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A. ANALYZING THE PERFORMANCE OF AN IMAGE-

PROCESSING SYSTEM

This report summarizes an E. E. thesis with the same title that was submitted to the

Department of Electrical Engineering, M. I. T. , in June 1970.

Research has been conducted to establish a method for measuring the performance

of an image-transmission system. The measurement criterion used in current research

is the subjective response of observers. This involves not only properties of the image,

which are usually quantitative, but also the physiology of human vision and the psychol-

ogy of human perception. These human factors, jointly termed psychophysics, are

usually discussed qualitatively and hence have led to imprecise analyses of the per-

formance of image-processing systems. The approach used to control and measure the

effects of those parameters that affect human response in an experimental image-

transmission system will be outlined.

Two image-transmission systems were computer simulated. One, called the "stan-

dard" system, was a variant of pulse code modulation I which involved relatively simple

pre- and post-transmission coding techniques, while the other, called the "Experimental"

system, implemented more sophisticated methods to reduce the amount of data to be

This work was supported principally by the National Institutes of Health (Grants

5 PO1 GM14940-04 and 5 PO1 GM15006-03), and in part by the Joint Services Elec-

tronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract
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(XI. COGNITIVE INFORMATION PROCESSING)

transmitted. The fundamental parameters in both systems were the number of samples

per picture (S X S) and the number of quantization levels ( 2 QC) per sample. The total

number of binary digits needed to represent the picture is then C = S X S X QC, where

C could be the capacity (in bits) of an available communication channel. The essential

measurement was made on the relation of C for the Standard system to C for the Exper-

imental system when both systems transmitted images of the same quality. The var-
iation of this performance factor, called the "compression ratio," as a function of C for
the Standard system and the subject matter of the picture transmitted, was studied.

REPRODUCED PICTURE

ORIGINAL PICTURE

Fig. XI-1. Standard system.

The method for producing the set of pictures to serve as standards of comparison is

shown in Fig. XI-1. This implementation represents a compromise between the desire

to find a very simple method to convey an image in C bits, and yet not produce such a

distorted result that viewers would in most cases be overly biased in favor of the Experi-

mental system. With reference to Fig. XI-1, blocks 2 through 5a constitute the source
coder. The output of block 1 is an N X N array of samples, each comprising QF bits

(mnemonic for quantized finely). The object of the source coder is to compress the
information content of these N X N X QF bits into an array of S X S samples, each com-

posed of QC bits (mnemonic for quantized coarsely), so S X S X QC = C. The source
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(XI. COGNITIVE INFORMATION PROCESSING)

decoder that comprises blocks 5b and 6 performs the reverse operation.

The digital scanner and display, blocks 1 and 7, are embodied in a laboratory device

built by the Cognitive Information Processing Group of the Research Laboratory of Elec-

tronics. Using a flying-spot scanner, this device records sample values from a trans-

parency, quantizes each sample into one of 256 uniformly spaced brightness levels, and

records the resulting numbers in binary form on magnetic tape in a format compatible

with the IBM 360 computer. Figure XI-2a is a picture produced by the scanner with

N = 256 and QF = 8.

(0a)

(c)
Fig. XI-2.

(b)

(d)

Coarse quantizing techniques.

Now that the image is in digital form the next few stages compress the picture infor-

mation into S X S samples, each quantized to 2 QC levels. Blocks 2 and 6 are linear fil-

ters that act on the two-dimensional array of samples so that the number of samples can

be reduced without introducing much error. Petersen and Middleton have proved 2 that

the minimum mean-square error between an n-dimensional function and its recreation
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from a square lattice of sample values is obtained if the function is bandlimited up to

spatial frequencies equal to one-half the sampling rate before sampling and again before

reconstruction. This is a statement analogous to the one-dimensional sampling theorem.

The use of such filters in blocks 2 and 6 produced visible spurious artifacts, called

"ringing, " which are attributable to the Gibbs phenomenon. These effects were elim-

inated by using a Gaussian lowpass filter in block 2 and linear interpolation in block 6.

The most direct method of reducing the number of bits per sample for all S X S samples

from QF to QC would be to map the 2 QF fine divisions into the nearest of the 2 QC divi-

sions. This scheme, known as pulse code modulation (PCM), was tested with QC = 3,

QF = 8 (note that QF = 8 for all pictures in this report), N = 256 and S = 256. Figure XI-2b

shows the results. The phenomenon of simultaneous contrast is manifest here; the bound-

aries of areas of equal quantized brightness are accentuated. This particularly annoying

effect, caused by the visual response to quantization noise, was removed by using a tech-

nique developed by Roberts.3 As diagrammed in Fig. XI-1, the quantization noise

introduced in block 4 is converted into

random noise, commonly called "snow,"

by adding to the output of block 3 a
INPUT COARSE OUTPUT

SPATIAL + CANTIZER SPATIAL deterministic signal whose amplitude
FILTER FILTER varies over plus or minus one-half of a

coarse quantization level from sample

PSEUDO- PSEUDO- to sample and by subtracting the iden-
RANDOM RANDOM
NOISE NOISE

GENERATOR GENERATOR tical signal after quantization. The

sequence of values of the deterministic

COARSE SPATIAL signal has such a long repetition time
SAMPLER LOWPASS

FILTER 9 that effectively independent random noise

has been added to each sample; hence,

SPATIAL Ethe term pseudo-random noise. A pic-
LOPAL EXPONENTIALFLTER FUNCTION ture produced using this method with

3 10
QC = 3 is shown in Fig. XI-2c.

The goal in the design of the Exper-

LOGARITHM DISPLAY imental system was two-fold: first, to
FUNCTION

2 11 examine the feasibility of the proposed

comparison system; and second, to

SCANNERREPRODUCED PICTURE combine the results of some previous
SAMPLER

QUAND ZERimage-transmission experiments into a

novel source coding scheme. An outline

of the Experimental system is presented
ORIGINAL PICTURE

in Fig. XI-3. (All block-number designa-

Fig. XI-3. Experimental system. tions in this section refer to Fig. XI-3.)
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Blocks 1, 3, 4, 6, 7a, 7b, 9, and 11 are identical in function to the corresponding blocks

in the Standard system. The increase in coding efficiency is provided by blocks 2, 5,

8, and 10, which will be described'.

The image processing in this system is done on the logarithm of the brightness of

each sample value as indicated in block 2. The sensitivity of the eye is not uniform over

all brightness levels. In fact, the human visual system responds linearly to multiplica-

tive rather than linear changes in brightness.4 The use of the logarithm function com-

pensates for this by concentrating any error such as quantizing noise in lighter areas

of the picture. Thus the observer perceives the errors as uniformly distributed over the

brightness range. This process is known as "companding.1"3

The other major addition in the Experimental system is the prequantization and post-

quantization spatial filters, blocks 5 and 8 (referred to as the input and the output filters,

respectively). The goal here was to remove some of the visible random noise introduced

by the Roberts technique. Graham considered 5 the problem of designing linear input and

output filters to remove visible quantization noise. He modeled the quantization noise

as additive noise independent of the image data and determined filters that minimized

the mean-square difference between the final image and the initial one, while taking into

consideration the spatial frequency response of human vision. Post approximated 6

Graham's results with a set of filters shown in Fig. XI-4. These were the filters used

in blocks 5 and 8. Figure XI-2d demonstrates the performance of the Experimental sys-

tem. (The parameters N, S, QF, and QC are the same as in Fig. XI-2c.)

