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A. SCATTERING OF LOW-TEMPERATURE HELIUM BEAMS

Recently, we have made measurements of the helium 4-helium4 scattering cross sec-

tion at very low temperatures by an atomic-beam method. The apparatus uses conven-

tional atomic beam methods to determine the cross section; that is, a collimated beam

of helium atoms is passed through a region of relatively high-pressure helium gas and

attenuation of the beam is measured. The beam is detected by a field-ionization detector

with an electron multiplier to count the positive ions produced. The apparatus differs,

however, from the usual design, in that it is entirely immersed in a liquid-helium bath,

whose temperature can be controlled by lowering the vapor pressure, and, also, the

pumping to maintain the necessary high vacuum is done by cold zeolite pellets, which

effectively adsorb helium when cooled to liquid-helium temperatures. The beam is

chopped by a rotating slotted disk. The beam source and the scattering region are

maintained at the temperature of the liquid-helium bath. Figure I- 1 is a schematic

view of the apparatus.

The electronics associated with the detection system is shown in Fig. 1-2. The

output pulses from the electron multiplier are amplified and fed into a 64-channel

scaler whose channel advance circuit is initiated by the output pulses of a photomulti-

plier each time the beam chopper opens. This method measures the time of flight

of the atoms in the beam. The beam atoms have an arrival time distribution because

of their velocity distribution and the finite length of drift space between the chopper and

detector. To obtain the total beam intensity, one simply integrates the area under the

arrival-time distribution and above the uniform counts caused by the background pres-

sure in the apparatus.

The effective total scattering cross section is determined by the standard

formula:
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by the Sloan Fund for Basic Research (M. I. T. Grant 367).
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Fig. I-1. Schematic view of the apparatus.
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Fig. I-2. Electronic equipment for the detection system.
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I = I e-x/

where

I is the detected beam intensity in atoms/s.

I ° is the beam intensity with no scattering taking place.

x is the length of the region where scattering takes place.

k is the mean-free path in the scattering region.

The effective scattering cross section 0- is then given by

S. 749
nor

where n is the density of the atoms in the scattering region. This is under the assump-

tion that the mean-free path everywhere except in the scattering region is large com-

pared with X, which is true in this case.

Experimentally, what one does is measure the beam intensity with the scattering

chamber empty, that is, at high vacuum, thereby obtaining I , and then measure the

beam intensity with a known pressure of helium gas in the scattering region and apply

the formula above. The pressure in the scattering region is determined from mea-

sured flow rates of gas into it, which in the steady state must also be leaving through

the slits of known area at the ends. Thus application of the formula from kinetic the-

ory for molecular flow through an orifice gives the pressure and therefore the density

in the scattering region. The formula is

22
3. 5X 10 PA

I=

where

I is the number of atoms/s exiting.

P is the pressure inside in mm Hg.

A is the slit area in cm .

M is the mass of the atoms in atomic mass units.

T is the absolute temperature.

Experimental runs have been made at 2. 10 K with pressures in the scattering region

ranging from 3 X 10 - 6 to 1 X 10 - 5 mm Hg. These give, for the total effective cross sec-
-16 2

tion a-, a value of 79 X 10 cm with an estimated error of 10%.

The cross section is a function of the velocity of the colliding atoms, however. The

method described above averages this velocity-dependent cross section over the veloc-

ities in the beam and over the velocities in the scattering gas. By measuring the

arrival-time distribution of the beam as we do, we have information on the velocity

distribution in the beam both with scattering and without. This information can then
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be used to obtain the effective cross section as a function of beam velocity, which con-

tains only an average of the actual cross section over the velocity distribution in the

scattering gas. At the present time, the signal noise of the data is not sufficient to

allow us to do this, We are in the process of getting more data in hopes of increasing

the signal-to-noise ratio sufficiently, so that the cross section as a function of beam

velocity can be determined over a reasonable range of velocities.

We also intend to measure the cross sections for helium 3 on helium and helium3 on

helium 3, which can be done with no modifications to the present apparatus.

D. E. Oates

B. FIELD DISTRIBUTION MEASUREMENTS BY THE

ATOMIC-BEAM METHOD

There are many methods for measuring magnetic microstructure in solids, and they

have been widely used to contribute largely to the understanding that we now have of mag-

netic materials. In this report we describe a new way of investigating magnetic systems,

using the classical atomic-beam magnetic-resonance method.

In this method transitions between the states of an atom in a magnetic field are pro-

duced by applied radio-frequency fields and detected by observing the subsequent tra-

jectory of the atom through the apparatus (Fig. 1-3). The magnetic properties of many

atoms have been studied by this method, so that with confidence we can use the atoms

to study magnetic fields with variations in space and time on scales that made them hard

to measure by other means.

