

Optimal Foreign Borrowing in a Multisector Dynamic Equilibrium Model for Brazil

by

Octavio A. F. Tourinho

MIT-EL 85-011

August 1985

Room 14-0551 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.5668 Fax: 617.253.1690 Email: docs@mit.edu http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Mis-numbering error by the author PG. A. 26 is a blank pg.

ABSTRACT

This paper shows how a dynamic multisector equilibrium model can be formulated to be able to analyze the optimal borrowing policy of a developing country. It also describes how a non-linear programming model with the proposed features was constructed for Brazil, and discusses the optimal solution of a base case scenario for the economy in the next 20 years. The sensitivity analysis emphasizes the response of the model to different interest rates on foreign borrowing, alternative export expansion and imports requirements scenarios, and different hypothesis with respect to future petroleum prices and domestic petroleum production. The main conclusion is that the optimal long run borrowing policy for Brazil is quite sensitive to the expected future interest rates, and may be different from some myopic strategies which are currently being suggested to handle the developing countries' foreign debt problems. The other important conclusion is that in the less favorable acenarios - protectionist foreign environment or higher petroleum prices - it is not optimal to postpone the required domestic adjustments by increased foreign borrowing. The usefulness of the model is not restricted to this set of simulations, since it can be readily adapted to address related issues such as foreign trade, investment and indirect taxation policies.

1. INTRODUCTION

In the wake of the recent international financial crisis, the need was felt to address several interconnected questions of long-range macroeconomic planning in Brazil. They are mainly related to government policy with respect to the foreign debt, the trade balance, and the intersectoral allocation of investment. The choice between high and low foreign indebtedness will have to be made in a context where borrowing is costly and can only be avoided by generating large trade surpluses which constrain the growth of domestic output and consumption. Efforts designed to generate these surpluses through reduced imports and increased exports will affect the size and sectoral composition of output, require shifts in the allocation of capital and labor in the economy, and lead to adjustments in the investment patterns.

These issues can be taken into account in an economy-wide dynamic optimization model, which can be specified to be able to evaluate the savingsconsumption tradeoff, and include the restrictions in the foreign accounts and in the factor availabilities. The activity levels and capital stock in each sector, as well as the trade balance and net borrowing requirements can be calculated endogenously to maximize some specified utility function, which insures that the solution of the model has the desirable efficiency properties.

Planning models with similar objectives have been specified and implemented for a number of countries, as surveyed by Taylor [1975], and more recently by Dervis, de Melo and Robinson [1982]. The model described in this paper is similar in some respects to the one built by Blitzer and Eckaus [1983] for Mexico, but emphasizes the aspects that seemed most relevant for

-1-

the analysis of the Brazilian situation¹. The innovations of the model proposed here are a rather detailed representation of the foreign debt dynamics, the liberal use of non-linear relationships in the utility function and in the interest rate calculations, and a novel specification of the terminal utility term, all in the quest of attaining more realism in the intertemporal choice aspects of the problem.

Several economy-wide equilibrium models have been built for Brazil in the past, but none stressed the foreign debt problem and the intertemporal choice issues associated with it. Lysy and Taylor [1980] used a Johansen-type model to analyze income distribution issues in the '70s, with a medium-run perspective. Their model incorporates a detailed input-output representation of the productive sector, but does not include any formal utility maximization. Modiano [1983] linked a process representation of the energy system with a detailed econometric model of the rest of the economy, in a model where the market equilibrium for energy goods is found by maximizing consumers' plus producers' surplus. That model is solved forward in time, without dynamic optimization, and does not include a disaggregated representation of the intersectoral flows, as the one here. McCarthy [1983] has built a non-optimizing model for identity-based medium-run policy evaluation which includes the intersectoral flows, and also attempts to account for all the financial flows and budget requirements of the several actors of the economy.

-2-

¹ The main differences are a more detailed representation of the borrowing costs, and the use of a more satisfactory formulation of the terminal conditions. In addition, the model presented here was solved with a nonlinear programming algorithm which is apt to provide more precise results than the linear programming approximation used in the Mexico model.

This paper also demonstrates that it is now possible to easily solve numerically some of the simpler discrete time non-linear neoclassical optimal control problems that arise in models of economic growth. Thanks to MINOS, a program developed by Murtagh and Saunders [1983], optimization packages are now capable of handling a sizeable number of non-linear relationships, both in the objective function and in the restrictions (the latter at a somewhat higher cost), liberating the empirical model builder from the straight-jacket of linear programming or the purely static equilibrium models.

The plan of the paper is as follows. The next section presents the model formulation, addressing some of the possible extensions. Section 3 describes very briefly some aspects of the implementation, while section 4 presents the "base case" solution. Section 5 contains the sensitivity analysis, with the discussion of the main issues the model was meant to address. The conclusion is in section 6.

2. MODEL FORMULATION

Intertemporal choice problems can be treated consistently in the dynamic general equilibrium framework of optimal growth models. These can be extended by including foreign debt as another state variable, allowing the analysis of the joint determination of the time paths of savings, consumption and borrowing that maximize the discounted value of the stream of utility from future consumption. Two approaches can be used to analyze economies modelled in this way. One, taken by Blanchard [1983] is to work in continuous time and employ optimal control methods to derive analytically the system of differential equations to be satisfied by the optimal paths. The other, which is pursued here, is to solve numerically a discrete-time approximation to the

-3-

original maximization problem. The tradeoffs are clear: the first allows a more systematic exploration of the underlying properties of the system, while the second permits the use of a more detailed multisectoral representation of the actual economy. The analytical approach does not render numerical optimization useless, because it turns out that the paths of the variables will in general depend very much on the initial conditions of the dynamic system, while on the other hand, the analytical solution is indispensable as a benchmark when implementing an empirical model. In short, the two approaches are highly complementary.

The discrete-time multisectoral model specified below chooses variables in each period such as sectoral production, sectoral investment, sectoral imports and exports, foreign borrowing, and consumption level and composition, subject to various constraints. These are the material balances, the foreign exchange balance, the labor supply constraint, and the dynamic equations for debt and capital accumulation².

The formalization of each of these aspects of this programming problem is in the next sub-sections, where the notation is as follows. In the equations, the symbols i and j are used as row and column indices for the vectors and matrices, denoting respectively goods and producing sectors. The parameters are generally denoted by lower-case letters, and exogenous variables by capital letters with bars under them. The indexes t and g denote time periods, all of length n years, and all the variables are specified in yearly terms. Matrix multiplication and internal products are denoted respectively by a star and a dot between the two arrays.

2 Borrowing itself is not constrained, nor is the savings rate, since the model chooses these levels based on comparing costs and benefits at the margin.

-4-

2.1. Objective Function

The existence of a representative consumer is assumed, and the objective function of the planning problem is composed of two elements: the sum over the plan horizon of the total utility in each period properly discounted (at a rate δ), plus the discounted value of post-terminal utility. The yearly utility (U_t) and the terminal utility are specified in per-capita terms, so that they have to be multiplied by population (<u>N_t</u>) to obtain total welfare.

(1)
$$W = \Sigma_t (1+\varepsilon)^{-t} n \underline{N}_t U_t + (1+\varepsilon)^{-T} \underline{N}_T V$$

The post-terminal per-capita utility (V) includes a penalty for the accumulated foreign debt, and a premium for the level of capital stock³, which exist at the end of the last period. It compensates for the truncation of the time horizon, assuming a steady state in the post-terminal period, and can be interpreted as fulfilling the role of the primal equilibrium approximation in Svoronos [1985] "squeezing" algorithm for infinite horizon convex programs⁴. The detailed equation with the formal specification will be presented later, after the relevant variables are defined.

A generalized logarithmic function was adopted to evaluate the utility of alternative consumption vectors in each period $(C_t)^5$, mainly because it gives rise to an extended linear expenditure system (ELES), which has often

4 I thank Alan Manne for pointing this out to me.

5 The consumption vector includes non-competing imported consumption, in addition to the several other produced goods.

-5-

³ Terminal stocks are not exogenously specified as in other models in this tradition.

been used in planning models of this type to characterize consumer demand⁶. The parameters of this per-capita utility function are the vector of marginal expenditure shares (g) and the vector of minimum levels of consumption of each good (η).

(2)
$$U_{t} = \Sigma_{i} \models_{i} \log (C_{i,t} / \underline{N}_{t} - \gamma_{i})$$

This objective function has several desirable features like, for example, implying a declining marginal utility of consumption for each good, generating a full set of own and cross price elasticities, and internalizing the savings decision. For this functional form, the elasticity of substitution of expenditure between two consecutive time periods is smaller than unity⁷, and is increasing with income level, which is consistent with empirical evidence regarding consumer demand in developing countries (see chapter 4 in LLuch, Powell and Williams [1977])). Rubinstein [1977] has also offered a host of arguments why a function of this type should be favored in finance models for analyzing intertemporal choice, particularly under uncertainty.

2.2. Material Balances

The material balance constraints insure that, for each good total supply

⁶ For a discussion of extended linear expenditure systems and their application to several countries, see Lluch, Powell and Williams [1977]. For a more formal treatment of linear expenditure systems in general, and the econometric procedures for their estimation, see Powell [1974]. Blitzer and Eckaus [1983] have used this function in a model for Mexico.

⁷ In the limit, when the minimum consumption level for the several goods tends to zero (relative to actual consumption), the elasticity tends to that of the standard logarithmic function, which is unity.

is at least as great as total demand. Demands include the vector of intermediate deliveries to production (Z), and final demand vectors: private consumption (C), government consumption (G), investment (I), and exports (E). Supply includes the vectors of domestic production (X) and competitive imports $(H)^8$. Dating each of these, the equation can be written as:

(3)
$$X_t + M_t \ge Z_t + C_t + \underline{G}_t + I_t + E_t$$
 for all t

Competitive imports are discretionary, and refer to goods which could be produced domestically although perhaps at higher cost. The other category of imports consists of goods which cannot be produced in the country, and are called non-competitive imports. They are demanded mostly for intermediate consumption, and do not appear in the balance above because they do not increase supply of the produced goods considered in the model. They are better thought of as another factor of production, in addition to skilled labor and capital.

All these variables are endogenous, except \underline{G}_t , which is forecast on the basis of an exogenous growth rate applied to the initial vector of government consumption.

2.3. Foreign Exchange Balances

The foreign exchange constraint guarantees that in each time period, export earnings plus gross foreign borrowing (B) meet the costs of competitive imports, the total expenditure in non-competitive imports (MN), interest

⁸ Note that because some goods are not traded, while others are not used for investment, the vectors M, E and I may have null elements.

payments (H), debt repayments (R) other foreign exchange transfers (F).

(4)
$$p_{\mathbf{m}_{t}}$$
, \mathbf{M}_{t} + \mathbf{MN}_{t} + \mathbf{R}_{t} + \mathbf{H}_{t} + $\underline{F}_{t} \leq \mathbf{B}_{t}$ + $p_{\mathbf{e}_{t}}$, \mathbf{E}_{t} for all t

Since the levels of exports and imports are endogenous, this balance will allow us to shed some light on the issue of the appropriate level of openness for the country's economy⁹.

