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Abstract

With high costs and growing concern about research and development (R&D) productivity, the

pharmaceutical industry is under pressure to efficiently allocate R&D funds. Nonetheless,
pharmaceutical R&D involves considerable uncertainty, including high project attrition, high project-to-

project variability in required time and resources, and long time for a project to progress from a

biological concept to commercial drug. Despite this uncertainty, senior leaders must make decisions

today about R&D portfolio size and balance, the impact of which will not be observable for many years.

This thesis investigates the effectiveness of simulation modeling to add clarity in this uncertain

environment. Specifically, performing research at Novartis Institutes for Biomedical Research, we aim to

design a process for developing a portfolio forecasting model, develop the model itself, and evaluate its
utility in aiding R&D portfolio decision-making. The model will serve as a tool to bridge strategy and

execution by anticipating whether future goals for drug pipeline throughput are likely to be achievable

given the current project portfolio, or whether adjustments to the portfolio are warranted.

The modeling process has successfully delivered a pipeline model that outputs probabilistic
forecasts of key portfolio metrics, including portfolio size, positive clinical readouts, and research phase

transitions. The model utilizes historical data to construct probability distributions to stochastically

represent key input parameters, and Monte Carlo simulation to capture the uncertainty of these

parameters in pipeline forecasts. Model validation shows good accuracy for aggregate metrics, and

preliminary user feedback suggests strong initial buy-in within the organization.
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1 Introduction

1.1 Thesis Motivation and Project Objective

Pharmaceutical research and development (R&D) involves considerable uncertainty, including

high attrition (i.e., project termination prior to drug commercialization), high project-to-project

variability in required time and resources, and long time for a project to progress from a biological

concept to commercial drug. Despite this uncertainty, senior leaders must make decisions today about

R&D portfolio size and balance, the impact of which will not be observable for many years.

Novartis Institutes for Biomedical Research (NIBR) is the global research organization of Novartis

AG. Its Portfolio Management Group (PMG) aims to create tools that aid senior management in

understanding pipeline status and progress, ultimately improving strategic portfolio decision-making

capabilities. While a current-state project tracking tool is currently being developed, the PMG cites

forward projection as a desired capability not currently achieved in a systematic, aggregated fashion. A

significant challenge to successful forecasting is the high project uncertainty described above. Key

questions include:

" Given the current pipeline, what will our pipeline look like in x-years?

e To achieve the desired pipeline in x-years, what should our pipeline look like today?

* How can various pipeline levers affect pipeline productivity?

The proposed solution is a forward-looking model of Novartis' research portfolio that will aid

senior management in forecasting pipeline status, throughput, and productivity. The model incorporates

information about the current research portfolio and historical project performance, and outputs

probabilistic tallies of (1) the number of projects in each portfolio phase in the future, and (2) the

number of key pipeline milestones achieved. This model will serve as a tool to bridge strategy and

execution by anticipating whether future goals for pipeline throughput are likely to be achievable given

the current project portfolio, or whether adjustments to the portfolio are warranted. Furthermore, by

accurately forecasting the number of projects per research phase, this tool will aid resource planning

both within NIBR and for downstream development activities. The research aims to develop the

described model and evaluate its utility in aiding R&D portfolio decision-making.



1.2 Research Methodology

The challenge of R&D portfolio forecasting is encountered by all organizations in any R&D-

intensive industry. As such, we treat the work at NIBR as a case study focusing not only the results of the

modeling process, but also on the approach to developing an R&D pipeline model in general. The

lessons learned from this study can be extended to organizations facing similar challenges.

Portfolio modeling has been used extensively in many industries. Therefore, we strive to

leverage any existing knowledge in the field to guide the modeling effort, while at the same time

recognizing any unique challenges within the studied organization that require novel methods and

approaches. The research included the following key activities:

" Literature review: We strived to leverage existing knowledge and experience with R&D

portfolio modeling by investigating methods employed within and outside the pharmaceutical

industry.

" Stakeholder interviews and process mapping: To define the ultimate structure and logic of the

portfolio model, we interviewed various stakeholders involved in research and portfolio

management to elucidate real-world project flow and portfolio dynamics.

" Data collection and analysis: As discussed herein, the model relies extensively on historical

project performance to forecast future performance. Therefore, we put significant effort into

collecting and analyzing historical project data.

" Model design and development: Using input from stakeholder interviews and process

mapping, we defined the logic and structure of the forecasting model. We employed an

iterative, incremental approach to building the model, adding successive features along the way,

and refining as necessary based on team feedback.

* Organizational implementation of the model: Implementation efforts included presentation to

leadership, end-user training, technical training, and model-driven analysis of the current

pipeline.

* Model validation and assessment: We validated the model to judge accuracy, and assessed its

utility in supporting strategic portfolio decision-making.



1.3 Industry Context

The costs of pharmaceutical R&D are significant, and appear to be rising quickly over time, as

shown in Figure 1. The rise in costs has been accompanied by a reduction in the rate of new drug

approvals.(1) This disparity has raised some concerns of a productivity-crisis in the industry as a whole.
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Figure 1: R&D Costs to Develop a New Drug Over Time (2)

Many researchers believe that the productivity concerns may be overstated. Berndt et al. found

that productivity observations are "...neglecting to account for the contribution of incremental or follow-

on innovation in the form of approvals obtained for new indications and formulations of drugs that are

already in use probably results in a substantial underestimate of innovative output in

biopharmaceuticals."(3) Nonetheless, the high industry costs and public concerns about productivity

stress the importance of efficient use of R&D resources within pharmaceutical companies.

1.4 Company Background

Novartis AG is a global leader in pharmaceuticals, vaccines, generics, and consumer health

products. Its mission is to discover, develop and successfully market innovative products to prevent and

cure diseases, to ease suffering and to enhance the quality of life.(4) Headquartered in Basel,

Switzerland, it consists of more than 100,000 employees in 140 countries worldwide.

Novartis Institutes for Biomedical Research (NIBR) is the global research organization of

Novartis. Its research approach prioritizes patient need and disease understanding, and emphasizes



proof-of-concept trials - small-scale studies used to get an early read on the safety and efficacy of drug

candidates.

NIBR's research activities are organized within various Disease Areas (DAs) and Platforms. NIBR's

nine DAs focus on developing therapies targeting specific classes of diseases, and include departments

such as Cardiovascular & Metabolic Disease and Oncology. Platforms groups provide research support to

all DAs in a variety of specialized, cross-cutting areas such as Global Discovery Chemistry and

Metabolism and Pharmacokinetics. In addition to DAs and Platforms, a Translational Sciences

department supports activities in the later stages of NIBR's pipeline, helping to transition projects from

research to clinical development.

Various support organizations provide services to research groups; these include functions such

as Finance and Human Resources. One of these support groups, the Program Office, support other NIBR

departments by providing "skills, analyses, tools, processes, and integrated information to enable

effective decisions-making and management of our science."(5) NIBR's Portfolio Management Group

resides within the Program Office and works to gain "an understanding of how the overall pipeline is

developing, records project metrics, and analyzes lessons learned from these metrics."

NIBR's R&D focus is guided by two principles: does it understand the underlying cause of the

disease, and does the disease represent a significant unmet need in patients(6). Noticeably absent is a

stated focus on commercial and financial prospects of research efforts. This attitude was stressed in a

recent BusinessWeek article stating that NIBR CEO Mark Fishman "banned running commercial analyses

of new drug candidates until the company had sufficient clinical data. This approach, backed by Vasella,

was heresy in an industry that spends vast sums trying to assign a hypothetical value to each potential

drug at every stage of the R&D process."(7)

Novartis' decreased emphasis on commercial prospects during the early R&D process has not

only strategic, but tactical implications. The creation of NIBR as a stand-alone research organization

placed research portfolio decisions at an arm's length from the corporate sales and marketing functions.

Headquartering NIBR in the United States, rather than co-locating with Novartis Pharma headquarters in

Basel, Switzerland, further bolstered this separation. The BusinessWeek article acknowledged significant

resistance from sales and marketing executives, who historically had held much of the decision-making

clout.



NIBR's focus greatly impacted the research approach. Early in the project definition, it was made

explicitly clear that efforts to model the R&D portfolio should not incorporate financial forecasts. As

discussed in Section 2.3, this differs significantly from the typical applications of portfolio modeling in

the pharmaceutical industry. As a result, we steered the research efforts towards understanding

pipeline throughput, rather than quantifying expected financial returns.

1.5 Thesis Outline

This document is organized as follows:

" Chapter 1 describes the motivation for thesis and introduces the research methodology.

" Chapter 2 provides background on portfolio management in the pharmaceutical industry, and

introduces the portfolio management challenges that motivate the proposed modeling solution.

" Chapter 3 discusses the research methodology in detail by walking through each major

component of the modeling process, including problem clarification, model scoping, model

formulation, and model utilization.

* Chapter 4 discusses the approach to validating the portfolio forecasting model and presents the

validation results.

" Chapter 5 evaluates the model's effectiveness in terms of accuracy and usability. In addition, it

discusses organizational issues surrounding implementation within the organization, and

includes recommendations for future work.



2 Pharmaceutical Portfolio Management

2.1 Drug Discovery and Development

Novartis' drug development process is typical of the pharmaceutical industry in general, and is

represented in Figure 2. (6) Like R&D processes in most industries, it operates as a Stage-Gate T"

process.(8) In such a process, projects progress sequentially through various stages of work; gates serve

as checkpoints between stages where a decision-making body determines whether or not to permit

passage of a project to the subsequent R&D stage based on various criteria.

Findtng Optinization

Figure 2: The Pharmaceutical R&D Process (6)

NIBR is primarily responsible for drug discovery and early development, with the ultimate goal

of achieving positive readouts from proof-of-concept (POC) clinical trials. Once this milestone is reached,

primary responsibility is transferred away from NIBR to downstream development functions. Therefore,

we focus on understanding only the portion of the pipeline in which NIBR is involved, consisting of the

following distinct R&D phases:

e Target Identification (TI) - At this phase, research activities seek to identify a biological target

that may contribute to a particular disease. The intention is to develop a drug that interacts with

this target to produce a therapeutic effect.

e Target Validation (TV) - At this phase, further activities validate the target's role in the disease.

" Hit Finding (HF) - At this phase, research begins searching for therapies to affect the validated

target. The nature of the research activities depends on the modality of the therapy, or the

molecule-type. For low molecular weight (LMW) therapies, also referred to as "small-molecule",

assays are developed to test the effect of a large number of chemical compounds using high-

throughput screening (most commonly). For biologics, large-molecule therapies are developed

to bind to the target.



e Lead Optimization (LO) - Once a lead therapy is identified through HF, further work may be

necessary to improve its behavior as a drug. An LMW compound may be chemically-altered to

improve its properties, while antibodies may be altered to better bind to the target.

* Candidate Selection Point (CSP) - Although not an explicit milestone in all organizations, NIBR

defines CSP as the point in which a drug candidate has been selected among other leads to

enter preclinical testing.

" Preclinicall - Performed prior to commencing clinical trials in humans, this phase involves

various testing of the candidate for safety and efficacy. Test platforms may include animal

models and computer simulations.

" Clinical - The clinical phase refers to clinical trials used to test the drug candidate for safety and

efficacy in humans. For this study, we use the word "clinical" to refer only to the portion of the

clinical phase under NIBR's primary purview-specifically, the POC study. A POC study is a

clinical trial in a small, well-defined patient population.(9) It allows the organization to obtain an

indication of the therapeutic benefit or possible complications early in the process, prior to

more substantial investment in Phase I or Phase 11 clinical trials. A positive POC study represents

the endpoint of NIBR's primary pipeline responsibility, after which a project enters full scale

clinical development.

In this report, we discuss two types of clinical phase projects that exist within NIBR. The first is a

new molecular entity POC study, or NME POC, which is a study of a novel compound. In this report, we

refer to these simply as POC studies. The second is a parallel indication extension POC, or PIE POC, which

involves application of an existing compound to a new disease. In this report, we refer to these simply as

PIE studies.

2.2 Challenges in Pharmaceutical Portfolio Management

2.2.1 Managing uncertainty

Pharmaceutical R&D is an uncertain business. As shown in Figure 3, research on 5,000 to 10,000

compounds is performed for every one drug that reaches the market. (2) Thus, the $1.3B cost often

attributed to bringing a single drug to market in fact accounts for subsidization of the many failed efforts

that a pharmaceutical company must absorb along the way. The industry as a whole spent $65.31B on

R&D in 2009.(2)

1Screenshots included in this document may use the term "sPOC" when referring to the preclinical phase.



Figure 3: Timing and attrition in pharmaceutical R&D (2)

The high project attrition found in the industry results from the many hurdles to developing a

successful drug. The most significant hurdle is the overall scientific challenge of developing a novel

therapy to a disease. Drug development is scientifically unknown territory requiring discovery of new

knowledge. Even as organizational competencies mature, such as in low molecular weight discovery, the

industry continues to seek novel therapies in areas such as biologics and personalized medicine.(2)

Because of this uncertainty, high attrition occurs at each phase of R&D. Early in the pipeline, attrition

can occur due to inability to identify an effective target to treat a disease, or to find promising leads for

On e
FDA-Approved

Drug



influencing a particular target. As projects progress through the pipeline, other hurdles include

establishing sufficient safety and efficacy of the therapy, as well as ensuring manufacturability and

scalability. In addition, regulatory hurdles (i.e., FDA requirements) gate the process along the way.

In addition to scientific uncertainty, there is also business risk related to drug development.

With many companies competing to produce therapies for common diseases, it is unclear early in

development what financial returns will be achieved. Likewise, disease prevalence is constantly in flux,

creating market uncertainty. Note that many organizations, including NIBR, have made efforts to

decouple project selection from commercial influences to avoid stifling of innovation due to business

considerations. Nonetheless, organizations typically require 10 to 15 years to progress from a biological

concept of how to treat a disease to commercialization of a therapy. Thus, it is quite difficult to predict

what the market climate will look like early in the R&D process.

Focusing on early R&D, the project portfolio is particularly uncertain. Whereas R&D activities are

relatively prescribed and linear in later development, early discovery involves iterative experimentation

and a variety of possible approaches. Likewise, resourcing may be such that a given researcher

concurrently works to progress many projects at once, making it challenging to determine how much

work is performed on any particular project in a unit of time. As such, it is difficult to predict how long

any given stage of research will take to complete for a given project. Coupled with the uncertain

outcomes described above, planners are challenged to predict which projects will succeed, and how

long it will take to do so. As stated by one study, "serendipity is highly valued and has likely hampered a

rational approach to the problem."(10)

2.2.2 Linking portfolio strategy and execution

Pharmaceutical portfolio strategy in early R&D consists of various elements. As discussed, NIBR's

primary goal is achievement of positive readouts from POC clinical trials, and thus, its portfolio strategy

is to align the project portfolio to achieve this goal. The research revealed various strategically-relevant

project attributes that can influence the balance of project types that the research organization outputs

to development, as well as overall pipeline productivity. These strategic elements are not specific to

NIBR, but are relevant to early drug R&D in general, and include:

e Project modality strategy - the balance of LMW and biologics therapies in the pipeline

" Clinical novelty strategy - the balance of NME POC and PIE POC projects in the pipeline



" Backup project strategy - the prevalence of backup projects in the pipeline, which address the

same target/indication as another related project

* In-licensing strategy - the use of strategic partnerships or project/company acquisition to bring

external projects into the organization at various stages of development

Portfolio management serves as a link between an organization's portfolio strategy and the

actions that execute that strategy. As suggested above, portfolio strategy at NIBR includes goals for the

numbers and types of projects that must reach particular R&D stages to achieve the desired portfolio

output at the desired time. Thus, portfolio management defines the actions that are to execute this

strategy by allocating resources to maximize the ability to do so.

The field of system dynamics refers to activities that serve to bring a current state in line with a

desired state as a goal-seeking structure, represented Figure 4.(11)

State of System

Desired State of
System

Corrective Action Discrepancy

Figure 4: Goal-Seeking Structure

We would expect R&D portfolio management to behave like a goal-seeking system. That is, the

process typically involves understanding the current state of the R&D pipeline, comparing the pipeline's

output to the organization's goals, and resolving any discrepancy with corrective action such as

reallocation of resources.

However, upon closer inspection, we observe some additional requirements for effective goal-

seeking behavior that challenge the ability to label R&D portfolio management as such. First, the current

and desired states of the system must be easily comparable to determine if a discrepancy exists. With an

R&D pipeline, the discrepancy in question is whether or not the current state will output the desired



numbers and types of projects in the future. With this time delay between current and desired state

observations, meeting this requirement would necessitate a deterministic system in which the current-

state portfolio creates a known project output at a known time in the future. A second requirement for

effective goal-seeking behavior is that the corrective action must be capable of modifying the current

state of the system. With the R&D pipeline, this would require an ability to modify the current-state

portfolio such that that any deviations from the expected project output could be remedied.

Unfortunately, these requirements are not easily satisfied in pharmaceutical R&D. As stated

above, the drug pipeline is not deterministic, but rather, involves considerable uncertainty, including

high attrition and high project-to-project variability in required time and resources. Thus, we cannot

observe the current-state portfolio and predict exactly what it will output in the future. Similarly, when

discrepancies between project goals and actual pipeline output are observed, it is not always possible to

implement corrective actions to resolve these discrepancies in real-time. That is, since projects take

significant time to progress through each stage of R&D, changes in the early project portfolio take years

to progress through to changes in pipeline output. Failing to meet these requirements, portfolio

management fails to function as an effective goal-seeking system, as represented in Figure 5. Rather, we

are unable to compare today's portfolio with the desired future portfolio, and therefore, are unsure

which actions to take to close any discrepancy that may exist.

Todays Portfolio9 .o Desired FuturePortfolio

Corrective Action Discrepancy

Figure 5: Portfolio Management as a Broken Goal-Seeking System

To create a working goal-seeking system, we must solve the two stated challenges-i.e., the

inability to compare the current and desired portfolio states due to their separation in time, and the

inability to make corrective actions once discrepancies are observed. We propose that creating a



computer-based forecasting model of the portfolio offers one approach to addressing these challenges,

as suggested in Figure 6. If a model can create a forecast based on the current portfolio, this forecast

can then be compared to the desired future portfolio. Any observed discrepancies can then be remedied

with corrective action to today's portfolio. Managers can experiment with different corrective actions in

the model to determine the most appropriate action to remedy the discrepancy.