So-called Type II superconductors exhibit magnetic structure on a scale of the order

of 1, 000- 10, 000 A when the applied magnetic fields penetrate and produce quantized vor-

tices of electrons (Fig. 1-4). Recently, an application of the Bitter powder technique

has allowed a direct picture of the vortices to be built up from small (100 A) iron par-

ticles (Fig. I-5a; see Trauble and Essmannl). These patterns are later observed with

an electron microscope and have yielded much information concerning the arrangement

of magnetic fields in samples. Unfortunately, the method does not lend itself to the study

of rapid variations; thus, when a current is applied merely a smear is seen as the vor-

tices are transported by the current at right angles to both the current and the mag-

netic field. No convincing measurement of the velocity of the vortices has been

made until now. Since the motion of these vortices accounts for various technical

limitations on the use of the superconductors in wide-scale practical engineering

applications, understanding their motion and the associated pinning forces is of con-

siderable importance.

If we arrange an apparatus so that the atoms of the beam pass near the surface

of a Type II superconductor, they will be passing through a spatially varying magnetic
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Fig. 1-3. Detection techniques.

Fig. 1-4. Production of quantized vortices of electrons.
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Fig. 1-5. Illustrating the Bitter powder technique.
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field. They will, therefore, experience a periodic field in time whose frequency is pro-

portional to the spacing of the vortices. If this frequency coincides with the transition

frequency between two states of the atom, transitions will occur and can be detected in

the usual way. By chopping the beam and analyzing the arrival-time distribution of the

atoms that have undergone transitions, we can deduce their velocity and hence the

spacing of the magnetic field periodicity. When current is applied to the sample at right

angles to the magnetic field and to the beam direction (Fig. I-5b), the vortices move

and a Doppler shift is observed.

SUPERCONDUCTING

10-6T 10-8 T 10-8 T

BEAM LENGTH = 234 cm

TO ELECTRONICS

Fig. 1-6. The apparatus.

Figure I-6 is a drawing of the apparatus which will be recognized as a conventional

atomic-beam apparatus equipped with a chopper and time-of-flight analysis of the veloc-

ity of the flopped atoms. Instead of the usual magnet and sources of oscillating mag-

netic fields, it contains a vanadium foil past which the beam travels. The foil can

be cooled below its transition temperature and subjected to magnetic fields and currents.

A typical result of a 1-min run is shown in Fig. I-7 in which the relative transition

probability normalized as a fraction of the maximum obtainable flop from RF is plotted

as a function of the velocity of the atom. The markedly non-sinusoidal oscillations

are what would be expected from the space frequencies of a two-dimensional tri-

angular lattice forming an angle with respect to the beam. In Fig. I-8 we show the

same curve and two others in which a current has been applied to the sample, first

in one direction and then the other. These curves are recognizable as the curve

obtained when no current flows shifted in velocity, since the atoms are now going

by moving vortices. Some of the features are washed out by this current and the

resultant motion of the vortex lattice, as might well be expected. Data from a num-

ber of runs can be summarized by the curve of Fig. 1-9, in which the velocity of

the vortex lattice is plotted against the current applied. From this the value of the
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hitherto unmeasured velocity of the vortex lattice can be deduced, as well as the

presence of a pinning effect. These are preliminary data but they are promising,

in that we have large signals, and there is much rich detail which is still not inter-

preted. A broad range of investigations can now be undertaken on this, as well as

on other systems.

Let us summarize briefly a number of applications of this technique. (i) When-

ever any magnetic microstructure has a characteristic length between 100 A and

100, 000 A it can be studied by these methods, with a variety of atoms used in

the beam. Even if there is no great spatial regularity, we can still find out

something about the magnetic field distributions. (ii) We can measure either x

and y components of the oscillating field or z components if we wish to, by

working with state-selected beams. While time-of-flight analysis of the veloc-

ity distribution was simple and convenient initially, we could retrieve at least

a factor of 20 in signal-to-noise ratio by working with one velocity at a time

with the aid of a velocity selector. (iii) We can measure the z dependence of

the magnetic field by plating on a rare gas. (iv) It would be very interesting
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Fig. 1-7. Relative transition probability normalized with respect to the maximum

attainable with RF as a function of velocity. The nonsinusoidal oscilla-

tion is consistent with the Fourier components seen by an atom passing
over a triangular lattice of moving vortices.
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to study how the vortices peel off from and rejoin the diamagnetic current by

studying the transitions induced by magnetic fields near the edge of the sample.

This merely emphasizes (v) that we can measure small time-variant phenomena

in small regions. (vi) Several other systems immediately suggest themselves,

such as ferromagnetic domains, motions of domain boundaries, and phase trans-

itions. It is also possible that magnetic variations arising from the de Haas-

Van Alphen effect can be studied by this method. (vii) By using electric resonance

with suitable molecules, periodic electric fields of the surfaces of a ferroelec-

tric, for instance, could also be investigated.

During the coming year, we would like to continue refinement of the technique, the

exploration of various superconducting systems, and possibly if this progresses well,

the investigation of fluctuating fields associated with phase transitions in thin films

of ferromagnetic materials.