The modelling of interest and amortization of foreign debt is described in section 2.4. For now it suffices to emphasize that, since repayments are included in the foreign exchange expenditures, the borrowing variable is defined in gross terms.

For simplicity, a linear formulation was adopted to calculate the export revenues of each sector. The vector of export prices at each point in time (pet) is exogenous and can be changed to trace the economy's supply curve in various scenarios for the foreign conditions. Maximum exports of each commodity in each period were however specified, implying that the market model underlying the export sector is competitive only up to that exogenous limit¹⁰. For the manufacturing sector these bounds may reflect limitations to market share increases which may be associated with protectionist measures or some degree of product differentiation within each product category. For the

⁹ Equation (4) also highlights the potential use of the model for the analysis of foreign trade issues.

10 Unfortunately this specification may lead to some degree of "bang-bang" behavior, in that the model will in general specialize, exporting up to the limit in the more attractive sectors, and not al all (or only residually) in the remaining ones. This could have been avoided by incorporating into the model non-linear export revenue functions. From the mathematical and algorithmic point of view this would have been possible, but the functional specifications and estimates of the relevant parameters were not readily available, so that this extension could not be done reliably at the moment.

-8-

agricultural products this captures some of the effects of the declining demand curve in the markets where Brazil is a large competitor. In either case, historical performance provides an indication of the reasonable values for the maximum rates of growth.

Import costs have two components: competitive and non-competing imports. The expenditure in any of these is modelled as a linear function of the quantities imported, as exemplified in equation (4), where the price vector of the competitive imports is pm. Non-competing imports are required in the model for production (a vector MX), capital formation (a vector MK), consumption (a scalar MC) and government expenditures (<u>MG</u>). All are endogenous, except the last, and their prices are denoted respectively by px, pk, pc and pg in the equation (5).

(5)
$$MN_{\pm} = px_{\pm}, MX_{\pm} + pk_{\pm}, MK_{\pm} + pc_{\pm}MC_{\pm} + pg_{\pm}MG_{\pm}$$
 all t

Private consumption of non-competing imports is governed by the utility function, while the technology determines the other two categories.

Exogenously projected foreign exchange transfers for factor payments exclude interest payments, which are computed separately, but include remittances, dividends and (minus) foreign direct investments. Outflows for the payment of services other than factor services, are computed as service sector imports.

2.4. Technology and Input Demand

As in any modelling exercise, a compromise had to be struck between the points that we wanted to make, and the complexity and size of the model. Due to this tradeoff, the representation of the production function had to be as

-9-

simplified as possible, to reduce the cost of running the model and allow the planned number of simulations to be performed. Therefore, a Leontief specification is used for each sector, with four categories of inputs: intermediate goods, non-competitive imports, capital, and labor. Their levels of usage are related to the level of activity of each sector through fixed coefficients.

Endogenous technological choice in production could have been easily included in the model, had the required data been available, by adding columns corresponding to the different alternative technologies, as was done by Blitzer and Eckaus [1983] in their model for Mexico. These vectors and their linear combinations can then be seen as approximating the isoquant for each sector, on which the model would select a point on the basis of implicit factor prices, taking into account the different input intensities of these approximating technologies. Alternatively, since the optimization algorithm allows non-linear restrictions, a truly neoclassical production function could have been specified, at least for some sectors. Neither of these alternatives were followed here due to the lack of readily available data, and because the present version of the model was designed to focus on the foreign debt aspects of the planning problem.

Demand for intermediate goods is calculated in the usual way with a matrix of input-output coefficients (a). The non-competitive imports demanded by the several sectors for current production are obtained by multiplication by a diagonal matrix (mxr) containing the sectoral requirements coefficients.

(6) $Z_t = a + X_t$ (7) $HX_t = mxr + X_t$ for all t

-10-

Only labor employed in the formal market is considered scarce and included in the formulation, but its supply (\underline{L}) is not modelled explicitly, being assumed to grow at an exogenously specified rate. The important problem of absorbing the large numbers of self-employed and sub-employed that exist in the Brazilian informal labor market is not addressed here¹¹. As a consequence, the shadow price of labor in the informal sector is implicitly being assumed to be zero, which is an extreme assumption which probably overstates the leverage of capital and formal employment. The sectoral labor requirements follow the linear specification of the rest of the productive sector and are contained in a vector (lr). Labor-augmenting technical progress is handled in the usual way, specifying the labor supply constraint in equation (8) in terms of "efficiency" units:

(8) $lr_+ X \neq \underline{L}_+$ for all t

The amount of capital which is available in each period is a vector indexed by sector which depends on the initial endowments (a vector \underline{K}_0), depreciation factors (a diagonal matrix d), and the investment decisions which the model has made for prior periods (a vector DKg). There are several vintages of capital used for production in each period, which are indexed by the period in which it is put in place (g). The total capital available in any period t is the sum of the depreciated value of these investments, which are denominated in yearly terms, and therefore need to be aggregated. This is done here by multiplying the depreciated investment vector by a diagonal

¹¹ For 1983, the approximate size of the "informal" market is 6.9 million rural and 9.6 million urban workers. This compares with 7.4 million rural and 23.9 million urban workers employed in the formal market.

matrix (f) that has all its elements equal to the number of years per period¹². The demand for capital services in each sector is obtained by multiplying the gross output vector by a diagonal matrix of capital-output coefficients (k). The capital restriction can then be written as:

(9)
$$k * X_t \leq d^t * \underline{K}_0 + f * \Sigma_{g \leq t} (d^{g-1} * DK_g)$$
 for all t

Demand for investment goods produced by a given sector (I) is determined applying a matrix of investment shares (b) to the required deliveries of new capacity (DK) to all sectors. This matrix reflects the composition, in terms of sector of origin, of sectoral capital formation. Demand for non-competing imports in investment also follows a linear specification, and is obtained by the multiplication of the capital formation vector by a diagonal matrix (mkr) whose elements are the import requirements of each sector.

(10)
$$I_t = b * DK_t$$
 (11) $MK_t = mkr * DK_t$ for all t

Since the distribution of initial year investment (I₀) by sector of destination was unknown, it was treated endogenously by using equation (10) (with the equality replaced by an inequality \geq) for the initial year, allowing the model to allocate initial investment efficiently.

¹² Since the level of investment is likely to be increasing in time, its effect on the capital stock in a sector will be dependent on its average gestation lag. These could have been approximately taken into account by adjusting the elements of f in a way similar to the one suggested by Blitzer in 1972 and used in Goreux [1977 chapter 10]. This would imply that the elements of the matrix would be slightly larger than n in the sectors with short gestation lag and high expected growth rate, and somewhat below n in the reverse situation.

2.5. Foreign Borrowing and Debt Service

Foreign borrowing is an important variable in the model. Making the time path of borrowing endogenous simulates actual policy choice and allows the economy to simultaneously adjust the level of domestic economic activities and of imports. However, there must be provision for payment of interest and repayment of principal either before or after the model's time horizon. A certain fraction of total debt comes due in each period, but it can be rolled over by contracting for additional borrowing, although perhaps at a higher interest rate. The choice of how much to borrow (B) and in which periods it will be repaid (R) is made endogenously by comparing the shadow value of foreign exchange and the marginal interest costs.

Foreign debt is modelled here using a vintage model in order to properly account for the effect of the situation of the foreign accounts on the total interest payments. To indicate this, let $D_{g,t}$ be the debt contracted in period g held at <u>start</u> of period t, where the index g runs from 0 to t-1. The following equation shows its dynamics, given repayment (R) and borrowing (B) flows, assuming that after an initial amount is borrowed in a period, it can only be repaid later¹³. Since these are both yearly flows, they are entered into the debt balance equation multiplied by the number of years per period. The second equation below defines next year's debt of one period of age as equal to the sum of the yearly flows of this period's borrowing.

(12)
$$D_{g,t+1} = D_{g,t} - n R_{g,t} \qquad \text{for all } t \text{ and } 0 \neq g \neq t-1$$

$$\begin{array}{ccc} \text{(13)} & D_{t,t+1} = n B_t & \text{for all } t \end{array}$$

-13-

¹³ The repayment schedule $(R_{0,t})$ of initial year debt $(D_{0,1})$ is known, and is used in the recursion of equation (12).

The repayment schedule on any period's borrowing is assumed to be exogenously specified, and is independent of the period in which borrowing occurs. This implies that the fraction of the borrowing done in period g which is amortized in a later period t can be calculated as a function (r) of the difference between these two dates. This simple formulation does not consider changes in the repayment profile of the debt¹⁴, which may however be a matter of policy choice for some countries. In the context of the model this issue is better addressed through sensitivity analysis, since changes in the maturity are usually associated with changes in the interest rates.

(14)
$$R_{g,t} = r_{t-g} B_{g} \qquad \text{for all } g \text{ and } t$$

In order to calculate the interest cost, this model recognizes that a large fraction of the debt contracted in the international financial market by developing countries accrues interest on the basis of a floating rate (i.e. LIBOR) plus a spread, which supposedly reflects the country-specific risk. The debt of developing countries also usually has a fixed rate component associated with loans by foreign governments and official institutions, sometimes in preferential terms. Since the likelihood of large interest subsidies to Brazil through fixed-rate loans in the future is small, it was assumed that all of the debt is subject to the floating scheme. This is however only a simplification, since the model can be easily extended to allow for this other type of debt.

14 This is true except for the changes that occur as a result of the gradual shift from the repayment profile of the initial debt to the one implied by the application of the repayment function specified above to future borrowing. To the extent that the function r is derived from the forecast repayment stream on initial debt, this change is small.

-14-

As with all other variables in this model, interest payments are calculated in real terms, excluding the effects of inflation of the currency in which the debt is denominated. If repayments for actual borrowing are given in nominal terms, higher inflation in the lending country decreases the real value¹⁵ of the debt at any point in time. This effect of foreign inflation can be simulated in the model considering a faster repayment schedule on the real debt.

Therefore, in any given year, interest payments on total debt (H) have two components: the first is proportional to the real interest rate, which is exogenous and can change each period, and the second is a function of the spread rates contracted for in previous borrowing, which is fixed for the life of the loan. As shown in equation (15), the effective interest rate on debt is the sum of the real interest rate (h) and the endogenous spread rate (SH):

(15)
$$H_{g,t} = (h_t + SH_g) D_{g,t}$$
 for all t and g

It was assumed here that these spread rates are a stationary linear function (with slope α), of the ratio of annual borrowing to an index of real income. This index is approximated by adding the sectoral value added, each calculated as the product of gross output and the initial year shares (a vector va)¹⁶.

(16)
$$SH_t = \alpha (B_t / Y_t)$$
 for all t

15 i.e. deflated by price index of the currency of denomination.

