be detected as a modification of the action
of the first sort of fiber either in average frequency and/or extent of surround
against which the Laplacian-like operation is done. In this sense psychology has
informed physiology. Ratliff's book goes into some detail on the earlier work of
this sort. An extensive discussion of these matters is beyond the scope of this
paper, unfortunately.

6. Notes Toward the Resolution of the Paradoxes - Part I

We are now in a position to consider the two main paradoxes that slowly emerged
from the discussion. The first paradox is this: Two fields are seen through a dull black
tube. Each field is divided into two equal halves. In one case we look at the boundary
of a COLORED shadow (A1 + W 1 vs A 0 + W 1 ). In the other case we look, under white
light, at the boundary between a gray patch of the same color as A0 + W 1 and a colored
background of the same color as A l + W 1. In the former case we see A 0 + W 1 as the
complementary CHROMATICITY to A. In the latter case the gray patch looks stubbornly

GRAY. But the afterimages of both are identical and are as if A l + W 1 and A 0 + W1
in the colored boundary case are reversed.

Let us consider this first paradox. The description, of course, is incomplete. In
the case of the COLORED shadow the light at the boundary varies from A l1 + W 1 to
A0 + W1 continuously, however sharp the shadow. There is no light value in crossing
the boundary that does not lie between A l + W1 and A0 + W1 in C1. The level of adapta-

tion at such a boundary is combinative of A 1 + W1 and A 0 + W1 and represents an
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ACHROMATIC point through which the ACHROMATIC axis goes. A0 + W 1 is less A-ish

than both the level of adaptation and A 1 + W I, etc. Given a 0 determined by A l + W1

and A 0 + W1 in C 1, this is the 0 in C 2 and the ACHROMATIC axis moves between

A l + W 1 and A 0 + W 1 , whereupon A 0 + W1 has the COLOR in C 2 corresponding to the

color of 0 + 180* in C 1 . Very little except SATURATION change can be contributed by

the Laplacian mechanism. But these are not trivial. You will remember the case of a

spot of A 0 + W1 added in the shadow A 0. Its COLOR could be determined in

part by moving the eyes around, but it fluctuated and tended to stay desaturated until

A0 + W 1 actually bounded A l + W 1. Then the COLOR became more definite and stable.

In the second case what was left out in the description is, of course, the color of the

boundary. A "real" boundary due to a piece of paper lying on another, or two pigments

brought to exact proximity so that there is, if not an actual mixing, still a subtraction

process from adjacency (see Helmholtz on pigment-mixing), a "real" boundary, I say,

has a reflected color in white light different from the colors of the two bounding phases

and not that of any mixture of those phases. If you doubt that you are sensitive to the

color of a fine line, buy some legal paper with red or green margin indicators and try.

You can always distinguish a boundary between real objects from a boundary of a shadow

because of the different nature of the two with respect to sharpness, gradient, etc. I

do not mean to go into the physical optics of the difference, however. But try the

following experiment which comes, again somewhat modified, from Helmholtz. Take

a thick pad of clean white paper. Fold the top sheet back on itself so that the edge of

the sheet lies over the sheet itself, say the bottom third folded back. Now press it down

with a piece of clean glass, or, more simply, use your hand, and look at it with the step

down away from you. See if you can find an illumination such that you cannot tell where

the edge lies on the paper at any angle of view. You will find to your astonishment, as

Helmholtz did, that most illumination produces the false Mach band effect. One or the

other phase at and away from the boundary will look darker depending on the angle at

which the uniform lighting falls on the average. One angle of lighting, quite sharply

determined, yields no false Mach band effect, and then you are uncertain. Turn the step

down toward you. Now see if there is an angle of lighting whereat the step becomes

invisible. There is always a shadow or reflection at the edge, and I assure you that at

arm's length the color of a line that size can be told. Now if the shadow and/or reflec-

tions at the edge of one colored sheet lying on a sheet of another color are produced by

white light, the detailed color of that transition (use an ordinary magnifying glass) is

not simply combinatory of the two different colors of the two sheets but moves lighter

and darker than either and different in hue. Thus, not only is the real boundary in this

case provenant of information outside the plane determined in C 1 by both colored phases,

but it is appreciatable by the mechanism in our eyes. That is why, in fact,

Helmholtz, in order to get simultaneous contrast between a field and a patch,
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had to mount the patch not on the field, but closer to himself, thereby not only abol-
ishing the mutual boundary of contact but blurring the boundary to get a reasonable
approximation of the boundary of a COLORED shadow.