T. R. Brown, J. G. King
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C. CONSTRUCTION OF A SCANNING MOLECULAR MICROSCOPE

During the past year, a prototype model of a scanning molecular microscope has been

designed and constructed, and is now in the preliminary testing stages. By molecular

microscope we mean an instrument that "sees" by neutral molecules rather than pho-

tons, electrons, or ions. That is to say, spatial variation in the emission (usually called

evaporation in the case of molecules), scattering or transmission of neutral molecules

from a specimen surface is converted into a visible image. This new method for

studying surfaces utilizes the weak chemical interaction which primarily determines

the properties of all substances, biological and others.

The first molecular microscope is a pinhole device (see Fig. I-10) which has

been designed to study specimen surfaces using neutral water molecules. Provided

IMAGE PLANE ---------- PINHOLE OF

SEPTUM 2  DIAMETER d

OBJECT PLANE

Fig. I-10. Pinhole device for studying specimen surfaces.
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the mean-free path is sufficiently long, water molecules evaporating from the specimen

surface are imaged by the pinhole at the image plane for any value of L 2 . Initially, we
-1

shall use L 1 = L 2 = 3 X 10 cm, and these values give a minimum resolvable length

(referred to the specimen) of approximately 50 [. If we imagine the entire image to be

comprised of a grid, the mesh area is a minimum resolvable area (MRA) of ~2. 5 X
-5 2

10 cmin

The field of view (square) contains approximately 8 X 10 3 MRA, which should be suf-

ficient for a crude picture. We shall attempt to make pictures in the following way. A
-11 2

field ionizing detector (active area of 5 X 10 cm ) which ionizes all neutral molecules

incident upon it, can be scanned in both dimensions within the image plane. The

resulting ions are accelerated into an electron multiplier, and generate a signal current

proportional to the intensity of incident molecules at the detector at that point in the

image plane. An oscilloscope is scanned synchronously by the same signal that scans

the detector and is Z-modulated by the signal current. Finally, an ordinary camera

on time exposure views the oscilloscope and provides the final, visual output in the form

of a picture of the evaporation intensity.

The expected signal-counting rate, n s , at the detector is obtained from kinetic the-

ory. We have designed the first instrument to use neutral water molecules, and expect

for our anticipated operating conditions a signal of

(3. 5X 10 22)p ARA ADET

s \M 1 T Tr(L 1 +L 2 )2

1.7 X 10 3

where

M 1 = Molecular weight of neutral molecules (water)

= 1. 8 X 101

T 1 = temperature of specimen

= 2. 1 X 10 2 
oK

pl = vapor pressure of water at T 1

-3
= 3 X 10-3 Torr.

The presence of residual gas (mostly N 2 ) in the image-plane region is also detected

by our detector, and gives a background counting rate of
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Fig. I-11. First prototype scanning molecular
microscope.
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22
(3. 5 X 10 )P2 ADET

nB 

M

z (3.6X1010 )2'

where M 2 = 2. 8 X 101, T 2  7. 7 X 101 K here.

If the scan time for a single MRA is t, then the total signal for that MRA can be

taken as Ns = nst, and the noise is AN = (n s+n )t. If we want K distinguishable

intensity levels (shades of gray) for an MRA, we use

K = Ns/N = n n + nB

-2

to determine t. For K = 10 we expect t = 7 X 10-2 s and a total scan time of 2.4 min.

These conditions should yield a crude but useful picture, and should allow demonstration

of the principle of the instrument.

A sketch of our first prototype is shown in Fig. I-11. Scanning is accomplished by

driving a two-dimensional magnetic-mechanical spring with an electronic scan signal,

with the field-ionizing detector (needle) located at the end of a 4 0-cm mechanical arm.

The pinhole (25 p. in diameter) is located in a 0. 001" foil which is centered in a copper

dome. The specimen can be mounted on a vertically adjustable stalk, with provision

for temperature monitoring and heating.

Although most of the walls surrounding the detector are covered with liquid-nitrogen

temperature zeolite, the background pressure (pB) achieved thus far is not yet quite

as low as expected. Nevertheless, initial picture taking with a pressure of p 2 =
-710 Torr clearly shows a variation in the flux of molecules onto the needle which is

correlated with a source of molecules in the apparatus.

The first instrument operates in a "universal mode," detecting all neutral molecules

without regard to species. Certainly, a "mass spectrometer mode" may be quite bene-

ficial in many applications, and could be incorporated straightforwardly in future -7er-

sions. Even more promising is the potential for molecular photography, by which we

mean the direct conversion by chemical-physical means of molecular rays into a useful,

visible image. Some initial work on molecular photography has already been done; the

motivation for doing so is the realization that the ability to use all of the neutral mole-

cules imaged by the pinhole leads to the possibility of 2000 A resolution for 100-sec

exposures with a relatively simple pinhole microscope.

J. C. Weaver, J. G. King
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