Portolio M odel- -

Todays Portfolio Forecast of Future
Portfolio Desired Future)ZPortfolio

Corrective Action Discrepancy

Figure 6: Model-Assisted Portfolio Management as a Goal-Seeking System

2.3 Historical Use of Modeling in Pharmaceutical Portfolio Management

Quantitative modeling techniques have been used extensively to support portfolio management

in the pharmaceutical industry, although the literature base largely addresses clinical development

forward; early drug discovery is left to more qualitative techniques. In discussing probabilistic pipeline

modeling, Blau et al. explains that "complexity, creativity and iterative nature of the discovery process

make it difficult to lay out a time course flow of events. However, once a new candidate molecule is

found by frequently quite circuitous routes...the subsequent steps in the development and

commercialization are more well-defined."(12) Similarly, Bode-Greuel and Nickisch explain that there is

"general agreement in the pharmaceutical industry that it does not make sense to do detailed financial

analyses in the research stage. The main argument is that at this point efficacy and differentiability

might not have been established and that the effective does in man and the COGS are not known."(13)

Rather, portfolio management efforts in research organizations tend to focus on the number of project

at different phases in the pipeline to ensure productivity targets are met, and on the portfolio risk

structure with respect to balance across different types of projects.



In drug development, we observe various modeling approaches, often combining probabilistic

methods with financial reward projections to forecast portfolio returns. Tang et al. describes use of

Monte Carlo simulation over a Bayesian Network to model risk associated with bringing new compounds

to market.(14) Similarly, Blau et al. employs probabilistic network models and financial information to

forecast portfolio risk and reward.(12) Subramanian et al. integrates both simulation and optimization

under constraints into a Simulation-Optimization Framework.(15) With this approach, simulation

approaches account for task duration and success uncertainty while optimization approaches account

for project task scheduling under resource constraints.

As has been discussed, the costs of bringing a drug to market are substantial. Much of the cost is

often attributed to costly clinical trials that must occur before FDA approval of a new drug. These costs

likely drive the rigorous portfolio analysis techniques at the clinical stages and beyond, grasping for an

NPV value to support the rapid escalation of cost per project. However, Mohr et al. explains that "while

individual project budgets/investments in the research phase are relatively small compared to late

development projects, the overall budget spent on research is nearly comparable."(10) The article

suggests that while results of individual research activities may be difficult to predict, it is likely possible

to effectively model the R&D process as a whole.

We propose that, given historical information about performance of the R&D pipeline as a

whole, modeling techniques such as stochastic parameter representation and Monte Carlo simulation

are applicable and useful to earlier R&D phases as well. After all, a study on the effectiveness of

portfolio management across companies and industries found that the top 20% of businesses with

respect to portfolio performance place more importance on portfolio management.(8) The two

competencies that most greatly differ between top and bottom performers are "portfolio balance-

achieving the right balance of projects" and "the right number of projects for the resources available".

These attributes are not only relevant in later drug development, but can be readily understood through

application of modeling techniques in early drug R&D.



3 Research Methodology

This chapter presents the research methodology used to develop the forecasting model.

Generally, the approach moves sequentially from understanding the end-application, through model

scoping and development, to utilization of the model to drive decision-making. Specifically, Section 3.1

describes the structure and dynamics of the R&D pipeline gathered through stakeholder interviews and

internal company research. Section 3.2 explores how the structure and dynamics of the pipeline are

converted into model specifications; we refer to this exercise as Model Scoping. Section 3.3 provides

detail on the model structure and logic that implements the desired specifications. Finally, Section 3.4

presents two case scenarios that illustrate use of the model to drive strategic portfolio decisions, and

discusses the model's sensitivity to changes in input parameter values.

3.1 Problem Clarification: Understanding the Real-World R&D Pipeline

Both to aid model accuracy and management buy-in, we sought to develop an intuitive model

that mirrors the structure and dynamics of the real-world R&D pipeline as closely as possible. We

therefore spent significant effort understanding the mechanics of the pipeline. Key aspects of this

research are discussed below.

3.1.1 Pipeline Phase Dynamics

As discussed in Section 2.1, the R&D pipeline consists of a various sequential phases. To model

how projects progress through this pipeline, we must characterize project activity within each phase, as

well as project movement between phases. These dynamics are illustrated using the "bathtub analogy"

in Figure 7. The level of water in the bathtub is equated to the quantity of projects in-process at a given

time. This level is regulated by various project flows-specifically, the rate of project transitions from the

previous phase, the rate of project transitions to the next phase, and the rate of project terminations,

which remove projects from the pipeline.
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Figure 7: Pipeline Phase Dynamics

3.1.2 Project Progression

Understanding the project flow dynamics of each R&D phase individually, we must then

understand the forces impacting how projects progress through the pipeline, from phase to phase.

Research reveals two primary drivers: phase duration and phase transition rate. The phase duration

defines the amount of time that a particular project spends in a particular R&D phase, spanning from

the date that it transitions from the previous phase to the date that it transitions to the subsequent

phase. The phase transition rate defines the percentage of all projects entering a particular phase that

will ultimately transition to the subsequent phase. Together, these two parameters define the quantity

of projects that flow through the pipeline, and the speed at which they do so. It is the uncertainty in

these two variables that challenge the portfolio management process, and therefore, are the variables

we seek to accurately represent in the model to capture overall pipeline progression dynamics.

Phase duration differs for every project. As such, to capture the real-world nature of project

durations, we must define a model structure and behavior that accounts for the stochastic nature of this

variable. Likewise, although transition rates are calculated for an aggregated set of projects, they too

may vary from year to year; thus, they too should be represented stochastically. The uncertainty in

these two progression variables drive the decision to rely on simulation modeling, since each instance of

a forecast will yield unique results. Subramanian et al. refers to "multiple Monte Carlo time lines" to

represent the outcomes of stochastic project progression. (15) Borrowing from this framework, Figure 8

illustrates the stochastic progression of projects from a hypothetical launch phase PO through a 5-year

planning horizon. Each project follows a unique pace of progression from phase P1 to P4, and some will

terminate out of the portfolio (i.e., they will fail to transition) during the planning period. Effective



portfolio decision-making in these real-world conditions requires an understanding of the distribution of

possible portfolio outcomes sometime in the future.
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Figure 8: Multiple Stochastic Time Lines

3.1.3 Pipeline expansion points

Research reveals that the pharmaceutical R&D pipeline is not a strict funnel, with projects

beginning at some starting phase and only progressing through the pipeline or terminating. In fact, there

are also instances in which the number of projects can effectively amplify at "mid-pipeline" phases,

which we refer to as "expansion points".

There are three expansion points that contribute significantly to the total number of projects in

the portfolio. The first-backup project creation-typically occurs at the CSP phase. To increase the

likelihood of eventual development of therapy for a specific indication, R&D managers may choose to

"backup" a candidate compound with one or more projects to treat the same target and indication. The

resulting backup projects are launched at the CSP phase and progress through the pipeline as would any

other project.

A second expansion point-PIE study creation-occurs at the clinical phase. A clinical study for

the first therapy to treat a novel target and indication is referred to within NIBR as the NME POC study,



or simply, POC. If researchers determine potential applicability of the drug candidate to an alternate

disease, they may launch a PIE study to investigate this parallel indication. The new PIE project will

typically launch at the clinical phase and progress independently from the POC study.

A final expansion point that can contribute to the R&D pipeline is project in-licensing. In-

licensing refers to accessing a target or compound from an external source through a strategic

partnership or outright acquisition of a company or technology. In these cases, the new project can be

treated as entering the internal project pipeline. In-licensing may be utilized for various reasons, such as

to gain access to specific intellectual property, external capacity or resources, or to fill in gaps in the

internal portfolio. Although in-licensing can theoretically occur at any R&D phase, it is most common at

LO, CSP, preclinical, and clinical phases.

3.1.4 The model pipeline

The project team reached consensus on the representation of the real-world R&D pipeline

process flow shown in Figure 9. This depiction captures the most important attributes of the real-world

pipeline, while intentionally omitting those attributes deemed insignificant to avoid unneeded model

complexity. Each phase is represented as a stock of projects, with various project flows regulating these

stocks. Feeding the first phase is a yearly incoming projects assumption. Projects flow through the

pipeline based on distinct phase transition rates, which define the project transitions and project

terminations for each phase, and phase durations, which define how long projects remain in each phase.

Finally, projects are added to the portfolio mid-pipeline via three mechanisms: in-licensing projects from

other organizations, which typically can occur at any point between LO and Clinical; launching of backup

projects at the CSP phase; and launching of PIE projects at the Clinical phase.

Figure 9: Simplified R&D Pipeline Flow for Modeling



One additional portfolio attribute, project-type differentiation, is not depicted in the figure but

is relevant to the model. Projects can be differentiated along many dimensions, such as modality (small-

molecule versus biologic), disease area (cardiovascular versus oncology), and clinical project type (NME

POC study versus PIE POC study). Projects of a particular type might categorically have different phase

durations and transition rates than those of another type. To avoid unnecessary complexity, we worked

with the project team to identify the most important dimensions of differentiation to capture in the

model, and selected modality and clinical project type. Projects of a particular type are tracked and

quantified separately as they progress through the pipeline.

3.2 Model Scoping

Prior to model development, we developed a simple framework to specify the model's key

inputs and outputs, depicted in Figure 10. The purpose of this framework is to organize the information

gathered during the problem clarification step into actionable specifications that can drive model

development. To draw an analogy to product development, the problem clarification step gathers the

marketing specifications, whereas model scoping defines the engineering specifications for the model.

The results of the model scoping efforts are discussed below.

Input Parameters I Output data

Data Sources User Capabilities

Modeling Tools

Figure 10: Framework for Model Scoping

3.2.1 Input parameters and assumptions

The model's input parameters are those project and portfolio performance attributes needed to

recreate the pipeline structure and dynamics described in Section 3.1. By defining the input parameters

needed, we can then gather historical data to quantify them. The required input parameters are:

* Phase duration: Coupled with the phase transition rate, phase duration is a key parameter

describing how projects progress through the pipeline. To accurately progress projects in time,



the model requires definition of how long projects remain in each pipeline phase prior to

transitioning to the subsequent phase. As described in Section 3.1.2, differences in duration

from project-to-project are a significant source of pipeline uncertainty. As such, duration must

be represented stochastically in the model. Ideally, we aim to understand the frequency

distribution of all possible project durations, and progress projects assuming a random sample

from this distribution.

" Phase transition rate: Coupled with the phase duration, phase transition rate is a key parameter

describing how projects progress through the pipeline. For all projects entering a particular R&D

phase, only a portion will eventually transition to the subsequent phase. The model requires

definition of what portion will successfully transition from each phase. Whereas durations are

project-specific, transition rates pertain to a group of projects. Transition rate uncertainty

relates to year-to-year variation in overall transition rates.

* Current projects: The model requires a current state of the portfolio from which to forecast.

The current state is the quantity of projects in each pipeline phase, delineated by project type

(i.e., modality, PIE/POC). A challenge in creating this portfolio snapshot is that progress within a

phase differs for each project at any moment in time-i.e., one preclinical project may just have

begun the phase, whereas another may be nearing completion. Resolution of this issue is closely

linked to the choice of model logic itself, and therefore, will be discussed in detail in Section

3.3.3.

e Incoming projects: The forecast focuses on a particular portion of the R&D pipeline-

specifically, TV to Clinical. Each year, as projects progress, new projects will enter the beginning

of drug pipeline at TV2. Thus, forecasting pipeline throughput requires an assumption of how

many projects (delineated by project type) will enter each year. That said, the actual number of

incoming projects is likely to differ from this assumption, and therefore, this parameter too

should be defined in the model as uncertain.

" Expansion points: The model requires a mechanism to incorporate pipeline expansion points,

described in Section 3.1.3. As such, we must define the prevalence and timing of backup project

launched during CSP, the prevalence and timing of PIE studies launched during clinical, and the

prevalence of in-licensed project launched at LO, CSP, preclinical, and clinical phases.

2 The project team identified use cases requiring the ability to start the model at either TV or LO, based on user
selection. As such, the model must be flexible to allow either scenario, requiring an incoming projects assumption
for both phases.



3.2.2 Data Sources and Data Collection

A centerpiece of our hypothesis is that past portfolio performance can be used to predict future

performance. Thus, equally important to the mechanics of the model is the input data used to drive it.

Through the research we identified three available sources of historical project performance

information: internal information systems, industry benchmarking organizations, and interviews with

research management personnel. For each input parameter, we determined the best available source(s)

among these options, and collected appropriate data accordingly.

Like many organizations, NIBR captures various types of project information in an array of

information systems. Objective, empirical project data is potentially the most valuable data source as it

directly reflects past organizational performance. As such, significant effort went into collecting

historical project data to serve as the basis for the model's pipeline forecasting. Nonetheless, with the

promise of this data comes challenges related to data integrity (i.e., was project information accurately

recorded), data availability (i.e., is data easily accessible or scattered among many disparate systems),

and data interpretability (i.e., can the needed information be extracted from the raw data).

Access to internally-captured project data is particularly vital to the model for determining past

project performance-specifically, phase durations and transition rates. As discussed in Section 3.1,

effective and useful pipeline forecasting depends on accurate capture of uncertainty in these

parameters. By looking at phase duration data for a large quantity of past projects within NIBR, it is

possible to create a distribution describing the prevalence of different phase durations across the entire

portfolio. Likewise, project data can be used to determine not only mean transition rates from phase to

phase, but also the year-to-year variability of these transition rates. The other two data sources

discussed below provide mean statistics for these performance characteristics, but do not adequately

capture uncertainty.

Although we aimed to base the analysis on internal historical data whenever possible, such data

was not available for every data element needed for the model. Industry benchmarking data provided

an additional source of historical data for the pharmaceutical industry as a whole. In particular, we relied

on a proprietary industry analysis from KMR Group (16), which provided various aggregated metrics on

R&D performance for eight leading pharmaceutical companies, as well as Novartis' individual

performance.



Interviews with process experts provided a third data input. These interviews complemented

the empirical data set by providing a means to verify accuracy of historical data and identifying

organizational dynamics that influence how historical data should be treated. (For example, changes in

milestone definitions over time required us to limit the data set to specific years.) Within NIBR, we

specifically targeted research project management personnel within the Disease Areas and Platforms,

who held knowledge about their departments' past performance.

For confidentiality purposes, we have omitted Novartis' actual data from this document.

However, we discuss below the general approach to data collection and analysis for the various input

parameters in the model.

3.2.2.1 Phase Durations
The model is designed to assume that each future project will perform similarly to some project

in the past. Based on real-world pipeline progression mechanics, we sought to collect the empirical

frequency distribution of phase durations for historical projects. Our initial intention was to then model

the historical data by fitting an appropriate known distribution to the empirical data. As will be

discussed, we were not able to rely entirely on historical data due to limitations in data set size and

historical data quality. As such, the Portfolio Management team collectively determined that a

combination of historical project data, industry benchmarking data, and interview-based data would be

used to reconstruct the needed data set.

At the time of the project, the best available source of historical phase duration data was an

internal portfolio data captured by NIBR's Portfolio Management Group. This report included milestone

dates for a large number of historical projects, allowing determination of relevant phase durations for

each project, LO through Clinical. The data did not include project data for TV or HF. For these phases,

we chose to utilize industry benchmarking data taken from the 2009 KMR report.

In assessing the raw data, we observed that some projects were reported to spend unrealistic

amounts of time in a given phase (e.g., 0 years). Extremely short durations suggest improper data entry,

such as a user entering the same milestone data for multiple phases, while extremely long durations

suggest that a project perhaps remained dormant, without active work for a significant amount of time.

Initial statistical analysis of the data set revealed that inclusion of this apparent outlier data could

greatly impact the statistical model of the data set, which would in turn impact the forecasting accuracy



of the model. Thus, we chose to exclude unrealistic data from the data set that would ultimately drive

the model.

We used interview-based input to select reasonable cut-off points for the data set, prior to

attempting to fit an appropriate distribution to the data. Conversations with research management

indicated that capturing projects with durations between 0.3 and 2.5 years for each phase would

capture most of the relevant data for the purposes of the model. As such, we treated projects with

durations outside this range as outliers, and excluded them from the data set prior to statistical analysis.

We used a statistical software package, JMP, to analyze the truncated duration data with the

goal of determining appropriate probability distributions to represent the historical duration data in the

portfolio model. When multiple "good fits" were available, we selected those which could be easily

modeled with Excel's built-in distribution functions-e.g., lognormal and Weibull distributions.

Figure 11 illustrates the approach to distribution fitting. Due to data confidentiality, we have

obscured all numerical data indicating actual phase durations. The JMP output provides a visual

depiction of the data set and estimated distribution, selected moments of the data set (e.g., mean,

standard deviation), parameter estimates for the fitted distribution, and a p- value for the goodness-of-

fit test.
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Figure 11: Duration Distribution Fitting with Moments and P-test

From the statistical analysis, we were able to fit either lognormal or Weibull distributions to

duration data for LO, CSP, and preclinical, both LMW and biologics projects, as illustrated in Figure 12.

That is, for the goodness-of-fit tests, the p-values fail to reject the null hypothesis that the empirical data

comes from the respective distributions in all cases (i.e., p-value>0.05). However, for the clinical phase,

we were not able to fit a distribution that passed the goodness-of-fit test.



Figure 12: Fitted Distributions for LO, CSP, and Preclinical Phases

Despite determining fitted distributions that pass the goodness-of-fit hypothesis test for three

phases, the JMP analysis revealed some concerns regarding our approach to modeling the historical data

set in general. Specifically, the numbers of projects analyzed decreases from LO to clinical, decreasing

our confidence in the results at the later portfolio phases. With small sample sizes, we were not

confident that the fitted distributions truly reflected the expected durations of future projects.

In parallel with the data analysis, we also determined that it would be difficult to utilize a

distinct type of distribution for each R&D phase in the forecasting model (e.g., lognormal for CSP and

Weibull for LO). This would greatly add to model complexity when compared to relying on a single type

of distribution for all phases.