It is also why the induced color in the patch-background arrangement overlaid with
a piece of translucent paper was affected by the faintest pencil line outlining the patch.

Of course this tells you how to make the equivalent of a COLORED shadow out of gray
and pink paper. Arrange the angle of light for least perception of the boundary (using the
folded sheet of white paper to determine the best angular position of the boundary in the
field). Then blur the boundary either by defocusing your eye or using a lens at the end
of the tube.

But we have learned from this solution an important new fact. In white light such a
boundary is virtually a vertex, three phases are compresent, and not one is colinear in
C 1 with the other two. The exiguousness of the boundary as a phase does not diminish
its effect (up to vanishingly small dimensions).

7. Further Observations Needed before Observing the Second Paradox

a. The nature of the blue process in color vision

A normal man has a luminosity curve that describes his threshold for just seeing a
light as a function of X. In a dichromat who lacks either the red or the green process the
luminosity curve is changed and the absolute thresholds are raised. In a dichromat who
lacks the blue process the luminosity curve is unchanged, the thresholds are normal.

The set of primary color processes that can be computed from the data of color
matching has a subset such that the blue process has no luminosity or brightness contri-
bution. The construction of C 1 does not require the blue process to have a luminosity
function.

A monochromat who lacks any pair of processes except red and green can make
brightness discriminations above the threshold of saturation of the rods. A man who
has only the blue process cannot so discriminate brightnesses.

If you exhaust the red process in your eye with red light, immediately after the
exhausting light is turned off you can discriminate brightness. If you exhaust the blue
process in your eye with blue light, you discriminate brightnesses well. If you exhaust
both red and green processes with yellow light, you affect the blue process but little,
but thereafter you are almost blind foveally, you cannot discriminate brightnesses at all.

Finally, if you restrict blue light to the fovea, not only is the threshold high, but the
subjective assessment of BRIGHTNESS change with brightness change is much lower than
for green or red light.

These facts suggest that while all three primary color processes contribute to deter-
mine 0 and ¢, only two are involved in determining r, the red and green processes. We
see a blue light only to the extent that the red and green processes provide information.
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Almost in Hering's manner we can say that the seeing of BLUE arises from the judgment

"This light is less YELLOW than it should be for its brightness." And it is commonly

given that blue light affects CHROMATICITY much more than BRIGHTNESS.

b. Relations between BRIGHTNESS and CHROMATICITY

While brightness and chromaticity are independent of each other, this is not true for

BRIGHTNESS and CHROMATICITY. This you have already seen by doing Helmholtz'

experiments looking through narrow band filters. Not only is there a SATURATION dif-

ference between highlights and shadows, but even a HUE difference depending on the con-

trast. When, on looking through a red filter you see DARK objects as GREEN, this tells

you that DARK, having less red than the adaptation level locally, is GREENER than it,

for the local adaptation level for all pigments is the comparison GRAY.

Now the chromaticity in C1 is a line passing through the black point intersecting the

achromatic axis there (the origin of the coordinates used). CHROMATICITY in C 2 , this

finding suggests, is a skewed line that passes through the ACHROMATIC axis at some r'

away from the origin and intersecting the GREEN axis. This would imply, however, if the

transformation were rigid from C 1 to C 2 (a straight line going into a straight line) that not

only would REDNESS become more saturated as BRIGHTNESS increased, but very

BRIGHT REDS ought to be supersaturated unless the line were curved. The impression

one has is that a quite different rule applies. For if one superimposes a slow gradient

of brightness on the field seen through the red filter and uses a repeated pattern of grays

along the gradient, the same reflectance is identified as gray in the repeated pattern.

Thus it is not an absolute value of gray that determines the ACHROMATIC axis in the

monochromatic view, but a brightness relative to the surround brightness. Such an opera-

tion carries the chromaticity in C 1 not into a line in C 2 but a surface unless we insist

that the coordinates of C 2 are set locally with respect to the colors as a rotation and a

translation of C 1 as in Yilmaz' theory for the global field.

