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A few years ago, Professor Kastner's research
group discovered that the conductance through a
quantum dot weakly coupled to the leads shows
periodic peaks as a function of the voltage on a
gate electrode. 1 This behavior was attributed to the
phenomenon of Coulomb blockade: to add an elec-
tron to the dot, the system must have an energy
equal to the electrostatic energy of a dot charged
by one electron. Most of the theoretical and exper-
imental work on Coulomb blockade is devoted to
the case when the quantum dot is separated from
the leads by very high tunnel barriers, which ensure
the discreteness of charge in the dot. A recent
experiment2 indicates that as the height of the bar-
riers is lowered, the Coulomb blockade peaks are
smeared and transformed into small oscillations.
Apparently, as one lowers the barriers between the
dot and the leads, the discreteness of the charge of
the dot is smeared, and the Coulomb blockade is
suppressed. An important theoretical problem is to
find the conditions at which a dot strongly coupled
to the reservoirs can exhibit the Coulomb blockade.

Our preliminary studies3 showed that a quantum dot
connected to a lead by a single contact should
demonstrate the Coulomb blockade oscillations of
the dot's charge as long as the transmission coeffi-
cient of the contact T is less than unity. Exper-
imentally, it is difficult to measure charge and in the

past year our research group worked on the theory
of the transport through quantum dots.

3.2 Transport Through a Single
Quantum Dot

The system we study is shown in figure 1.4 The
quantum dot is coupled to the reservoirs (leads) by
two quantum point contacts controlled by the corre-
sponding gate voltages. Inside the electrostatically
created constrictions, the potential changes
adiabatically as the electrons move along the
channel, which enables us to describe the transport
by a one-dimensional model. We study the linear
conductance through the quantum dot as a function
of the gate voltage in the regime where the trans-
mission through one or both contacts is almost
perfect: the transmission coefficient T is close to 1.
The results are as follows:

1. In agreement with the experiments, we found
that the Coulomb blockade oscillations of the
conductance disappear when the transmission
through at least one contact is perfect, T=1. If
neither of the contacts is in the regime of
perfect transmission, the conductance shows
weak periodic oscillations as a function of the
gate voltage.

2. An unexpected result was obtained: unlike the
oscillations of the average charge of the dot,
the amplitude of the oscillations of conductance
grows as the temperature is decreased (figure
2). At very low temperatures, the oscillations
are no longer weak, and to find the conduc-

1 M.A. Kastner, Rev. Mod. Phys. 64: 849 (1992).

2 N. C. van der Vaart et al., Physica 189B: 99 (1993).

3 K.A. Matveev, Phys. Rev. B 51: 1743 (1995).

4 A. Furusaki and K.A. Matveev, Phys. Rev. Lett. 75: 709 (1995); A. Furusaki and K.A. Matveev, Phys. Rev. B 52: 16676 (1995).
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Figure 1. Schematic view of a quantum dot connected
to two bulk 2D electrodes. The dot is formed by applying
negative voltage to the gates (shaded). Solid line shows
the boundary of the 2D electron gas (2DEG). Electro-
static conditions in the dot are controlled by the voltage
applied to the central gates. Voltage VL,R applied to the
auxiliary gates controls the transmission probability
through the left and right constrictions.

tance a non-perturbative solution is required.
Such a solution was found for several cases,
and we discovered that in the low-temperature
regime the weak oscillations of conductance
are transformed into sharp peaks.

3. The conductance in the centers of the peaks is
of the order of the conductance quantum e2/h if
the barriers are identical, and proportional to
the temperature in the asymmetric case.
Between the peaks, the conductance is always
proportional to the square of the temperature.

Our theoretical description of the problem is appli-
cable in a wide range of temperatures between the
charging energy of the dot and the quantum level
spacing. We believe that the results can be easily
tested in the experiments.