The improvement in performance of the Experimental system over the Standard sys-

tem cannot be adequately judged solely from the example presented here. It is necessary

3.2

2.4

W: RAD/ PICTURE HEIGHT

- PREQUANTIZATION FILTER

1.6 --- POSTQUANTIZATION FILTER

0.8

0 100 200 300 400 500 600

Fig. XI-4. Frequency response of prequantization and
postquantization filters.
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to consider the change in system performance as the parameters that are involved vary.

The goal of the comparison technique, which will be outlined briefly was to account for

each factor affecting quality separately until the performance of a system could be

described as a function of as few parameters as possible. Considering this, the

comparison technique that was used was the following.

1. For a given transmission scheme and capacity C and a particular picture, obtain

the qualitatively best reproduction by altering QC (and, of course, S).7

2. Assemble two series of results from Part 1 for various values of C: one, using

the Standard system; and the other, the Experimental system.

3. Select reproductions of the same quality from each series and compute the com-

pression ratio: C for the Standard picture divided by C for the Experimental picture.

4. The system performance is now noted as the variation of the compression ratio

with C for the Standard system and with the subject matter.

In the present research, the three subjects shown in Fig. XI-5 were chosen because

they represent typical television or newspaper scenes and also present different ranges

of detail. Figure XI-6 shows an example of one of the groups of photographs examined

for Part 1 of the test. Twelve observers participated: six were trained (i. e. , they have

done research in image processing). The choices of the observers for this partic-

ular test are tabulated as follows.

Standard System. (Capacity = 16, 384 bits).

Observers QC = 6 QC = 5 QC = 4 QC = 3 QC = 2

Trained 1 1 2 2 0

Untrained 0 4 2 0 0

Figure XI-7 shows an example of the results of Part 4 of the test. Each grouping of X's

0 00
4 0 xX 0

0 0 0 0 0

000 000 000 NED OBER00ER

SUNTRAINED X XERVE

20 219 218 217 21 215 214220 219 218 217 216 215 214

CHANNEL CAPACITY

Fig. XI-7. Compression ratio vs channel capacity for the "crowd" picture.
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CAMERAMAN

CROWD

Fig. XI-5. Original pictures for the comparison tests.
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(a) QC=6

(b) QC=5 (c) QC=4

(d) QC=3 (e) QC=2

Fig. XI-6. Example of Part 1 of the comparison tests.
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and O's represent a single compression ratio for a particular capacity for the Standard

system. In all three cases the compression ratio averaged approximately two; that is,

the Experimental system afforded approximately a 50% saving in bandwidth over the

Standard system, for equal subjective quality.

K. P. Wacks

Footnotes and References

1. The reason for using this well-known variant as the "Standard" system rather than
straightforward PCM is that it yields superior quality for a given channel capacity.
Given the present electronics technology and knowledge of the properties of image-
transmission systems, there appears to be little reason for ever building a PCM sys-
tem that does not use this or similar techniques.

2. D. P. Petersen and D. Middleton, "Sampling and Reconstruction of Wave-Number-
Limited Functions in N-Dimensional Euclidean Spaces," Inform. Contr. 5, 279-323
(1962).

3. L. G. Roberts, "Picture Coding Using Pseudo-Random Noise," IRE Trans. ,Vol. IT-8,
No. 2, pp. 145-154, February 1962.

4. R. M. Evans, An Introduction to Color (John Wiley and Sons, Inc. , New York, 1948).

5. D. N. Graham, "Two-Dimensional Filtering to Reduce the Effect of Quantizing Noise
in Television," S. M. Thesis, Massachusetts Institute of Technology, May 1966.

6. E. A. Post, "Computer Simulation of a Television Quantizing Noise Filtering Sys-
tem,,, S. B. Thesis, Massachusetts Institute of Technology, May 1966.

7. This technique was proposed by Professor William F. Schreiber.

B. APPROXIMATION OF A MATRIX BY A SUM

OF PRODUCTS

1. Introduction

In many cases, such as numerical evaluation of matrix products or two-dimensional

convolution, it is useful to approximate a matrix by a small number of terms. We shall

explore an approximation of the form

m
A= xy T

i=1

and present an optimal procedure for obtaining this approximation. If A has a certain

type of symmetry, the expansion can be made with fewer terms than might otherwise be

required.

2. Notation

Matrices will be represented by upper-case letters, and matrix components by lower-

case letters with two subscripts.
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A = [aij].

The first subscript is a row index, and the second a column index. Exceptions are one-

column matrices, which are represented by lower-case letters, and collections of these

are indexed by superscripts. Superscript stars indicate complex conjugates. Scalars

will be represented by lower-case Greek letters.

3. Approximation Theorem

We seek to approximate a matrix A by an expansion of the form

m i i
B = x YT'

i=1

The expansion is to be made so that the error, defined by

E = a..-b.. 2 ,
i,j 1

will be as small as possible. This best approximation is given by the following theorem.

Theorem 1.

Let ui be the eigenvectors of the equation

ATA u = piu.

A is a f X n matrix. All eigenvalues kLi are real and non-negative, and we order them

according to the rule

i > j == i>1 j .

Let

v =A u.

The best m-term approximation to A is given by

m i* i
B= v u ,

i=l

and the error is given by
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E= " (2)
i=m+ 1

Discussion. The proof makes use of the following theorem (Lanczos).

i iLet X., u , w be associated with the characteristic equations

Au = .w
1

i i
A w = k.u .

The eigenvectors are normalized:

i i*
UTU 1

i i
wTw = 1.T .

All X. are real, and A is identical to
1

1

1

This theorem, which we call the expansion theorem, has the following relation to the

approximation theorem.

1. Xi

i

2. u is the same in both theorems.

i i
3. v =X.w.

1

The following results may also be obtained.

uTu=

(3)

i j*
5. w Tw1T

Expansion 1 is not unique.

-- j..
1]

u /ai, and B will be unchanged. In fact, for any nonsingular matrix X we can calculate

QPR No. 98 159
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-1
Y =ATXT

and then

A = XYT.

The columns of X and Y are vectors that are appropriate for an expansion such as in

(3). This multiplicity presents a serious difficulty: the error E does not have a

unique stationary point, and differential techniques are not very useful.

We use the following procedure in our proof: We shall derive a convenient form for

the error, split this into a sum of non-negative terms, and then show that each of these

terms has minimum value for the expansion specified in the Theorem 1 statement.

We begin by writing the expansion theorem in a more convenient form. Let A be

an f X n matrix, and assume n > J. The characteristic equations may be written

AU = WA

ATW = UA

U is an n X f matrix whose columns are the u i , W is an f X f matrix whose columns
i

are the w , and A is an f X J diagonal matrix whose elements are the eigenvalues X..
1

We chose W so that Xi > 0, and the X are ordered in decreasing magnitude.

UTU = I

W W = WW T = IT T

A = W AUT

AA = UA UT

AA =WAW
T T

Armed with this, we proceed to a simple form of the error expression.