LO - LMW 4 am..s.,

Type PaWmete E0mate LOr95% Wper 95%
Scale a 1A156345 12197939 15319M83
Sh"ap 0 2.0332552 1.6133543 25105281
-OgGAeffioo0- 9&0460344160926
VGasdorn-fft Teat
CramwownikS s WTesl

W-Square Prab|wP2
0.147486 02500

40e*. Hov The dab Isnome Weia" *M on SmM
pwalues rea HNO

LO - Biologics
Type Parameter Esemale Lowr95% Upper954
Scale p 4117992 4294423 0.0584393
Shape 0 0.3503935 0258974 05115572
4og0ke300d 957643230437101

'Goodneno'-"tT**I
KolmogorWS 0

0 PM"90
0:1665 > 0,10

sles o a Th .daft3 frmba Lo4Mud 13MAn SM22
-,ha re"064-

CSP - LMW
Type aramer Easeat LowerS% 1Wr95%

- Scale p 4190101 4333627 4046676
Shape 0 0M676947 0A07379 0664406
-2l0gQAetooe 62.705565993631

romogorovsO
D Prc90D

0063593 01500

CSP -Biologics ;W_ ~ E ___

Type Parmeter Esemat LOer95% UpperS5%
Scal, a 1165696 09304893 1A417711

<1 Shape 25140622 16651655 35220119
0*~eite190 22199172iOO 943

W-511ere PrabiWl20.048412 > 02500910404.376 da t ob ."" 
ei2 ia

.Fmd LogNom0d
Preclinical - LMW p;;;;;;;;;;;~E

Tm Perameer Esens Lower95% Uper5%
Scale p 02360185 0.1232952 03527417
Shape a 0.3048326 0240469 0403227
21a0u00ehoo) e 27,1999419118688

Kolm~go~era 0
D PlotsD

0106683 0.150
Note: 4o The daftaIs *omtLogNormaMds*oUx* Small

Preclinical- Biologics 'aie ' _t

Type ParaMeter Emae L 5 Upper95%
Sclg a 1.6419 1.2M3079 21052073

Shape 0 2A436775 1.5021997 3,6509306
-2ogUksahood) a 24792625208668
Godnessof-Rt Test

Crameonlsns W Test
W.Squere PretW^2
0042298 > 02500

Hoft No a The dM IS lom We WeM *61%*M SMa
PValues rejed46.



With both data set limitations and modeling challenges, we chose to alter our approach to

modeling the historical duration data for inclusion in the model. Based on our research and discussions

with research management, we chose to use the Beta distribution to model each research phase. The

Beta distribution was selected based on various benefits:

* The beta distribution is a flexible distribution defined by two shape parameters, a and 1. As

such, depending on the choices of these parameters, the distribution can appear symmetrical

(i.e., similar to a normal distribution), or skewed to one side or another. For modeling purposes,

this flexibility allows us to dynamically adjust the distribution to different phase assumptions.

" The model assumes stochastic phase durations defined by the PERT (Program Evaluation and

Review Technique) methodology. With this technique, durations are defined by three

parameters: optimistic duration a, likeliest duration m, and pessimistic duration b. These

parameters, can be easily captured through both historical data analysis and expert interviews,

and can be easily transformed into a and @ parameters of a beta distribution for implementation

in Excel. When used together, a beta distribution defined by the PERT parameters is referred to

as a BetaPERT distribution.

" Excel's built-in functions not only offer the BETA function, but also the BETAINV function, which

simplifies modeling of "random draws" from the beta distribution. (Similar built-in inverse

functions are not available for the Weibull and Lognormal functions.)

e The BetaPERT distribution is a well-accepted approach to modeling R&D task durations.

To define the parameters of the BetaPERT distribution, we utilized information from both the

empirical historical data and interviews with research management. Specifically, for LO through clinical,

the mean value of the empirical data for each phase was selected as the "likeliest" phase duration. For

TV and HF, the 2009 KMR report was used to determine Novartis' mean phase durations. To determine

the optimistic and pessimistic durations for all phases, we interviewed research project managers from

four DAs. For each, we asked them to identify upper- and lower-bounds3 for the duration of each phase

TV through clinical, differentiating by project type. We used the average of responses across the four

DAs to define the distribution parameters.

3 Upper-bound is the longest amount of time that a project would spend in a given phase under particularly bad
circumstances (e.g., unexpected delays, the longest or most difficult type of project, etc). Projects should take this
long no more than 1% of the time. Lower-bound is the minimum about of time that a project would spend in a
given phase under ideal circumstances, with everything going right for the easiest/fastest types of projects.



3.2.2.2 Phase Transition Rates
For the purposes of the study, we define transition rate as follows: For all projects that enter a

particular R&D phase, the transition rate is the percentage of projects that ultimately transition to the

subsequent phase. Transition rate calculation is irrespective of the phase duration-i.e., it captures if a

project will ever transition, regardless of how long it takes.

As with the duration analysis, we utilized internal portfolio data to determine historical

transition rates for CSP, preclinical, and clinical phases. For TV, HF, and LO, we utilized industry

benchmarking data from the 2009 KMR report.

To describe the approach for determining a particular phase's transition rate, we will use CSP as

an example. We first determine the number of projects in the data set that include a CSP date. Of those,

we tally those with a preclinical date as well. Of those without a preclinical date, we must determine

which were terminated, and which remained active in the portfolio. For the latter group, we conclude

that these project essentially had not yet reached a "final state"-i.e., transition or termination. As such,

we must back this quantity out of the original CSP project tally. With these tallies, we can now perform

the following simple calculation.

(CSP date with preclinical date)

( CSP dateau ) - (CSP date without preclinical dateactive)

For modeling purposes, the project team requested an ability to control variability in the

transition rate from year to year. Although insufficient data was available to empirically determine the

yearly variation in transition rates at each phase, we included in the model a mechanism to add a

variability assumption. Specifically, the model uses the entered transition rate as the mean of a normal

distribution. The user can also enter a standard deviation for this distribution, which defaults to a value

of 5% for all phases. While the model initializes with these distribution parameters, the model randomly

calculates an "actual" transition rate from this distribution for each year within each simulation trial.

(That is, the user may assume a mean LO transition rate of 50%, but in any given year, the "actual"

transition rate used in the model may be slightly lower or higher, based on the random draw from the

normal distribution.)

3.2.2.3 Current Projects and Incoming Projects
Generally, the number of current projects should be entered by the model user at the start of

each simulation. Model defaults were set based on the current portfolio at the time of the study.



Forecasting with the model requires an assumption of projects entering TV or LO (depending on

the chosen starting phase) each year. To determine default values to include in the model, we

interviewed various stakeholders within NIBR to determine historical projects inflow rates to these

phases. Discussing this data with research management, we agreed to choose model defaults the

roughly represented 2009 project inflows. The model user can then adjust from these defaults as

needed.

As with transition rates, we implemented variability in actual incoming projects by employing a

normal distribution with mean as the user-entered average project assumption, and standard deviation

as the user-entered "+/-" value.

3.2.2.4 Backup and PIE Projects
The project team collectively determined that it was vital for the model to capture two real-

world portfolio attributes in which the project count can effectively amplify, which we refer to as

"expansion points" in the model. Specifically, a given CSP project may be followed by one or more

backup projects, and an NME POC clinical study may be followed by one or more PIE POC studies.

We employed a similar data collection strategy for each of these portfolio expansion points. We

first considered the model logic to determine exactly what data was needed. For modeling purposes, we

assume that some proportion of projects that enter CSP will result in 0 to 5 backup projects; likewise, we

assume that some proportion of projects that reach NME POC will result in 0 to 5 PIE POC projects. Thus,

we treat CSP entry and NME POC entry as "trigger points" that launch new projects in the model.

To work within this model logic, we needed historical data describing the prevalence of

expansion projects. For each trigger point reached historically, we determined the prevalence of

launching 0, 1, 2, 3, 4, or 5 projects, as well as the mean time to launch each expansion project.

Together, the calculated proportions and mean time-to-launch served as the default values for

expansion point prevalence and timing employed in the model.

3.2.3 Modeling Tool Selection

Modeling tools must be suitable for capturing the structure and behavior of the real-world

system, and acceptable to the end-user to ensure adoption of the model. Guided by these criteria, we

evaluated available platforms on which to build the pipeline model.



Microsoft Excel is a logical choice for input and output of numeric data. Managers are typically

knowledgeable of the operation and features of the software, and it is widely available in many

organizations, including NIBR. To accommodate the uncertainty noted in the input parameters, we

chose Oracle Crystal Ball for Monte Carlo simulation, which integrates seamlessly with Excel. Finally, we

employ Excel's built-in Visual Basic for Applications (VBA) programming platform for data manipulation.

Compared to relying on worksheet functions within Excel, VBA programming provides greater flexibility

and control over the data processing that underlies the forecasting model.

Many other simulation platforms are available that can potentially support portfolio forecasting.

However, for the purposes of prototype modeling, we gravitate towards an Excel-based solution based

on its minimal learning curve and financial investment. Over time, if growth in model complexity due to

feature expansion exceeds feasibility within Excel, additional modeling platforms can be evaluated.

3.2.4 Output Data

The model's output should provide a forecast for those metrics of strategic significance for

portfolio decision-making. As such, we relied on input from NIBR's Portfolio Management Group in

selecting relevant output metrics, as well as review of existing portfolio reports and dashboards.

Specified metrics fall into three categories: portfolio size, clinical readout, and phase transition metrics.

Portfolio size metrics illustrate the numbers of projects in relevant portions of the R&D pipeline

in a given forecast year. These metrics provide management with information as to the health of the

portfolio; that is, the number of projects currently in R&D should correlate to the number of successful

clinical studies at a later date. Those metrics of strategic significance to NIBR, and thus, those relevant to

the model are the sizes of the CSP, preclinical, and clinical portfolios individually, and the size of the

NME portfolio (i.e., the sum of the CSP portfolio, preclinical portfolio, and POC clinical portfolio). In

addition, NIBR wishes to forecast the percentage of biologics projects in the portfolio.

Clinical readout metrics provide the tallies of the clinical study readouts during a given forecast

year. These are arguably the most important output metrics, since the ultimate goal of the research

organization is to deliver positive studies to downstream development. The relevant metrics include

total positive readouts, total negative readouts, positive POC readouts, and positive PIE readouts.

Finally, phase transition metrics tally the number of phase-to-phase transitions that occur in a

given forecast year. They offer a sense of the productivity of each phase individually.



3.2.5 User Capabilities

User capabilities define how the end-user wishes to interact with the model. Questions include:

* How much technical aptitude is expected of the end-user to utilize the model?

* How much time can exist between beginning a model scenario and achieving a usable output?

" How should the output data appear?

" What level of user control of assumptions is required?

Portfolio assessment and decision-making is made at a fairly high level in most organizations,

including NIBR. This audience is primarily interested in dashboard-type model outputs, and likely prefers

not to undergo any significant learning curve in order to obtain these outputs. This audience suggests

two primary options for model design. The first alternative is a technically-complex model that would be

managed by an analyst within the organization; leadership would request dashboard reports based on

specified assumptions, and model output would be delivered at a later time. The second alternative is a

simple, intuitive model that can be used by leadership for real-time decision-making. Given a relatively

large number of portfolio levers, the first, transactional approach would limit the usability of the model

for quick-turnaround scenario analysis. We therefore gravitated towards a simple model design that

supports real-time adjustment of assumptions and observation of resulting output. Technical complexity

should be hidden from the user. Furthermore, the model requires sufficient speed such that various

changes to portfolio levers can be manipulated to investigate different scenarios.

Given the described audience and use case, another important consideration is output data

display. The problem space suggests a potentially overwhelming number of data points in a given

output-i.e., 14 relevant output metrics for each of 11 forecast years yield 154 forecast metrics.

Furthermore, when we consider the need to quantify uncertainty in each metric over a given forecast

simulation, we realize the need to present the most relevant metrics in an intuitive, digestible manner

through customized output reports. We can model these reports on existing portfolio reporting

methods to aid adoption and again minimize the learning curve.

Finally, we consider how the user interacts with the model with respect to input parameter

adjustments. As discussed in Section 3.2.2, significant effort went into data collection and analysis that

defines default input parameter values. However, scenario analysis may require adjustment to those

default values. For example, a manager may wish to observe the impact of improved efficiency by

decreasing phase durations, but must be able to return to the default historical values as needed. This



need for both default values and adjustment-capability defines an additional use case which must be

easily accommodated in the model.

3.3 Model Formulation

This section describes the model formulation that implements the pipeline structure, dynamics,

and user-specifications described above. Data visible in model screenshots does not represent the true

NIBR dataset.

3.3.1 User Interface

The forecasting model resides in a Microsoft Excel workbook, and includes multiple worksheets.

The user navigates the model from the User Dashboard worksheet, shown in Figure 13. This page

includes integrated "Instructions for Use", which dictate the user's workflow, and optional "Utilities" to

manipulate model settings. To run the model, the user sequentially follows the steps under "Instructions

for Use". This worksheet also includes a summary tally of projects in the pipeline for a given simulation

trial, as well as yearly forecast values for that trial.



Instructions for Use:
Step 1: Initialize the model bg clicking here ------------------ > Reset

Step 2: Select a model starting point here -----------------------> D

Step 3: View the "User Input"worksheet and adjust assumptions as needed. To load all
default values, click the "Load Defaults" button on the right side under Utilities.

Step 4: Load all data into the model bg clicking here ------ > Load User Data

Step 5: In the Crgstal Ball tab, click "Run Preferences" and select the # of trials to run.

Step 6: In the Crystal Ball tab, click "Start" to begin the simulation.

Utilities: (optional)
To load default settings, click here:

To run one forecast. click here: Run 1 Forecast

To reset forecasts, click here: Res Forecasts

Select "Year 0" here: 2010

NOVARIIS

Figure 13: Model UI -User Dashboard

The second worksheet in the model is the User Input page, shown in Figure 14. This page allows

the user to manage the values of all input parameters used in the model-i.e., current projects,

incoming projects, in-licensed projects, backup project prevalence and timing, PIE project prevalence

and timing, phase duration, and phase transition rate. An identical worksheet, labeled Default Values,

stores the default values determined as part of the historical data collection and analysis phase of the

project. The user may replace all User Input values with the stored defaults by clicking the appropriate

utility button on the User Dashboard. To avoid data corruption, the Default Values worksheet is

password-protected such that only designated super-users can permanently change the defaults.
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Figure 14: Model UI - User Input

The remaining four worksheets pertain to customized leadership reports. One worksheet,

labeled Leadership Report Data, utilizes Crystal Ball worksheet functions to extract relevant statistics

from the forecast cells on the User Dashboard. Three additional worksheets automatically display bar

graphs following each simulation for portfolio size, readout, and transition metrics, respectively. These

graphs synthesize the raw, per-year output data into portfolio trend information over time, as requested



by NIBR leadership to support decision-making. Sample graphs are provided in Figure 15, and the

worksheets in their entirety appear in Appendix A.
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In addition to the customized leadership reports, the end-user has access to reports created by

the Crystal Ball software. For each simulation, Crystal Ball tracks statistics for every "forecast cell",

shown in light blue in Figure 13. The benefit is that the user can investigate various data elements for

any particular metric forecasted for any particular year. An example is the forecast chart in Figure 16,

showing the frequency distribution for forecasted positive POC studies during year 3. Although the

forecast charts provided a useful view of forecast variability, we believe that the customized reports

provide a more useful view to portfolio managers. It is not clear that the predictive accuracy of the

model justifies heavy emphasis on the percent likelihood of a particular forecast outcome. Rather, we

believe the best use of the output data is to observe the mean and range of uncertainty for a given

forecast, which is provided in the customized reports. Furthermore, the customized graphs allow trend

comparison across multiple years, which the Crystal Ball forecast charts do not.
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Figure 16: Sample Crystal Ball Forecast Chart

3.3.2 Model Architecture

Prior to discussing the logic that enables pipeline forecasting, it is useful to describe the high-

level architecture of the model. The model is built using three key software components: Microsoft

Excel, Visual Basic for Applications (VBA), and Oracle Crystal Ball. Whereas Excel provides the primary

user interface as a platform for data input and output, VBA is used to process the data once it has been

entered. Although VBA can interface directly with data residing in Excel worksheets, it is typically faster

to perform calculations and other processing in memory using VBA. Thus, the general workflow of the

model is that user-entered data is automatically loaded from an Excel worksheet into variables in

memory, custom VBA scripts process the data in memory, and the results of the processing are loaded

back into the Excel worksheets for output display. Data that appears in Excel as multiple, related cells

are typically stored in an array in VBA, which is essentially a group of elements having a common name.

For example, the values representing the number of current projects in each of six phases of R&D are

stored in memory in a 6-element array called current projects. This array terminology will be used

extensively below as we describe the model.

Crystal Ball acts as an Excel add-on program, interfacing directly with the workbook in which the

model resides. It is the simulation engine that manages uncertainty in the input variables by tracking

simulation outcomes as inputs vary. A given simulation consists of a user-specified number of trials. In

the model design, a trial is a single, 11-year forecast of the portfolio with a specific set of input

assumptions; it is one possible outcome. Because many of the input assumptions are stochastic in

nature, each trial will produce a different picture of what the pipeline will look like over the 11-year



period. Crystal Ball captures the results of each forecast metric for each trial, allowing us to create

reports that comment on the simulation results-i.e., the aggregate of all trials-at once.

The model relies on Crystal Ball's ability to track forecasts for each simulation trial, but does not

make use of its ability to alter input assumptions per trial. Rather, input assumptions are controlled

directly through the model's custom VBA scripts. This choice stems from the model logic requiring two

levels of uncertainty, which we refer to as the "inner and outer loops", as illustrated in Figure 17. The

inner loop creates the single, 11-year forecast; in other words, it implements one simulation trial. As

described in detail in Section 3.3.3 below, this forecast involves capturing project-to-project uncertainty

in phase durations, as well as yearly variation in phase transition rates and other input parameters.