¹⁶ Income as such is not available in the primal of model, since it depends on the shadow prices of the several goods. However, the index of gross domestic product at base year prices, which is used above, can always be constructed.

-15-

(17)
$$Y_t = va \cdot X_t$$
 for all t

The rationale underlying equation (16) is the standard Capital Asset Pricing Model (CAPM) for financial markets¹⁷, coupled with the assumption that higher values of gross borrowing (relative to income) are perceived by lenders as signals of higher volatility of future returns on their loans. This suggests that the spread rate contracted for loans taken out in a given year should be a function of the gross level of borrowing in that same year.

This formulation is cast in a long run perspective, and is offered only as a reasonable way to look at the cost of Eurobond funds from the borrower's point-of-view, and not as an analysis of the rational determination of spread rates in that market. Note also that this formulation allows the country to act somewhat like a monopsonist, since at the optimal solution the marginal costs of foreign borrowing are equated with its marginal productivity.

Alternative explanatory variables for the spread rate function were considered (see Appendix A), but the one adopted was preferred both due to its properties and satisfactory empirical fit. The use of net borrowing, instead of gross borrowing, in the spread rate function was avoided because the several equations that were estimated involving that variable had poor statistical results. This negative result can be rationalized if in the Eurobond market the lending decision is evaluated independently of the repayments of previous borrowing, which would be the case if in each period the lenders were not forced to refinance past loans, as seemed to happen until a few years ago.

17 It states that securities with higher undiversifyable risk must command a higher interest premium over the riskless rate than the ones with lower risk.

-16-

The use of a specification involving debt as an explanatory variable for each period's spread was avoided because, being stock variable, debt is apt to change only slowly and not capture the dynamics of the rate if, for example, borrowing were drastically reduced. The debt service to export ratio, which is also a natural explanatory variable and does not suffer from this criticism, was abandoned because of an unsatisfactory empirical fit. However, an equation using the debt to income ratio as the independent variable fitted well the data, and was used to calculate the spread rate in the post-terminal period, as described in the next section.

The following equations define some variables already used above: total debt (D), amortization (R) and interest payments (H) in a period are the sum of the corresponding variables for the several maturities.

(18) $D_t = \Sigma_g D_{g,t}$ (19) $R_t = \Sigma_g R_{g,t}$ (20) $H_t = \Sigma_g H_{g,t}$ for all t

2.6. Terminal Stocks and Post-terminal Utility

It is straightforward to define terminal debt (DT) and terminal capital stock (KT) as in the equations below, where all the variables with a T subscript refer to the values in the beginning of last period.

$$(21) DT = D_T - n R_T + n B_T$$

$$KT = d * K_{T} + n DK_{T}$$

Assuming that a stationary state prevails in the post-terminal period, the expression for the per-capita infinite horizon approximation term (V) can be derived by calculating the indirect utility function associated with the utility function in (1) and (2) at the terminal date. As in equation (23), it can be written as δ^{-1} times a generalized logarithmic function of terminal income, with total minimum expenditure equal to the sum of the minimum expenditures on the several goods $(\alpha_i \text{ in } (2))^{18}$. The intuition is clear: it is the present value of an infinite stream of single-period stationary utility (hence the term δ^{-1}) afforded by the supernumerary income flow.

The total terminal income is the sum of the labor income, plus the return (at a rate ρ) on the accumulated capital stock, less the interest cost of terminal debt. The terminal labor income (<u>YT</u>) and the yearly return on terminal capital stock (ρ) are considered here to be exogenous, but can be estimated on the basis of some preliminary runs. This exogeneity was maintained to avoid complicating too much the shadow-price structure of the model. Letting <u>NT</u> denote the population at the end of the last period, and recalling that V was specified in per-capita terms, the following equation displays the expression for the per-capita terminal utility.

(23)
$$\mathbf{V} = \varepsilon^{-1} \log \left[\left(\underline{\mathbf{YT}} + e \, \mathbf{KT} - \mathbf{HT} \right) / \underline{\mathbf{NT}} - \Sigma_{\mathbf{i}} \boldsymbol{\alpha}_{\mathbf{i}} \right]$$

The interest payment on the terminal debt in the equation above (HT) is calculated in (24), where the interest rate is assumed to be equal to the real LIBOR plus a spread rate which is calculated as a linear function (with slope σ) of the size of total debt relative to the index of real income defined previously¹⁹. This implies that the cost of terminal debt, which reduces the post-terminal supernumerary income, is a quadratic function of the debt.

18 It is a bit tedious to show this. To do it, substitute the linear demand functions of ELES back into the objective, and integrate by parts.

19 The comments made in connection with equation (16) also apply here, in analogous form. Equation (24) also has a satisfactory empirical fit for the Brazilian data.

-18-

(24)
$$HT = [h_{T} + \sigma (DT / \underline{YT})] DT$$

3. MODEL IMPLEMENTATION

The model was applied to Brazil with a horizon covering twenty-four years from 1984 to 2008, which is divided into 6 periods of 4 years. Endogenous variables and balances are estimated at the beginning of each period. The last period ends in 2008, the date at which the terminal condition term of the objective function is evaluated.²⁰

A long horizon is necessary to allow enough time for the required changes in the economic structure to be accomplished through capital formation and labor reallocation. It is also needed to allow the correct evaluation of the investment decisions which are included in the model, and to minimize the distortions in the results for first few periods of the model's finite horizon²¹. The confidence that is accorded to the results for the last periods should however take into account the fact that some parameters of the real economy, which correspond to coefficients which are fixed in the model, may change over such a long time span.

The economy is divided into nine producing sectors: (1) agriculture, (2) agro-processing, (3) construction, (4) manufacturing of capital goods, (5) other manufacturing, (6) petroleum, (7) utilities (electricity, water, gas), (8) transport and communication, (9) services. This classification is similar

21 The adjustments made through the terminal conditions are only approximate.

-19-

²⁰ The accuracy of the infinite horizon approximation, evaluated by of extending the model to a larger number of periods, is discussed in the next section.

to the one used in the Brazilian national accounts, but has the manufacturing sector broken up into its main components, and aggregates the several services sectors in a single class. The petroleum sector was separated because of its interactions with the foreign sector.

The model was implemented with the use of the GAMS matrix generator²² and solved by the non-linear programming package MINOS²³. It has 7 non-linear equations, and its coefficients matrix has 350 rows, 484 columns and 1685 nonzero elements. At the optimum, 48 non-linear variables are super-basic²⁴.

It should be emphasized that MINOS 5.0, being a non-linear programming package, cannot in general reach <u>exact</u> optimal solutions. Rather, it stops at an approximate optimal solution where the reduced gradient is zero up to some very small tolerance. The algorithm was always able to converge to the optimal solution, as long as the key parameters (discount rate, LIBOR rate, etc.) were in the range where the behavior of the dynamic system underlying the programming model was stable. On non-stable paths it failed in some instances to find a solution with the specified precision.

22 The listing of the specification of the model in the GAMS language is presented in Appendix B. The author wishes to thank Sethu Palaniappan for providing several hints on how to implement the model with that software.

23 For an introduction to these programs, see respectively Kendrick and Meeraus [1985], and Murtagh and Saunders [1983].

24 Solution time from a "cold start" on a CYBER machine was 17 seconds, but the model can be run in an IBM PC with 640k and numeric co-processor in about 4 hours. The model was developed using the mainframe version of the software because of its faster turn-around time.

3.1 Data base construction²⁵

Most of the data for implementing the model can be inferred from the intersectoral transactions and final demands table for 1983, which was constructed by updating the set of preliminary tables for 1975 obtained from the the Brazilian statistics institute (IBGE)²⁶. The units for all the commodities and factors in the model are consistent with this table and are defined as the quantities that could be bought with one CRS billion in 1983. Implicit in this definition is the hypothesis that the aggregation within each sector is on the basis of initial year prices. The other important data items for the model are shown in Table 3.1 and were obtained as follows.

SECTORS/GOODS	Marginal consump. shares (%)	Minimum /total consump. 1983 (%)	•	Depre- ciation (yearly) (%)	Labor /gross output ratio
Symbols	£	[xi/ci]	k	(d-1)	lr
Agriculture	2.41	70.8	2.600	1.6	0.1340
Agro-processing	7.63	70.8	1.520	3.7	0.0504
Construction	-	-	0.572	4.2	0.1607
Man. capital goods	5.01	28.4	1.092	4.0	0.0845
Man. other goods	16.46	30.2	1.278	3.6	0.0784
Petroleum	3.97	42.9	2.075	3.6	0.0341
Utilities	2.72	25.4	3.556	3.4	0.1866
Transport & commun.	7.09	22.6	0.935	4.5	0.2470
Services	37.72	46.8	2.354	3.9	0.1923
Non-compet. imports	0.79	52.0	-	-	-
Average			1.769		0.1226

Table 3.1 Parameters of utility and production functions

25 Appendix A contains detailed description of the data base construction.

26 Unfortunately it was not feasible, given the time available for the data collection, to simultaneously maintain the consistency of the 1975 table and attain an exact correspondence with the national accounts aggregates for 1983. The GNP in the updated table is 10% smaller than the value in the accounts, in part because a sizeable discrepancy already existed in the 1975 table.

-21-

The parameters of the utility function (the vectors e and π) were calculated by constraining the linear expenditure system to reproduce the 1975 consumption vector, and using the income elasticities estimated by Williamson and McCarthy [1981]. These values imply an overall elasticity of substitution equal to 0.54 in 1983. The discount rate of 4% used in the utility function is consistent, given the marginal savings rate of .84 implied by the e's of Table 3.1, with an average net real yearly return on personal savings of 5%. This value is quite reasonable, given that the real coupon rate on indexed passbook savings in Brazil is 6%.

The capital-output and labor-output coefficients were derived from the respective factor shares making use of some depreciation and profit rates data contained in Lysy and Taylor [1980]²⁷.

The slope of the function used to calculate the spread rate in each period (equation (16)) and of the post-terminal interest cost function (equation (24)) are respectively $\alpha = 29.69$ and $\sigma = 5.26$, with the spread rate in percentage points. They were obtained from an analysis, using simple linear regression²⁸, of the real lending rates for Brazil in the Eurobond

28 The R^2 for the two equations were respectively .47 and .50 and both coefficients are significant at the 5% level.

²⁷ A warning is in order about the reliability of the data. Primary data on sectoral capital-output coefficients was not available, so they had to be estimated indirectly as described in the text. Very little information about the marginal investment shares matrix (b) exists in Brazil, so it had to be constructed piecing together information from several sources, and does not have much hard data to support it. A properly estimated linear expenditure system was also not available, but the elasticities that were used are not expected to be very far from the correct ones. Finally, the possibility that any of these parameters may not be stable through time may compound any errors in the estimation. Since no major data collection effort could be made for this project, we had to do our best with the data on hand, but it must be emphasized that further work to validate these coefficients is necessary.

market between 1974 and 1984. It was assumed that these behavioral relations will continue to hold in the future, in spite of the fact that there is no \underline{a} <u>priori</u> reason why this should be so. If the institutional arrangements for borrowing by developing countries change in the future, new rules to determine the interest cost of debt will have to be included into the model.