Lemma 1

Let

ck W k*c =W T

(4)

(5)

(6)
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k * k
d = U TY

Then the error is given by

2
E = k X.

ii= 1i=l

m
- 2 Re z

k= 1

(XI. COGNITIVE INFORMATION PROCESSING)

(7)

X.c k*di

m m k j k j*
+ jE xxT YT

k=1 j=1

Proof: One may see by evaluation that

m

i=l

n

j=1
= Trace (AA ),

so that

E = Trace iA -
m k k

y xYT AT
k=1

m k* ))k
- y x .k=1

By expanding and substituting (4) and (5), we obtain

E = Trace WA W -
m

m k* k'
W AUT z y XT

k=1

m kk
z x yTU AWT )

k=l

m m

i=1 k=1

Since trace is invariant under a unitary transformation, this is identical to

2A n

E = Trace (A2 ) - Trace (A E
k=l

Trace WTx yTU A
m

+ 1
i=l

U k* k* W

m

k=1

QPR No. 98 161
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Substituting (6) and (7) and evaluating the trace produces (8).

Q. E. D.

We shall now show that the vectors x.i and y. may be required to be orthogonal.
1 1

Lemma 2.

Any matrix given by

m kk
M= Z x y Tk=l

can be written

m kk
M= Z1 kg hT ,

k=l

where

k P:*

kgT g  =6kT k j,

Ilk ~ real.

Proof:

m kk

mi k=l gi j

consider

m
kk nkk

Mx = Zg.h.x.= Z gkh Tx ,
j k 1 j 3 k 1J

so that the image of Mx is at most m-dimensional. A similar result can be obtained for

M TX. Therefore MM T and MT M can have at most m nonzero eigenvalues, and an expan-

sion such as that given in (3) will contain at most m terms.

Q. E. D.

Proof of Theorem 1. Using Lemma 2, we expand B:

k k
x = I4kg

QPR No. 98
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k kY =h

k k': "
e = Wg

k k
c = Like

dk = U hk

gT k= 6k

the error becomes

i2

i=1

2
Re E

i=1

m

k=1

k* k
kXiei i

m

k=1

2
Lk'

This function is quadratic in pk and the minimum occurs for

k= Z i Re ( e. d
i=1

Therefore

m

k=1

I

=1
i Re (ek dk

We now apply the Schwartz inequality. Since k.i > 0,1

ki Re ekd k
1

2

X.e d.k
i1 1

= Re I

i l
. e.
1 1

e d i

1 
2)(1 x. dk

i

2)

and

2
i= 1

with
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k=1 i=1 li k 1).k=1 =li~

We now compute a test value of the error. The set

k
XTest = tkw

k
YTest

produces

k
e i = 6ki

k
d 6ki'

1 ki'

and

E =Test
k=m+ 1

2
(13)

Equation 9 takes on the same value.

relation

Let us consider a component term in (10). The

k2 2

i=1

i

1 i+1 )

o= 1

may be proved by induction on I. For notational convenience, we assume that + 1 = 0.

In terms of this expansion, f becomes

_e m
f = z (X i-X i+)(X j-k j+) Z

i=1 j=1 k=l

2 i 2

(o= 1 p=i P

k
If we substitute the test values of e

Test
i=l j=1

d k from (11) and (12), we obtain

1 i-i+ 1 j j+ 1 ij m'

QPR No. 98
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h.. = min (i, j, m).
ijm

Consider

m i

ij m k=l o=1

j
p=l

2 2
ek dk

We establish the following inequalities.

p:1i

o=1

m

k=l

m

k=1

2
d
k  < 1

2

ek < 1i

Jd < 1p

2
ek < 1

o

(14)

(15)

(16)

(17)

Since the columns of U are orthonormal, we may form an (n X n) unitary matrix P

by augmenting U.

I
P =[US]

PPT = I = P P

We define d l k by

Ik p h k

d =P h
T

Note that

1k k
d = d for p 4 J, k< m.

P P

So that we prove (14) by

i

p=l

k
d

p
< dlkd

P

k k
= hh

T

h PP h
T T

1.
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Equation 15 is proved in a similar way.

We now note that

d 1k d I h k P P
T T T

=h h = 6k
T kform a unitary matrix D whose first m columns are the dlk

So that we may form a unitary matrix D whose first m columns are the d1k

d =dk
pk p

k-m

p .

Since this matrix is unitary,

n m
Z dpkdpk = 1 > Z

k=1 k=1

which proves (16). Equat

Consider f. .j By ap

m i

k=1 o=1 p=1

m i
k=l o=
k=1 0=1

ion 17 is proved in a similar way.

'plying (14), we get

2
lek I dk

o p

k 2

leol

Similarly,

m i

k=l p=1
Idk

P

If we apply (15) to (18), we obtain

m

ij.m - 1 = m.
k=1

And if we apply (17) to (18), we get

i
ijm -< 1

o=l
l=i

Finally, by applying (16) to (19), we obtain

QPR No. 98
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i

ij. = j. (22)
o=1

By combining (20), (21), and (22),

fijm < min (i,j, m) = hij

Since from our ordering (ki-ki+1) is greater than zero, f is a sum of non-negative

terms, each of which is bounded by (Xi-ki+1) (Xj-kj+ 1 ) hijk , so that

f Test'

and

2
E X k Test'
k=l

This value of E is achieved by the set of vectors proposed in the statement of the

theorem.

Q. E. D.

4. Symmetry Considerations

The number of terms required to represent matrix A exactly is equal to the number

of nonzero characteristic values of the matrix AA. If A is an X n matrix, it will

have at most

r = min (I, n)

nonzero eigenvalues. Under some circumstances, the number of nonzero eigenvalues

is smaller: in particular, this happens if A has a certain kind of symmetry. If for

example, a.. = a + _i j and a. . = ai, n+1-j then only approximately r/2 eigenvalues of

the matrix are nonzero.

To talk about this sort of symmetry, we shall define an i X f matrix F by the for-

mula

f 1 if i + j = . + 1

fij 0 otherwise.

Note that F 2 = I. If we premultiply by this matrix, the rows are interchanged last with

first, second with next-to-last, etc. Postmultiplication by this matrix interchanges

the columns in the same way.
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Theorem 2.

Let C be an r X r matrix such that

C T = C

CF = C.

Then C will have at most s nonzero eigenvalues,

s = [(r+1)/2],

where [a] represents the integral part Of a.

Proof of Theorem 2: The hypothesis above implies that FC = C because

FC = (C F) = (CF)T = C = C.

If x is an eigenvector with X eigenvalue, then Fx will be an eigenvector of the same
eigenvalue because

C(Fx) = (CF)x = Cx = (FC)x = F(cx) = X(Fx).

Consider x - Fx. This will be also an eigenvector with the same eigenvalue, yet

C(x-Fx) = X(x-Fx) = (C-CF)x = (C-C)x = 0.

so that either Fx = x or X = 0.

Now consider the set of eigenvectors with nonzero eigenvalues. Since Fx = x, only
the first s coefficients of x are independent, so that the subspace spanned by them has
only s dimensions. But since all eigenvectors are linearly independent, there may be
at most s such vectors.

Corollary. Let A be an I X n matrix, and m the number of terms required to rep-
resent it exactly.