While input assumptions are changed thousands of times during the inner loop, we are not interested in

the forecast values resulting from each change (which Crystal Ball would record if driving the input

assumption changes). Rather, we are interested only in the complete 11-year forecast obtained after

this inner-loop has fully processed, illustrating the need for the outer loop. That is, the model, via Crystal

Ball, records the forecast values after each trial, or 11-year forecast period. This captures not only the

project-to-project and year-to-year variability in parameter values, but uncertainty across different

possible 11-year forecast outcomes. If each inner-loop trial represents one possible picture of what the

future will hold, the outer loop captures the values and uncertainty for all of these possible outcomes.

Step 1: Forecast the pipeline 1 year ahead and loop for
spee2fLed numheo of forecast years (e.g., 11)

Forecast o
Year

Cculate nurnber of projects that wN not eventuainy
X l 00 I I rastobased on probabti~c phase transition rate

Progress each WIncviuc project by X% equal to "I
X, year of effort", based on probabistic phase duration

6 Transition projet if cumulative progress 2100%

[Step 2: Loop for specified number of simulations (e.g., 1000)

Figure 17: Two Sources of Uncertainty - "Inner" and "Outer" Loops



3.3.3 Model Logic

We describe the model logic chronologically as experienced by the user. We aim to include a

sufficient level of detail to understand the general mechanics of the model and how projects progress

through it. In addition, we include formulas and calculations that are relevant to understanding specific

choices we made on how to best approximate the real-world pipeline. Equations used in this section are

stylized to best describe their purpose and application. They do not necessarily include the exact syntax

employed in the VBA code; rather, they illustrate the logic behind a given calculation. For additional

information on the VBA logic, as well as the complete VBA code, please refer to Appendix A.

As stated, the user navigates the model from the User Dashboard worksheet. Excel Form Control

buttons and the Crystal Ball user interface trigger the various VBA macros that drive the model. For

reference, Figure 18 highlights these buttons. The user sequentially follow the steps under "Instructions

for Use" to run the model.

Home Insert Page Layout Formulas Review View Developer Add-Ins Get Started Crystal Ball

12. Copy 1 3Select -Tools - A0Help
PaSte Fee Save or Restore 31Resources

Define Define Define Start top Reset Si p OptQuest View Create Extractisumption- Decision Forecast Clear Cell Prefs . Run Preferences Charts Report Data C, About
Define Run Analyze Help

S28
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Instructions for Use: Utilities: (optional)LodDfut
Step1: Initiasize the model by clicking here -- Reset To load default settings, cck here:

Step 2: Select a model starting point here ------- *0 To run one forecast, click here: Run 1 orecast

Step 3: View the 'User Inputrworksheet and adjust assumptions as needed. To load al I To reset forecasts, click here: Reset Foecasts
default values, click the "Load Defaults" button on the right sid under Utilities.

Step 4: Load all data into the model by clicking here -- > Load User Data

NOVARTIS
Step S: In the Crystal Ball tab, click "Run Preferences' and select t ials to run. INs1it IS roe

BMC DICA Rtf S1 ARCH

Step : In the Crystal Ball tab, click 'Start" to begin the simulation.

Figure 18: User Dashboard

3.3.3.1 Step I
In Step 1, the user is instructed to initialize the model by clicking the Reset button. This button

triggers VBA code that performs various initialization functions to prepare the model for a new

simulation. For example, it clears data residing in worksheets and memory corresponding to a previous

simulation.

3.3.3.2 Step 2



In Step 2, the user is instructed to select a model starting point by clicking one of two radio

buttons that correspond to the desired starting phase. This button triggers VBA code that sets up the

model to forecast from the chosen starting phase. This feature adds flexibility to the model by including

or omitting TV and HF based on user preference.

3.3.3.3 Step 3
In Step 3, the user is instructed to view the User Input worksheet and adjust assumptions as

needed. On this worksheet, the user has the option of manually changing values for:

* Current projects (LMW and biologics)

* Incoming projects estimate for each forecast year (average, confidence interval, and percent

biologics)

" In-licensed projects estimate for each forecast year(per forecast year, LMW and biologics)

" PIE prevalence and launch delay

" Backup project prevalence and launch delay (LMW and biologics)

* Transition rates (per phase, for each type of project)

* Durations (per phase, for each type of project)

The user may also leave values as they were in the previous simulation, or may load all default

values listed in the Default Values worksheet by clicking the Load Defaults button listed in the "Utilities"

section in the User Dashboard worksheet. This button triggers VBA code that copies all values from the

Default Values worksheet into the User Input worksheet.

3.3.3.4 Step 4
In Step 4, the user is instructed to load data into the model by clicking the Load User Data

button. This button triggers VBA code that loads user-entered data into memory and prepares the

model for simulation. Below, we highlight the key functions performed.

During this step, the model calculates an "actual" number of incoming LMW and biologics

projects per forecast year based on the user-entered mean and standard deviation. The calculation is

performed with the following equation:

actual incoming projects = NormInv (Rnd, mean incoming, standard deviation incoming)

Using Excel's Rnd function returns a random value between 0 and 1 for the probability in Excel's

Normlnv function. The result is a random draw from a normal distribution.(17)



The model also initializes the primary construct for managing project progression, which we

refer to as the pipelinejfull array. Conceptually, it is helpful to think of this array as having three-

dimensions which together identify a particular project, as represented in Figure 19. Each project resides

in a particular data element in the array, with its location identified according to three dimensions:

" R&D phase: TV, HF, LO, CSP, preclinical, or clinical

e Project type 4: LMW-POC, Biologic-POC, LMW-PIE, Biologic-PIE

" Project number: an index identifying each project among all projects of a particular phase and

type

The value of each data element represents the percent progress towards completion of the particular

phase, ranging from 1% to 99%. As shown, the project showing "37" currently is in the LO phase, and

37% of work in the phase is complete.

BloLPIE Biologic project;
B P89% ompete

LI1W-PlE with TV phase

BloPOC 8
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TV Project humber

I LO 37

BiLog project;
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Figure 19: Conceptual Representation of Project Tracking in Model

4 The distinction between POC and PIE is only applicable to the Clinical phase. Prior to this phase, all projects are
designed as either LMW-POC or Bio-POC on the model.



At this step, the pipelinejfull array is populated with the current project information. It would

be cumbersome and likely inaccurate to collect estimates for current project progress for all portfolio

projects prior to simulation. Instead, the model assumes random progress for all projects in the

portfolio; we populate the pipelinejfull array with the number of projects indicated by the current

projects input data, assigning a random progress value between 1 and 99 to each project.

3.3.3.5 Step 5
In Step 5, the user is instructed to click "Run Preferences" on the Crystal Ball tab and select the

number of trials to run. The model defaults to 200 trials, which typically completes one simulation in

two to three minutes.

3.3.3.6 Step 6
In Step 6, the user is instructed to click "Start" on the Crystal Ball tab to start the simulation. This

action launches the looping process shown in Figure 17, above, and progresses the current project

portfolio to ultimately create successive 11-year forecasts. The mechanics of this project progression are

described below.

As stated, project progression initializes with current projects populating the pipelinejfull array.

The model progresses projects in one-year increments until it has completed an 11-year forecast. The

logic for each year is identical:

3.3.3.6.1 Project termination

As described in Section 3.2.2.2, historical transition rate data describes what percentage of

projects that reach a particular phase will eventually transition to the subsequent phase. The model

approximates this logic by counting how many projects transition into each phase in a given year,

terminating a number of projects as dictated by each phase's transition rate, and continuing to progress

only those projects that ultimately will transition to the next phase. Capturing the number of projects

that enter a phase in a given year is sometime referred to as an entry-class approach. To start the

model, we make a simplifying assumption that current projects enter their current R&D phases in Year

0, since this allows common logic to be used for all forecast years.

Terminated projects are not removed from the model immediately, since depending on the

phase duration, we cannot assume that all projects that will eventually terminate do so within one year.

As such, terminating these projects immediately would yield underestimated project tallies for each

year, based only on the number of projects that will eventually transition. Instead, the model tracks



"projects pending termination" separately so that they can be included in interim project tallies prior to

the time when they would actually terminate from the portfolio. We assume that projects terminate

proportionally up to the average phase duration; for example, if 15 projects from a given entry class will

terminate from a phase with a three-year average duration, the model will terminate 5 projects in each

of the next three years.

3.3.3.6.2 Project progression

Wherever possible, we aim to capture the independence of each project to accurately reflect

the high project-to-project variability in early research. As such, while projects are reported to the user

as aggregated "buckets" of projects-e.g., 20 projects in preclinical phase in 2012-projects are

progressed and transitioned independently. As described in Step 4 (Section 3.3.3.4), each project is

represented separately in pipelineJull as an integer from 1 to 99, representing the percentage of

progress towards completion of its current phase in a given forecast year. Those preclinical projects

consist of 20 independent projects with different levels of completion at any given time. Furthermore,

each project progresses without respect to the others; some may take approximately the average phase

duration to complete the phase, while others may be particularly fast or slow projects, as is the case in

the real-world.

To advance the portfolio by one year, the model begins with the first project-i.e., phase TV,

project number one, project type LMW-POC-and progresses the project based on a series of tasks and

calculations:

1. The model calculates how much work remains in the particular phase, percent phase remaining,

by subtracting the current value in pipelinejfull from 100. For example, if the current value is 37,

then 63% remains to be completed.

2. The model calls a function to calculate a unique phase duration based on the BetaPert

distribution parameters for the particular phase and project type. The function involves two key

calculations.(18) First, the BetaPert parameters min (a), likeliest(M), and max (b) are converted

into Beta distribution parameters a and S, then the Beta parameters are used to determine a

random duration, as follows:

2(b + 4M - 5a) ((M - a)(b - M)
3(b - a) (b - a)2



2(5b - 4M - a) (M - a)(b - M)
3(b- a) +(b - a)2

duration = BetaInv(Rnd,a, f,min,max)

Similar to the calculation of an actual transition rate based on Excel's Norm/nv function, we

calculate an actual duration using Excel's Rnd function and the Beta/nv function. Specifically, a

and 0 define the Beta distribution of durations for the given R&D phase, and the min and max

parameters truncate the distribution to realistic values. The Rnd function returns a random

value between 0 and 1 to serve as a probability parameter for the Betalnv function, effectively

providing a random draw from the distribution.

3. Since the duration represents the number of years to accomplish the entire phase, we can use it

as a proxy for the pace of work for the project; that is, for one year:

percent phase accomplished = 100 * (dur[tion)

4. The model adds percent phase accomplished to the existing value for how much work has

already been accomplished. If the sum is greater than or equal to 100, the project will transition

in the given year; if the sum is less than 100, the project will not complete the phase in the given

year. In the latter case, the model replaces the previous pipelinejfull value (e.g., 37), with the

new sum, and no further processing is required. In the former case, additional logic is needed to

transition the project in the model.

5. In most cases, when a project transitions, some time remains in the year to accomplish work in

the subsequent phase. The model calculates the percent year used based on how much work

remained in the previous phase and how much work could have been accomplished in an entire

year based on the duration. It can then repeat tasks 2 through 4 for the new phase, scaling the

percent phase accomplished calculation by the portion of the year remaining. The model will

repeat tasks 2 through 4 until the percent phase accomplished for a given phase is less than 100

when the entire year has been used.

6. For each phase transition, the model adds to various tallies. For forecast metrics, the model

records the transition into each phase, as well as transitions out of the clinical phase, indicating

a positive POC or PIE study. In addition, the model records each transition as an addition to the

entry class for that year, which will be used in the subsequent year to determine the number of



terminated projects. Finally, for each transition into CSP or out of clinical, the model launches

subroutines that determine whether a backup project or PIE project, respectively, will be

created. These subroutines are discussed separately following this section.

Once a project completes its progression for a given year, the model moves sequentially onto

the next project and repeats the same logic. Specifically, the model progresses through all LMW-POC

projects in the TV phase, then moves on to the HF phase. Once the Clinical projects are completed, the

model moves to the next project type, Bio-POC, and progresses through all phases. This progression

continues until all projects in pipelinejfull have been progressed by one year. The model then repeats

the entire progression sequence until 11 years have been forecasted, yielding an 11-year portfolio

forecast, equating to one simulation trial. Crystal Ball then records the forecast values, and launches the

next simulation trial.

3.3.3.6.3 Expansion point subroutines

As described, expansion points are locations in the pipeline in which projects effectively

multiply. Specifically, we focused on creation of backup projects at CSP and PIE projects at the clinical

phase. To implement this feature in the model, we rely on what we refer to as "trigger points", or

particular project transitions that trigger additional project creation by launching an appropriate

subroutine. When a project transitions into the CSP phase, the model launches a backup_ calculator

routine, which determines how many backup projects (if any) to launch and when to launch them based

on backup prevalence and timing assumptions. Likewise, when a clinical project of type LMW-POC or

Bio-POC creates a positive readout, the model launches a PIE_calculator routine, which determines how

many PIE projects (if any) to launch and when to launch them.'

The two expansion point subroutines employ similar logic; we will use backup projects as an

example. Prevalence values such as those shown in Figure 20 define a discrete, custom distribution. For

each CSP transition, the model draws from this distribution to determine how many backups to create,

employing Excel's Rnd function to return a random integer between l and 100. If the number lies

between 1 and 50, zero projects are created; if the number lies between 51 and 80, one project is

created, and so on.

s Although trigger points simplify the timing of expansion point project launches in the model, project transitions
are not truly the real-world trigger of new project creation. Rather, research management may launch backup
project or PIE studies due to various project-specific reasons. Nonetheless, the trigger-point approach is consistent
with our strategy to rely on historical data, since we can observe what percentage of project transitions were
followed by new project creation, irrespective of the reason.
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Figure 20: Backup Project Prevalence

Once the model calculated how many projects to launch, it must determine when to launch

these projects in the simulation. To do so, the model determines how much of the year remains when

the trigger point is reached, and adds the input parameter value that defines the time to launch a

backup project. The sum indicates how many years ahead the backup project will launch; for example, a

sum of 1.5 indicates that the project will launch halfway through the following forecast year. The partial

year creates a challenge to implementation, since the main progression logic will progress all projects by

an entire year. To accommodate this, the model handles the first year of each expansion project within

the expansion point subroutines. In this case, the model will scale the progress calculation by the

portion of the year that will remain in the launch year, or 0.5.

When one CSP project creates multiple backups, we make a simplifying assumption that the

time-to-launch input parameter is applied in between the launch of each backup project. In other words,

if the first backup will launch 1.5 years after the CSP transition, the second will launch 1.5 years after the

first backup launches.

Each expansion project that will launch in the future is stored in an array. For each forecast year,

the model loads projects designated to launch that year from the array into pipelinejull, after which

they are treated like all other projects.

3.3.3.6.4 Leadership report creation

Once a simulation completes, the model automatically updates the custom leadership reports

based on the simulation results. We accomplish this by using built-in Crystal Ball worksheet functions

that allow extraction of simulation data. We are interested in reporting mean values of various portfolio



performance metrics, as well as the variability around the mean across the many trials. We extract

mean, 10th percentile, and 90th percentile forecast values with the following worksheet functions,

respectively:

= CB. GetForeStatFN(forecast cell reference, 2)
= CB. GetForePercentFN(forecast cell reference, 10)
= CB. GetForePercentFN(forecast cell reference, 90)

3.4 Model Utilization

This section discusses use of the model within the organization. We first provide detailed

examples of how the model can be used to drive strategic portfolio decision-making. We then discuss

efforts to aid adoption of the model into NIBR work practices.

3.4.1 Driving strategic decision-making

As stated, our ultimate goal is to deliver a pipeline model that can easily support real-time

portfolio decision-making for NIBR's R&D managers. Therefore, to illustrate how the model can be used

in this manner, we have created various hypothetical strategic examples. Although it is not feasible to

demonstrate use of every model feature and portfolio lever, included examples cover a broad range of

model functionality.

Below, we explore how the pipeline model can be used to support decision-making using two

types of scenarios analysis. We first perform an input parameter sensitivity analysis, in which we vary

the values of selected model inputs (e.g., current projects, incoming projects) to gauge the model's

sensitivity to these values. We then walk through two hypothetical strategic scenarios. For each, we first

observe the output of a baseline simulation run, and then test different managerial levers in the model

to determine possible strategies to achieve a desired change in portfolio output. For simplicity, we will

change one lever at a time for comparison to the baseline, but in practice, multiple levers can be

changed concurrently to observe the interaction of these changes.

For this analysis, we start all simulations from the LO phase, which NIBR expects to use as its

primary model starting point. All scenarios were simulated over 200 trials.

3.4.1.1 Input Parameter Sensitivity Analysis
Prior to attempting to alter the baseline portfolio, we first perform a sensitivity analysis to

quantify the sensitivity of two key output metrics-NME portfolio size and positive clinical readouts-to

changes to various input parameters. This analysis serves two purposes. First, it provides the user with a



sense of how heavily simulation results depend on the user's assumptions about portfolio status and

performance. For example, the user assumes certain values for the future inflow of projects to LO, and

model output will vary based on the values used. Second, the sensitivity analysis supports strategic

portfolio analysis by elucidating the relationship between changes to the portfolio levers that managers

can influence, and the expected impact on output metrics. NME portfolio size and positive clinical

readout sensitivities are displayed in Figure 21 and Figure 22, respectively. Sensitivities are provided on

a per-year basis, since a given change will impact each forecasted year differently. The sensitivities are

color-coded such that larger percentage changes from the baseline are shaded darker than smaller

changes. Note, however, that the magnitude of percentage change in output should be compared to the

percentage change in input for that parameter to gauge the overall sensitivity.

Figure 21: NME Portfolio Size Sensitivity to Changes in Input Parameter Values

Figure 22: Positive Readout Sensitivity to Changes in Input Parameter Values

The sensitivity analysis itself yields interesting and somewhat counterintuitive observations

related to portfolio performance. Although we initially believed that input assumptions for the current



project count "play out" over roughly five years and no longer influence the portfolio, the results

suggest differently. That is, we see that, assuming constant project inflow over the forecast period, the

level of projects from 2015 forward is predicted to be approximately 7% lower when we decrease the LO

current project count by 30%. After performing additional simulations to investigate this observation,

we attribute the cause of this phenomenon to the role of expansion projects in the portfolio. That is,

although LO projects themselves will progress through the NME portfolio within approximately 5 years,

any backup or PIE projects launched will exist in the portfolio for significantly longer. In essence, early-

stage projects create a multiplier effect.