In effect this operation occurs because the lightnesses or BRIGHTNESSES are

determined in part by the Mach-band mechanism specifying the difference across the

boundary, in part by the adaptation mechanism specifying a reference BRIGHTNESS

level. At this point we must refer back to Steven's work on "scaling." You will

remember that you cannot discriminate objects well if you come from dark into bright

light or the reverse. You will also remember that dazzle, or light adaptation, spreads

across the retina from bright points as a smoothed function. You will also recall that

you generally move your eyes about.

These observations suggest that the ability to tell a difference across a boundary by

the Mach band mechanism, the Laplacian, varies inversely with distance along the

brightness line away from the adaptation brightness level. From this one can conclude

that the system acts as did it saturate away from the adaptation level, seeing uniform
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gray ratios along the brightness scale as compressed to an indistinguishable WHITENESS
or BLACKNESS at moderate distances away from the adaptation level. Stevens deter-
mined that our ordering of brightness in an array of grays falls off according to a one-
third power law in both directions away from the adaptation level. This can be derived
from the considerations given above. You must remember that both Mach bands and
adaptation are to be considered on a scale of brightness closer to logarithmic than to
any other function. Equal ratios across boundaries generate equal impressions of
BRIGHTNESS difference around the level of adaptation. I cannot go into the Fechner
law, the Barlow observations and Steven's observations any further now. All I wanted
to show was the fall-off in sensitivity of the Mach band mechanism away from the level
of adaptation. But now it is not surprising that a photograph, with a dynamic range of
8:1, can be taken as an adequate representation of a scene with a dynamic range of
300:1.

c. BRIGHTNESS as a Function Solely of Red and Green Mechanisms

A simple and informative experiment is to use a large field of any saturated hue and
to add a patch of white light of varying brightness to it. One automatically supposes that
COLOR follows color and all that would happen is that where the white spot occurs, the
HUE will simply become DESATURATED as the intensity of the white light increases.
But, instead, a more astonishing thing happens. If the light is blue, then, as white light
increases, the BLUE becomes a faint PINKISH-PURPLE, then very desaturated PINK-
ORANGE before it becomes WHITE. In the same fashion GREEN becomes YELLOW-
GREEN, then very desaturated YELLOW before turning WHITE. RED turns PINK-ORANGE,
then very desaturated YELLOW-ORANGE. These phenomena are called the Abney effect.

When the white spot starts at low intensity on a pure yellow field, the spot becomes
more saturated YELLOW than the field, then DESATURATES to WHITE as intensity
increases.

Thus the trajectories in C2 of the COLOR, under these simultaneous contrast con-
ditions, is as if as SATURATION decreases so, too, does the absolute value of I'- '
where 6' is that of YELLOW. When the HUE is YELLOW, then over a certain range the
greater SATURATION lies with the greater BRIGHTNESS, as if p varied in the opposite
direction to SATURATION.

The adding of white light to a background-colored field acts as if, up to a certain
point, you are adding yellow light alone in C1 and seeing the correlated COLOR in C 2.If you use two tungsten lamps, you could argue that one may be yellower than the other,
but the changes seen do not change when the lamps are interchanged.

All of Land's demonstrations depend on brightness differences of two chromaticities
mixed. It is important to remember that his curve, plotting the differences between
spectral hues such that COLORS can be seen (i. e. , a plot of A as a function of X) is a
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unimodal curve with its nadir at yellow. That is, despite that the blue process is so

sensitive, the production of COLORS from two chromaticities acts as if we are only

sensitive to relative fluctuations of the red as opposed to the green process, and yellow

is where there is the greatest difference of the slopes of the action spectra of the red

and green processes.

d. Binocular Land Effects

Finally, providing illumination is kept low so as to get least fluctuations of adaptation

as the eyes are moved around, the presentation of two chromaticities, one to each eye,

yields COLORS distributed three-dimensionally in C 2 . Here, however, we come for

the first time to appreciate the interaction of the Mach bands and adaptation.