The yearly rate of growth of population and labor force were assumed to be 2.5% and 3% respectively, consistently with historical behavior and some recent projections done in Brazil²⁹. The rate of labor-augmenting technical progress was assumed to be 2% yearly.

Government expenditures are assumed to grow at the same rate as population growth, which implies they are inelastic with respect to per-capita income. This is not the usual assumption in models for Brazil, but this parameter can be easily varied to check the sensitivity of the solution to it^{30} .

For the base case <u>scenario</u>³¹, the following ad-hoc assumptions were made with regards to the values of the remaining parameters. The real LIBOR rate stabilizes at 5% yearly, slightly lower than the current level, and does not return to the very low levels of the early '70s. The maximum yearly growth rate of agricultural and manufactured exports is equal to 5% and 10% respectively, envisioning an yearly rate of increase of international commerce

29 See Oliveira et all [1985].

³⁰ Variations in the growth rate of government expenditures in the reasonable range are not expected to have any impact on the conclusions of the sensitivity analysis of section 5.

31 It cannot be emphasized enough that these are only scenarios for parameters whose future evolution we know very little about, and are not projections of the most likely course of events.

-23-

of 5% and market share increases for Brazilian manufactured goods. It is assumed that domestic petroleum production stabilizes at a level of 600 thousand bbl/day in accordance with recent forecasts, but that the gross output of the sector expands only to incorporate the value of the increased production. This implies a rather extreme assumption that the refining subsector does not expand above its base-year capacity, and that in the medium and long term the demand increases are supplied with imports of refined products³². The terms of trade are assumed stable at the 1983 level. Sensitivity analysis with respect to these parameters is shown in section 5.

Finally, due to the difficulties with finding a disaggregated estimate of capacity utilization appropriate to the framework of the model, fullemployment was assumed to prevail in 1983, in spite of the fact that it was a recession year. In addition, since cyclical departures from full employment are difficult to handle in models of this type, experiments were not made to verify whether the inclusion of slacks in the resource constraints fo the initial period would lead to reasonable results. This assumption however does not seem to be overly problematic for the long-run calculations for which this model is suitable.

3.2 The adjustment of the terminal utility parameters

The post-terminal net return on capital (p) had to be estimated by insuring that the Ramsey equation be satisfied at the beginning of the model's post-terminal period. Working with a simplified version of a similar model,

-24-

³² This may not have been a very good assumption, but it is not completely unreasonable economically in light of the large increases in Middle-Eastern refining capacity which are scheduled to occur in the next few years.

Goreux [1977] shows that the equilibrium condition reduces to expression (25)³³. It can also be shown that the rate of decline of the per-capita marginal utility can be approximated locally by the rate of increase of percapita consumption divided by the overall elasticity of substitution.

(25) |marginal rate | utility | rate of decline | |c25) |of capital = |discount + |of per-capita | |productivity | rate | marginal utility |

Recall that the base-case discount rate (8) is 4%, and note that the maximum sustainable post-terminal rate of growth of per-capita consumption is the sum of the rate of labor-augmenting technical progress (2%) plus the rate of increase in the labor market participation rate (0.5%). The elasticity of substitution in the extended linear expenditure system, given the growth rates assumed above for population and per-capita income, would be average about 0.66 during the planning period³⁴. Therefore, the approximate rate of decline of the per-capita marginal utility is 3.8%, and the discrete-time estimate of the return on capital for the post-terminal period (p) is $8.0x^{35}$.

 33 Note the absence of the population growth rate from (25), due to the fact that in the objective function (1) the maximand is the sum of utility across all individuals.

³⁴ In ELES the overall elasticity of substitution (Ψ) is equal to the supernumerary ratio, which would be about .8 in the first decade of the post-terminal period. The formula for the Frisch parameter (see Lluch, Powell and Williams [1977] is: $w = p/\Psi - (1-p)$, where p is the marginal savings rate (0.16) and Ψ is the elasticity, and is about .9 in the beginning of the post-terminal period.

35 The use of the continuous time formula can lead to a slight numerical distortion, so the discrete-time version of (25) was used in estimating p (g_c is the growth rate of per-capita consumption, and ϵ is the overall elasticity of substitution):

$$(1 + z) = (1 + \xi) (1 + g_c)^{1/\epsilon}$$

The pos-terminal yearly net labor income, whose major role is to determine the slope of the terminal condition term in the utility function, was fixed at Cr\$ 240 trillion (of 1983), assuming an average growth of percapita income of 2.5% during the plan period.

Given these values for δ , ρ and YT, the initial runs (see the base case in the next section for an example) showed that the economy managed to attain an overall yearly growth rate of about 5%. Towards the last period of the model, the gross marginal productivity of capital was seen to be close to 12%, implying a net return of 8.2%, given that the average depreciation rate is 3.8%. The rate of decrease of the <u>aggregate</u> marginal utility also was very close to the predicted value of 6.5%, which was calculated by adding the rate of population growth to the rate of decrease of per-capita marginal utility.

The sensitivity analysis with respect to the net return on capital (p) in the neighborhood of 8% showed that the value 8.2% produces, for the range of simulations reported here, a smooth path for consumption, investment and borrowing. The latter value was then adopted for subsequent runs of the model.

The values for these indirectly estimated parameters were held constant in all the simulations reported in the next sections, in spite of the fact that in some cases some fine-tuning would had been in order.

The existence of a convex function for the cost of foreign borrowing generates another equilibrium condition for the model, which requires that the marginal return on capital be equal to the marginal cost of debt. This allows us to calculate the approximate value of the post-terminal debt to income

-26-

ratio³⁶ as being equal to .3, which is somewhat smaller than the current .42. but very close to the ratio actually chosen by the model for the last periods of the horizon in these initial runs. This suggests there are no major inconsistencies between the parameters for the post-terminal period and the rest of the model.

Experiments with extending the horizon of the model to 7 and 8 periods showed that the formulation chosen for endogenizing the post-terminal period leads to stable behavior of most of the variables for the whole horizon. In the last period however, end effects are still present for some variables. This is exemplified in Table 3.2, which displays the small changes in consumption and debt, as well as the larger changes observed in the trade balance, when the number of periods is increased. The latter is one of the variables whose terminal behavior is most sensitive to the increase in the number of time periods³⁷, and shows that this model attempts to generate a large trade surplus near the end of the horizon, in order to be able to carry an artificially smaller debt to the post-terminal period³⁸. As a consequence of these remaining end effects, the values of the foreign sector flows for the last 2 periods have to be interpreted with care. For the same reason, the last period is omitted from the tables in the following sections.

36 Note that the slope of (24) is $[h_T + 2 (DT/YT) \sigma]$, where $h_T = 5^{*}$ is the post-terminal real LIBOR rate and $\sigma = 5.26$ is the slope of the terminal spread rate function.

37 The current account is even more volatile in percentage terms.

38 The reason for this behavior seems to be that by increasing exports in the last few periods, consumption is reduced only during the interval up to the end of the horizon, since the post-terminal labor income flow is exogenous. On the other hand, this secures an infinite stream of additional post-terminal income flow, via reduction of interest payments. In terms of discounted utility, this tradeoff favors the debt reduction.

-27-

					=======================================	
Item	# periods	1984	1988	1992	1996	2000
Aggregate	6	-0.08	-0.22	-0.43	-0.94	-1.19
consumption	7	-0.03	-0.04	-0.16	-0.23	-0.67
L	8	0.00	0.01	-0.02	-0.05	0.01
Foreign	6		-0.18	-1.26	-4.69	-10.09
debt	7	-	-0.07	-0.46	-0.86	-4.72
	8	-	-0.01	-0.03	0.17	-1.23
Trade	6	0.94	8.13	24.19	24.76	55.28

2.94

0.18

20.38

7.95

2.47

-1.60

-13.41

-15.18

0.35

0.05

Table 3.2 Sensitivity of the solution to the number of periods in the model (% deviation from values of solution with 10 periods)

4.RESULTS FOR THE BASE CASE SCENARIO

7

8

Trade

balance

Several important caveats are in order before we begin the discussion of the results. First, these solutions are driven by an optimization operation performed under conditions of perfect foresight, which implies that if the model can calculate that times will be better (or worse) in the future, it will make decisions today which will take that into account. To the extent that the model is a deterministic representation of a world which is actually stochastic, the solutions can only be interpreted in a rational expectations framework with identical penalties for over and under-shooting. Second, the model is normative in nature, so the solution should not be seen as a forecast. Third, the behavior of the variables within the periods is supposed to be smooth, which implies in particular that the values for 1984 should be interpreted as those that would produce an optimal path until 1988, rather then reflecting short-run contingencies that affected the economy in that

year. Fourth, it is convenient to emphasize that the model's unit is <u>constant</u> 1983 CRS billions³⁹, a fact that is particularly relevant when looking at the foreign accounts, where amortization and interest payments must be interpreted in real terms, and exclude the effects of US dollar inflation and exchange rate movements relative to third currencies.

	=======================================		=======	=======			
	19841	19841	Index				
	(Cr\$ bil	(US\$					
	of 1983)	b111)	1984	1988	1992	1996	2000
Gross output	207777.8	360.1	1.0	1.206	1.462	1.771	2.145
Gross dom. income	111319.2	192.9	1.0	1.205	1.461	1.766	2.136
Consumption	76631.5	132.8	1.0	1.193		1.759	2.130
Investment	27392.1	47.5	1.0	1.286	1.508	1.831	2.222
	4652.4	8.1	1.0	1.126	1.267	1.426	1.605
Government consump.				1.128	1.704	2.352	3.094
Exports	12927.5	22.4	1.0				
Non-compet. imports	5918.7	10.3	1.0	1.206		1.819	
Total imports	10284.4	17.8	1.0	1.302	1.826	2.474	3.277
Trade balance	2643.1	4.6	1.0	0.861	1.226	1.879	2.380
Regist. foreign debt	46385.8	80.4	1.0	1.157	1.391	1.601	1.704
Repayments	7596.1	13.2	1.0	0.964	0.940	1.284	1.358
Interest	3491.0	6.1	1.0	1.150	1.347	1.486	1.525
Transfers	973.7	1.7	1.0	1.000	1.000	1.000	1.000
Current Account	-1821.6	-3.2	1.0	1.489	1.337	0.656	0.004
Borrowing	9417.7	16.3	1.0	1.066	1.017	1.162	1.096
Capital stock	358294.8	620.9	1.0	1.191	1.445	1.739	2.097
Capital stock Capital formation	28946.8	50.2	1.0	1.277	1.502	1.822	2.214
Population ²	131.374		1.0	1.104	1.218	1.345	1.485
Exployment ²	31.999		1.0	1.113	1.250	1.398	1.565
	*********				- 1004		
Note: 1 These are th 2 these variab			•				

Table 4.1 Economic aggregates for base case scenario (evaluated at base year prices)

39 The average exchange rate for 1983 was CR\$ 577 per US\$, according to International Financial Statistics [1984].

The main aggregates, all evaluated at initial year prices, are shown in Table 4.1. It is divided in four parts: the income accounts, the balance of payments, and the statistics for the capital and labor stocks. These are discussed in turn below⁴⁰.

