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A. EFFICIENT OPTICAL COMMUNICATION THROUGH A

TURBULENT ATMOSPHERE

1. Introduction

Typical characteristics of optical communication through the atmosphere are

(i) enormous available bandwidths for even small fractional bandwidths at carrier fre-

quencies 1014_ 1015 Hz; (ii) enormous antenna gains with physically small apertures;

(iii) importance of quantum noise as a limiting factor; (iv) loss of spatial coherence,

because of atmospheric turbulence; and (v) sensitivity to great path loss or fadeout at

times, because of scattering from haze, rain, snow or fog on the atmospheric path. By

using realistic atmospheric models, attempts have been made to evaluate the potential

of the turbulent atmosphere as an optical communication channel.1-3 In this report

these analyses have been extended, with special emphasis put on the problems created

by spatial incoherence in the received field. The optimum classical receiver, in the

case of short signals as compared with the correlation time of the atmospheric turbu-

lence, is found to consist of spatial and temporal filters followed by detection and diver-

sity combining. The diversity combining is linear (in power) for Gaussian fields and

nonlinear for log-normal fields. The optimum quantum receiver for short signals with

unknown phase is seen to consist of a bank of photon counters (one for each signal mode)

and a diversity combiner. The implementation is seen to lead to a lens-detector-

diversity combiner array.

2. Field Models for Signals Distorted by a Turbulent Atmosphere

Using Kolmogorov' s similarity theory of turbulence and Rytov' s approximation,

Tatarski4 has shown that the received plane-wave field is log-normal, with following

normalized amplitude distribution density of the field excitation u(r):

This work was supported by the National Aeronautics and Space Administration
(Grant NGL-22-009-013).
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(a2+1n lu ) 2

p(lu[) = exp - 2  (1)
-2-F a 2U

and with an almost uniform phase distribution. 1 The field covariance function can be
found to be equal to

* 1 - )- r2 ) (2)
K(rl,r 2 ) = u(rl) u*(r2) = exp -2 (DA(Ir l-r )+D ( rl- )), (2)

where DA and D are the structure functions for the normalized log-amplitude and phase,
respectively. According to Tatarski,5

DA() + D (p) = 3.44k 2 LCn 1- 1/3 2 (<

(3)

= 2. 91 kLC (K 3 >> 1)

where k = 21T/k, L is the path length, C 2 is the structure constant of the refractionn
index, 10 the inner scale of turbulence, and Km = 5. 48/10. To simplify analysis, the
following covariance function will be adopted:

K(r = exp - 2 (4)
2r

c

where r is the coherence radius of the field.c
By using the covariance function, the field can be expressed in terms of

a generalized Karhunen-Loeve expansion with uncorrelated coefficients. For the
purposes of analysis, these coefficients will be assumed to be independent and
either normal or log-normal. The verification of these assumptions needs further
research.

The field fluctuates so that its power spectrum range is 1-1000 Hz. 4 This fluctua-
tion can also be interpreted as Doppler spread resulting from the motion of scattering
inhomogeneities by wind. For clear weather conditions the time spread is negligible
at present available signaling speeds.

The quantum models for spatially coherent fields 2' 3 can be easily generalized to
partially coherent fields, if the receiver is assumed to be large enough so that the eigen-
functions are approximately plane waves in both modal and Karhunen-Lobve representa-
tions. Then the modal functions are uncorrelated, indeed independent in the normal
case. The strength (average number of photons) of each lateral electric field mode is
equal to 6
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2E cT S(Kk)
Nk o (5)

where E is the dielectric constant of the vacuum, ii is Planck's constant, c is the vel-
o

ocity of light, T is the duration of the signal, and S(Kk) is the two-dimensional angular

spectrum of the electric field at the lateral wave number Kk . The field is pictured as

consisting of a bunch of plane waves arriving from various directions.

The background noise will be assumed to be both spatially and temporally the white

Gaussian field within the bandwidth and field of view of interest. Scattering and absorp-

tion losses will be neglected or assumed to be constant.

3. Optimum Optical Receivers and Their Performance

Based on the discussion above the complex envelope of the received signal, y(r, t),

is taken to be equal to

y(r, t) = Sk(t) z(r) + n(r, t). (6)

Here Sk(t) denotes a waveform corresponding to the message "k" from an orthogonal

signal set with duration T and unit energy, and z(r) denotes the complex multiplicative

fading of the field. The signal is assumed to be short compared with the correlation

time of the fading, so that z(r) may be called a constant within a signal interval. If

this assumption is made, we talk about short signals. The term n(r, t) denotes both

spatially and temporally white Gaussian envelope noise with spectral density No .