Retinal rivalry occurs when the Mach bands do not correspond; retinal cooperation

occurs when they do. (Incidentally, in man most of the information in the optic nerve

is the Laplacian on some function of brightness in the image.)

If you use an ordinary stereoscope and present a red bar horizontally to one eye, a

green bar vertically to the other, you see one bar as if it not only lies over the other,

but abolishes any perception of the other for a significant visual angle away from the

overlying boundary. You can determine which shall overlie which by moving your eyes

(cf. the long quotation from Helmholtz earlier). If you impart a predominantly horizontal

movement to your eyes, the vertical bar overlies; with predominantly vertical move-

ments, the horizontal bar overlies. This is because the Laplacian is also a time-

dependent function- we are sensitive most to its derivative with respect to time at any

place on the retina.

The angular width over which one Mach band from one eye effectively masks an

orthogonal one from the other varies with the contrast across each boundary, the greater

contrast taking precedence and also having the widest masking width. Thus the rivalry

fluctuates as the eyes move and as adaptation changes. (Even in the single eye such

effects can be seen. In the Neckar cube illusion where an outlined cube seems to shift

back to front, you can govern whether it be one way or the other by concentrating on one

of the two intersections and looking frequently just to the right or left of it, or just above

and below it. The cube takes the sense given by the line that is made salient by the

movement, in that the face that is bounded by that line is that which looks nearer to you.)

If we can get two images with identical boundaries falling on both eyes and register

the two binocularly, then the Mach band information is combined. The COLORS seen have

the peculiar property of not being in the plane of the surface to which they are attributed,

and this is particularly true of RED - but the COLOR names come out right. Also the

colors are "lustrous," for "lustre" is a retinal rivalry in respect to surface quality, e. g.,

fine texture, because of the different fine details between the two images. The reason

these effects fail binocularly at high brightness is that the reference adaptation levels

change too rapidly as your eyes move about- and the colors fade if you fixate.
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The binocular experiments are the best indication that we operate less on surficial

properties in the sensory mechanism than on boundary information, whatever we infer

about our sensations from naive perceptions.

8. Notes Toward the Resolution of the Paradoxes - Part II

We are now in a position to consider the Land pictures. The paradox here is as fol-

lows: Two chromaticities are used, A and B (one of them can be white). All combina-

tions of A and B form a coplanar set in C 1. If spatial variations of A and B mutually

are very high, the COLORS seen imply a trivariant perception - i. e., one sees BLACK,
GRAY and WHITE, and also RED, YELLOW, BLUE, GREEN and PURPLE. That is,
the various A and B combinations are three-dimensionally distributed in C 2 . These are

the Land demonstrations. They are in their simplest form when we intersect two

COLORED shadows.

If we had only an adaptation mechanism and a Mach band mechanism, and the con-

sequence of their interaction, the Stevens BRIGHTNESS compression, and if this applied

to all the processes in the retina symmetrically so that BRIGHTNESS were governed

by all three, then we could say that in C 2 , on the intersection of two COLORED shadows:
1. The boundaries as one goes round the vertex are (A 0 + W0, A 0 + W1) ,

(A 0 + W 1, A l + W 1 ), (A l + W 1, A l + WO) and (A 1 + W 0 , A 0 + W0). The level of adapta-

tion is given by W 1 and A 1 . (A 0 + W 0 ) is less A than L, the adaptation level, so it is

COMPLEMENTARY to A. (A 0 + W 1 ) is more like L than the other areas but BRIGHTER;

it should be WHITE. (A l + W 1) is more like A than L, so it should have the A COLOR.

(A 1 + W 0 ) is more like L in chromaticity but DIMMER, so should be GRAY or BLACK.

This gives us C2 as a simple projection of C 1. This is the simple expectation.

2. But now suppose we took the information from the differences across the bound-

aries and applied both Stevens' BRIGHTNESS compression law and the observation

that BRIGHTER than L is equivalent to the color corresponding to YELLOWER than L,
and DIMMER than L is equivalent to BLUER than L, always locally. Now we consider

what happens at vertices.