Then

1. If FA = A,

m <[(f+)/2].

2. If AF =A,

m < [(n+1)/2].

3. If both 1 and 2 hold, then

m < [(min (j, n)+1)/2].

Proof: This follows by applying Theorem 2 to either AA or ATA ,

0. J. Tretiak
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C. FOCUSED ULTRASONIC TRANSDUCER DESIGN

1. Introduction

The usefulness of ultrasonics as a diagnostic medical tool is now an established fact.

This introduces a series of problems ranging from the transducers themselves to the

form of display that remains to be worked on. In particular, there are spatial resolu-

tion limitations imposed by the design of the transducer.

The resolution in distance is determined primarily by the length of the transmitted

ultrasonic pulse. The distance is determined by the time required for the pulse to reach

the target and return. Thus, at best, the resolution is

R I- (1)m/n 2C ()

where T is the pulse length, and C is the velocity of propagation.

Asmith resolution, on the other hand, is entirely a function of the beamwidth of the

transducer. It is therefore desirable to have as narrow a beam as possible. At a

given distance it is possible to have as narrow a beamwidth as desired, limited only

by diffraction. In typical applications, however, the targets range over some finite inter-

val; therefore, ideally one would like to design a transducer to produce a narrow beam

over that finite interval. This always implies some kind of a compromise lens design,

which has been investigated by Kossoff. 1

Any attempt to lengthen the ringed transducer evaluation focal area will in general,

n RINGS th

r. -AVERAGE RADIUS OF th RING

INPUT
DELAY I FOCAL POINT

DELAY
DELAYI x
DELAY

Fig. XI-8. Ringed transducer configuration. n rings, each of
average radius, r., are driven from a common

source through separate delays to place the focal
point a distance x from the transducer.

QPR No. 98 169



(XI. COGNITIVE INFORMATION PROCESSING)

increase the beamwidth. This limitation can in a sense be overcome by working with,

instead of against, the properties of the transducers. Specifically, instead of trying

to compromise on one lens design, simply make a transducer with an electrically vari-

able focal point. Thus it would be possible to have the focal point track the area that

corresponds to the time delay between transmitted and received pulses. Such a trans-

ducer is shown in Fig. XI-8.

The transducer is focused by adjusting the delay for each ring so that the total delay

between the electrical source and the focal point is the same for all rings.
th

The delay d. for the i ring is

d = x r 2  x 2  ) (2)

To investigate the nature of the field around the focal point would require the evalua-

tion of

-2 2 2
b 2TV 2 + (r-y) cos 2 +r sin2

n r. x

p 2Tr r e= X dOdr, (3)

i=1 r. x + (r-y)2 cos2 2 + r sin 
1

a b th
where r. and r are the inner and outer radii, respectively of the i ring. This integral

1 1

cannot in general be evaluated in closed form. Thus, a Taylor series expansion was made

01 ab\ (4)r. =- r. +r (4)

Ai (r, ) x + r + y + r-r) x2+ (r-y)2 cos 2 + r 2 sin

8 Jx2 y2 2 2 .2)a ( 2+ cos cos x +(r-y) cos +r sin 0

r-r i  r -y cos - ry cos 0

S x +r. +y + (5)
22 o2 2

x + r. + y
1

a b
By also assuming that A(r, 0) varies slowly from ri to ri the integral can

be approximated by

n rb j2 A(r )

P = e . (6)
r a 2 o2 2 0

i= r. x r. + y1 1
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Let

2 02 2
Z.= x + r. + y.

1 1

Then

n

P =

i= 1

j2- r 2o b
.r.

e X Z. I

1 a
r.

This definite integral can then

sion of the integrand.

jrZ A r-r
X Zre Zi

Io)
(Zr-r 0i

Z.
1

0J

be evaluated on a computer by a power-series expan-

2. Ring Configuration

The simplest possible ring configuration would be circular rings of equal width. This

leads to a severe limitation on the lower number of rings that can be used. The source

of the limitation is shown in Fig. XI-9. When the distance w. becomes a significant part
1

w;

b/

r x

Fig. XI-9.

FOCAL POINT

ab r.
Ring width limitation. The distance w.i (r -ra) i

limits the maximum width of a single ring.

of a wavelength, then the ring is not contributing all of its output energy to the area

around the focal point.

To some extent, it is possible to get around this limitation by using nonuniform ring
aa b a\b)b a (

widths. Since w increases with both 1/ 2 r +r) and (r-r), it would be reasonable to

increase (r-r) as 1/2(r +rb~ decreases. In particular, to make w uniform on all rings

a Fresnel-line ring pattern can be used, which gives

QPR No. 98 171



(XI. COGNITIVE INFORMATION PROCESSING)

2 2
r 2+x -x
n

n
b2 2

r. x -
1

a2 2
r. +x1 i = 1,2,... n.

It would appear that this ring configuration would be a function of the focal distance x.

While this is true in an analytical sense, in practice the ring widths vary slowly with

varying x. Thus they can be chosen for a value of x in the center of the range to be

covered.

3. Array Approach

Another class of electrically controlled transducers is the steerable array. Nor-

mally such an array is composed of a grid of elements excited in such a manner as to

produce the same delay between all adjacent elements in the plane of the desired beam.

Nth ELEMENT

i ELEMENT

T-- FOCAL POINT

- Yf

FI

T I
FIRST ELEMENT

Fig. XI-10. Array transducer configuration. n elements,
each of width w, at a distance yi from the axis

are focused to a point yf from the axis and a

point x from the transducer.

Such a system would have a focus at infinity. To move the focus to the range of interest

to medical applications requires that the delay introduced in each element plus the

acoustical delay from the element to the focal point be constant. Thus the delay for the
.thi element is

d. = max ( x 2 + 2 -
1 <j< n

V x 2 + (yiy2', (10)

where d.i is the delay, and x, yi, yf are as indicated in Fig. XI-10.

To obtain the exact value of the field at the focal point requires evaluation

of
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N

P= j i+w/

i=l yi-w/2

ej x? + (r-yf)2

which can be approximated by a Taylor series expansion of the radical to give

I 2r (r-yi)(i-Yf)]

A + (Yi-Yf)N

P i=

i= 1

j x~( x+(yi-yf) - d i
e dr.

yi-w/2

Equation 11 can then be evaluated directly.

4. Calculated Results

Computer programs were written to evaluate Eqs.

ducer program using (8) was run for transducers, 26,

0

3

2

x

O
EE1

8 and 11. The ring trans-

40, and 60 mm in diameter,

26 mm DIAMETER
TRANSDUCER

10 RINGS

-- 7--0 0 9 1 10 2 1

EQUALLY

SPACED

70 80 90 100 110 120 130

70 80 90 100 110 120 130

DISTANCE FROM TRANSDUCER (mm)

Fig. XI-11. Field of a transducer, 26 mm in diameter, focused 100 mm away.
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with from 5 to 15 rings, and for a wavelength of 0. 75 mm. Both equal spacing and

Fresnel pattern spacing were used. In all cases the focal point was set at 100 mm

from the transducer.

40 mm DIAMETER TRANSDUCER

10 RINGS

7

-- U--7

70 80 90 100 110

70 80 90 100 110

DISTANCE FROM TRANSDUCER (mm)

120 130

120 130

Fig. XI-12. Field of a transducer, 40 mm
in diameter, focused 100 mm
away.