We also observe that phase durations can significantly impact NME portfolio size, a relationship

which is not necessarily intuitive. This result can be explained with Little's Law, which states that, in a

steady-state system, the average number of items in the system is equal to the average dwell-time in

the system times the average number of items arriving per unit time.(19) Therefore, assuming constant

project inflow, an increase in phase duration requires an increase in the number of projects in the

portfolio at steady-state.

A final observation is that small changes to the assumed phase transition rate dramatically

influence both portfolio size and positive readout metrics. We attribute this result to two dynamics.

First, transition rates are multiplicative; the chance of any one project reaching a late stage of R&D is the

product of all the prior transition rates. To illustrate the effect, consider reducing transition rates for

three consecutive phases from 50% to 40%. With a 50% rate, the percentage of projects that complete

all phases equals "50% x 50% x 50%", or 12.5%. With a 40% rate, only 6.4% of projects complete all

phases, yielding a 51% decrease in project throughput for a 10% drop in transition rate.

Second, transition rate changes would yield a similar multiplier effect as described above; any

early-stage project that transitions to CSP or reaches a positive clinical readout has an opportunity to

spawn an expansion project; conversely, any project terminated prior to these stages does not have this

opportunity, thus, compounding the impact of any given transition rate change.

3.4.1.2 Strategy Scenario I
For the first scenario, we select a hypothetical set of input parameter values, and achieve the

baseline output reports shown in Figure 23. We observe an apparent portfolio gap; following strong

growth in NME portfolio size and positive clinical readouts through 2010, these metrics fall significantly

in 2011. This suggests a relatively weak current project portfolio. However, large numbers of expected



incoming projects build up the portfolio over the next five years, yielding eventual portfolio results that

exceed 2010 levels.
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Figure 23: Scenario 1- Baseline Output

Upon viewing this forecast, we will assume that NIBR aims to "fill in" its portfolio gap by

increasing the positive-readout output from approximately seven to ten projects for 2011 to 2014. As

such, we will independently utilize various portfolio levers within the model to achieve this goal.

Note that we could perform a similar exercise focusing on affecting the NME portfolio size

metric; however, as observed during the sensitivity analysis, NME portfolio size is not directly correlated

to positive clinical readouts. As shown, less efficient practices that might lead to long phase durations

will increase the NME portfolio size due to slower throughput, but will not increase the numbers of

positive readouts.
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3.4.1.2.1 Lever #1: Increasing PIE project prevalence

Increasing prevalence of PIE studies will increase the proportion of clinical phase projects that

"spin-off" additional PIE studies. From the sensitivity analysis, we observe that a 10% shift from "0 PIEs

launched" to "1 PIE launched" yielded a 6-7% increase in positive-readout output for some years. It had

no impact on other years, likely due to the time delay in PIE launch. Seeking roughly a 40% increase in

positive-readouts, we will assume that we must shift at least 50% from 0 to 1 PIE launched. In practice,

we are saying that 50% more POC projects must yield one PIE project. Simulating this scenario, we

observe the outputs shown in Figure 24.
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Figure 24: Scenario 1- PIE projects lever

Even with a fairly significant change in practice-i.e., launching PIE studies for 50% more POC

studies-we only observe a two-project increase in positive readouts for the target years. Although we

can attempt to increase PIE prevalence further, we question whether such a dramatic change would be

feasible in real-world research practices. That is, decisions to launch PIE studies are not made arbitrarily,

but are based on hypothesized potential of a therapy for treating a different disease. Therefore, we look

to other pipeline levers for achieving the desired portfolio change.

3.4.1.2.2 Lever #2: In-licensing

An additional option available to NIBR is to seek strategic partnerships that fill-in gaps in the

portfolio. In-licensing is one such mechanism that can be employed in a variety of forms. Although the

sensitivity analysis assumed yearly in-licensing for simplicity, NIBR can apply targeted in-licensing

opportunities that address specific needs.



Note that there are practical challenges to employing the in-licensing lever in practice. At the

clinical phase, in-licensing decisions require careful evaluation of compound value on a project-specific,

scientific basis, and suitable projects may not be available. Nonetheless, this exercise shows the

potential impact of in-licensing as a portfolio lever.

For this scenario, we would like to explore how in-licensing can be used to increase the number

of positive readouts between 2011 and 2014. Given the complex phase dynamics caused by probabilistic

phase durations and PIE project creation, we will forego use of the sensitivity analysis, and rather,

experiment with multiple in-licensing values by trial-and-error.

We consider in-licensing three LMW projects per year at the preclinical phase for 2010 to 2014,

and three LMW projects at the clinical phase for 2010 to 2015. Simulating this scenario, we observe the

outputs shown in Figure 25. We then repeat this scenario assuming in-licensing six LMW project per

year, and observe the outputs shown in Figure 26.
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Figure 25: Scenario 1 - In-licensing lever (3 projects)
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Figure 26: Scenario 1 - In-licensing lever (6 projects)

Observing the respective outputs, we see that the in-licensing lever is quite effective at closing

the near-term portfolio gap. In-licensing three projects per year at the preclinical and clinical phases

achieved the goal in all but 2011, while having little impact after 2015, as desired. In-licensing six

projects yielded readout outputs achieving the 2011 goal, but exceeded the stated goal for all other

years.

3.4.1.3 Strategy Scenario #2
For the second scenario, we select a different hypothetical set of input parameter values, and

achieve the baseline output reports shown in Figure 27. We observe that the current portfolio appears

very strong, yielding a large NME portfolio and high positive-readout output over the next three years.

However, this growth is not sustained, and by 2015, both metrics have declined well-below 2010 levels.

This decrease suggests that, based on the assumptions for incoming projects, project inflow to LO

cannot sustain the near-term NME portfolio growth.
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Figure 27: Scenario 2 - Baseline output

Upon viewing this forecast, we will assume that NIBR aims to achieve a steady output of

approximately 10 positive readouts per year after 2015. (Readouts between 2010 and 2014 will be

largely driven by the strength of the current portfolio.) As such, we will independently utilize various

portfolio levers within the model to achieve this goal.

3.4.1.3.1 Lever #1: Increasing resources to increase incoming projects

One strategic lever available to management is to increase staffing at upstream R&D phases to

increase the total number of projects that feed the portion of the pipeline we are concerned with.

Yearly incoming projects to LO impact both short- and long-term portfolio size and throughput, and

therefore, are potential levers for impacting the steady-state project count and positive-readout output.

The sensitivity analysis revealed a 20% change in yearly incoming projects to yield a 13-20% change in

positive-readout output from 2016 forward. Seeking to increase steady-state positive-readouts from 7

to 10, or 43%, we raise incoming projects by a similar percentage. Simulating this scenario, we observe

the outputs shown in Figure 28.
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Figure 28: Scenario 2 - Incoming projects lever

Observing this result, we find changes to the project inflow to be an effective lever for

influencing long-term portfolio size and positive-readout output. The impact of the change in the near-

term is minimal, since incoming projects take multiple years to cascade through the NME portfolio and

affect positive-readout output.

3.4.1.3.2 Lever #2: Increasing backup project prevalence

Increasing prevalence of backup projects will increase the proportion of CSP projects that "spin-

off" additional projects. From the sensitivity analysis, we observe that a 10% shift from "0 backups

launched" to "1 backup launched" yielded a 6-7% increase in positive-readout output for some years. It

had no impact on other years, likely due to the time delay in PIE launch. Seeking a 43% increase in

positive-readouts, we will assume that we must shift at least 50% from 0 to 1 PIE launched. In practice,

we are saying that 50% more CSP projects must yield a backup project. Simulating this scenario, we

observe the outputs shown in Figure 29
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projects per year at the preclinical and clinical phases beginning in 2015. Simulating this scenario, we

observe the outputs shown in Figure 30.
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Figure 30: Scenario 2 - In-licensing lever

Observing the respective outputs, we see that the in-licensing lever is quite effective at

impacting the future portfolio. In-licensing five projects per year at the preclinical and clinical phases

achieved the goal of 10 positive readouts from 2015 forward.

3.4.2 Organizational implementation

Although analysis of NIBR's portfolio management processes was outside the scope of the

project, we took various steps to aid seamless integration into NIBR's processes and encourage model

usage and further model development over time. The model itself was designed for user-friendliness to

provide a shallow learning curve, even with infrequent use. For example, "Instructions for Use" are

integrated into the model, and actionable output reports are automatically generated and displayed for

each simulation. In addition, as part of project transitioning, we provided model orientation and training

to all members of the Portfolio Management Group (PMG), as well as technical training to an intended

"model owner" within the PMG. Finally, we provide the organization with discussion of lessons learned

through the modeling effort, recommendations for how to most effectively implement and utilize the

tool, and recommendations for future model improvements via this thesis document.



4 Model Validation

4.1 Methodology

Given that the model creates a multi-year forecast of the research portfolio, the model output

could not be validated by forecasting from today's portfolio. Instead, we validated the model using

historical data. That is, we asked the question: Based on the state of the portfolio in the past, how well

does the model predict today's portfolio? To answer this question, we created historical portfolio

snapshots-i.e., tallies of the number of projects in each phase of research at various moments of time

in the past-to serve as "current states". Discussions with the portfolio management team suggest that

historical data quality becomes less reliable prior to 2004. Thus, we chose 2004 as the lower date limit

for creating portfolio snapshots. (Note that this decision is consistent with the limit used when analyzing

historical data to include in the model itself.) Using available historical project data, we constructed

three validation scenarios based on three distinct "current states"- the portfolio as of 1/1/2004,

1/1/2006, and 1/1/2008.

To create estimates for yearly incoming projects, we determined the number of new projects

that entered phases TV and LO each year over the 2004-2009 validation period, if available. These

quantities were gathered through discussions with various research personnel within NIBR. For 2009

forward, we used stated or estimated project quantity goals. Likewise, in-licensing inputs for the

validation period were based on research management estimates.

For all validation scenarios, the model was run with 200 simulation trials. Transition rates,

durations, PIE prevalence, and backup prevalence were set to the model defaults, determined through

historical data analysis as part of the modeling effort. Each validation scenario was first run with a model

starting point of TV, and then with a starting point of LO, allowing observation of accuracy with each

starting point option.

For each validation scenario we ran the model and compared the output of predicted portfolio

metrics with the actual state of the portfolio on 1/1/2010. Results are reported as percent error in

Figure 31. Note that the relevant portfolio metrics are the 2010 portfolio sizes-i.e., the state of the

portfolio on 1/1/2010, and 2009 readouts and transitions-i.e., the number of readouts or transitions

that occurred during 2009. Actual metrics for portfolio size, positive readouts, and transitions were



determined using internal portfolio status reports and through discussion with the portfolio

management team.

4.2 Limitations of our approach

Although we believe the validation methodology represents the best feasible option, we

recognize a few limitations. First, just as the accuracy of historical data on which the model is built is

questionable, the accuracy of data used to determine the portfolio snapshots is also questionable. That

is, inaccurate tallies could result from inaccurate or missing project milestone dates, inaccurate project

status listings (e.g., active versus terminated)6, changes in R&D phase definition over time, and

ambiguous project data.

In addition, the model and validation approach do not account for some other organizational

dynamics over the past six years. For example, NIBR grew rapidly since the start of the data

collection/validation period. As such, we expect that resources were gradually added, so presumably,

project capacity grew as well. While some of this growth would presumably have been captured in data

for incoming TV and LO projects, portfolio growth due to in-licensing, company acquisition, or other

partnerships would not. Likewise, interviews revealed a potential "bolus effect" at the end of each year

in which projects are pushed towards milestone completion to meet particular goals for the year. Such

dynamics are not captured in the model or validation methodology.

4.3 Validation Results and Conclusions
Figure 31 describes the error observed in output metrics for three validation scenarios, representing

each of three portfolio snapshot dates as current state inputs.

6 As identified during interviews, it is not uncommon for early-stage projects (e.g., TV and HF) to linger in the
pipeline; that is, projects may remain in the pipeline without much or any ongoing work while resources tend to
other projects. As long as the projects have not been officially terminated, they will appear in the project count
despite resources no longer being applied. The current model is not designed to handle such dormant projects.
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Figure 31: Percent error for model validation scenarios

4.3.1 Validation Scenario #1

With a snapshot date of 1/1/2004, we generally found the model to underestimate the

2009/2010 portfolio metrics, though the deviation often fell within the simulation's 80% confidence

interval. This result was consistent for model starting points of TV and LO.

The model's under-estimation for 2010 NME portfolio size fell below the simulation's 80%

confidence interval for both TV and LO model starting points. Possible explanations for this

underestimation include:

* Not accounting for NIBR's significant growth in staffing (and therefore, projects) between 2004

and 2009 in the model

* Not effectively accounting for projects from external sources (e.g., in-licensed) from 2004-2009

" Inaccurate early-phase project tallies for 1/1/2004

1/1/2006 1/1/2008



4.3.2 Validation Scenario #2

With a snapshot date of 1/1/2006, we found mixed validation results. In the case of 2010 NME

portfolio size, we found the model with a TV starting point to predict the actual NME portfolio size

within 3.3%. However, with a LO starting point, the model underestimated the portfolio size by

approximately 28%. From a numerical standpoint, the differences in model output with the two starting

points can be traced back to a seemingly large number of HF projects tallied in the historical data query

for 1/1/2006. That is, by 2010, this relatively large number of HF projects would flow through the

portfolio to create a relatively high tally for NME portfolio size. However, the actual number of LO

projects that reportedly began in 2007 and 2008 does not reflect such a large HF project quantity in

2006. Thus, it is difficult to draw definitive conclusions as to the accuracy of the model's NME portfolio

size prediction under this scenario. If we assume a smaller 2006 HF portfolio size, we would observe

consistent underestimation of this metric for the two starting points.

We found the model to exactly predict the total number of positive clinical readouts in 2009 (0%

error). The actual ratio of POC to PIE projects was also within the 80% confidence interval of the

simulation.

4.3.3 Validation Scenario #3

With a snapshot date of 1/1/2008, we found mixed validation results. In the case of 2010 NME

portfolio size, we found the model with a TV starting point to overestimate the actual NME portfolio size

by 38%. However, with a LO starting point, the model predicted the portfolio size within 7.8%. From a

numerical standpoint, the differences in model output with the two starting points can be traced back to

a seemingly large number of HF projects tallied in the historical data query for 1/1/2008. That is, by

2010, this relatively large number of HF projects would flow through the portfolio to create a relatively

high tally for NME portfolio size. This effect can be seen in the relatively high predictions for CSP and

preclinical portfolio size, in particular. Thus, it is difficult to draw definitive conclusions as to the

accuracy of the model's NME portfolio size prediction under this scenario. If we assume a smaller 2008

HF portfolio size, we would observe consistent, accurate predictions of this metric for the two starting

points.

We found the model to overestimate the total number of positive clinical readouts in 2009 by

33%; however, the actual number of readouts is within the 80% confidence interval of the simulation.



We also noted that the overestimation is possibly driven by a relatively high number of preclinical

projects tallied from the historical data query in 1/1/2008.

4.3.4 Observations across validation scenarios

As identified in the Limitations section, above, organizational growth from 2004 to 2009 is not

taken into account in the model and could in fact impact the validation results. Given that we observed

an underestimation of the 2009 NME portfolio size for Validation Scenarios #1 and #2, one reasonable

hypothesis is that additional projects could have been inserted into the portfolio via in-licensing or

acquisition/partnership during this period of growth. This hypothesis is bolstered by the fact that

prediction of this metric was fairly accurate in Validation Scenario #3, since NIBR's growth rate has

reportedly decreased more recently. If organizational growth is in fact a significant source of the

observed underestimation, we would expect such error to be greatly reduced when the model is used

for forecasting from today's portfolio, since growth is now significantly less than during the validation

period. As an option, the user can also add projects to the "In-licensing" section of the model to account

for expected growth during the forecast period.

In all scenarios, we found the model's forecasts of 2009 transitions to be somewhat inaccurate.

That said, we can make some reasonable hypotheses as to the sources of the error. First, our concerns

regarding inaccurate HF project tallies (discussed above) would impact the transition projections as

greatly as they impact the NME portfolio size predictions. Second, not surprisingly, the model was

generally more accurate at forecasting transitions aggregated across multiple phases than it was at

predicting transitions into any one phase. Many organizational dynamics can impact the number of

projects transitioning in any one year (e.g., the "bolus effect" discussed in the Limitations section).

However, summing across multiple phases, we get a more generalized sense of the numbers of

transitions taking place that year.



5 Conclusions and Recommendations

5.1 Conclusions on the modeling process

The modeling process has successfully delivered a pipeline model that outputs probabilistic

forecasts of key portfolio metrics, including portfolio size, positive clinical readouts, and research phase

transitions. The model utilizes probability distributions for phase durations and transition rates, derived

from historical data, and Monte Carlo simulation to capture uncertainty in these input parameters. The

model also differentiates between project types (e.g., LMW versus biologics) and accounts for expansion

projects added to the portfolio (e.g., in-licensed projects, backup projects). Below, we evaluate the

project's effectiveness in the context of accuracy, usability, and organizational implementation.

5.1.1 Model accuracy

Validation of the model against historical data shows good predictability for aggregate forecasts,

but weaker predictability for finer portfolio metrics. Observed error is likely attributable to questionable

historical data, as detailed in Section 4. The model can only be as accurate as the historical data drives it,

and any future efforts to improve the accuracy of captured project data will also improve the accuracy

of portfolio forecasting.

In addition, although we selected a reasonable approach to model validation, a reality is that it

is quite challenging to prospectively evaluate accuracy of such a model. Although the simulation

predicts the likelihood of various portfolio outcomes, the outcome that manifests itself over time could

in fact be a less likely one. Thus, our confidence in the accuracy of the model largely stems not from the

validation results, but from the rationale of the modeling approach.

5.1.2 Model usability

An iterative design approach incorporated frequent user feedback and yielded a user-friendly

model structure. Research management has shown a positive initial response to the model, and

additional efforts are currently underway to gain further leadership buy-in. Leadership noted, in

particular, the intuitiveness of the built-in Instructions For Use, which walk the user through the

modeling steps. Managers also commented on the fast simulation time, which allows real-time scenario

analysis to support strategic decision-making.



