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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

1. Optical Communication

The fundamental limitations and efficient utilization of optical communication chan-
nels are the concern of these investigations. Our interests include the turbulent atmo-
spheric channel, scattering channels, scatter channels with absorption, and quantum
channels. During the coming year our activities will focus on improving the under-
standing of scattering channels, on practical, or at least feasible, methods of imple-
menting near optimum detection and estimation systems, and on imaging radar
systems.

The characteristics of scattering channels, such as clouds, fog, and haze, are
being investigated experimentally and theoretically. The broad purpose of these
investigations is tp develop the quantitative description of these channels so that
their utility for specific communication applications can be assessed. The studies
of scatter channels with absorption such as the ocean have a similar purpose. The
objective of one doctoral investigation is to relate the optical propagation charac-

teristics of the cloud to its gross physical characteristics. A second doctoral
investigation is concerned with efficient means of measuring those parameters of

scattering channels that are important in communication applications. The objectives
are to draw upon theoretical considerations to develop efficient measuring techniques
and then to implement these techniques on the experimental scatter link that has
been developed in cooperation with Lincoln Laboratory, M. I. T.

Our understanding of quantum communication theory has continued to increase during
the past year. A general procedure for translating a classical description of a communi-

cation channel into a full quantum description was developed for linear channels. 3 In
addition to simplifying many steps in the development of a quantum model, the procedure
also avoids the need for an artificial representation for the system operators. In the

same study some new and important properties of optimum receivers were developed.3,4

The problems of communicating through the clear turbulent atmosphere will con-
tinue to receive attention during the coming year. The feasibility of implementing a
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and the U. S. Army Research Office - Durham (Contract DAHCO4 -69 -C -0042).
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wavefront phase compensating receiver has been examined in an experimental thesis.5
An investigation of variable-rate, or burstlike, communications systems has been

completed.6 This study emphasized the performance gains that can be achieved on
an earth-to-space link. Both heterodyne and direct detection systems were considered.
Detector output statistics and error bounds for direct-detection receivers have been

considered and will receive further attention. 7 , 8 Two other atmospheric studies will
be completed during the coming year. One of these is concerned with the perfor-
mance and structure of receivers that track, or adapt to, the instantaneous channel
state so as to make optimal use of the spatial diversity in the receiving aper-

ture. The other is addressed to the structure and performance of waveform estimators

for Poisson processes.10 This work, which will consider both optimal and suboptimal
estimators, is directly applicable to analog communication systems that employ direct-
detection receivers.

R. S. Kennedy, E. V. Hoversten

2. Coding for Noisy Channels

The goals of this work are: first, to develop fundamental limitations on data rate,
reliability, and system complexity for data transmission over noisy channels; and
second, to develop communication techniques that approach these limitations. One
of the most promising such techniques is that of convolutional coding and sequential
decoding. A new mathematical technique, called "branching random walks," is being
developed to simplify and extend the analysis of convolutional codes and sequential
decoding. In addition, two doctoral theses have recently been completed. The first

dealt with the feasibility of concatenated convolutional codes,11 and the second estab-
lished basic limitations on mean-square error when transmitting analog samples

over white Gaussian noise channels without intersample coding. 1 2

R. G. Gallager

3. Simple Encoding Techniques for Analog Signals

Two simple techniques for encoding analog sources continue to be explored: quan-
tization and feedback. A paper has been published during the year on optimum mul-

tivariate quantizers. 1 3 Doctoral research by Bernd Neumann is directed toward
the use of noiseless feedback for communication over a forward channel with addi-
tive Gaussian noise which is not white, so that feedback increases channel capacity.

P. Elias

4. Digital Data Networks and Other Data-Processing Problems

Digital data networks are of great and still growing importance, both in local net-
works like the one connecting several hundred terminals to several computers at M.I.T.
and in more widely dispersed systems. The possibility of buffering messages at inter--
mediate nodes, of switching messages rather than lines, and of having networks in
which nodes are more expensive than branches, present new areas for research
which are now being defined with the help of several graduate students.

Information theory has relevance to other data-processing problems, and several
are being explored. Terry A. Welch has been pursuing a doctoral investigation in
information retrieval, relating the amount of information stored in a catalog to the
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relevance, recall, and retrieval effort involved in its use. Other work is under way
using informational analysis in the study of switching systems, sorting algorithms,
the storage and retrieval of simple information structures, and the generation of
independent equiprobable random digits from less random input data.