Consumption at the year 2000 is about 2.13 times the current level, corresponding to an average yearly growth rate of 4.75%, while gross output grows slightly faster, at 4.91% per year. Per-capita consumption grows on average at 2.2% per year, a rate very close to its steady-state value equal to the rate of growth of labor productivity.

The shares in output do not change much throughout, with consumption, gross investment, government and net exports accounting on average for respectively 69%. 25%, 3.5% and 2.5% of income⁴¹. Since it was assumed that government expenditures would grow at the same rate as population, its share of income decreases steadily from 4.2% to 3.2%. The share of investment increases by one percentage point between the two extreme periods.

The trade surplus stays at about US\$ 4.5 billion until 1992, and then grows at 9% per year. The larger actual surplus in 1984 (US\$ 12.9 billion) can then almost surely be seen as excessive, from the long-run perspective of the model⁴². Accordingly, debt grows at 4% per year until 1996 and then stabilizes at a level of US\$ 130 billion.

 4^{0} For more detail about the results, the reader can resort to the solution reports for the base case, which are presented in Appendix C.

41 The government share differs from that in the national accounts (9%) because of the discrepancy in data sources alluded to in section 3.

42 Recall also it does not incorporate constraints in the level of borrowing.

-30-

The model chooses to let the real foreign debt grow, albeit much slower than income, in spite of its higher cost in the early years. This is reflected in the fifth row of Table 4.2, which shows that the average yearly real interest rate paid in each period is 7.5% until the end of the decade but then decreases steadily. Borrowing and interest rate on the debt are jointly determined, with the spread above real LIBOR being progressively reduced, as the approximately stable gross borrowing level (US\$ 17.3 billion) declines with respect to growing income⁴³. The relative level of gross borrowing depends in part (at each point in time) on the repayments on past borrowing, but its reduction decreases the total interest cost in two ways: by minimizing the size of the debt and by reducing the spread rate.

The current account shows that the inflow of "new" loans (there are no reserve variations) averages about USS 4.5 billion annually until 1996, showing that the optimal strategy in this base case is to reach a situation of of balanced current account only toward the end of the horizon. The impact of requiring that it be equilibrated before then will be analyzed later.

Gross investment is on average 8.5% of the capital stock, sufficient to cover average depreciation of 3.8%, and provide a net growth of 4.7% required to support the gross output growth⁴⁴. The share of labor force employed in the two manufacturing sectors goes from 12.5% in 1984 to 15.0% in 2000, showing some degree of labor reallocation.

43 To see the reason for this, recall the equation for the determination of the spread rate.

44 Recall that in this version of the model there is no technological choice, and the production technology is pure Leontief.

-31-

The weighted average of the shadow-prices of the several commodities, with weights equal to the shares in the initial consumption bundle, is shown in the last part of the Table 4.2. It is a measure of the marginal utility of income at the several points in time, and is used as a numeraire to calculate the other prices in the economy. It declines because of the time discounting in the objective function, and because of the joint effect of income growth and concavity of the utility function.

	Table 4.2						
Shadow prices and imp			se case s	cenario			
(in consumption units)							
	1984	1988	1992	1996	2000		
Prices Consumption	1.000	1.000	1.000	1.000	1.000		
Labor	2.334	2.371	2.655	2.705	2.660		
Foreign exchange	1.086	1.027	1.027	1.024	1.022		
Marginal yearly rate of							
capital productivity ¹	0.168	0.148	0.129	0.125	0.127		
Average yearly interest rate on foreign borrowing	0.075	0.075	0.073	0.070	0.067		
Numeraire ²	11.700	8.798	6.306	4.720	3.520		
Note: ¹ This rate is gross of depreciation							

2 See text for definition of the numeraire

The aggregate marginal productivity of capital in Table 4.2 is the average of the sectoral returns to investment, in terms of consumption units, over one year. The latter is the ratio the marginal utility of the rental one unit of capital and the marginal utility of consumption. The productivity is declining due to the increase of the capital to labor ratio in production. Since at the margin the economy can increase the capital stock by purchasing one additional unit of capital abroad, the level of borrowing adjusts so that its marginal interest cost is equal to the marginal productivity of capital, net of depreciation. The decrease in the marginal rate, which is followed by a reduction in the average rate shown in Table 4.2, is accomplished by a reduction in gross borrowing, relative to income.

In the model the shadow price of foreign exchange is close to unity in all periods except the first, indicating that no real depreciation would be needed to support the market equilibrium associated with this solution.

The sectoral rates of growth of output and investment, as well as the rates of growth of consumption and exports for each of the goods, are shown in Table 4.3. Consumption of agricultural and agro-processed goods grows slower than that of manufactured goods, while the rate of growth of services has an intermediary value. This reflects their differing income elasticities, which are built in the parameters of the objective function. The observed elasticities can be readily calculated, and range in value between 0.77 and 1.25.

Sector / goods	Gross	Invest-	Consump-	Exports		
	Output	ment	tion			
Agriculture	4.4	3.9	4.4	5.0		
Agro-processing	4.1	3.7	3.8	5.0		
Construction	5.0	4.8	-	-		
Man. capital goods	4.6	3.9	5.2	-6.0		
Man. other goods	6.1	5.8	5.3	10.0		
Petroleum	0.7	-	4.9	-		
Utilities	5.2	5.0	5.2	-		
Transp and commun.	4.7	4.4	4.9	-		
Services	4.7	3.8	4.7	-		
************************************		=======================		************		

Table 4.3 Average rates of growth of selected aggregates in the base case (1984-2000, in %)

The behavior of gross output reflects also the strategy the model chooses

-33-

with respect to exports: to expand at the maximum rate in the agricultural, agro-processed (except in 1988) and "other" manufacturing sectors, while reducing exports of capital goods. It seems that at the prices prevailing in 1983, which are held constant through the whole horizon in this simulation, the Brazilian industry is not very competitive in capital goods manufacturing.

The petroleum sector can only grow in accordance with the current forecast of domestic production, and is therefore stagnant. Consequently, imports grow at an yearly rate of 9.6%, absorbing essentially all the increase in demand. In interpreting this result it must be recalled that in this version of the model there are no substitution or conservation possibilities. It is hoped that in the future these can be included, if reliable data can be found.

Investment is more sluggish in the sectors which are growing at less than 4.9% and losing share in gross output.

The shadow price of labor can be used to calculate the implied sectoral wages, shown in Table 4.4 in terms of the number of minimum wages. The comparison with the level prevailing in the early '80s shows that the market wages are about 43% of the implied marginal value of labor. The explanation for this lies in part on the fact that in implementing the labor availability restriction only the formal employment was taken into account, with the vast "informal" sector (8 million rural and 7 million urban workers) having been ignored. It could also be due to taxation and other distortions, but the possibility of systematic underpricing of labor is not ruled out. No large discrepancies between market and model wages are observed in their sectoral distribution.

-34-

Table 4.4

Comparison of model and market sectoral wages for formal employment in the base case in 1984 (in number of minimum wages)

=======================================		=======================================	=======================================		=======	=======================================		2222222	
	•	• •		Capital goods			Util ities	Transp & comm	Servi ces
Market	1.00	4.69	1.73	4.02	3.57	5.82	3.20	2.20	2.50
Model	2.34	10.90	4.04	9.38	8.33	13.60	7.50	5.10	5.83

Table 4.5 Shadow price of commodities in the base case (in consumption units)

	Agricul	Agropro	Constr	Capital goods	Other	Petro	Utili	Transp	Servi
1984									0.97
Average ¹	.94 ========	1.01 ========	1.09	1.02	1.00	1.02	1.20	1.31 =======	0.95
Note: 1 T	his is tl	he <mark>a</mark> rith	metic av	verage of	the va	lues fr	om 1988	to 2004	•

The comparison of the time average of normalized shadow prices of commodities in Table 4.5 with 1983 market prices (unity by definition) indicates that the only major changes that would be required for efficiency are increases of 20% and 30% in the prices of the utilities and transport & communications sectors⁴⁵. The prices of traded goods tend to the international price, the only significant discrepancy being the price of agricultural products in the 1984-1988 period.

45 It is also possible but unlikely that this is an indication that the technological coefficients in production overstated the true costs of these sectors. Alternatively, this could be signaling the need to have alternative production technologies in these sectors.

5. SENSITIVITY ANALYSIS

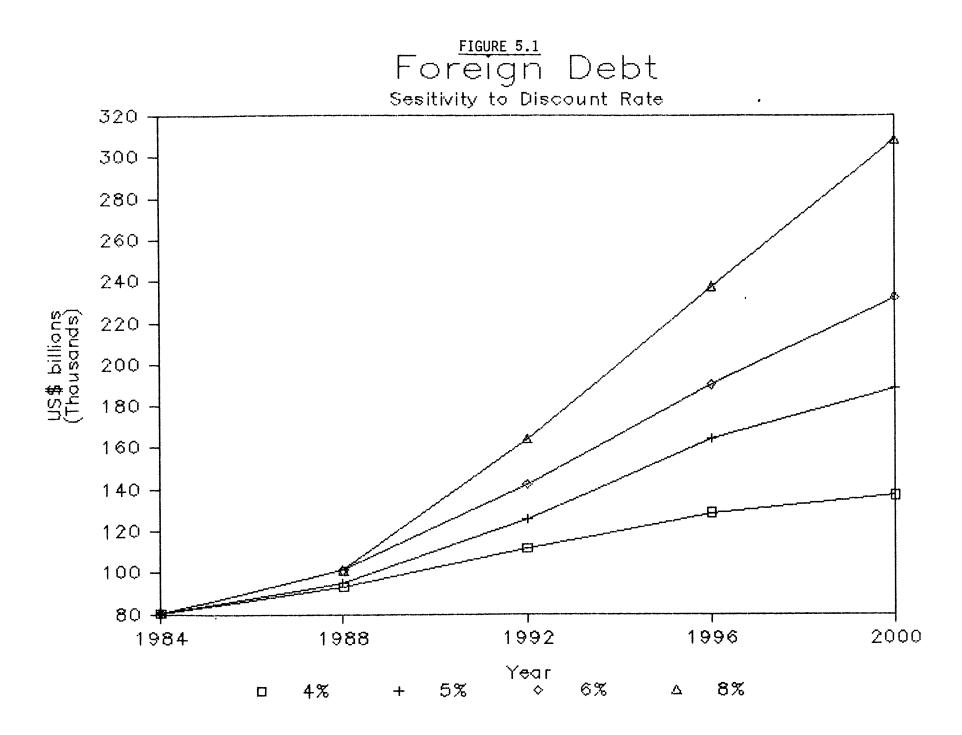
Five sets of sensitivity runs were performed to assess the response of the model to changes in the parameters characterizing the conditions affecting the foreign sector The first and second sub-sections trace the changes in the optimal solution due to changes in the discount rate and the cost of foreign borrowing, respectively. The third section tries to look at the effects of changes in the external markets environment, by varying the allowed growth of exports. The fourth evaluates the importance of the petroleum sector, by first hypothesizing higher levels of domestic petroleum production, and then looking at the effect of an increase in international oil prices. The last sub-section attempts to assess the imports requirements coefficients⁴⁶.