The results of these computations are shown in Figs. XI-11, XI-12, and

XI-13. As can be seen in all figures, the use of the Fresnel pattern design

leads to a smaller, area within the -3 dB and -10 dB contours for a given num-

ber of rings.

The peak value of the error in the approximation was also calculated by

evaluating
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e = max
0 <Y<Ymax

max max max x + (r-y) cos 6 + r sin 0 - A.(r, 4) .
l-i-N 0, -.Zi r.a .rr.b

1 1

60 mm DIAMETER TRANSDUCER

15 RINGS

10

- 0 -- 7

EOUALLY

SPACED

70 80 90 100 110 120 130

FRESNEL

PATTERN

SPACING

\Nh *' *-

70 80 90 100 110

DISTANCE FROM TRANSDUCER (mm)

Fig. XI-13.

120 130

Field of a transducer, 60 mm in diameter,
focused 100 mm away.

This value is shown in Table XI-1.

Since at worst e increases in a linear fashion with (r-r?), and the value of e shown

occurs for only one ring, a conservative estimate for the rms value of the error would be

1 e
e 1xdx 

Y

which is less than 1/8 of a wavelength for most of the cases.

The program using (11)for the array design was run for an array, 100 mm long, with

20, 30, 50, 75, and 100 elements, from .75 to 1.5 mm wide, and at a wavelength of

0.75 mm.
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Table XI- 1. Peak error in the approximation.

Number Error with
of Error with Fresnel Pattern

Rings Diameter Equal Spacing Spac ing
(mm) (mm) (mm)

5 26 .05 .12

7 26 .02 .12

10 26 .01 .02

5 40 .07 .17

7 40 .06 .13

10 40 .03 .13

7 60 .04 .21

10 60 .04 .15

15 60 .02 .13

Since such a design leads to a very small focal area, the distance to the first side

lobes and their amplitude were tabulated in Table XI-2.

Table XI-2. Side lobes resulting from an array transducer.

Amplitude of First
Number Distance from Side Lobe with

of Element Focal Point to Respect to Amplitude
Elements Width First Side Lobe at Focal Point

(mm) (mm) (dB)

20 3 15 +Z2.5

20 1. 5 15 -5

20 .75 1 5 -7. 7

30 1. 5 23 -2.2

30 .75 23 -5

50 1. 5 38 -10.3

50 .75 38 -12.2

75 1.0 >67 --

100 .75 > 10 0

Exceeded limits imposed by the program.

5. Conclusions

The use of transducers with an electrically movable focal point appears to be prac-

tical. It has been shown that a transducer only 26 mm in diameter with just 5 rings
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could give a focal area 2. 5 mm in radius at the -10 dB contour. Such a transducer and

its associated electronics equipment would not be an unreasonable system to implement.

Although the results look favorable for both the ring and array type of transducer,

one additional factor must be accounted for. That is the inheterogeneous nature of the

tissue that this system would actually be used to image. Therefore, the next stage in

this investigation will be to attempt to account for this. This will be done by introducing

a random amount of delay into each of the elements or rings. To determine the statis-

tics of the required random variable, preparations are now being made to measure the

acoustic properties of tissue in the cat brain and skull. We expect that these measure-

ments will be completed by September 1970, at which time a transducer will be designed

and evaluated with the techniques described here, and finally, a complete system will

be constructed.

M. Hubelbank, O. J. Tretiak
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D. TACTILE PITCH FEEDBACK FOR THE PROFOUNDLY DEAF

Deaf speakers are known to have higher fundamental frequencies than normal-hearing

speakers and to have poor control of the inflections and intonations that make speech

sound natural and convey meaning.

Researchers have devised visual pitch displays to use as teaching aids for deaf

speakers. The deaf have been made aware that voice pitch is important and that their

control of pitch is poor. Improvements in intelligibility and pleasantness have resulted

for deaf speech.

Little work has been done, however, to use the tactile sense as a partial substitute

for hearing. In particular, no work has been done with tactile pitch displays. Since dis-

plays might be located anywhere on the body and not require use of a deaf person' s eyes,

they offer a potential for continuous feedback with no reduction in lipreading ability.

Under the direction of Professor Francis F. Lee, a study has been undertaken to inves-

tigate the feasibility of tactile feedback as a speech aid for the profoundly deaf.

A pitch detector and simple tactile display have been constructed. The detector

processes a throat microphone wave by counting zero crossings at the fundamental fre-

quency; the range of pitch frequencies is quantized into 8 bands, and the number of

counts in eachband is recorded. The tactile display uses either two or three solenoid

pokers. Any band can be assigned to any poker, so that "high" and "low," or "high,"

"low," and "ok" bands can be determined as appropriate for each deaf speaker.
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Experiments were conducted with 26 students at the Boston School For the Deaf. All

had suffered sensorineural hearing loss, most of them since birth. The subjects were

in the 13-17 year age group and were evenly divided between male and female. The

immediate effectiveness of tactile pitch feedback was tested; no attempt was made to

evaluate the benefits of sustained use of the system.

Two sets of experiments were undertaken. The first was to determine the limits

of motor control of pitch with tactile feedback and the dependence of performance on the

periodic display rate. These tests involved having the deaf speaker hum in a prescribed

channel at varying display rates and evaluating the resultant mean-squared error. Pre-

liminary analysis of the data indicates that performance was not very sensitive to display

rate when the deaf speaker was asker to hum in a frequency region that was comfortable

for him, but excursions from his habitual pitch demanded higher feedback rates for suc-

cess, and for excursions that were too far no amount of feedback would correct the pitch

level. These experiments involving only humming were designed to avoid any linguistic

effect on pitch and explore the pitch control system of the deaf in terms of a closed-loop

motor system.

The second set of experiments was designed to test the use of tactile feedback as an

aid to a deaf speaker engaged in spoken conversation. In general, it involved having the

subject utter some standardized phrases while using the tactile display to help himself

keep below an upper limit on fundamental frequency. A general trend was noticed in the

pitch of the deaf, as it depended on the type of utterance: the mean fundamental frequency

increased when the speaker moved from simple humming at a comfortable frequency, to

repeating familiar words such as his name, to reading text passages. It appeared that

the deaf speakers tried to increase their information rate from kinesthetic feedback by

increasing the tenseness of their vocal cords and increasing their vocal effort, to match

the increasing information content of their utterances. Furthermore, most subjects

practiced an unnatural intonation when voicing, beginning their breath groups at a high

pitch, then descending quickly to a more natural tone, as if to increase their ability to

detect the onset of voicing. Binary tactile displays seem well-suited to providing an

alternative source of feedback regarding onset of voicing and initial pitch level, and pre-

liminary results indicate that the solenoid display that was used did in fact correct the

unnaturally high pitch and unnatural intonation pattern in many of the subjects. Results

regarding the sensitivity to display rates were similar to those in the humming experi-

ments: high rates became necessary as the control task became more difficult, until

finally the tasks became so difficult that no motor control was attempted by the subjects

and the feedback parameters became immaterial.