3.3 Transport Through Double
Quantum Dots

In a recent experiment,5 the Coulomb blockade
oscillations of conductance through a system of two
quantum dots (figure 3) were studied. 6 In the exper-
iment the contacts between the quantum dots and
the leads were in the weak tunneling regime, with
transmission coefficients T,r < 1. On the other

Figure 2. Conductance through a quantum dot as a
function of the dimensionless gate voltage N for the case
when the transmission coefficients for both contacts are
0.96. The dashed line represents the conductance in the
high-temperature limit. The curves a) and b) are for the
temperature equal to 0.04 and 0.005 in units the charging
energy.

hand, the contact between the dots was tuned by
adjusting the gate voltage Vo in such a way that the
corresponding transmission coefficient To scanned
the whole region from 0 to 1. As a result, a series
of the dependences of the conductance on the gate
voltage at different values of To were measured.
The experiment showed that as the transmission
through the constriction between the dots is
increased, the periodic peaks in the conductance
split into doublets. The distance between the com-
ponents of the doublets grows with To, and at To = 1
the periodicity is restored, but with a period which is
smaller by a factor of two.

Some features of the experiment are easily
explained on the basis of conventional theories of
the Coulomb blockade. For instance, the change of
the period by the factor of 2 is due to the fact that
when the two dots a strongly coupled, they form a
large single dot with a doubled capacitance. On the
other hand, the splitting of the peaks when the
transmission coefficient To is between 0 and 1
cannot be explained with the usual electrostatic
approach. The goal of this project is to develop a
quantum theory of transport through the double dot
system.

5 F.R. Waugh et al., Phys. Rev. Lett. 75: 705 (1995).

6 K.A. Matveev, L.I. Glazman, and H.U. Baranger, Phys. Rev. B 53: 1034 (1996).
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Figure 3. Schematic view of the double quantum dot
system. The dots are formed by applying negative
voltage to the gates (shaded); the solid line shows the
boundary of the 2D electron gas (2DEG). V, and V,
create tunnel barriers between the dots and the leads
while Vo controls the transmission coefficient through the
constriction connecting the dots.

We start with the theory of the positions of the
peaks in conductance as a function of the gate
voltage. When the tunneling between the quantum
dots is weak, an electron added to the double dot
system can occupy two energetically equivalent
positions on either the left or right dot. As a result,
there is a double degeneracy of the peak positions.
As the barrier between the two dots becomes more
transparent, the degeneracy of the two states is
lifted due to the hybridization of the two quantum
states. Thus, the splitting of the peaks at To > 0 is
proportional to the decrease of the ground state
energy of the double dot system due to the
quantum fluctuations of the charge between the
dots. We have been able to find the peak splitting
in the both limiting cases of the transmission coeffi-
cient To close to 0 and 1. At small To, the splitting
of the peaks is linear in To; at To near 1, the devi-
ation of the peak positions from the equidistant
positions is proportional to (1 - To) In(1 - To). The
results are summarized and compared with the
experiment in figure 4.

We have also investigated the temperature depend-
ence of the peak heights. In the conventional theo-
ries of the Coulomb blockade, the heights of the
peaks in conductance are temperature-
independent. This result applies to the double-dot
system in the regime of very weak coupling
between the dots. However, as the coupling
between the dots becomes stronger, the peaks
acquire a power-law temperature dependence. The
origin of this temperature dependence is similar to
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Figure 4. The normalized splitting
blockade peaks as a function of the
tance. Our theoretical results (dashed

of the Coulomb
inter-dot conduc-
lines) are in good

agreement with the experiment (crosses and pluses).
The splitting is normalized by the period of the peaks in
the strong tunneling limit.

the well known "orthogonality catastrophe." When
an electron tunnels from the left lead into the left
dot, the right dot is also affected: to achieve the
lowest possible energy, one-half of the charge of
the added electron must be transferred to the right
dot. Thus, the system must significantly modify its
ground state in order to accommodate an additional
electron. This effect shows up as a power-law sup-
pression of the tunneling rates at low temperatures.
In the case of nearly symmetric dots, we found that
the conductance peaks are suppressed as power
5/4 of the temperature. We expect that this result
can be easily tested in our experiments.
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"Soliton" potential distribution in a 1 lx11 2D quantum-dot
(solid line mesh) and the nearest neighbor approximation
center of the array (x = y = 0). (see section 4.6)

array, computed using the full capacitance matrix
(dashed line mesh). The soliton is located at the
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