5.1.3 Organizational issues

Due to project timing, we were unable to observe and evaluate implementation of the model, as

the finalized model was delivered shortly before on-site work was completed. Nonetheless, discussions

with NIBR leadership suggest that the model will be utilized for upcoming planning processes. Given that

processes for model use, such as updating input parameter data, have not yet been fully established, we

recommend that NIBR consider formal efforts to institutionalize the use of modeling within the Portfolio

Management Group.

5.2 Recommendations

5.2.1 General recommendations

Broadly, the research proved successful at creating a prototype model for portfolio forecasting

in early drug discovery. Research organizations seeking to better understand the development of the

research portfolio can follow a similar modeling approach as presented in this thesis, considering

applicability of the approach to many common problems, such as handling of stochastic input

parameters through simulation, and analysis of historical project data.

For NIBR, we recommend additional internal efforts to integrate the model into the portfolio

management process. This may include defining appropriate circumstances to incorporate the model

into planning efforts (e.g., during periodic portfolio reviews), as well as defining processes to easily

update input parameter assumptions prior to model use. The Portfolio Management Group should

continue to build and maintain its modeling competencies to get the most out of the existing model and

leverage opportunities for its future expansion.

5.2.2 Opportunities for model expansion

5.2.2.1 Feature addition
A valuable addition to the portfolio model could be resource-dependency. Although difficult to

quantify given the staffing approach in early research, there undoubtedly are human and technology

resource constraints that impact project capacity at each R&D phase. Once constraints are effectively

incorporated into the model, it may be possible to not only simulate, but optimize the portfolio based

on resource availability in different pipeline stages. Such an approach could be a powerful extension to

the model, aiding resource allocation and project scheduling.



Another area in which the model could be expanded is in how projects are differentiated. For

this study, we chose two dimensions for differentiation-modality and clinical study type. However,

other types of differentiation could be added if deemed significant for decision-making. For example, we

assumed that backup projects progress with the same duration and transition rate assumptions as non-

backup projects. Anecdotal evidence within NIBR suggests that this may not be the case, but historical

data supporting this distinction could not be garnered from the data set. Likewise, project progression

assumptions could likely differ between Diseases Areas-e.g., a disease that reacts to a topical therapy

over the course of weeks would be expected to have significantly shorter clinical trials than a disease for

which long-term therapy over many years is required to gauge efficacy.

5.2.2.2 Data improvement
Even if real-world processes are perfectly modeled, the portfolio model will only be as accurate

as the historical data that drives it. In this thesis, we have discussed some of the challenges related to

capture and analysis of historical data. Given recent efforts to improve collection of project data at NIBR,

we expect that data availability will improve over time. As such, these improvements can be

incorporated into the model assumptions.

In addition, NIBR can consider the value in automatically populating the model with up-to-date

historical data. That is, our research involved manual collection and analysis of data to reach summary

statistics suitable for populating the model. However, as additional projects progress through the

pipeline, they create additional data over time that should be captured in the historical data set. Rather

than frequently re-analyzing the data set for modeling purposes, NIBR can consider developing a direct

interface to internal information systems to automatically pull current data into the model.

5.2.2.3 Organizational implementation
We expect that as the model is further rolled out into the organization, users will identify

additional use cases that can be accommodated in the model. One already identified is the ability to

capture output data for successive simulations to allow comparison across multiple sets of input

assumptions. Such a capability could be easily added to the model through additional VBA code

modules. Should the eventual demand for new model capabilities create complexity exceeding Excel's

capabilities (e.g., creating excessively slow simulations), the organization can explore conversion to a

more powerful simulation platform.

Finally, our research was somewhat decoupled from other modeling efforts throughout

Novartis, allowing a novel approach to the problem. That said, additional modeling competencies exist



throughout NIBR and Novartis as a whole. Furthermore, portfolio forecasting in early research can

potentially feed similar efforts in downstream development. As buy-in grows, Novartis may wish to

evaluate where NIBR's portfolio modeling efforts and competencies best fit within the context of the

broader organization, and how the organization can best leverage the knowledge created through these

efforts.
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7 Appendix A: The NIBR Portfolio Forecasting Model

7.1 User Interface

The following screenshots comprise the Excel workbook that houses the forecasting model.

7.1.1 Worksheet 1: User Dashboard



7.1.2 Worksheet 2: User Input
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7.1.4 Worksheet 4: Leadership Report - Readouts



7.1.5 Worksheet 4: Leadership Report - Transitions
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7.2 Model Logic Flowcharts
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Pipeline Model VBA Flowchart (2 of 2)
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7.3 VBA Code

7.3.1 Project object: ThisWorkbook

Public Function CBBeforeTrial(atrial As Long) As Integer

Run 1Forecast

End Function

7.3.2 Module 1: Main code body

Option Base 1 'sets array default array subscripts to 1
Const forecast-years As Integer = 11 'number of forecast years
Const assumption-sets As Integer = 4 'number of assumption sets (sets of durations and transitionrates)
'Below declares various arrays and variables
Dim currentprojects() As Variant, pipeline full() As Variant, temppipeline_full() As Variant, pipelinesummary() As Variant,

percent biologics() As Single, PIE summary() As Integer
Dim forecasts NME() As Single, forecastsreadouts() As Integer, forecaststransitions() As Integer
Dim projects toterminate() As Variant, tempprojects toterminate() As Variant, new_projects pendingtermination() As Variant,

oldprojects pendingtermination() As Variant, entry class() As Variant
Dim PIEtracker(forecast_years, 100, assumption_sets - 2) As Integer, backuptracker(forecastyears, 100, assumptionsets - 2) As

Integer
Dim transition rates() As Variant, transition rates assumptions As Variant, terminationrates() As Variant, iterationrates() As

Variant
Dim durations() As Variant, durations assumptions As Variant
Dim incomingprojects entered() As Variant, incomingprojects calculated() As Variant, inlicensedprojects() As Variant

Dim phases As Integer 'number of phases in model
Dim starting point As Integer 'number 1 or 2 indicating start at Dl or D3
Dim step counter As Integer 'tracks how many years forward the model is stepped
Dim col counter As Integer
Dim percentphaseremaining As Integer
Dim percent_phaseaccomplished As Integer
Dim percent_yearused As Single
Dim POC only As Single, PIEl As Single, PIE2 As Single, PIE3 As Single, PIE4 As Single, PIE5 As Single

Dim PIE boundaryl As Single, PIEboundary2 As Single, PIE_boundary3 As Single, PIEboundary4 As Single, PIE boundary5 As Single,
PIE boundary6 As Single
Dim PIE time delay As Single, backup time delay As Single
Dim backup boundarylLMW As Single, backupboundary2 LMW As Single, backup boundary3_LMW As Single, backup boundary4_LMW As Single,

backupboundary5_LMW As Single, backup boundary6_LMW As Single
Dim backupboundarylBio As Single, backup boundary2 Bio As Single, backupboundary3_Bio As Single, backup boundary4_Bio As Single,

backupboundary5_Bio As Single, backupboundary6_Bio As Single
Dim backups(6, 2) As Single
Dim i As Integer, j As Integer, k As Integer, rowcounter As Integer



Sub Reset()
Worksheets("User Dashboard").Activate
stepcounter = 0

Erase pipeline summary 'clears pipeline array values
Erase PIE summary
Erase pipeline-full
Erase temp pipelinefull
Erase new projectspendingtermination
Erase oldprojects pending-termination
Erase PIE tracker
Erase backup tracker
Worksheets("User Dashboard").OptionButtons("Option Button 413").Value = xlOff
Worksheets ("User Dashboard").OptionButtons("Option Button 415").Value = xlOff

Worksheets("User Dashboard") .Range("D18:023,D26:043") .ClearContents 'clears worksheets showing pipeline array values and forecasts
Worksheets("User Dashboard").Range("D26:030,D33:036,D39:043").Value = 0 'Needed for cystal ball forecasts, since blank

forecast cells will cause an error
Worksheets("Pipeline Summary").UsedRange.Clear
Worksheets("Pipeline Full LMW-POC").UsedRange.Clear
Worksheets("Pipeline Full Bio-POC").UsedRange.Clear
Worksheets("Pipeline Full LMW-PIE").UsedRange.Clear
Worksheets("Pipeline Full Bio-PIE").UsedRange.Clear
ActiveSheet.Cells.Select
ActiveSheet.Cells(l, 1).Select

If cb.CBLoaded() = False Then cb.Startup 'checks to see if Crystal Ball is open; if not, opens it

cb.ResetND
cb.ClearDataND

End Sub

Sub SetStartingPoint()
startingpoint = Worksheets("User Dashboard").Range("H6").Value
If starting point = 1 Then

phases = 6

Worksheets("User Dashboard") .Range("B18:B22").Value = Worksheets("Default Values").Range("B4:B8").Value
Worksheets("User Dashboard").Range ("B23").Value = "Clinical"
Worksheets("User Dashboard").Range("B39").Value = "Dl->D2"
Worksheets("User Dashboard").Range("B40").Value = "D2->D3"
Worksheets("User Dashboard").Range("B41").Value = "D3->CSP"
Worksheets("User Dashboard").Range("B42").Value = "CSP->sPOC"
Worksheets("User Dashboard").Range("B43").Value = "sPOC->Clinical"

ElseIf startingpoint = 2 Then
phases = 4
Worksheets("User Dashboard") .Range("B18:B20") = Worksheets("Default Values").Range("J4:J6").Value
Worksheets("User Dashboard").Range("B21").Value = "Clinical"
Worksheets("User Dashboard").Range("B22:B23") = ""
Worksheets("User Dashboard").Range("B39").Value = "D3->CSP"
Worksheets("User Dashboard").Range("B40").Value = "CSP->sPOC"
Worksheets("User Dashboard").Range("B41").Value = "sPOC->Clinical"
Worksheets("User Dashboard").Range("B42:B43") = ""

Else



MsgBox ("There is a problem with this control.")
End If

End Sub

Sub LoadUserData()
Application.ScreenUpdating = False
LoadArrays
SetupPipelineArrays
SetupForecasts
UpdateForecasts
UpdatePipelineDisplay
Worksheets("User Dashboard").Activate
Application.ScreenUpdating = True

End Sub

Sub Run lForecast()
If Worksheets("User Dashboard").Range("H6").Value = 0 Then

MsgBox ("Please select a starting point in Step 2.")
Exit Sub

End If
Application.ScreenUpdating = False
cb.ClearDataND
'LoadUserData 'Note: This can be toggled on to update input data from the spreadsheet with each

simulation trial. This would be neede to use variable CB assumptions or to use CB features such as Decision table
For years = 1 To forecastyears

Worksheets("User Dashboard").Activate
stepcounter = stepcounter + 1
ProgressProjects
UpdateForecasts
UpdatePipelineDisplay

Next
ReInitialize 'resets variables and arrays after forecast period before CB runs next simulation trial
Application.ScreenUpdating = True

End Sub

Sub ReInitialize()
'The following sets forecast arrays to 0 (can't be empty for CB)
For i = 1 To UBound(forecasts NME)

For j = 1 To UBound(forecastsNME, 2)
forecastsNME(i, j) = 0

Next
Next
For i = 1 To UBound(forecasts readouts)

For j = 1 To UBound(forecastsreadouts, 2)
forecasts readouts(i, j) = 0

Next
Next
For i = 1 To UBound(forecaststransitions)

For j = 1 To UBound(forecaststransitions, 2)
forecasts transitions(i, j) = 0

Next



Next
stepcounter = 0

Erase pipelinesummary
Erase PIE summary
Erase pipelinefull
Erase temp pipelinefull
Erase new projectspending_termination
Erase oldprojectspendingtermination
Erase PIE tracker
Erase backuptracker
LoadArrays
SetupPipelineArrays
UpdateForecasts
Worksheets("User Dashboard").Activate

End Sub

Sub LoadArrays()
'Note that some parts of this subroutine differ depending on the model starting point (Dl or D3), so much of the code is repeated

with different cell ranges as part of a select case statement.
ReDim current projects(phases, assumption sets)
ReDim incoming projectsentered(forecastyears, 3) 'dimension 1=phases, 2=mean, stdev as a percentage, %bio
ReDim transition rates assumptions(phases, 2, assumption_sets) 'dimension 1=phases, 2=mean&stdev, 3=assumption set

ReDim durations assumptions(phases, 3, assumption-sets) 'dimension 1=phases, 2=min,likeliest,max 3=assumption set

Select Case starting point
Case 1 'Starting point = Dl

'current projects
With Worksheets("User Input").Range("C4:D1O")

For i = 1 To phases

For j = 1 To 2
currentprojects(i, j) = .Cells(i, j)
If i = phases Then current projects(i, j + 2) =Cels(i + 1, j)

Next
Next

End With
'incoming projects
With Worksheets("User Input").Range("F4:H14")

For i = 1 To UBound(incomingprojectsentered, 1)
For j = 1 To UBound(incomingprojectsentered, 2)

incomingprojectsentered(i, j) = .Cells(i, j)
Next

Next
End With
'transition rates - each column represents different assumption set
With Worksheets("User Input").Range("C41:D46") 'LMW-POC

For i = 1 To UBound(transitionrates assumptions, 1)
For j = 1 To UBound(transitionratesassumptions, 2)

transition-ratesassumptions(i, j, 1) = .Cells(i, j)
Next

Next
End With



With Worksheets("User Input").Range("E41:F46") 'Bio-POC
For i = 1 To UBound(transitionrates assumptions, 1)

For j = 1 To UBound(transitionrates_assumptions, 2)
transitionrates assumptions(i, j, 2) = .Cells(i, j)

Next
Next

End With
With Worksheets("User Input").Range("G41:H46") 'LMW-PIE

For i = 1 To UBound(transitionrates assumptions, 1)
For j = 1 To UBound(transitionrates_assumptions, 2)

transitionrates assumptions(i, j, 3) = .Cells(i, j)
Next

Next
End With
With Worksheets("User Input").Range("I41:J46") 'Bio-PIE

For i = 1 To UBound(transition rates assumptions, 1)
For j = 1 To UBound(transitionratesassumptions, 2)

transition rates assumptions(i, j, 4) = .Cells(i, j)
Next

Next
End With

'durations - each column represents different assumption set
With Worksheets("User Input").Range("C52:E57") 'LMW-POC

For i = 1 To UBound(durations assumptions, 1)
For j = 1 To UBound(durations_assumptions, 2)

durations assumptions(i, j, 1) = .Cells(i, j)
Next

Next
End With
With Worksheets("tUser Input").Range("F52:H57") 'Bio-POC

For i = 1 To UBound(durations assumptions, 1)
For j = 1 To UBound(durationsassumptions, 2)

durationsassumptions(i, j, 2) = .Cells(i, j)
Next

Next
End With
With Worksheets("User Input").Range("I52:K57") 'LMW-PIE

For i = 1 To UBound(durations assumptions, 1)
For j = 1 To UBound(durations_assumptions, 2)

durationsassumptions(i, j, 3) = .Cells(i, j)
Next

Next
End With
With Worksheets("User Input").Range("L52:N57") 'Bio-PIE

For i = 1 To UBound(durations assumptions, 1)
For j = 1 To UBound(durations_assumptions, 2)

durations assumptions(i, j, 4) = .Cells(i, j)
Next

Next
End With



'current projects
With Worksheets("User Input").Range("K4:L8")

For i = 1 To phases
For j = 1 To 2

current projects(i, j) = .Cells(i, j)
If i = phases Then currentprojects(i, j + 2) =Cels(i 1, j)

Next
Next

End With
'incoming projects
With Worksheets("User Input").Range("N4:P14")

For i = 1 To UBound(incoming projects_entered, 1)
For j = 1 To UBound(incomingprojects entered, 2)

incoming projectsentered(i, j) = .Cells(i, j)
Next

Next
End With
'transition rates - each column represents different assumption set
With Worksheets("User Input").Range("C43:D46") 'LMW-POC

For i = 1 To UBound(transition rates assumptions, 1)
For j = 1 To UBound(transitionratesassumptions, 2)

transition rates assumptions(i, j, 1) = .Cells(i, j)
Next

Next
End With
With Worksheets("User Input").Range("E43:F46") 'Bio-POC

For i = 1 To UBound(transition rates assumptions, 1)
For j = 1 To UBound(transitionratesassumptions, 2)

transition rates assumptions(i, j, 2) = .Cells(i, j)
Next

Next
End With
With Worksheets("User Input").Range("G43:H46") 'LMW-PIE

For i = 1 To UBound(transition rates assumptions, 1)
For j = 1 To UBound(transitionratesassumptions, 2)

transition rates assumptions(i, j, 3) = .Cells(i, j)
Next

Next
End With
With Worksheets("User Input").Range("I43:J46") 'Bio-PIE

For i = 1 To UBound(transition rates assumptions, 1)
For j = 1 To UBound(transition rates assumptions, 2)

transitionratesassumptions(i, j, 4) = .Cells(i, j)
Next

Next
End With

'durations - each column represents different assumption set
With Worksheets("User Input").Range("C54:E57") 'LMW-POC

'Starting point = D3Case 2



For i = 1 To UBound(durations_assumptions, 1)
For j = 1 To UBound(durations assumptions, 2)

durationsassumptions(i, j, 1) = .Cells(i, j)
Next

Next
End With
With Worksheets("User Input").Range("F54:H57") 'Bio-POC

For i = 1 To UBound(durations assumptions, 1)
For j = 1 To UBound(durationsassumptions, 2)

durations assumptions(i, j, 2) = .Cells(i, j)
Next

Next
End With
With Worksheets("User Input").Range("I54:K57") 'LMW-PIE

For i = 1 To UBound(durations assumptions, 1)
For j = 1 To UBound(durationsassumptions, 2)

durations assumptions(i, j, 3) = .Cells(i, j)
Next

Next
End With
With Worksheets("User Input").Range("L54:N57") 'Bio-PIE

For i = 1 To UBound(durations assumptions, 1)
For j = 1 To UBound(durations_assumptions, 2)

durations assumptions(i, j, 4) = .Cells(i, j)
Next

Next
End With

End Select

'The following calculates actual incoming project count based on user-entered data
ReDim incomingprojects_calculated(forecastyears, assumption_sets)
For i = 1 To UBound(incoming projects calculated, 1)

projecttotal = Round(Application.WorksheetFunction.NormInv(Rnd, incoming projects entered(i, 1),
(incomingprojects_entered(i, 2) * incomingprojects entered(i, 1))))

incomingprojects_calculated(i, 1) = Round(projecttotal * (1 - incomingprojects entered(i, 3))) 'incoming LMW

incoming projects calculated(i, 2) = project-total - incomingprojectscalculated(i, 1) 'incoming Bio

incomingprojectscalculated(i, 3) = 0
incomingprojects calculated(i, 4) = 0

Next

'PIE prevalence
Worksheets("User Input").Activate
With Range("C29:C34")

