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A. RADIATION TEMPERATURES IN ARGON ION LASER

Using microwave reflection and transmission techniques, we measured the radiation
temperature of a narrowly confined argon discharge with a radiometer1 at a frequency
of 34.53 GHz. Using a tube of 2-mm bore diameter, with discharge currents in the
4-10 A range, we studied 1-5 Torr pressures. The discharge tube was a 2-mm ID
quartz capillary, 40 cm long, enclosed in a 12-mm OD cooling jacket. The coolant was
Dow Corning silicon fluid.

When no magnetic field is present, the radiation temperature, T, is defined2 by

-m Q) fv° dv
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where Q(v) is the total collision cross section for momentum transfer for an electron
with any other species in the plasma, k is Boltzmann's constant, m is the electron
mass, and f is the distribution function for electron velocities normalized so that
47 fgo fv2 dv = 1. The electron temperature is defined as 3/2kTe = U where U is the

average electron energy.
1

We see that when f is a Maxwellian or Q(v)ecv , 3/2kT =u=3/2 kT, and the radia-

tion temperature equals the electron temperature. Bekefi and Brown3 have calculated the

3/2kT
ratio ————— for distribution functions of the form f oc exp(—avﬂ)for values of £ from 1 to
3/2kT
e
8 and Q(v) ocvh_l. They have found that the ratio deviates from unity only for large nega-

tive values of h corresponding to fully ionized gases.
Radiation from a noise standard calibrated to have an effective noise temperature

of 10,100°K was alternately channeled by a ferrite switch between the plasma and the
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radiometer, which periodically compared the intensity of radiation from the plasma with
the noise standard alone. The radiation temperatures were then measured by observing

the power emitted, reflected, and absorbed by the plasma.4
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Fig. VIII-1. Radiation temperatures at 2 Torr and 4 Torr.

EN
|

9
]
<
=4
x 3
w X
X X X X
2 x
g2 x—x *—X
& k X x X X °
b x X ° °
= (-] °
p
y4 []
Hoo5—52 O —o0o0—
o ! . X 3 Torr
=
< 0 5 Torr
g
o | | | | 1 ]
4.0 5.0 6.0 7.0 8.0 9.0 10.0
I(A)

Fig. VIII-2. Radiation temperatures at 3 Torr and 5 Torr.

Figures VIII-1 and VIII-2 show the radiation temperature as a function of discharge
current. The large gaps in the data correspond to regions where Tonks-Dattner reso-
nances occur. Low emissivities and difficulties in determining the exact shape of the
resonance kept us from obtaining useful information in these regions. Our results are
in good qualitative agreement with both Schottky theory and the results calculated by
using the spacing of Tonks-Dattner resonances.5 The resolution of our apparatus was
such, however, that we could not determine the dependence of the radiation temperature

on discharge current.
D. Wildman
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