It should be clear that this is only a small selection of possible sensitivity runs that could be performed, but they will hopefully illustrate the power and flexibility of the model to analyze in a consistent manner a range of planning issues, especially those relating to the foreign debt⁴⁷.

5.1 Sensitivity to the discount rate

This section discusses the effects in the solution of alternative assumptions with respect to the discount rate for utility. Recalling the

46 Note that since the values for 1984 are calculated in the model, they change between the scenarios.


47 Lack of space did not permit the inclusion of the complete results (see Appendix C for an example) for the scenarios, but Appendix D contains tables with the main macroeconomic aggregates for all the sensitivity runs.

-36-

discussion in section 3.2. the main dynamic relationship driving the model requires that along the optimal path the marginal cost of foreign debt be equal to the sum of the discount rate and the rate of decrease of the marginal utility.

Since the former is composed of the real LIBOR rate plus the marginal spread rate, and the latter is roughly constant, increases in the assumed rate of discount for utility will lead to higher levels of optimal borrowing, as the spread rate adjusts to satisfy the Euler equation. The optimal borrowing policy therefore depends essentially on the difference between the real LIBOR rate and the discount rate, through the marginal cost of borrowing. This is illustrated by Figure 5.1, which displays the variation in the total foreign debt as ξ is increased to 5%, 6% and 8%, while holding the real LIBOR at the base case level $(5x)^{48}$.

48 The post-terminal return on capital (p) was adjusted to 9.2%, 10.2% and 12.2% respectively, as is required satisfy the Euler equation post-terminally.

-38-

The convexity introduced in the formulation of the model by the endogenous borrowing cost allowed us not to have to specify the borrowing rate to be equal to the discount rate, to be able to avoid corner solutions. However, the fact that debt at each point in time is sharply increased⁴⁹ as the discount rate is raised, shows that this non-linear formulation can lead to unrealistically high marginal spreads if the difference between the two rates is large. This occurs because the specification (and the parameters) of the borrowing cost function in this model do not imply enough convexity to compensate for large discrepancies between them.

The shift in the intertemporal pattern of consumption towards earlier periods is the counterpart of the increase in indebtedness, and is illustrated in Table 5.1.

Table 5.1Sensitivity of the yearly growth rate in consumptionto changes in the discount rate for utility

Discount rate	1984/88	1988/92	1992/96	1996/2000						
4%	4.50	5.26	4.70	4.89						
5%	4.85	4.92	4.87	4.61						
6*	5.06	4.61	4.50	4.64						
8%	5.58	4.22	4.02	4.61						
****************	=======================================			=======						

The message to be extracted from this section is that the study of the optimal borrowing policy in the model should center on the results of the sensitivity analysis, as is done in the following sections. The specific values for the foreign sector variables in base case solution have to be taken

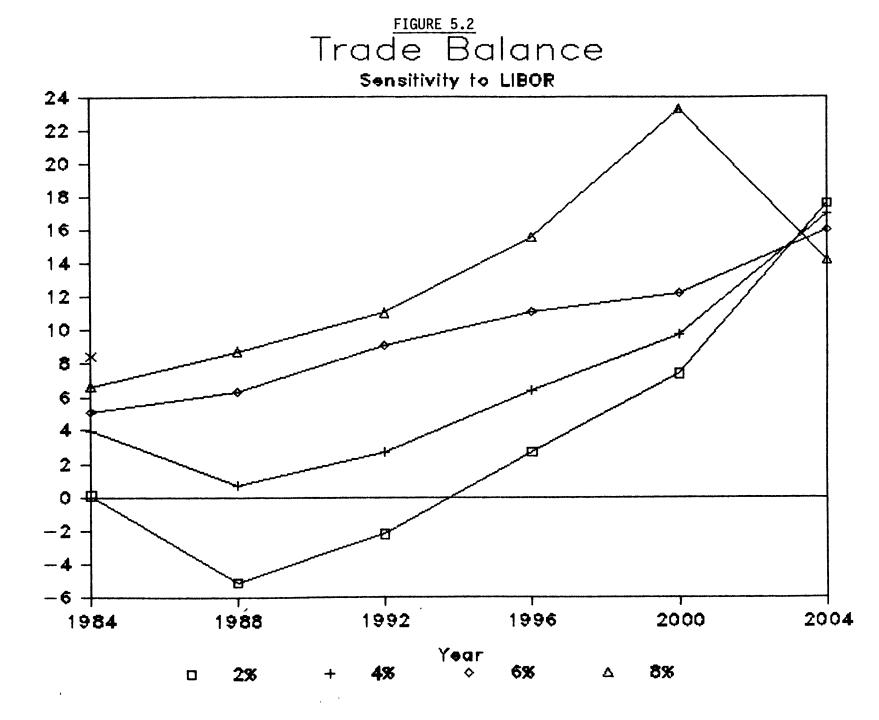
49 In fact, with 2=8% the arbitrary limit on the terminal foreign debt (US\$ 435 billion) was reached.

with a grain of salt, because they are depend quite a bit on the difference between the discount rate for utility, which is unobservable, and the future interest rate on foreign borrowing, which is unknown. Other variables however are not so sensitive, and their values in the base case are representative of the macro behavior of the model.

5.2. Variations in the fixed part of the interest cost

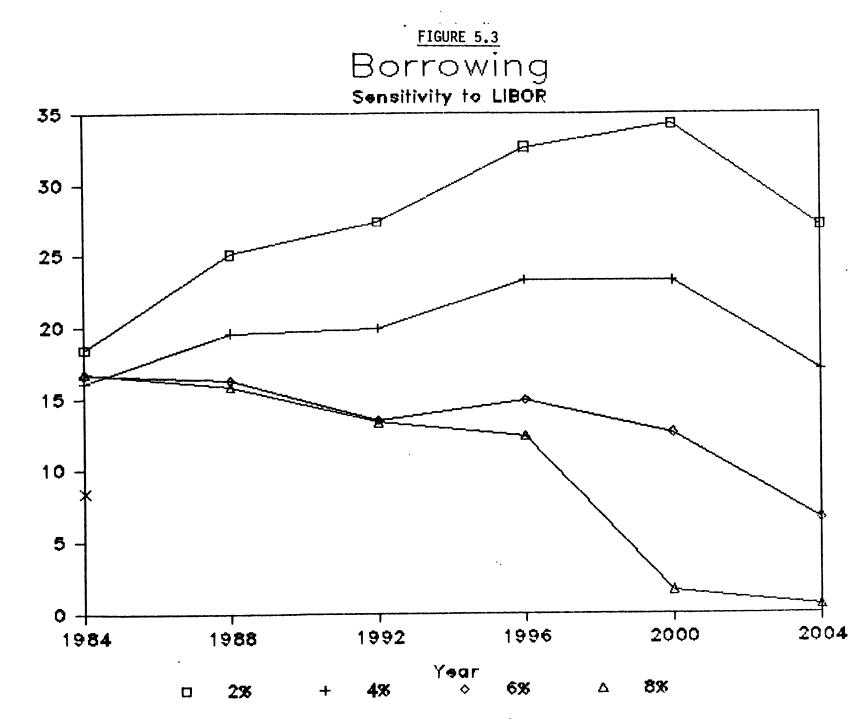
One would expect that the rational reaction to higher (lower) interest rates would be a reduction (increase) in the level of borrowing, in order to reduce the burden of the debt. This is indeed the response of the model, which can however also provide us with an estimate of the size of the changes involved. Table 5.2 summarizes the impact, on the main indicators of the foreign sector, of varying the real LIBOR rates in the range of 2% to 10%. In all these simulations the changes occur in the first time period and remain in effect until the end, so that they can be seen as "step" responses under perfect foresight.

As Table: 5.2 shows, as the rate increases from 2% to 6%, the curve that describes the behavior of the current account shifts up by roughly US\$ 8.5 billion⁵⁰. This means that (in that range) an increase of one percentage point in the rate induces a <u>reduction</u> of US\$ 2.1 billion in the current account deficit. This result must be interpreted in the optimizing framework in which the model operates, since this total derivative of the current account with respect to the interest rate on debt has the opposite sign of the partial derivative that corresponds to the strategy of not responding to the higher rates.


50 This is only strictly true between 1988 and 2000.

-40-

For the higher rates the net effect of a change in the real LIBOR is much smaller, as the alternatives for response are more limited, and are partly counter-balanced by the added cost of carrying the debt. This can be seen in the table by comparing the 8% and 10% rows for the trade balance, borrowing, and total debt, and noting that the small changes indicate that near maximum reduction of external exposure had already been triggered at the lower rates.


Table 5.2 Sensitivity of the main foreign sector aggregates to the real LIBOR rate (values in US\$ billions of 1983)

ITEM	Rate	1984	1988	1992	1996	2000					
Current Account	2%	-5.235	-11.580	-11.319	-8.482	-5.316					
	4%	-2.970	-6.956	-6.747	-4.473	-1.971					
	6%	-3.457	-3.423	-1.479	0.497	2.204					
	8%	-3.564	-2.939	-1.492	2.863	12.204					
	10%	-3.335	-3.382	-2.069	1.881	12.729					
Trade Balance	2%	0.091	-5.123	-2.220	2.695	7.364					
	4%	3.964	0.693	2.685	6.389	9.743					
	6%	5.085	6.284	9.080	11.080	12.217					
	8%	6.585	8.708	11.046	15.555	23.315					
	10%	8.422	10.021	12.712	17.229	26.741					
Borrowing	2%	18.400	25.104	27.407	32.640	34.224					
-	4%	16.135	19.575	19.944	23.307	23.248					
	6*	16.621	16.236	13.486	14.899	12.597					
	8%	16.729	15.795	13.355	12.381	1.591					
	10%	16.500	16.146	14.004	13.659	1.878					
Total debt	2*	80.391	101.332	147.651	192.929	226.856					
	4×	80.391	92.271	120.096	147.085	164.975					
	6%	80.391	94.218	107.908	113.825	111.859					
	8×	80.391	94.649	106.406	112.372	100.920					
	10%	80.391	93.733	107.260	115.536	108.012					
****************	*********		==========	========	===========						

US\$ billions

-42-

US\$ billions

-43-

As can be seen in Figure 5.2, the response of the trade balance to a change in rates is USS 2.4 billion per percentage point, with most of the additional foreign exchange revenue being generated by the capital goods sector, which is the only one that had not reached the export limit in the base case.