First the fading z is assumed to be Gaussian. The treatment goes analogously to

Van Trees'. 7 In the case of short signals the space-time covariance function factors

as follows:

Kk(rl'tl; r2, t2)= Z2 Sk(tl) Sk(t2) Kz(rl-r 2 ), (7)

where Kz(0) is normalized to unity, and Z is a constant. By using this as the kernel,

the likelihood functional may readily be obtained.

IYik 2 Z2

1 ik (8)
kN 2o N + Z X.

1 o 1

C C * - 2-'
Yik = y(r, t) Sk(t) 4i(r) d r dt, (9)

r

.th
where Xi and .i(r) are the i eigenvalue and eigenfunction of the kernel Kz (r), respec-

tively. If only a finite number of the eigenvalues are nonzero, Eq. 8 can be realized
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Fig. XIII-1. One-shot filter-squarer receiver for short signals.
Fading is assumed to be Gaussian. Alternatives are
(a) time correlator, and (b) matched filter. Field
quantities are represented by heavy lines.

as a diversity receiver. The estimator-correlator and filter-squarer (Fig. XIII-1) real-

izations are also possible. The filter function hf equals

hf(r l , r 2 ) = Z N 2X. (r ) %i (r2)
i N + Z2i

(10)

For apertures

plane waves, and

field. Hence the

asymptotically

large compared with the coherent areas the eigenfunctions approach

the eigenvalues Xi approach the spatial spectrum Sz (K) of the

two-dimensional Fourier transform of the filter function hf is

H (K) = Z 2
N + Z S ()o z

(11)

Roughly speaking, the spatial filter (Fig. XIII-2) restricts the field of view so that most
of the signal plane-wave components are passed, while as much as possible of the back-

ground is excluded.

NOTE: After this report was submitted for publication, I became aware of R. O.

Harger's results 8 that parallel Eqs. 8-11 and 23.

The performance of the optimum receiver for the Gaussian signal in Gaussian noise

is known to be bounded by9, 7

1. 83N
P(E) < _ exp- 0. 149 Er/N

E
r

QPR No. 91

(12)

194



(XIII. PROCESSING AND TRANSMISSION OF INFORMATION)

which is obtained by using an equal strength diversity system with the optimal diversity

Do = r /3. 07N . Here Er/No is the envelope signal-to-noise ratio on a diversity path.

100

0.1

0.01
0.10

Fig. XIII-2.

Optimum spatial filter characteristics for
0.01_ different (S/N) = Z Zwr/N o , and Gaussian

correlation function in Eq. 4.

0.001

0.01 0.1 1 10 100
Kfr

The error probability of an optimum receiver for the correlation function of Eq. 4

can be bounded as follows:

In P(E) < p in M p I + -(1+p)1 1 (13)
N 0N (X+p)1 o

This expression is evaluated for the case of asymptotically large receiver aperture, with

the use of following notation: (S/N) = AZ /N , D = Ac 2 coherence area,
10 c c N rAc - c

and Li 2 (.) is the dilogarithml0 (integral of ln (1-z)/z).

pD (1+p)D / 2p (SN(
In P(E) < p In M - 2 Li 2 (-2(S/N)c) + 2 Li 2  1 + p (S/N)c (14)

From this error bound the small rate error exponent and the channel capacity are eval-

uated:

D (15)E(1) =- (Li2(-2(S/N)c ) -2Li2(-(S/N)c)) (15)

C (Li(-2(S/N)c ) + 2(S/N)). (16)

Looking at Fig. XIII-3 one sees that the optimum diversity with energy constraint is

attained at approximately D = Er/4No, while In P(E) < -0. 15Er/No. These almost agree

with the results in the equal strength diversity optimum case. Figure XIII-4 displays
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the channel capacity.

If the fading z is assumed to be log-normal, the problem becomes very hard to deal

with. Unlike as before,l we shall assume that the Karhunen-Lobve coefficients of the

0.15
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0.05

0 .1
0.1

0
\ 0.5

10 100 1000

(S/ N)

0.0 L
0.1 10

(S/ N)
c

100 1000

Fig. XIII-3.

Zero-rate error exponent for Gaussian
channel with correlation function (4) and
large receiver aperture.

Fig. XIII-4.