Tactile pitch feedback appears to be a promising approach for improving the quality

of deaf speech. Straightforward hardware and uncomplicated displays were adequate to

help deaf speakers correct common intonation problems. It now appears reasonable for
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research to continue on the design of a wearable pitch detector and associated display

so as to realize the expected benefits of continuous selfmonitoring.

The final report on this work will be embodied in the author's Master's thesis, which

is to be submitted to the Department of Electrical Engineering, M. I. T., in September

1970.

T. R. Willemain

E. OPERATOR INTERACTIVE COMPUTER PROGRAMS FOR

ANALYZING BIOLOGICAL TISSUE SECTIONS

For several years, members of our group have worked on the computer analysis of

various types of biological smears (Papanicolaou smears, blood smears, and so forth).

Recently, we have begun to extend the various image-processing techniques to handle

Fig. XI- 14.

Photomicrograph of a 7-11 section of liver tissue (500X).

biological tissue sections (see Fig. XI-14). At the outset it was decided that the first

step in this work should be to develop a facility for extracting and displaying data from

such images so as to give insight into the problems that would be involved in analyzing

them. As a result of this decision, a large set of operator interactive routines

has been developed to extract information from images and perform various operations

on the data. This report will describe these programs and illustrate some of their

capabilities.

1. Equipment and Approach

The image-processing work is being done on a DEC PDP-9 computer with a 3Zk

memory and million word disc. The peripherals that are being used in conjunction with

the processing are: a high resolution flying spot scanner for scanning transparencies,
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a photodisplay for making Polaroid prints of pictures, a teletype, a line printer, a

cathode-ray tube display, a tablet and pen interfaced with the display for inputting posi-

tion information, and a calcomp plotter.

The program comprises a set of subroutines for inputting, outputting, and processing

information, and a interactive control program that allows the operator to perform the

various possible operations in whatever sequence he pleases. The subroutines are writ-

ten in FORTRAN IV nad MACRO-9, the assembly language for the PDP-9 computer,

and the control program is written in FORTRAN IV.

The interaction with the user is via the teletype, the CRT, and the tablet. The

approach is to display on the CRT the various possibilities available to the operator

at each step in the processing. The operator selects the desired operation via the tele-

type. Furthermore, at any time when options are being displayed, the operator can

Fig. XI-15.

Typical display of present options available to a user.
(This section refers to the calcomp.)

branch to other sections of the program, display or change any of the 200 control

parameters in the program, or input or output information to the disc. This is done by

using various control characters on the teletype. One of the 20 option displays is shown

in Fig. XI-15.

2. Program Description

(a) Initial Scanning and Display

The system is initialized to scan 35-mm transparancies at a raster size of 126 X 186

points with 64 grey levels. The picture is packed into core using 3 points per word, and

can be written on disc for future reference. The initial picture is then displayed on the

CRT so that the operator can indicate the region of the picture in which he is interested.

(b) Tablet Interaction

The interaction of the user via the tablet is of two sorts: selecting brightness levels

for displaying, and defining location information on the picture. Clip levels are selected
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Fig. XI-16.

Histogram of picture shown in Fig. XI-14. The hori-
zontal axis corresponds to brightness (0-63). The
vertical axis indicates the relative number of points
at indicated brightness.

Fig. XI-17.

4-level display of Fig. XI-14.
region of interest.

Crosses indicate the

Fig. XI-18.

Display of the region defined in Fig. XI-17.

Fig. XI- 19.

Same region as in Fig. XI-17, but with 16 times as
many points per unit area. The crosses define a vec-
tor (pointing to the right).

QPR No. 98 181



(XI. COGNITIVE INFORMATION PROCESSING)

by allowing the user to input the desired clip levels through the tablet while the picture

brightness level histogram is being displayed on the CRT. When the picture is displayed

on the CRT, 4 brightness levels are available, and hence the operator selects 3 clip

levels. Figure XI-16 shows the histogram for the picture shown in Fig. XI-14. The

current display clip levels are indicated by the marks on the baseline. The desired new

levels that have been input through the tablet are indicated by the crosses. The current

location of the pen is indicated by the cursor.

While the picture is being displayed, the user can use the tablet to define a vector on

the picture or to define a rectangular region. The use of the vector will be described in

the calcomp section. In the case of the rectangular box, a table is built which describes

the section of the picture that is desired; and the various processing programs look at

this table in performing their functions. Figure XI-17 shows a display of the slide shown

in Fig. XI-14, with 4 brightness levels used. The crosses indicate the desired rectan-

gular region, and Fig. XI-18 shows the corresponding selected region.

(c) Rescanning and Display

In order to look at finer detail in a region of the picture, a region selected as we

have described it can be rescanned at a higher scan density. Figure XI-19 shows the

same region as Fig. 5 with a 16 times greater scan density.

(d) Printing

The entire picture or any desired section of it can be printed. The operator has the

option of printing either the numerical brightness value (0-64) of the points, or symbolic

characters chosen to have a darkness in proportion to the brightness of the picture

points. At present, 14 such levels are used, and the corresponding clip levels can be

chosen either through the tablet or through the teletype.

(e) Displaying and Drawing Contours

Since relative brightness levels of various objects in the picture are usually impor-

tant, routines have been implemented to search predefined segments of the picture for

points either higher or lower than a specified threshold, then follow contours in the

image so that points brighter than the threshold are on one side of the contour and points

less than or equal to the threshold on the other side. The contours found by these pro-

grams can then either be displayed on the oscilloscope or drawn by the calcomp. Fig-

ure XI-20 shows such a plot for the bright regions of Fig. XI-14.

(f) Perspective Drawings

One of the main problems in analyzing many types of natural images is that of

locating object boundaries, hence routines have been written to give a perspective plot

of the brightness along contours in a given direction in any desired region of the picture.
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Fig. XI-20.

Fixed-threshold contour plot of the
bright regions in Fig. XI-14.

Fig. XI-21. Plot of picture brightness along lines perpendicular to and
bisected by the vector shown in Fig. XI-19. Plot is 65 points
in x and 50 points in y.
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To do this, the user defines a vector on the display as shown by the crosses in Fig. XI-19.

A plot of the brightness distribution on contours either parallel or perpendicular to this

vector is then drawn. Figure XI-21 shows the brightness levels of points on contours per-

pendicular to the vector defined in Fig. XI-19. As can be seen, the plot gives a useful per-

spective indication of the brightness distribution across the indicated cell wall boundary.

(g) Filtering

In order to enhance boundaries in pictures, it is often desirable to prefilter the pic-

ture before the analysis is done. Routines which have been implemented to do such fil-

tering allow the operator to define, through the teletype, a symmetrical filter with the

desired weights. This filter is then convolved with the desired section of the picture to

produce a new filtered picture.

3. Summary

I have given an overview of a highly interactive program for extracting and displaying

in various manners information in pictures. The program is now being used in conjunc-

tion with several image-processing problems, and has been found useful in two respects.