P. Elias

5. Finite Memory-Learning Algorithms

The problem of testing among several hypotheses when the data must be summarized
by a finite-valued statistic is being studied. The large sample size problem has

been solved previously, 1 4 and promising results have been obtained for small sample
15

sizes. The differences between deterministic and stochastic algorithms are also
being studied and substantial progress has been made in determining the properties

of both types. 1 6 1 8

M. E. Hellman
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A. ESTIMATION FOR POISSON PROCESSES

In this report we present some new results in the theory of minimum mean-square

error estimation for Poisson processes. PrQofs of the theorems, too involved to

be presented here, will be given elsewhere.

It is well known that the minimum mean-square error (MMSE) estimate of a

random variable z relative to a data set {y., - E [to, t ] } is simply the conditional

expectation E{z yU, 0-E [to , t]}. Straightforward calculation of this quantity is usually

a prohibitively difficult task. Using indirect methods, we have obtained a useful repre-

sentation for the conditional mean when (y, - E [to , t]} is a doubly stochastic Poisson

process; that is, when the data process is a counting process with a stochastic rate

function such that {y, a- E [to , t]} is conditionally Poisson. 1 - 3

Theorem 1

Let {N t t E T= [to t l ] } be a doubly stochastic vector Poisson process with condi-

tionally independent components. Assume that the vector rate process {Xt , t T} of

{N t , t T} is non-negative a. s. and integrable. Let z be a vector random variable

with components in L 2, such that z is measurable with respect to B ', the Borel
t

field generated by {( ,0- E [to ,t]}. Define the process {vt, tE T} by the stochas-- 0  A A

tic differential equation dvt = dNt - Xtdt, where Xt = E{(tlBN }. Finally, let
A t A

At be a diagonal matrix with nonzero entries, the components of the vector Xt.
Then

(i) BN- B, all tE T;

(ii) the conditional mean At = E(z BNt ), t eT) can be represented by the stochastic

integral equation,
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A A +t A )(-11
z = z + E z( - )'k BG A dv , (1)

0 to
0

where prime indicates transpose.

This result is in the spirit of recent work of Frost 4 for Gaussian processes, and

has wide applicability in problems of filtering, parameter estimation, prediction,

smoothing, and detection. Stochastic integrals such as that in (1) are discussed in

detail in references 5-8.
A

The significance of this theorem is that z t is expressed as an explicit functional

of the observations. Thus stochastic differential equations can be derived with ease

for many estimators of interest. Consider the second-order vector Ito process

x t , t E T), defined by dxt = ftdt + gtdit , where {t, t E T} is an independent increment

martingale, and (ft, tE T} and {gt, t E T} are processes depending on xt and obeying

mild regularity conditions. Assume that Xt is a causal functional of xt. Using (1),

and taking the limit of E{xt+tjBN +A - E{xt I B N t ) as At - 0, we get the

filtering equation,

dx = ftdt + Ex t(Xt-kt)' B V }t dv t  (2)

As another filtering example, suppose we wish to estimate the scalar process

yt = exp(iv'xt), t E T). By a similar argument, we find that the conditional characteris-

tic function yt satisfies the Ito equation

dy = Et(v) exp(iv'xt) 1B } dt + E{((Xt-Xt)'exp(iv'x t) B V A t dvt ,  (3)

where 4it(v) is the characteristic form of the differential generator of x t ,

ýt(v) = p lim At - 1 E {exp[iv'(x t+t-xt)]-I Bt U B }. (4)
At-O t t

This "canonical filtering theorem" was obtained by Snyder I by different means. Note

that Yt is a sufficient statistic for At relative to {N , ~E [t o , t]}.

As an example of noncausal MMSE filtering, let us estimate xt based on data

up to time T > t. From our representation theorem we have

E{xtIBN S = Ex BN + Ex( -( )' B 1 - 1 dv . (5)

Note that this is the sum of two orthogonal estimates because the stochastic integral

is a martingale in its upper limit; the first term is the causal filtered estimate,
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and the second is an estimate "backward in time" of x t given data up to time 7.