Channel capacity for Gaussian channel
with correlation function (4) and large
receiver aperture.

signal field are log-normal and independent. Each mode is assumed to have intensity
2

Xi and log-normal variance oi. Then the likelihood functional turns out to be equal (with
(1), (6), and (9) used) to

w Ydu I ik) u 2Xi
Ik = in du o 2u exp - +

i 1Fi ai u 0o
(17)

Figure XIII-5 displays the optimum diversity receiver in this case. The nonlinear

function gi( Yik) referred to in Fig. XIII-5 has been computed as a function of Xi/N o
and a. and its curves are available. The difference from the Gaussian case is in

1

the nonlinear diversity combiner.

In the quantum Gaussian case the likelihood functional can be shown to be equal

to

n ( N + N.1N+1 
c

k ik N + Ni + 1 N ik'
i i

(18)

where N and Ni are the numbers of noise and signal photons in mode i. The

weighting function tends toward the value in (11) squared in the classical limit. The
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Fig. XIII-5. Optimum diversity receiver for a field with independent log-normal
Karhunen-Loove coefficients in white Gaussian noise. The nonlinear
eigenvalue processors are given within the wave brackets of Eq. 17.

PHOTON
COUNTERS

Fig. XIII-6. Optimum quantum receiver for Gaussian partially coherent
thermal noise.

Fig. XIII-7.

Error exponent for a log-normal channel with no
diversity and two orthogonal signals as a function
of average signal-to-envelope-noise ratio Es/ZNo ,
and the fading variance, a.

0 15 20

Es/2No
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binary error probability can be bounded as follows:

P(E) < 1 e (1/2) (19)

where

~(1/2) = - 2 In ( (N+N.+1)(N+1) - N+N)N)1 1
i

(20)

(In (I+Ni/N)-2 In (I+Ni/2N)) (Ni , N - oo).

i

The lower line in (20) is the classical limit, and is seen to agree with the classical
expression (cf. (13) for p = 1).

In the quantum log-normal case the optimum receiver is similar to that in
Fig. XIII-6, except that the weighting is nonlinear. The error probability for zero back-
ground equals

P(E) = I 1 exp - x 2N + dx

i i i (21)

= exp(. Li)

where L. can be obtained from Fig. XIII-7 by setting "Es/2No" equal to N.

4. Implementation of the Optimum Optical Receiver

For one-shot optimal receivers the basic operations according to Figs. XIII-1,
XIII-5, and XIII-6 are the following.

1. Mode separation: Division of the field in the aperture into coherent components
(spatial frequency sampling for large apertures).

2. Spatial filtering of background noise.

3. Correlation or matched filtering and detection of the individual modes.
4. Diversity combining of the individual mode outputs.

5. Decision making.

For large apertures the eigenvalues or mode amplitudes can be measured right at
the focal plane of a lens on the aperture. The covariance function r of the field in the
focal plane equals
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. . . . i. Fig. XIII-8. Field covariance function in the
focal plane after Fraunhofer dif-
fraction. X = wavelength, and F =
focal length.
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H(K) = H(2ru/ X F)

Fig. XIII-9. Spatial filtering with a mask.
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Fig. XIII-10. Mixer receiver for partially
coherent light.
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F(P2' P2) C D(p) S(2TrR/\F), (22)

where C is a constant, D(p) is the diffraction pattern of the aperture (Airy disc), and

Sz is the spatial power spectrum of the field. This result is accurate if the spectrum

varies negligibly within an Airy disc (Fig. XIII-8). The numbers of practically indepen-

dent coherent areas or samples in the focal plane and in the aperture plane can be

defined as follows for circular apertures:

ff S (2~/kXF) d2 A r
D =3. 68 r (23)

S z(0)(0. 61 XF/R a)2 2Ac

K (0) A Az r r
a 2- 2A (24)

ff K (r) d r c
Ar

where A is the aperture area, R is its radius, and A = Trr 2 is the coherence arear a c c
(Eq. 4). These numbers (equal by definition) may be called the degrees of freedom of

the field in the aperture.

Spatial filtering may also be done in the focal plane (Fig. XIII-9). From the quantum

point of view (Fig. XIII-6) weighting should be done after counting, but classically

weighting can be done before detection.

The correlation and matched filtering are most efficiently done on radio frequencies,

after heterodyning (Fig. XIII-10). The resulting receiver becomes rather complicated,

especially if a large signal set is used. The complexity is described by the number
D X M (D = diversity (23), (24), while M is the number of waveforms used).

It can be shown that by using tracking (perfect measurement) the performance of the

unfaded channel is approached in the limit as D - oo and the signal-to-noise ratio on each

coherent area vanishes. By using the results above and the paper of Kennedy and

Hoversten, it can be seen that in a typical case the improvement available from
tracking is 5 dB or more. In the optimal Gaussian case this improvement is 5. 2 dB.

S. J. Halme
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