First, it allows the user to extract quantitative information about the particular problem

Fig. XI-22. Photograph of regions in Fig. XI-14
that were found to contain nuclei.

with which he is concerned to aid in deciding how to proceed with the necessary image

processing. Second, it has been used to interface with various other processing routines

to input data for them and to observe the results of the processing. As an example of this

interaction, Fig. XI-14 was scanned by this program and saved on disc. Another program

that searches for nuclei was then used to analyze the picture and produce a table con-

taining the nuclei that were found. This table was then read in by the program described

here, displayed on the photodisplay and photographed. The nuclei that were located are

shown in Fig. XI-22.
D. Hartman
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F. CHARACTER RECOGNITION: PERFORMANCE OF

HUMAN COMPUTERS

1. Introduction

The philosophical difference between human perception and computer recognition of

printed characters seems to depend on the researcher's bias. The cognitive psychologist

maintains that the distinguishing characteristics of the entire stimulus give rise to

the percept with no single attribute being either necessary or sufficient; in contrast, the

engineer views pattern recognition as extracting various mathematical measures from

the stimulus by using various transformations. Although these two approaches are not

necessarily antithetical, there is a fundamental disagreement about whether the ultimate

pattern-recognition algorithms should be based on psychological features, whatever

they may be, or on extensive mathematical operations that perform the desired task

with high statistical accuracy (Blesser and Peperl).

The computer programmer is more than willing to incorporate the knowledge of the

psychologist into the programs if he can explain in step-by-step fashion which stim-

ulus features, or their relationship, give rise to the psychological label. Unfortunately,

the locus of high information density in a given letter can only be determined after the

character is recognized. At present, we know of no way of specifying a priori the loca-

tion of the labeling information. In a very real sense, the most difficult part of the

recognition process is the beginning. The computer has in its memory an exact point-

by-point mapping of the original optical stimulus and it must then decompose this highly

redundant information into a final decision. Recognition based on the largest possible

group of these points is nothing more than the template matching algorithm; namely,

if all points in the stimulus coincide with the computer's stored model, then the

character is correctly recognized. This gives the appearance of being a "gestalt," in

that the entire character is used at one time to make a judgment, but it requires that

the character set be highly defined with only one size, style, font, and minimum of

noise; and it is not the pattern or organization of the character that gives rise to a cor-

rect judgment but an equally weighted point-by-point comparison. This is totally unsuit-

able for a system which, in the limit, should approach human performance.

The feature-extraction technique is a less restrictive and perhaps more powerful

algorithm. In this method, local attributes of the stimulus are recognized independently

and the resulting encoding is used to specify the letter. A "B" might thus be repre-

sented as the attributes: left-hand full vertical with two right-hand touching closures,

one above the other. This compact and most general type of description requires, how-

ever, that the psychologist tell the programmer how to find these attributes from

the point-by-point representation. The difficulty in this approach can be seen from

the following examples. Is the part of the letter shown in Fig. XI-23 the serif of
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the top of an "I" or the crossbar on a sans serif "T"? This kind of decision can

only be made by considering the rest of the letter. That is to say, the local attribute

cannot be assigned a value out of the context of the remaining attributes. Similarly,

is the line shown in Fig. XI-24 a pseudo vertical of italics "P" or the oblique line

T I V P

Fig. XI-23. Fig. XI-24.

Illustration of feature ambiguity Illustration of feature ambiguity
without complete context. This without complete context. This
could be the top serif of an "i" or could be the pseudo vertical of an
the crossbar on a sans serif "T". italic "P" or the oblique segment

of a "V".

of a "V"? Thus, by using local features, the computer has a more compact and rele-

vant description, but it is difficult to detect these features without some kind of nor-

malization routine. A typical computer program overcomes, or attempts to overcome,

these difficulties by specifying all of the possible ambiguities that might be encountered.

This represents a sequence of special cases which might have to be dealt with under the

specified condition of operation.

In this experiment, we attempted to determine how well human subjects could per-

form the recognition task when they were restricted to a sequentially derived point-by-

point representation of the character. In other words, when a subject was made to feel

as limited as a computer, what kind of strategies would he use. We hope that the funda-

mental structure for new character recognition algorithms might be one of the by-

products of this investigation.

2. Methodology

Subjects were seated in front of the apparatus, as shown in Fig. XI-25, which con-

tained an opaque movable plate covering the letter that was to be recognized. The

letters, taken from the Prestige Elite 72 typewriter font and magnified by a factor

of 40, were viewed through a 1/4-in. hole in the opaque plate. The diameter of

the hole corresponded to approximately one-half of the average width of the letter
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Fig. XI-25. Experimental apparatus.
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stroke. An example of a letter is shown in Fig. XI-26. Movement of the plate was

recorded to show the strategy used by the subject as he uncovered the information

"i|

Fig. XI-26. Example of a stimulus letter enlarged
from a standard typewriter. Approxi-
mate dimensions 6" X 5".

about the letter's shape. The eleven volunteer subjects, recruited from the labora-

tory staff, were instructed to look through the peephole in the plate while moving it over

the letter. At the same time, they were asked to "think out loud" or to introspect the con-

scious mental strategy and the resulting perception. The technique is similar to that

developed by Duncker2 in which subjects were instructed to continuously verbalize their

steps in problem solving. After each identification of a letter, the experimenter questioned

the subject on the method that he used to identify the letter and reminded the subject to

verbalize as much as possible. These comments were tape-recorded; the pentagraph

output, used to record the movement of the hole, did not give reliable insight into the

sequence of steps.

3. Results

The process of recognizing characters under these restricted conditions is charac-

terized by two stages: initial acquisition of letter boundary; and acquisition and idenfica-

tion of the letter.

a. Initial Acquisition

The peephole was started initially from the upper left-hand corner of the photo-

graphic paper on which they were printed. Most subjects scanned diagonally downward

toward the lower right-hand corner even though this corner was not visible. In this

initial sweep, they successfully acquired the letter when the area in the peephole showed

the black ink of the letter rather than just the white background. Only one subject used a
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pure raster scan in which the hole was moved horizontally and gradually lowered. In

all cases, the subject has to have some preconscious notion of what to look for, otherwise

he will not perceive the black-white boundary as part of the letter. For example, one sub-

ject kept scanning the page because he expected the letter to be completely visible

through the small hole. Only after the experimenter pointed out that the letter was much

larger did he perceive the black-white boundary as part of the letter. After the letter

had been localized, the acquisition strategy was then used.

b. Acquisition and Identification of the Letter

Once the subject had localized the letter, he had to move the peephole in such a

way as to extract sufficient information to make a judgment about the letter's identity.

Thus, the subjects could perform a contour trace around the outside of the letter, raster

scan across the height and width of the page, scan the interior of the line segment, or use

any other data-gathering approach. All of these strategies, or in computer terms "algo-

rithms," require subroutines to actually perform a task such as contour tracing. Which

way should the hole be moved to follow the contour? Unlike the computer, however, the

subjects could change their strategy as they had gained partial information about the let-

ter. Three kinds of techniques were basically used.

Method A

The subject traced the whole outer contour of the letter and tried to retain

"interesting" features of the trace, such as verticals, loops, ends, intersections, and so

forth; for example, "There is a loop in the lower right-hand corner with an arm in the

upper right." Such a description must clearly refer to the letter "d". This either became

apparent to the subject intuitively or resulted from a process of elimination which

revealed this to be the only letter satisfying the description. In this method, the subject

first tried to preserve the continuously developing topographical representation until all

of the data had been gained from the completed contour trace. It is important to realize

that for most subjects the data are being continuously reduced to "feature attributes"

rather than preserving a complete image of the letter with all unimportant serifs, noise,

and font-dependent characteristics.