Observation: Take two rectangular pieces of cardboard yielding each two shadows

under A and W. If the cardboards are moved about, one can get long boundaries of one

phase with respect to each of two other phases. When you do this, you discover that the

COLOR of that phase is different at each of the long boundaries. At the vertex of the two

the COLOR is that which you would predict from knowing the two boundary COLORS

separately. When you stand back, the COLOR you see over a great part of the phase is

the COLOR of the vertex. If you produce two vertices along a single boundary by using

either two shadows through two neutral density filters of different grayness, then, unless

the vertices are much separated, the COLOR of the phase combines the COLORS of the

vertices. If you produce two vertices along a single boundary by using two shadows
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through two neutral density filters of different grayness, then, unless the vertices are

much separated, the COLOR of the phase combines the COLORS of the vertices. If a

long stretch of boundary (in visual angle) separates the two vertices, the COLOR changes

insensibly from that due to one vertex into that due to another.

The notion of "yellower than" means this: as white is added to a spectral hue, the

COLOR of the mixture looks as if spectral yellow had been added to it over a wide range

of added white intensity and one took the names usually put on a C1 chromaticity diagram

as the names for the COLORS seen.

Let us now refer to the simplest case, a real world imaged but illuminated with but

two spectral lines. These chromaticities form a plane in C1. All vertices are assumed

to be trihedral. Every vertex can be figured by a triangle connecting the three colors

at the vertex represented as points in C1. The farther apart are two of the points along

r, the more a couple is applied to the line joining them, rotating the point with the higher

value of r toward YELLOW, the RED-GREEN plane in the local C2, and the lower value

away from the RED-GREEN, the line pivoting around L, the adaptation COLOR. If

the third point is intermediate in its value of r between the two extrema, the lines

joining it with the extrema form a triangle rotated out of the C1 plane.

Consider one of the areas represented by one of the points in the triangle. Any other

vertices involving that area will be other triangles in C1 of different rotation, if the

extremum r's are different.

By the constraint of a unitary COLOR to a patch area (in the simple model of colored

paper patches that introduced Land's experiments) we see that a polygon in C l, formed

of triangles in C1, goes into a polyhedron in C2, and uniquely, because of the fact that

increased BRIGHTNESS interchanges with yellowness and the blue process does not con-

tribute to BRIGHTNESS.

You will now notice that to preserve the mutual order among COLORS by an

internally generated reference system with three degrees of freedom, and to have this

order map an external order (of reflectances), it is most useful if the three primary

processes differ among themselves differently so as to preserve an internal compass and

handedness. In this sense Yilmaz was thoroughly right in looking on the primary color

processes as eigenfunctions of the visible spectrum; and, in essence, his theory works

if used locally rather than globally, providing one adds the internally generated compass

with a YELLOW as the reference axis for 6'. If the blue process contributed to bright-

ness, the going from a polygon of triangles in C l to a polyhedron in C 2 would be

ambiguous, for there would be no preferred direction for the skewing of any triangle out

of the plane. That BLUE is exchangeable with DARK relative to YELLOW provides a

unique direction. Furthermore, as the chromaticity diagram of C 1 suggests, hues from

about 480 mp. on to shorter wave lengths ought to act more like red light than green light

in transforming the polygon in Land's system. I believe Land has remarked this.
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Furthermore I suspect from the poor resolution when only the blue process is

sensitive, that the blue process does not have a Mach-band mechanism, or not as dense

a one, as do the red and green processes. This may arise either because the blue cones

are more rare or because they have an intrinsically different action from the other two.

Being a conservative, I favor the former view. It is the less salient Mach-band mech-

anism that allows increased brightness to act as an increase in yellow light. The mech-

anism applies as much to normal lighting as to the restricted conditions of Land's

experiments.

It is, therefore, not an accident or imperfection that the blue process is not used in

BRIGHTNESS measure. Had it not been so, restriction of light would have yielded

ambiguity in COLOR, or else no COLOR constancy under restricted lighting.

Such a design suggests that the happy coincidence of trihedral vertices predominating

in a plane is matched by a three-process system of the sort described. A fourth color

destroys COLOR constancy unless absolute references can be used. I suspect that such

an argument shows a three-process system to be optimal for the purpose of color vision

as set out earlier.

J. Y. Lettvin
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