This backward estimate is causal relative to a reversed time scale. By using (5)

it is easy to verify the intuitive notion that the causal mean-square error must be

greater than the noncausal mean-square error.10

We now consider a simple example of MMSE parameter estimation. Let the

intensity of Nt be akt + Xo, with a a zero-one random variable, Xt a non-negative

process, and Xk a non-negative constant. Let us estimate the parameter a. Since

a is an Ito process (albeit somewhat degenerate), (2) applies to give

A AA A- 1
da = E a(aX -at')B } At dv t , (6)

t  t t

A A
where t = E {t B ,av 1, and At is a diagonal matrix with nonzero entries, the com-

AA
ponents of ak t + X o. This can be solved explicitly by making the change of variable

ft = In ( at/1-at). Omit the details, and the end result of this is

D x'e.

d1 = t-ee.j + In 1 + dNe. ,
j=1 I-

or in integral form,

D t A t F
S+ - e d-- + In 1 +r dN ej (7)
0 t 0t 0 L_

The observation vector Nt is assumed to be D-dimensional, and {ej. is the set of
Dunit vectors in R

This simple example of MMSE parameter estimation is significant because it
is the log-likelihood ratio for deciding between the hypotheses

H1: rate process of Nt is Xt + Xo

Ho: rate process of Nt is k ;

based on the observations N,_, o E [to t ]j. The fact that t = E a BNt = Pra = II B N t

makes this apparent. f t is the a priori log-likelihood ratio In [Pr(a = 1)/Pr (a=0)].
A O

It should be noted that t = E{XtIB , a= 1} has an interpretation as an MMSE causal
t

estimate only when a = 1.

Equation 7 is the extension of the well-known Reiffen-Sherman detector11 to stochastic

intensity functions and vector observations. In scalar form it is identical to the result
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obtained by Synder under somewhat more restrictive assumptions. The scalar ver-

sion of (7) was also obtained by Evans 1 2 using different methods.

Other applications of the representation theorem, Eq. 1, will be considered in

detail elsewhere.

We now state an interesting result that provides a link between doubly stochastic

Poisson process characterization and MMSE estimation. The conditional joint proba-

bility density function of the number of events N t in (to ,t], and the event times r,
of a doubly stochastic scalar Poisson process with rate function Xt, is given by

N

p({T },Nt IB) = exp •_ d] 11 1x i  (8)

This can be written in the form

exp -t X dg + f In X dN},
o o

where the second integral is a stochastic integral. By using techniques of the stochastic

calculus and properties of conditional expectation, this can be averaged over all

possible sample paths of (XX, a E [to , t]} to yield the following theorem.

Theorem 2

N

p({T}, Nt) = exp - t d ]N XA (9)j t L 0 d- Ti'

A A A
where Xt = EXt IBN ), and t_= lim X• At A 0

This result, which is identical in form to Eq. 8, has far-reaching implications. It

provides a closed-form representation for doubly stochastic Poisson processes, which

can serve as the basis for the design of detectors and demodulators for random

signals. The detection equation, (7), can be derived immediately from the vector

version of (9), as can likelihood ratios for other hypotheses. The form in which
A

(9) is written is somewhat misleading, since Xt depends implicitly on ITj} and N .
Nevertheless, that p({Tj, Nt) can be written so simply and succinctly is pro-

pitious.

We have presented two theorems that provide powerful tools for the design of

systems using doubly stochastic Poisson processes. Proofs and other applications

will be given elsewhere.

J. R. Clark
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B. PHOTOCOUNT STATISTICS: A REPRESENTATION THEOREM

1. Introduction

Calculation of the photocount distributions arising from the incidence of a random

optical field upon an ideal photodetector can be difficult if attempted by direct methods.

In this report we show how judicious application of a representation theorem using

Poisson functions succeeds, in some cases, in reformulating the calculation into

the determination of a linear transformation that maps a given photocount distribu-

tion into the actual photodetector output distribution.

2. Poisson Expansions

Consider functions x( .) which may be represented as follows:

x(u) = xnp n(u); uE[0, C) (1)

n=0
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where pn ( ) represents the nth Poisson function

n
pn( ) = eU; uE [0, 1); n = 0, 1, .... (2)

The Poisson functions are the probabilities associated with a Poisson random variable n

of mean n = u.

In order to find the expansion coefficients {Xn} associated with x( ) we may note

that the Taylor series (if it exists) for eUx(u) is

oc
n

e x(u) x u (3)
n n!

n=0

Using the Taylor inversion formula, we find

dn

x = d [eux(u)]u (4)
n dun u=

which, by Leibnitz' rule for product differentiation, is

n

x = (n x(u) (5)
n k n

k=0 du u=0

In the rest of the report Poisson expansions are used to calculate photocount statistics.