POC only = 100 * .Cells(l, 1)
PIEl = 100 * .Cells(2, 1)
PIE2 = 100 * .Cells(3, 1)
PIE3 = 100 * .Cells(4, 1)
PIE4 = 100 * .Cells(5, 1)
PIE5 = 100 * .Cells(6, 1)

End With
PIE time delay = Range("J29")



'The following are used later to calculate the number of PIEs
PIE boundaryl = POConly
PIE boundary2 = POConly + PIEl
PIE boundary3 = POConly + PIEl + PIE2
PIEboundary4 = POConly + PIE1 + PIE2 + PIE3
PIEboundary5 = POConly + PIEl + PIE2 + PIE3 + PIE4
PIEboundary6 = POConly + PIE1 + PIE2 + PIE3 + PIE4 + PIE5

'Backup prevalence
With Range("F30:G35")

For i = 1 To UBound(backups, 1)
For j = 1 To UBound(backups, 2)

backups(i, j) = 100 * .Cells(i, j)
Next

Next
End With
backuptime delay = Range("J30")
'The following are used later to calculate the numbei
backup boundarylLMW = backups(l, 1)
backup boundary2_LMW = backups(l, 1) + backups(2, 1)
backup boundary3_LMW = backups(l, 1) + backups(2, 1)
backup boundary4_LMW = backups(l, 1) + backups(2, 1)
backup boundary5 LMW = backups(l, 1) + backups(2, 1)
backup boundary6 LMW = backups(l, 1) + backups(2, 1)
backup boundaryl Bio = backups(1, 2)
backup boundary2_Bio = backups(l, 2) + backups(2, 2)
backup boundary3_Bio = backups(1, 2) + backups(2, 2)
backup boundary4_Bio = backups(1, 2) + backups(2, 2)
backup boundary5 Bio = backups(1, 2) + backups(2, 2)
backup boundary6 Bio = backups(l, 2) + backups(2, 2)

+ backups(3, 1)
+ backups(3, 1) + backups(4, 1)
+ backups(3, 1) + backups(4, 1) + backups(5, 1)
+ backups(3, 1) + backups(4, 1) + backups(5, 1) + backups(6, 1)

+ backups(3, 2)
+ backups(3, 2) + backups(4, 2)
+ backups(3, 2) + backups(4, 2) + backups(5, 2)
+ backups(3, 2) + backups(4, 2) + backups(5, 2) + backups(6, 2)

'in-licensed projects
ReDim inlicensedprojects(phases, forecastyears, assumption-sets - 2) 'dimension 1-phases, 2=year, 3=assumption set (LMW-POC and

Bio-POC only)
With Worksheets("User Input").Range("D17:N20") 'LMW-POC

For i = 1 To 4
For j = 1 To UBound(inlicensedprojects, 2)

Select Case phases
Case 4

inlicensed projects(i, j, 1) = .Cells(i, j)
Case 6

inlicensed projects(i + 2, j, 1) = .Cells(i, j)
End Select

Next
Next

End With
With Worksheets("User Input").Range("D23:N26")

For i = 1 To 4
For j = 1 To UBound(inlicensedprojects, 2)

Select Case phases
Case 4

'Bio-POC



inlicensed-projects(i, j, 2) = .Cells(i, j)
Case 6

inlicensed-projects(i + 2, j, 2) = .Cells(i, j)
End Select

Next
Next

End With

ReDim transition rates(phases, assumptionsets) As Variant
ReDim durations(phases, assumption_sets) As Variant

End Sub

Sub SetupPipelineArrays()
ReDim pipelinesummary(phases, forecastyears + 1)
ReDim PIEsummary(forecastyears + 1)
ReDim percent biologics(forecastyears + 1)
ReDim pipeline full(phases, 200, assumption_sets)

with array resizing compared to earlier model iterations
ReDim entryclass(phases, assumption-sets)
entryclass = currentprojects
ReDim new projectspendingtermination(phases, 10, assumption_se
ReDim oldprojectspendingtermination(phases, 10, assumptionse

'dimension 1=phases, 2=assumption set
'dimension 1=phases, 2=assumption set

'Note: 200 chosen as arbitrary max project number. Avoids issues

'The following randomly allocates current projects in each phase to different percentages of completion

Dim percentage done As Integer
For i = 1 To phases

For k = 1 To assumptionsets
For j = 1 To current projects(i, k)

percentage_done = Int((100 * Rnd) + 1) 'generates a random number between 1 and 100
pipeline full(i, j, k) = percentage-done

Next
Next

Next

'The following populates pipelinesummary by summing the projects in pipeline-full

For i = 1 To phases
temp projectcount = 0
For k = 1 To assumptionsets

j =1
Do While (Not IsEmpty(pipeline-full(i, j, k)))

j = j + 1
Loop
tempproject count = tempprojectcount + j - 1

Next
pipelinesummary(i, step-counter + 1) = tempproject count

Next
End Sub

Sub SetupForecasts()
'This subroutine creates arrays to hold the forecasts. In addition, it initializes forecast cells to "0", since Crystal Ball does

not recognize blank forecast cells.



ReDim forecastsNME(5, UBound(pipeline summary, 2))
ReDim forecastsreadouts(4, UBound(pipeline summary, 2))
ReDim forecaststransitions(phases - 1, UBound(pipeline_summary, 2))

End Sub

Sub ProgressProjects()
TerminateProjects
ReDim temppipeline full(phases + 1, UBound(pipeline_full, 2), assumptionsets) 'erases temp pipelinefull to prepare for

project progression
ReDim entry class(phases, assumptionsets) As Variant 'clears entry class to prepare for

tally (for next year's entry classes)
'The following steps through all elements in pipelinefull, pulls a phase duration to determine how much work can be accomplished

in a year,
'compares this against the amount of work left to complete phase, and transitions the project if appropriate. The code re-

checks after each
'transition in case multiple transitions are needed for a given year.

For i = 1 To phases

For k = 1 To assumptionsets

Do While (Not IsEmpty(pipeline full(i, j, k)))
'load new duration assumption for each project
durations(i, k) = GetDuration(durationsassumptions(i, 1, k), durationsassumptions(i, 2, k), durations-assumptions(i,

3, k))
row-counter = 0

percentyearused = 0
percent phase_remaining = 100 - pipeline full(i, j, k)
'scale duration to a percentage of phase that can be completed in 1 year
percent phaseaccomplished = Round(100 * (1 / durations(i, k)))
'compare percentage accomplished against percentage remaining to finish phase
CheckIfPhaseComplete

j=j+ 1
Loop

Next
Next

'This section adds incoming projects started this year.
For k = 1 To assumptionsets - 2

transition rates(1, k) = GetTransitionRate(transition rates assumptions(1, 1, k), transition rates assumptions(1, 2, k))

tempincomingaftertermination = Round(incoming projectscalculated(stepcounter, k) * transition rates(l, k))
'terminates percentage of incoming projects; for simplicity, chose to not use more complicated tracking of "pending termination"
projects for future years

temp incomingprojects = temp incomingafter termination
j = 1
Do Until temp incomingprojects = 0

quarter incoming = Application.WorksheetFunction.min (tempincoming projects, Application.WorksheetFunction.max (1,
Round(tempincoming after termination / 4)))

temp incomingprojects = temp incoming projects - quarterincoming
If j = 4 Then

quarterincoming = quarterincoming + temp incoming projects 'if rounding leaves any projects left to add during the
4th quarter, then add

temp incomingprojects = 0



End If
incoming year remaining = 1 - (j / 4)
incoming yearused = 1 - incomingyear remaining
For i = 1 To quarterincoming

incoming row counter = 0
durations(1, k) = GetDuration(durations assumptions(l, 1, k), durations assumptions(1, 2, k), durationsassumptions(l,

3, k))
incoming progress = Application.WorksheetFunction.max(1, Round(incomingyearremaining * (100 * (1 / durations(1,

k))))) 'Note: pipelinefull can't handle O's
temp incoming yearused = incoming year_used
tempincomingyearremaining = incomingyearremaining

Linel: If incomingprogress >= 100 Then
tempincomingyear_used = WorksheetFunction.min(1, tempincoming_yearused + ((1 - temp incomingyearused) * (100

/ incomingprogress)))
tempincomingyear_remaining = 1 - temp incoming yearused
incomingrow counter = incoming rowcounter + 1
incomingprogress = 1
entryclass(l + incomingrowcounter, k) = entry class(l + incomingrow counter, k) + 1
forecaststransitions((1 + incomingrowcounter - 1), stepcounter) = forecaststransitions((l +

incoming row counter - 1), stepcounter) + 1
durations(1 + incomingrow_counter, k) = GetDuration(durationsassumptions(1 + incomingrowcounter, 1, k),

durationsassumptions(l + incoming row counter, 2, k), durations assumptions(l + incomingrowcounter, 3, k))

incomingprogress = Application.WorksheetFunction.max(l, Round(tempincomingyearremaining * (100 * (1 /

durations(1 + incomingrowcounter, k)))))
GoTo Linel

End If
temppipeline_full(1 + incomingrow counter, NextOpenElement(1 + incomingrowcounter, k, temppipeline full), k) =

incomingprogress
Next

j =j + 1
Loop

Next

'This section adds PIEs that will launched next year
For k = 3 To 4

PIE startingcol = NextOpenElement(phases, k, temppipeline full)
For j = 1 To PIEtracker(step counter, 1, k - 2)

temppipelinefull(phases, PIE starting col + j - 1, k) = PIEtracker(stepcounter, j + 1, k - 2)

Next
entry class(phases, k) = entry class(phases, k) + PIEtracker(step_counter, 1, k - 2)

Next

'This section adds backups that will launch next year
For k = 1 To 2

backupstartingcol = NextOpenElement(phases - 2, k, temp pipeline_full)
For j = 1 To backup tracker(step counter, 1, k)

temppipeline_full(phases - 2, backupstartingcol + j - 1, k) = backuptracker(stepcounter, j + 1, k)

Next
entry class(phases - 2, k) = entry class(phases - 2, k) + backuptracker(step counter, 1, k)

Next



'This section adds in-licensed projects
For i = 1 To phases

For k = 1 To assumptionsets - 2
If inlicensedIprojects(i, step-counter, k) = 0 Then GoTo Line2 'Note: this line avoids unnecessary calling of

NextOpenElement function if there are no in-licensed projects; cuts to next value in For loop
inlicensestartingcol = NextOpenElement(i, k, temppipelinefull)
For j = 1 To inlicensedprojects(i, stepcounter, k)

temp pipeline full(i, inlicense starting col + j - 1, k) = Int((100 * Rnd + 1))
Next
entryclass(i, k) = entryclass(i, k) + inlicensed-projects(i, step-counter, k)

Line2: Next
Next

'copy temppipeline full back into pipelinefull
pipeline full = temp pipeline full
Erase temp pipelinefull

End Sub

Sub TerminateProjects()
'The following calculates number of projects that do not make it to the next phase
ReDim projects to terminate(phases, assumption sets) As Variant
ReDim temp projectstoterminate(phases, assumptionsets) As Variant

For i = 1 To UBound(projects toterminate)
For j = 1 To assumption-sets

transition rates(i, j) = GetTransitionRate(transition rates assumptions(i, 1, j), transition rates assumptions(i, 2, j))
projects_toterminate(i, j) = Round(entryclass(i, j) * (1 - transitionrates(i, j)))
temp projects toterminate(i, j) = projectstoterminate(i, j) 'used later in subroutine

Next
Next

'The following maintains an array of projects that will ultimately by terminated. This provides for an accurate project count in
'pipeline summary even though the model technically deletes projects from an entry class (in their first year) if they

ultimately will not transition.
For i = 1 To UBound(newprojectspending termination)

For k = 1 To assumptionsets
j 1
Do Until tempprojects toterminate(i, k) = 0

newprojectspendingtermination(i, j, k) = old projects pending termination(i, j, k) +
Application.WorksheetFunction.min(tempprojectstoterminate(i, k), Round(projects-toterminate(i, k) / durationsassumptions(i, 2,
k)))

temp projects_to_terminate(i, k) = tempprojects toterminate(i, k) - (newprojects_pending termination(i, j, k) -
old projects pending termination(i, j, k))

j = j +
Loop

Next
Next

'The line below records negative Clinical readouts for the current forecast year



forecastsreadouts(4, stepcounter) = new projectspendingtermination(phases, 1, 1) + new projects pendingtermination(phases, 1,
2) + new projects pendingtermination(phases, 1, 3) + newprojectspending termination(phases, 1, 4)

'The following deletes from pipeline full all projects that will not eventually make it to the next stage

ReDim temppipeline full(phases + 1, UBound(pipeline_full, 2), assumptionsets)
For i = 1 To phases

For k = 1 To assumptionsets
j =1
Do While (Not IsEmpty(pipeline full(i, j + projects-to terminate(i, k), k)))

temppipeline_full(i, j, k) = pipeline full(i, j + projectstoterminate(i, k), k)

j =j + 1
Loop

Next
Next
pipelinefull = temp pipeline full

'The following prepares the projectspendingtermination arrays for the next year
For i = 1 To UBound(newprojects pending termination)

For j = 1 To UBound(newprojectspendingtermination, 2) - 1
For k = 1 To assumptionsets

oldprojectspending termination(i, j, k) = newprojectspending termination(i, j + 1, k)
Next

Next
Next

End Sub

Sub CheckIfPhaseComplete()
If percent phase accomplished >= percent phase remaining Then 'calc %yr used to complete phase and transition

percent _year used = WorksheetFunction.min(l, percent_year_used + ((1 - percentyear used) * (percentphaseremaining /
percentphase accomplished)))

TransitionProject
Else 'add year's accomplishment to project

If row counter = 0 Then
temp pipelinefull(i, NextOpenElement(i, k, temppipelinefull), k) = pipeline full(i, j, k) + percentphaseaccomplished

Else
temppipeline full(i + row-counter, NextOpenElement(i + row-counter, k, temppipeline full), k) =

percentphase accomplished
End If

End If
End Sub

Sub TransitionProject()
percentphaseremaining = 100 'after transition, next phase is just being started

percentphaseaccomplished = 1
row counter = row counter + 1 'prepares for transition in array

'The following checks for a positive readout; if yes, launch PIEs (if necessary), record for forecasts, and exit project
If i + row counter = phases + 1 Then

If k = 1 Or k = 2 Then
PIE calculator 'For any POC readout, calls a subroutine that determines whether a PIE is launched

forecastsreadouts(2, stepcounter) = forecastsreadouts(2, stepcounter) + 1 'counts POCs

End If



If k = 3 Or k = 4 Then forecastsreadouts(3, stepcounter) = forecastsreadouts(3, step_counter) + 1 'counts PIEs

Exit Sub 'exits since this project has completed its readout and needs no more transitioning
End If
If i + rowcounter = phases - 2 Then Backupcalculator 'For any transition into CSP, calls a subroutine that determines whether a

backup is launched
forecaststransitions((i + rowcounter - 1), step-counter) = forecaststransitions((i + row-counter - 1), step-counter) + 1

'counts transitions each year
entryclass(i + row counter, k) = entryclass(i + row-counter, k) + 1
If percent year_used < 1 Then 'if part of year remains, progress next phase of project

'pulls a duration for the following phase to progress the project for the time left in the year
'percent phase accomplished scaled by how much of year if left
durations(i + row counter, k) = GetDuration(durationsassumptions(i + rowcounter, 1, k), durationsassumptions(i +

row_counter, 2, k), durationsassumptions(i + rowcounter, 3, k))
percentphaseaccomplished = Round((l - percentyearused) * (100 * (1 / durations(i + row-counter, k))))

End If
CheckIfPhaseComplete

End Sub

Sub PIE calculator()
'This subroutine determines whether a PIE is launched and in what proportion; note that because only the first "true" case is

executed, okay to use successive upper-bounds
PIEyearindex = 0
lastPIEyear = 0
PIEyearused = percentyearused
Randomize
random number = Int((100 * Rnd) + 1)
Select Case random number

Case Is < PIE boundaryl 'no PIEs
PIE-number = 0

Case Is < PIE boundary2 '1 PIE
PIE-number = 1

Case Is < PIE boundary3 '2 PIEs
PIE-number = 2

Case Is < PIE boundary4 '3 PIEs
PIE-number = 3

Case Is < PIE boundary5 '4 PIEs
PIE-number = 4

Case Is <= PIE boundary6 '5 PIEs
PIE number = 5

Case Else
Debug.Print "not between 0 and PIEboundary 6"

End Select

PIE'counter = 1
Do While (PIE counter < PIE'number + 1)

PIE-total delay PIE year-used + PIE-timedelay
PIE -year -index =WorksheetFunction.RoundDown(PIE-total-delay, 0) 'determines how many years ahead the next PIE will

launch; 0 = the current progression year
PIE yearremaining = 1 - (PIE totaldelay - PIE year index) 'determines what percentage of a year is left

during whatever year the PIE launches



PIEyearused = 1 - PIEyearremaining 'sets up PIE_year_usea for next PIE Dy knowing
much of year has passed when PIE is launched

durations(phases, k) = GetDuration(durationsassumptions(phases, 1, k), durationsassumptions(phases, 2, k),
durations assumptions(phases, 3, k))