Figure 5.3 shows that the level of <u>gross</u> borrowing is also only responsive to the interest rate in the range below 6%. Its scope of variation is larger the farther into the future is the period being considered, because the effect of higher (lower) level of borrowing in the early years is compounded in the form of larger (smaller) repayments later.

The optimal level of the total debt in the year 2000 can be anywhere between US\$ 226 billion and US\$ 100 billion (in real terms), depending on the level of interest rates. This highlights the point that the country's strategy with respect to the foreign debt should be cast in a long range framework of analysis, and that the discussion of the optimal policy with respect to the debt must consider explicitly the real rates which are expected to prevail in the future⁵¹. If they are expected to continue at high levels, it may not be optimal to try to pursue strategies that will lead to the continued increase of the debt.

Table 5.3 shows the average interest rate on debt at each point in time. An estimate of the average spread can be inferred from it by taking the difference between the actual rate and the real LIBOR. It can be seen that when the fixed rate is very low (2%) the model accepts average spreads of the

-44-

⁵¹ This consideration seems sometimes to be missing in the negotiations to reschedule the Brazilian debt.

order of 3%, which are even larger than the highest levels observed in the past. In the first two periods there is not much variation in the average spread between the scenarios because those interest payments are dominated by the conditions on the initial debt. For higher LIBOR rates the lower levels of borrowing also allow a faster reduction of the average spread after the second period.

Table 5.3								
Average	interest	rate on	foreign	debt				
		(in %)						

=======================================				*********	
Real LIBOR (%)	1984	1988	1992	1996	2000
2.0	4.5	4.7	5.1	4.9	4.8
4.0	6.5	6.5	6.4	6.2	6.1
6.0	8.5	8.5	8.2	7.8	7.5
8.0	10.5	10.5	10.2	9.8	9.3
10.0	12.5	12.5	12.2	11.8	11.4

The objective function changes by only 1% between the two extreme cases of the real LIBOR rate. The impact in the domestic side of the economy is further illustrated in Table 5.4, that shows how consumption (evaluated at 1983 prices) is affected by the changing rates. In general, as rates increase both initial and terminal aggregate consumption are reduced, falling by approximately 6% and 1% respectively when the two extreme cases are compared.

> Table 5.4 Comparison of consumption in the first and last periods for alternative real LIBOR scenarios (% deviations from the base case)

Real LIBOR>	2%	4%	6%	8%	10%
1984	+3.4	+0.7	-0.7	-1.9	-2.9
2000	+1.3	+0.4	-0.4	-3.3	-4.2

Summing up, while the optimal strategy with respect to the debt changes quite a bit with a change in interest rates, this economy seems to be flexible enough to absorb (in the long run) relatively large variations in them without much impact on welfare. It is interesting to note how limited is the longterm impact of widely different borrowing strategies, indicating that the real issues in the LDC borrowing problem must be more related to the short and medium term liquidity restrictions.

This last argument can be confirmed by Table 5.5, which compares the base case scenario with another where non-negative current account balance is imposed for the whole horizon. In this alternative scenario the real debt is not allowed to grow beyond the initial level, and the model responds to this by reducing consumption and increasing the net exports⁵² in the early years. This loss of utility is compensated, in present value terms, by higher consumption towards the end of the horizon, when the required exports are much smaller. The impact therefore is very similar to that of a reduction of the discount rate, causing a reduction of about 2% in the yearly aggregate consumption level until 1992.

The shadow-price of foreign exchange displays a sharp increase of 70% in the first period, drops to a level 10% above the base cain the second, and stabilizes at the base case level by the end of the horizon.

-46-

⁵² The increase in the trade balance is generated through petroleum imports reduction in 1984, and by an increase in agro-processed goods exports in the second period, each of about US\$ 2.8 billion. The decrease in petroleum consumption associated with the imports reduction is accomplished through a sizeable relative shadow-price increase of 70%. The consumption shift required to free up agro-processed goods for export requires only a small relative price increase of 8%, because there already existed some slack in the export limit of this commodity in that year.

Table 5.5 Comparison of "base case" and "balanced current account" scenarios (% deviations from base case)

ITEM	1984	1988	1992	1996	2000
Consumption	-2.5	-2.0	-0.1	+0.3	+2.1
Trade balance	+68.9	+88.9	+25.8	-21.3	-40.0

5.3. Export Markets

To evaluate the impact in the optimal solution of the conditions faced by Brazilian exports in penetrating foreign markets, two simulations were performed altering the rates at which manufactured and agricultural exports could grow⁵³. In the protectionist scenario the maximum yearly rates of growth for agricultural and manufactured exports were set to 3% and 7.5% respectively. The optimistic scenario maintains the base case rate for the growth of agricultural goods exports (5%) and considers a rate of growth for manufactured exports (13.5%) that would lead to a doubling, by the end of the horizon, of the base case increase in the level of this type of exports⁵⁴. Note that because these bounds are in terms of rates, no large departures from the base case can occur in either scenario in the early periods, since the different rates can only affect significantly the levels further out in the future.

53 Recall from the model specification these rates apply cumulatively over the initial export level, and are <u>not</u> a restriction on the speed at which exports can grow at each point in time.

54 More optimistic scenarios than this do not affect much the results, as the model is not willing to reduce consumption to take advantage of them, as will be seen below.

Table 5.6 shows how the foreign sector aggregates respond to these different external conditions and exemplifies a situation where the forwardlooking nature of the model produces some interesting results. In the optimistic scenario exports do not increase at all, relative to the base case. until the period starting in 1988 because, it will be recalled, the model was not using all its potential in that case. The solution does not display large trade surpluses until the last two periods, which indicates that the model prefers to increase imports at the higher rate of export growth, rather than use resources to reduce the debt. The level of post-terminal debt is however smaller in this case because of the large trade balance in the period starting in 2004.

Table 5.6 Comparison of foreign sector aggregates for protectionist, base and optimistic scenarios (US\$ billions)

		===========		==========		=========
Scenario	Item	1984	1988	1992	1996	2000
Protectionist	Exports	21.934	27.633	35.030	44.664	57.255
	Imports	16.165	21.736	30.209	40.921	54.077
	Trade balance	5.768	5.898	4.820	3.743	3.178
	Debt	80.391	88.269	97.407	112.193	134.193
Base	Exports	22.405	27.158	38.167	52.699	69.317
	Imports	17.824	23.212	32.553	44.092	58.415
	Trade balance	4.581	3.946	5.614	8.606	10.903
	Debt	80.391	93.019	111.818	128.703	136.984
Optimistic	Exports	22.856	27.191	41.832	64.031	99.711
	Imports	17.974	23.250	36.802	58.289	89.456
	Trade balance	4.882	3.941	5.029	5.742	10.255
	Debt	80.391	91.813	110.157	128.747	148.459
		*********		============		========

In the protectionist scenario the model knows that times will be difficult in the future and does not delay the adjustment by borrowing. Rather, debt is smaller than in the base case until the next to last period, when it is allowed to grow, leading to a post-terminal value 80% larger than in the base case⁵⁵. The surplus in the trade balance is however clearly decreasing, a trend opposite to the one in the base case. The relative effect on the primal of the smaller allowed export growth limit is not larger because the model was not strongly constrained by it in the base case.

The shadow-prices in table 5.7 show the exchange rate policy implied by the allocation above and tell different story: a real devaluation of 40% would be necessary to bring about the changes in consumption required to reduce imports in the protectionist case. If we were to measure real income in terms of the foreign currency, this reduction is an indication of the cost imposed on the economy by a more difficult external markets situation.

Table 5.7 Comparison of shadow-prices of foreign exchange for the protectionist, base and optimistic scenarios

ITEM	1984	1988	1992	1996	2000
Protectionist	1.368	1.308	1.395	1.422	1.466
Base	1.086	1.027	1.027	1.024	1.022
Optimistic	1.075	1.018	1.024	1.041	1.013

5.4. Effect of assumptions about the petroleum sector

The model allows us to evaluate the impact on the optimal plan of a discovery today of a large (by Brazil's standards) oil field. This was

55 This may be due to the approximations involved in the terminal utility term, and may not be very meaningful.

simulated by solving the model with hypothetical domestic petroleum production levels reaching 700, 800 1000 and 1200 thousand bbl/day in 1992, 1996, 2000 and 2004 respectively, rather than stabilizing at 600 thousand bbl/day as in the base case. In this simulation it was also assumed that the gross output of the whole sector (including refining) expands proportionately to this increase in domestic production. It should be emphasized however, that this scenario can only illustrate the effect of knowing <u>for sure</u> that future production can be higher. The resulting changes in aggregate consumption and income are reported in Table 5.8 in percentage terms, and show that this optimistic scenario would have a significant, but not overwhelming, impact in the growth of this economy.

The tilting of the time profile of consumption is quite interesting, and can be explained by looking at the last row of the table, and realizing that it is necessary to invest more in the petroleum sector (especially in the early periods) to support the higher production level. Consequently, the total terminal capital stock is also 6.2% higher than in the base case.

,	(%	deviation with	respect	to base ca	se levels)	
**********	==:		=========			======
ITEM		1984	1988	1992	1996	2000
			+1.0	+2.4	+2.5	+3.0
Income Consumption		-1.4	+1.0	+2.4	+0.4	+1.2
Investment		+5.1	+11.1	+4.8	+8.2	+7.8
=================	===	================================				=======

Table 5.8 Comparison of "base case" and "large oil finding" scenarios

In this new scenario there are no major changes in the foreign sector, with borrowing, the current account, and the level of the debt having similar values in the two cases. The foreign exchange savings due to the reduction of petroleum imports is instead used to increase (dramatically) the imports of capital goods. This can be inferred from the sectoral gross output changes displayed in Table 5.9, which shows the growth of the petroleum and transportation sectors, and the shrinkage of the capital goods sector.

Table 5.9 Comparison of sectoral gross output in year 2000 for "base case" and "large oil finding" scenarios (% deviation with respect to base case levels)

=======	=======================================	=========			==================	2222222		
•	Agropro cessing		-	Other goods	Petroleum		Transp & comm	Serv ices
-1.6		+5.8	-47.6	-2.7	+158.0	-2.3	+9.2	-

To see how the model responds to an adverse shift in the terms of trade, a simulation was performed considering that the real petroleum price would be anticipated to grow at an yearly rate of 4%, instead of remaining stable through the whole horizon. Table 5.10 below summarizes the impacts of this scenario on the quantity index (weighted at initial year prices) of the main aggregates.