Method B

This method is similar to Method A, except that the subject continuously tested

hypotheses as he was acquiring the data. Once the subject had identified a feature, he

could separate the alphabet into likely and unlikely candidates for fitting the data. In the

example shown in Fig. XI-27, the subject rapidly hypothesized that it must be either a

"c" or an "o" based on the fact that the top of the letter was found to be curved. This

ambiguity was quickly checked by continuing the scan while checking for the presence of

a gap that would have indicated it to be "c" or the lack of a gap for an "o". Actually, the
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Fig. XI-27. Pentagraph output of the trace used in tracing
the letter "c" by the hypothesis testing method.

"- ----

Fig. XI-28. Same as Fig. XI-27, except that a contour
trace and a final hypothesis test are used to
verify that it is an "m".

'\ Fig. XI-29. Same as Fig. XI-27, except that a zig-zag tracing
across line thickness of the letter "r" is used.

Fig. XI-30. Same as Fig. XI-27, except that a hybrid
method of both contour and zig-zag is used
for the letter "k".
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letter might have been an "e" which would have fit the "c" test, namely, a gap. This S

method is characterized by the ability to perform a very rapid contour trace if the letter

were guessed correctly. The contour followed was in fact sometimes at the black-white

boundary of the letter and sometimes in the middle of the black line. Similarly, as shown

in Fig. XI-28, the subject rapidly acquired the character and tested it for an "m" by

drawing a line through the three legs. No other letter has the three legs. It seemed for

all subjects that certain letters have fairly unique shapes and are easily guessed from

very little information. The shape of a letter at its high information-density point almost

always suggests one or at most a few particular letter.

Method C

This method differs from the first, in that the information subroutine contains a zig-

zag sweep across black regions, that is, going from the white-black boundary to the

black-white boundary. The example shown in Fig. XI-29 was produced by a subject whose

scan was 1 1/2 times the thickness of the letter stroke. This technique, in comparison

with contour tracing, allowed the subject to judge whether the line segments were curved,

straight or intersecting with other curved lines. Using this method, the subject could get

a much more complete picture of the local shape and could filter out noise by providing

local context. The resulting features were then identified as in either Methods A or B.

Figure XI-30 shows a hybrid method.

4. Observations

Although the discussions have emphasized the difference in the strategies, it should

be apparent that they are all very similar, and differ, for the most part, in the amount of

risk that the subject takes by making an early guess. The subjects are trading-off two

opposing tendencies. On the one hand, there is the desire to make an early correct judg-

ment so as to be able to perform confirmatory tests and finish the contour, or its equiva-

lent, with a minimum of effort. It is clearly much easier to be asking "Does this

additional datum fit a 'b' or not, " rather than trying to encode local attributes into fea-

tures. Once a guess is made, however, the subject has formed a psychological "set," and

is very likely not to give up an incorrect hypothesis until the evidence is overwhelmingly

against his guessed letter. On the other hand, a more secure data acquisition with

delayed judgment, such as completely tracing the entire letter, is inherently more vul-

nerable to the effects of noise (line segment variations), an unexpected serif (most people

are unaware of where the serifs are located), a break in the letter (the continuing side of

the gap is completely missed), or forgetting the existence of an intersection (only one leg

of an intersection can be traced at one time). Any kind of error can result in a set of

features that do not fit together. The sooner the subject was able to arrive at a hypoth-

esis, the easier was his task, since the strategy became confirmatory rather than
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* acquisitory. Previous to the hypothesis, the subject must detect features that are inher-

ently difficult because he does not have any Euclidean sense of space or distance. Although

it seems that the subjects somehow mapped a two-dimensional feature space in their

heads, it remained topologically elastic.

The recognition of the letter was not only dependent upon the subjects' strategy but it

was also a function of his psychological "set." The subjects appeared to define an arch-

type variant of each letter; also, they seemed to have strong tendencies toward a select

group of preferred letters. For example, if the subject expects that none of the letters

will be repeated, the second attempt to recognize a letter takes him much longer. This is

shown in. Fig. XI-31 where the letter was retraced many times before recognition

resulted. This is the classical phenomenon of set and negative perseveration (Uznadze3).

In this example, the subject concluded that an "h" might be an "a" placed sideways. The

massive serif and the very short vertical stem compared with the large lower circle just

did not match his own reference topology of any letter. One Japanese subject identified

the letter "j " as an inverted "c" which he said was very similar to the Japanese charac-

ter "D" of Katakana and "" of Hirakana. Thus the large serif was incorporated as a fea-

ture, and the resulting character was, in his character set, legal.

Fig. XI-31. Pentagraph output using the contour-tracing
algorithm in which the subject would not
accept that it was a letter "h" because that
letter had already been presented. Note the
many contour tracings acquiring the same
information many times.

As the subjects became more familiar with the character set they had less trouble

judging the significant letter fragments. Understandably, it took much longer to identify

the first letter before the subject had a relative filter for the size, shape, line thickness,

serif size, and line variations of the letter. In particular, when the subject was not sure

of the relationship between serifs and letter fragments recognition was much slower and

often erroneous. The differential judgment between a straight line and a slow curve (both

with noise) can only be made by perceptual integration along the curve. One subject,

during the recognition of his first letter, as shown in Fig. XI-32, was in the process

of setting his filter to separate psychological noise from features.
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All of the data-acquisition strategies mentioned have the interesting property that

the subject had much more data available than he could profitably use. In almost every

J

Fig. XI-32. Pentagraph output for a subject's first experience
in identifying a letter. The repeated tracing of
the top serif illustrates the process of setting a
psychological filter to determine whether this is
a significant part of the letter.

case, an observer could guess the letter correctly by looking at the tracing being'pro-

duced by the pentograph before the subject could. The data were there if they could be

integrated into a unit. This distinction between the integrated data available to the

observer and the feature-extracted data stored by the subject is the same distinction

made when comparing a computer algorithm and human perception. We still do not know

what it means to have an integrated representation of the stimulus in a computer format.

5. Future Experiments

A better understanding of how filtering techniques are created and used by subjects

will be investigated by using a character set made up of mixed sizes and fonts. Subjects

will thus not be able to normalize on the type font, but must reset the distinction between

noise and feature with each new character. Other experiments in which extensive prac-

tice is given might help to determine the optimum strategy under the sequential data-

processing restriction.

6. Conclusions

This experiment demonstrated a methodology for investigating human character

recognition under the condition of sequential point-by-point data acquisition. It is clear

that subjects do not store the information in its raw form but reduce it to some set of

features or psychologically relevant attributes. At some point sufficient data have been

gathered for the subject to formulate a hypothesis about a letter's identity.

It appeared that pure contour tracing is both inefficient and sometimes erroneous

when there are breaks in the letter or loose fragments. The zig-zag method gave more
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local context, and might be useful for computer subroutines. Moreover, there is the

suggestion that recognition algorithms might be divided into two preliminary stages: in

the first, a limited number of guesses are made based on a preliminary analysis, in the

second, the guesses are checked by using confirmation algorithms; for example, a "b"

must have a left-hand vertical and a lower right-hand closure.

B. Blesser, E. Peper
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