PIEprogress = Round(PIE year_remaining * (100 * (1 / durations(phases, k))))
If last PIE year + PIEyear_index < 1 Then 'if the PIE launches during the current progression year,

then check to see if it terminates. If not enter straight into pipeline full
transition rates(phases, k) = GetTransitionRate(transition rates assumptions(phases, 1, k),

transition rates assumptions(phases, 2, k))
Randomize
If Rnd > transition rates(phases, k) Then GoTo Linel 'single-project check to see if the PIE will be a negati

readout

'low

ve

If PIE progress >= 100 Then

forecastsreadouts(3, stepcounter) = forecastsreadouts(3, stepcounter) + 1
Else

temppipeline_full(phases, NextOpenElement(phases, k + 2, temppipelinefull), k + 2) = PIEprogress
End If

ElseIf step counter + lastPIE year + PIE year_index - 1 <= forecastyears Then 'if the PIE launches during

subsequent years within the forecast range, must track until model reaches this point
If PIEprogress >= 100 Then PIEprogress = 100 'Progress code can't handle a value in pipeline full>100, but

this makes it transition immediately
PIEtracker(stepcounter + lastPIEyear + PIE yearindex - 1, 1, k) = PIE tracker(stepcounter + lastPIEyear +

PIE yearindex - 1, 1, k) + 1 'adds one to the first element, which tracks the total
PIE tracker(step counter + last_PIEyear + PIE yearindex - 1, 1 + PIEtracker(step counter + lastPIE year +

PIE year_index - 1, 1, k), k) = PIEprogress 'uses the total to know which element to add the actual progress value to

End If
Linel: lastPIE year = lastPIEyear + PIEyear_index 'Note: when PIEyear index=0, lastPIE year stays the same; when >

0, it increases to mark the year of the last PIE
PIE-counter = PIE counter + 1

Loop
End Sub

Sub Backup calculator()
'This subroutine determines whether a backup is launched and in what proportion; note that because only the first "true" case is

executed, okay to use successive upper-bounds
backup yearindex = 0
last backup year = 0
backupyearused = percentyearused
Randomize
random number = Int((100 * Rnd) + 1)
If k = 1 Then

Select Case random number
Case Is < backupboundarylLMW 'no backups

backupnumber = 0

Case Is < backupboundary2_LMW 'l backup
backupnumber = 1

Case Is < backup boundary3_LMW '2 backups
backupnumber = 2

Case Is < backupboundary4_LMW '3 backups
backupnumber = 3

Case Is < backupboundary5_LMW '4 backups

how



backupnumber = 4

Case Is <= backupboundary6_LMW '5 backups
backup number = 5

Case Else
Debug.Print "not between 0 and backup-boundary 6"

End Select
ElseIf k = 2 Then

Select Case random number
Case Is < backupboundarylBio 'no backups

backup number = 0

Case Is < backup boundary2 Bio 'l backup
backup number = 1

Case Is < backup boundary3_Bio '2 backups
backupnumber = 2

Case Is < backupboundary4_Bio '3 backups
backupnumber = 3

Case Is < backupboundary5_Bio '4 backups
backupnumber = 4

Case Is <= backupboundary6_Bio '5 backups
backup number = 5

Case Else
Debug.Print "not between 0 and backupboundary 6"

End Select
Else

MsgBox ("There is a problem with the backup code")
End If

backup counter = 1

Do While (backup-counter < backupnumber + 1) ' Determine if rest is needed - And (step-counter + backupyearindex - 1 <=

forecast-years)
backup rowcounter = 0
backup totaldelay = backupyearused + backuptime delay
backup year index = WorksheetFunction.RoundDown(backuptotaldelay, 0) 'determines how many years ahead the next

backup will launch; 0 = the current progression year
backupyear_remaining = 1 - (backuptotaldelay - backupyear index) 'determines what percentage of a year is

left during whatever year the PIE launches
backup year_used = 1 - backupyearremaining 'sets up backup_yearused for next backup by

knowing how much of year has passed when PIE is launched
durations(phases - 2, k) = GetDuration(durationsassumptions(phases - 2, 1, k), durationsassumptions(phases - 2, 2, k),

durations assumptions(phases - 2, 3, k))
backup progress = Round(backupyearremaining * (100 * (1 / durations(phases - 2, k))))
If last_backupyear + backupyear index < 1 Then 'if the backup launches during the current progression

year, enter straight into pipeline full
transition rates(phases - 2, k) = GetTransitionRate(transitionratesassumptions(phases - 2, 1, k),

transitionratesassumptions(phases - 2, 2, k))
Randomize
If Rnd > transition rates(phases - 2, k) Then GoTo Line2 'single-project check to see if the backup will terminate

tempbackup yearused = backup year_used 'Needed since backupyearused can't be changed; need it to know when
to launch next backup

tempbackup yearremaining = backupyear remaining
Linel: If backup-progress >= 100 Then
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temp backup year used = WorksheetFunction.min(l, temp backupyear used + ((1 - tempbackupyearused) * (100 /
backupprogress)))

tempbackupyear remaining = 1 - temp backupyear_used
backuprowcounter = backuprow_counter + 1
backupprogress = 1

entryclass(l + backuprow counter, k) = entryclass(l + backuprowcounter, k) + 1
forecaststransitions((i + rowcounter + backuprowcounter - 1), stepcounter) = forecasts transitions((i +

row-counter + backuprow counter - 1), step counter) + 1
durations(phases - 2 + backup row counter, k) = GetDuration(durations assumptions(phases - 2 + backuprowcounter, 1,

k), durationsassumptions(phases - 2 + backup_row_counter, 2, k), durationsassumptions(phases - 2 + backuprowcounter, 3, k))
backupprogress = Round(temp backupyear_remaining * (100 * (1 / durations(phases - 2 + backuprow counter, k))))
GoTo Linel

End If
temppipeline_full(phases - 2 + backuprow_counter, NextOpenElement(phases - 2 + backup rowcounter, k,

temp pipelinefull), k) = backupprogress

ElseIf step counter + last backup year + backupyear index - 1 <= forecastyears Then 'if the backup launches

during subsequent years within the forecast range, must track until model reaches this point
If backupprogress >= 100 Then backupprogress = 100 'Progress code can't handle a value in pipeline full>100, but

this makes it transition immediately
backuptracker(stepcounter + last backupyear + backupyear index - 1, 1, k) = backup tracker(stepcounter +

lastbackupyear + backup_year_index - 1, 1, k) + 1 'adds one to the first element, which tracks the total
backuptracker(step counter + last backupyear + backupyearindex - 1, 1 + backuptracker(stepcounter + lastbackupyear

+ backupyear index - 1, 1, k), k) = backupprogress 'uses the total to know which element to add the actual progress value to

End If
Line2: last backupyear = last backupyear + backupyearindex 'Note: when backupyearindex=0, lastbackupyear stays

the same; when > 0, it increases to mark the year of the last PIE
backup-counter = backupcounter + 1

Loop
End Sub

Sub UpdatePipelineSummary()
'The following updates the pipelinesummary array based on the status of pipelinefull and project pending termination but still in

pipeline for current year
temp projectcountLMW = 0
tempproject count Bio = 0
For i = 1 To phases

temp projectcount = 0
For k = 1 To assumptionsets

j =1
Do While (Not IsEmpty(pipeline-full(i, j, k)))

j = j + 1
Loop
temp project count = temp project count + j - 1 'counts total projects for

pipelinesummary
If k = 1 Or k = 3 Then tempproject_countLMW = tempproject countLMW + j - 1 'counts LMWs for LMW/Bio ratio

If k = 2 Or k = 4 Then tempproject_countBio = temp project countBio + j - 1 'counts Bios for LMW/Bio ratio

If i = phases And (k = 3 Or k = 4) Then PIE summary(stepcounter + 1) = PIE summary(step counter + 1) + j - 1 'Note:

It is vital to ensure that this subroutine is only called once, for each forecast year. Otherwise, this value will be multiplied.

Next
For k = 1 To UBound(old_projects pending termination, 2)
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totalpendingtermination = totalpending termination + (oldprojectspending termination(i, k, 1) +
old projects pendingtermination(i, k, 2) + old projects pending termination(i, k, 3) + old projectspendingtermination(i, k, 4))

Next
pipelinesummary(i, stepcounter + 1) = tempproject count + total pendingtermination

Next
If (temp projectcountLMW + temp project countBio <> 0) Then percent biologics(stepcounter + 1) = tempprojectcountBio /

(temp projectcountLMW + temp projectcountBio)
End Sub

Sub UpdateForecasts()
UpdatePipelineSummary
'NME Portfolio
For i = 1 To UBound(pipeline summary, 2)

forecastsNME(l, i) = pipelinesummary(phases - 2,
PIE summary(i))

Next
'Clinical Portfolio
For i = 1 To UBound(pipeline summary, 2)

forecastsNME(2, i) = pipelinesummary(phases, i)
Next
'sPOC Portfolio
For i = 1 To UBound(pipeline summary, 2)

forecastsNME(3, i) = pipelinesummary(phases - 1,
Next
'CSP Portfolio
For i = 1 To UBound(pipeline summary, 2)

forecastsNME(4, i) = pipelinesummary(phases - 2,
Next
'Percent biologics in NME Portfolio
For i = 1 To UBound(pipelinesummary, 2)

forecastsNME(5, i) = percent biologics(i)
Next

i) + pipeline summary(phases - 1, i) + (pipeline summary(phases, i) -

i)

i)

'Note: Readouts and Transitions updated during project progression
'Totals positive POC and PIE readouts
For i = 1 To UBound(pipeline summary, 2)

forecasts readouts(l, i) = forecasts readouts(2, i) + forecasts readouts(3, i)
Next

End Sub

Sub UpdatePipelineDisplay()
'UpdatePipelineSummary 'Note: This is currently called as part fo UpdateForecasts, which always precedes this

subroutine.
'UpdatePipelineFullDisplay 'toggle on for debugging pipelinefull code in worksheets

Worksheets("Pipeline Summary").UsedRange.Clear 'clears worksheets showing pipeline array values
With Worksheets("Pipeline Summary")

.Range(.Cells(1, 1), .Cells(UBound(pipelinesummary, 1), UBound(pipelinesummary, 2))).Value = pipeline-summary
End With
Worksheets("User Dashboard") .Range("D18:023") = Worksheets("Pipeline Summary") .Range("A1:L6") .Value
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'These With statements update forecasts
Worksheets("User Dashboard").Activate
'NME Portfolio
With Range("D26:030")

For i = 1 To 5

For j = 1 To forecastyears + 1
.Cells(i, j) = forecastsNME(i, j)

Next
Next

End With
'Readouts
With Range("D33:036")

For i = 1 To 4
For j = 1 To forecastyears + 1

.Cells(i, j) = forecastsreadouts(i, j)
Next

Next
End With
'Transitions
With Range("D39:043")

For i = 1 To phases - 1

For j = 1 To forecastyears + 1
.Cells(i, j) = forecaststransitions(i, j)

Next
Next

End With
End Sub

Sub UpdatePipelineFullDisplay()
Worksheets("Pipeline Full LMW-POC").UsedRange.Clear
Worksheets("Pipeline Full Bio-POC").UsedRange.Clear
Worksheets("Pipeline Full LMW-PIE").UsedRange.Clear
Worksheets("Pipeline Full Bio-PIE").UsedRange.Clear

'These With statements load the pipeline arrays into two worksheets for visual reference

With Worksheets("Pipeline Full LMW-POC")
For i = 1 To UBound(pipelinefull, 1)

Do While (Not IsEmpty(pipeline full(i, j, 1)))
.Cells(i, j) = pipeline_full(i, j, 1)
j j + 1

Loop
Next

End With

With Worksheets("Pipeline Full Bio-POC")
For i = 1 To UBound(pipelinefull, 1)

j 1
Do While (Not IsEmpty(pipeline full(i, j, 2)))

.Cells(i, j) = pipelinefull(i, j, 2)
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j =j+1
Loop

Next
End With

With Worksheets("Pipeline Full LMW-PIE")
For i = 1 To UBound(pipelinefull, 1)

Do While (Not IsEmpty(pipeline full(i, j, 3)))
.Cells(i, j) = pipelinefull(i, j, 3)
j-=j + 1

Loop
Next

End With

With Worksheets("Pipeline Full Bio-PIE")
For i - 1 To UBound(pipelinefull, 1)

j 1
Do While (Not IsEmpty(pipelineIfull(i, j, 4)))

.Cells(i, j) = pipelinefull(i, j, 4)
j = j +

Loop
Next

End With
End Sub

Sub LoadDefaults()
Worksheets("User
Worksheets("User
Worksheets("User
Worksheets("User
Worksheets("User
Worksheets("User
Worksheets("User
Worksheets("User
Worksheets("User
Worksheets("User
Worksheets("User

Input") .Range("C4:DlO") = Worksheets("Default Values").Range("C4:DlO").Value
Input").Range("K4:L8") = Worksheets("Default Values").Range("K4:L8").Value
Input").Range("F4:H14") = Worksheets("Default Values").Range("F4:H14").Value
Input") .Range("N4:P14") = Worksheets("Default Values").Range("N4:P14").Value
Input") .Range("D17:N20") = Worksheets("Default Values") .Range("D17:N20") .Value
Input") .Range("D23:N26") = Worksheets("Default Values") .Range('D23:N26") .Value
Input") .Range("C29:C34") = Worksheets("Default Values") .Range("C29:C34") .Value
Input") .Range("F30:G35") = Worksheets("Default Values") .Range("F30:G35") .Value
Input") .Range("J29:J30") = Worksheets("Default Values") .Range("J29:J30") .Value
Input") .Range("C41:J46") = Worksheets("Default Values") .Range("C41:J46") .Value
Input") .Range("C52:N57") = Worksheets("Default Values") .Range("C52:N57") .Value

'current projects
'current projects

incoming projects
'incoming projects
'inlicensed LMW
'inlicensed Bio
'PIE ratios
'backup ratios
'PIE and backup time delays
'transition rates
'durations

End Sub

Sub ResetForecasts()
'This subroutine sets up forecast cells in Crystal Ball, in case they accidentally get corrupted.

If cb.CBLoaded() False Then cb.Startup 'checks to see if Crystal Ball is open; if not, opens it
'NME Portfolio
With Worksheets("User Dashboard").Range("D26:026")

For i = 1 To 12

.Cells(l, i).Select

.Cells(l, i).Value = 0 'Note: "0" used to initialize cell so that CB can assign a forecast
cb.DefineForeND "Year " & ActiveCell.Offset(-l, 0).Text & " NME Portfolio", "Projects", False, False

Next
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End With
'Clinical Portfolio
With Worksheets("User Dashboard").Range("D27:027")

For i = 1 To 12
.Cells(l, i).Select
.Cells(l, i).Value = 0
cb.DefineForeND "Year " & ActiveCell.Offset(-2, 0).Text & Clinical Portfolio", "Projects", False, False

Next
End With
'sPOC Portfolio
With Worksheets("User Dashboard").Range("D28:028")

For i = 1 To 12

.Cells(l, i).Select

.Cells(l, i).Value = 0
cb.DefineForeND "Year " & ActiveCell.Offset(-3, 0).Text & sPOC Portfolio", "Projects", False, False

Next
End With
'CSP Portfolio

With Worksheets("User Dashboard").Range("D29:029")
For i = 1 To 12

.Cells(l, i).Select

.Cells(l, i).Value = 0
cb.DefineForeND "Year " & ActiveCell.Offset(-4, 0).Text & CSP Portfolio", "Projects", False, False

Next
End With

'% Biologics
With Worksheets("User Dashboard").Range("D30:030")

For i = 1 To 12
.Cells(l, i).Select
.Cells(l, i).Value = 0
cb.DefineForeND "Year " & ActiveCell.Offset(-5, 0).Text & % Biologics", "Projects", False, False

Next
End With
'Readouts
With Worksheets("User Dashboard").Range("D33:036")

For i = 1 To 4
For j = 1 To 12

.Cells(i, j).Select

.Cells(i, j).Value = 0
cb.DefineForeND "Year " & ActiveCell.Offset(-(i + 7), 0) & ActiveCell.Offset(0, -(j + 1))Text Clinical Readouts",

"Projects", False, False
Next

Next
End With
'Transitions Portfolio
With Worksheets("User Dashboard").Range("D39:043")

For i = 1 To 5
For j = 1 To 12

.Cells(i, j).Select

.Cells(i, j).Value = 0
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cb.DefineForeND "Year " & ActiveCell.Offset(-(i + 13), 0) & ActiveCell.Offset(0, -(j + 1)).Text & " Transitions",
"Projects", False, False

Next
Next

End With
End Sub

7.3.3 Module 2: Public functions

'This function pulls a new transition rate based on the phase and assumption set being assessed.

Public Function GetTransitionRate(mean tr, stdev tr) As Double
Randomize 'randomize seed for Rnd function below based on system clock

5 GetTransitionRate = Application.WorksheetFunction.NormInv(Rnd, mean tr, stdev tr)
If GetTransitionRate <= 0.2 Or GetTransitionRate > 1 Then GoTo 5 'truncates the normal distribution at .2 and 1

End Function

'This function pulls a new duration based on the phase and assumption set being assessed.
Public Function GetDuration(min, likeliest, max) As Double

Randomize 'randomize seed for Rnd function below based on system clock
a = min
M = likeliest
b = max

'Note: below formulas taken from Ron Davis article in "Informs: Transactions on Education"

alpha = ((2 * (b + 4 * M - 5 * a)) / (3 * (b - a))) * (1 + (4 * (((M - a) * (b - M)) / ((b - a) ^2))))

beta = ((2 * (5 * b - 4 * M - a)) / (3 * (b - a))) * (1 + (4 * (((M - a) * (b - M)) / ((b - a) 2))))

GetDuration = Application.WorksheetFunction.BetaInv(Rnd, alpha, beta, a, b)
End Function

'This function is used to find the next unused element in the pipelinefull arrays
Public Function NextOpenElement(iphase, kassumption set, temp_pipeline full)

NextOpenElement = 1

Do Until temp pipeline full(iphase, NextOpenElement, kassumption set) = 0 Or NextOpenElement = UBound(temp_pipelinefull, 2)

'finds first 0 or upper bound of array
NextOpenElement = NextOpenElement + 1

If NextOpenElement = UBound(temppipeline_full, 2) Then MsgBox ("Problem: you've reached the end of pipeline full-fix the

code") 'if above found UB, adds a column to array
Loop

End Function
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