3. Reception in the Presence of Fading

The random process resulting from the incidence of a random field on an ideal pho-
1

todetector has been characterized as a doubly stochastic Poisson process. If the ran-

domness of the received field arises solely from a constant multiplicative fading in

intensity, then the resulting conditional counting statistics are given by

Pr (# counts = ma)}= pm(au), (6)

where u is the nominal average number of counts, and a, the intensity fading, is a

random variable with density q( ). We wish to examine the unconditional counting

statistics

Pr (# counts = m} gm(u) = pm(au) q(a) da. (7)

Suppose gm(u) has a Poisson expansion for non-negative m:
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00

gmm(u) = I rmnpn(u). (8)

n=0

Formula (5) may be applied to find r . After considerable algebraic manipulationmn
we find that the expansion coefficients are expressible as a simple function of the

moments of the fading variable:

am(1-a)nm; n m

rmn (9)mn

0; n <m
That is,

g(u) (= m am(l-a)-m n(u) (10)

n=m

One may interpret this result as a linear transformation R:p(u) - g(u), where

Po(u) go(u)

p(u) = 1(u) g(u) = 1(u) (11)

R is then represented by the infinite matrix R = {rmn}, and the result is written

p(u) = R g(u). (12)

An immediate generalization of (12) is obtained by noting that since the elements

of R depend only upon moments of the fading variable a, and not on the "signal

intensity" u, then u may be treated as a random variable and (12) may be averaged

over u to yield

_u u_
p(u) = R g(u) (13)

This may be regarded as an expansion in terms of the counting statistics for ran-

dom u without fading; viewed in this light the interesting facet is that the linear

transformation remains unchanged when random source intensity is introduced. One

may prefer to interpret (13) as a rule for performing expansions over basis sets

other than Poisson. If one can obtain the basis set by averaging the Poisson functions,
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then the transformation matrix (9) yields the correct expansion.

4. Reception in the Presence of Fading and Additive Noise

Consider the case in which a single-mode received signal consists of a faded

replica plus a white Gaussian noise sample. The intensity in that received signal

is proportional to au + n 2 , where a and u are as before and n is a circular com-

plex Gaussian random variable with zero mean, and n 2 = X. The probability of m

counts is

a, n
t + n 12m e -au + n 2

m (u ) =

ine average over n yielas

aum --

1 { 1l+ au
g (u )  1 + e Lm 1( + X 1+m k(I+X)

thwhere L () is the m Laguerre polynomialm

m

L (x) =

k=0

(-x)k

(k / k!

Using the series (16) in (15), we obtain

m

g (u) = (l m+l
m (+)m j=0

au

(]. u] e q(a) da. (17)

It is easy to show that in the limit X - 0 (17) becomes identical to (7), which was

derived for the noiseless case. Again assume that gm(u) has a Poisson expansion

of the form (8) and apply the coefficient rule (5) to it. Then we find that

m

rmn(x)=

k=O

m+k+1l

n\ 1 +) (-a)

Equation 18 is difficult to simplify, but the asymptotic behavior for small X can

be found via a Taylor series in X for r (X):mn
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(m) an rm-n;

(I-a)n + X[na(l-a)n-1 -(l-a)n];
mn

n m (l-a)n-m n m m-' n(-m -1
am(1-a) - -(n)a (1-a)

+ ( m  n- m+1a)

+ (2m+1) aml(1-a)n-m + (n-m) am+1(1-a)n-m-1 ;

m , n

m = 0, n > 1

n> m > 0

In the limit X = 0 (19) agrees with (9).

5. Comparison with Previous Results

Solimeno, et al. 3 have used a different method to solve these same problems. For

the noiseless case they express the linear operator R as

R = f p(X) e 2(I+O) dX, (20)

d
where O stands for the linear differential operator u yu, I is the identity operator,

and p( ) is the probability density of the logarithm of the fading amplitude X= ln-a.

(I+O) can be represented as an infinite matrix over the Poisson basis and then R

calculated by a matrLx exponentiation and average over X. The last manipulations

are not carried out explicitly by Solimeno, but they may be done by using a Cauchy
4

integral theorem for functions of an operator F in Hilbert space

1 £-1
f(r) = f(s)(sI-T)- ds,

2nj C

where C is an appropriate contour in the complex s -plane. The result is

e Xm (l -e 2x n-m

r =mn [0 ;

0;

n>m

n<m

(21)

(22)

which agrees with (9) under the substitution X = In \a. Equivalence of the noisy result

(18) and Solimeno's comparable formula has not yet been demonstrated.

6. Applications

It has been argued, with justification, that the output statistics of an ideal
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photodetector excited by a signal plus independent background noise can be modelled

by a Poisson process. Clark and Hoversten 5 have investigated the validity of this

assumption from the point of view of cumulant comparison of counting statistics.

The techniques outlined in this report might be used to yield an alternative measure of

"Poisson-ness" in terms of an L 1 or L2 norm of the transformation (R-I). Such

investigations are, at present, under way.

R. S. Orr
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