Higher petroleum prices have a very strong long run effect on consumption, relative to the other sensitivity analyses that were performed. The quantum of petroleum imports is reduced by 13% immediately, a margin which is extended to 17% by the end of the horizon. The <u>value</u> of <u>total</u> imports however, is 37% higher by the year 2000, due to the higher price. The trade balance surplus in 2000 drops from US\$ 10 billion to US\$ 2.7 billion, in spite of the sizeable increase in exports, which expand in all sectors at the maximum allowed rate⁵⁶. It is this export drive that explains the stability

56 The reader will recall that the only sector where export expansion was not already at the maximum in the base case was the capital goods sector.

of gross output, shown in Table 5.10, on the face of smaller domestic demand (both relative to the base case). It is convenient to recall that the only substitution mechanism in this model works through output composition changes, which probably overstates the impact on consumption, and understates the import reduction and the elasticity of domestic demand with respect to prices⁵⁷.

Table 5.10

Comparison of real values of economic aggregates for the base case and high petroleum price scenarios (% deviations from base case)

Gross C	utput	consum	======================================	======== Impo	======================================	Expo	======= erts
1984	2000	 1984	2000	 1984	2000	 1984	2000
	+1.0	-1.4			-10.1		+20.0
=========		=======	===========		=======================================		========

Table 5.11 Comparison of the aggregate shadow prices for the base case and high petroleum price scenarios (in consumption units)

		=============	=======						
	Fore	ign exch.	L	abor	Capita	Capital rental			
Scenario									
	1984	1988-2000 ¹	1984	1988-2000 ¹	1984	1988-2000 ¹			
High petroleum	1.253	1.156	2.385	1.990	0.173	0.133			
Basic case	1.086	1.024	2.334	2.647	0.168	0.128			
***************		=========================	========	=================					
Note: ¹ These are	arithme	tic <mark>avera</mark> ges	of the	values from	1988 to 2	2004.			

The impact of higher petroleum prices on the shadow prices can be seen

57 The implied long-run price elasticity of demand is 0.3, about half of the consensus value of 0.6. Future versions of the model incorporating substitution within sectors may be able to generate more precise results.

in Table 5.11, which shows short and long run increases in the optimal foreign exchange rate of 25% and 15%, respectively. Domestic factor prices are also adversely affected, with a reduction of 25% in the long run average real wage and an increase of half a percentage point in the real interest rate.

The marginal utility of consumption falls slower in the high petroleum price scenario, and its ratio with respect to the consumption price index of the base case increases by 1% per year. This can be interpreted as the real inflationary (cost induced) pressure of the 4% yearly real growth of price of imported oil.

Table 5.12 shows the effect on the <u>relative</u> prices of the several goods of the adverse terms of trade situation⁵⁸. In the case of faster growth of petroleum prices, economic efficiency would require a reduction in the relative price of all non-traded goods except transportation, which has higher costs in this case.

Table 5.12 Comparison of changes in average (1984 to 2000) relative prices for the base case and high petroleum price scenarios (% deviations from base case)

-	Agropro cessing		-	Other goods	Petroleum		Transp & comm	Serv ices
+12	-4	-1	+1	+3	+80	-6	+8	-8

The level of the foreign debt in the last period is virtually the same in the two cases which indicates that, given the other parameters of the base case, it is not optimal to borrow to defer adjustment to the higher prices.

58 In each of the scenarios the shadow prices in consumption units were normalized by the respective marginal utility of consumption.

-53-

5.5 Sensitivity to the imports coefficients

This section will discuss the impact in the solution of considering values for the non-competitive imports coefficients 20% above and 20% below those in the base case. There is a dual motivation for these scenarios. One is the fact that imports requirements may change in the future, as a result of technological shocks and substitution, and the other is the possibility that the crude procedure used to calculate the coefficients may have led to a biased estimate of their true value.

The analysis of the effect on consumption in Table 5.13 shows that it is approximately symmetrical in the two cases and that, even in this model without technological choice, it is small. It is however of the same order of magnitude as the effects obtained in the previous sections, indicating that it is as important a factor as the others examined before. In the first period the relative change in consumption is approximately equal to the proportional change in income due to the change in imports, ceteris paribus. In the other periods it is double that amount.

After 1988, the effort of the model to compensate for the increased (decreased) import requirements by generating larger (smaller) trade balances and additional (less) borrowing is also illustrated in the table. In the first period there is less flexibility and apparently the model is not able to compensate for the direct impact on the trade balance, which induces it to make a larger adjustment in borrowing. This initial difficulty in handling the larger non-competitive imports coefficient is reflected in the change in the implicit exchange rate, which is larger in the first period.

-54-

				=======================================	=======
	NCI Scenario	1984	1988	1992	1996
Consumption	-20%	0.6	1.7	1.2	1.3
	+20%	-0.6	-1.2	-1.3	-1.7
Trade balance	-20%	30.6	-5.6	-16.8	-8.5
	+20%	-29.8	1.6	10.1	12.9
Gross foreign	-20%	-8.6	-5.1	-2.9	-3.5
borrowing	+20%	8.4	5.9	5.9	3.9
Shadow price of	-20%	-4.7	-1.4	-1.6	-1.1
foreign exchange	+20%	5.3	2.7	2.3	0.9

Table 5.13 Sensitivity of the solution to the non-competitive imports coefficients (% deviations from base case values)

5.6 Alternative spread rate function

It was pointed out in section 2.5 that the choice of functional form for the calculation of the spread rate on each period's foreign borrowing⁵⁹ was to some extent based on the notion that in the Eurobond market the flow effect of the volume of borrowing dominates the effect of the stock of debt. The truth of this hypothesis has not been verified, so this section shows the effect on some of the foregoing scenarios of making the alternative assumption.

59 Recall however that, for simplicity, the formulation in terms of the stock of debt was chosen for the post-terminal period.

=======================================	**********************		========	=======	========	=======
Scenario	Variable	1984	1988	1992	1996	2000
Base case	Consumption	0.5	1.7	0.0	0.5	0.9
	Foreign debt	0.0	1.2	13.0	13.6	16.8
	Current account	8.5	71.7	17.7	65.7	na
	Gross borrowing	1.6	20.0	13.3	17.8	81.8
High	Consumption	0.3	0.0	0.0	0.1	-0.1
petroleum	Foreign debt	0.0	1.8	2.2	3.1	5.5
price	Current account	17.7	10.5	15.3	22.7	13.3
r	Gross borrowing	2.5	2.2	4.1	6.9	7.4
Protectionist	Consumption	0.3	0.1	0.1	0.2	0.0
export	Foreign debt	0.0	1.8	2.6	3.7	5.8
markets	Current account	20.2	10.1	11.2	16.6	13.6
	Gross borrowing	2.6	2.7	4.7	7.0	7.8
**************				===========	********	

Sensitivity to alternative specification of the spread rate function (% deviations from values in the runs of the original model)

Table 5.14 shows the percentage changes that occur in the values of some key variables when the model is solved using equation (16') instead of (16), to calculate the spread rate. In (16') the slope c is the same as in the terminal interest cost function (24).

(16')
$$SH_t = \sigma (D_t / Y_t)$$
 for all t

The table shows that this alternative formulation does not affect consumption, except for an increase in the base case level in the period 1988 to 1992. Debt and borrowing at each point in time are slightly larger in this case, but do not change enough to affect the qualitative conclusions derived in the previous sections. When the alternative formulation is compared with the original one, the inflow of new loans in the two unfavorable scenarios is on average 15% higher.

Table 5.14

Table 5.15 compares the two models in terms of the relative changes (with respect to the corresponding base case) that occur in the two scenarios above. It shows that the effects on the main aggregates are similar in both models. In particular, given the utility discount rate and the foreign interest rate of the base case, it is still not optimal to delay the required internal adjustments to adverse conditions in the foreign markets.

Table 5.15 Comparison of variables in standard and alternative¹ models in unfavorable scenarios (% deviations from base case)

ssessessesses Scenario	variable	model	======= 1984				2000
High	Consumption	Alternative	-1.6	-4.6	-3.0	-4.5	-8.8
petroleum		Standard	-1.4	-2.9	-3.1	-4.0	-7.9
price	Foreign	Alternative	0.0	-3.5	-23.5	-28.3	-23.9
	debt	Standard	0.0	-4.1	-15.4	-21.1	-15.7
	Borrowing	Alternative Standard	-4.9 -5.8	-33.2 -21.5	-31.7 -25.6	-17.5 -9.1	-29.9 18.7
Protectionist	Consumption	Alternative	-1.3	-2.2	1.7	1.4	3.2
external		Standard	-1.1	-0.6	1.6	1.8	4.0
markets	Foreign	Alternative	0.0	-4.5	-20.9	-20.4	-11.2
	debt	Standard	0.0	-5.1	-12.9	-12.8	-2.0
	Borrowing	Alternative Standard	-6.4 -7.3	-28.6 -16.6	-18.9 -12.3	-2.5 7.3	-19.0 36.6
Note: ¹ The al	ternative mo	del uses equa	tion (10	5') inste	and of C	16).	

6. CONCLUSION

This paper has shown how a dynamic general equilibrium model can be formulated to be able to analyze a country's policy towards its foreign debt in the proper intertemporal framework. The utility function is non-linear, and the effects of the truncation of the model's horizon are reduced, but not completely eliminated, by including a term in the objective function which captures the post-terminal value of capital and cost of debt. The model also includes a detailed accounting of the debt dynamics by vintages, and recognizes that the interest rate charged on the foreign debt is dependent on the level of borrowing. The specification allows the model to behave as a monopsonist facing rising marginal borrowing costs in the market for foreign loans. A foreign exchange balancing equation incorporates the interaction between the capital account and the trade balance. The production function however, follows a standard dynamic Leontief specification.

The model was applied to Brazil to generate optimal scenarios for the next 20 years. A significant amount of data manipulation was required to assemble the database, which is valuable in itself, for allowing other economy-wide models for Brazil to be built more easily in the future. The model was implemented using an algebraic modeling system, and solved by a general purpose non-linear optimization package. It was observed that these programs, only recently available, greatly simplified the construction and solution of this economy-wide non-linear dynamic model.

The analysis of the sensitivity of the results to the number of time periods included in the horizon of the model showed that the formulation adopted for the terminal conditions performed satisfactorily, in spite of not being able to eliminate all the end effects.

-58-

In addition to the base case, several simulations were performed to evaluate the optimal responses of this long-run model of the Brazilian economy to perfectly anticipated "step" changes in some of the parameters. We have seen that while aggregate consumption may not be very sensitive to changes in the real LIBOR rate, the optimal borrowing policy certainly is, displaying a marked positive response when that rate falls below 5%. Above that level, the model tries to reduce debt as fast as possible. This response of the model shows that the attempt to devise new mechanisms of debt rescheduling which would in effect lead to high levels of net borrowing, may be a myopic policy from the long term perspective of the model, if interest rates are to continue at high levels.

It was seen that the impact of requiring current account balancing is akin to a reduction of the discount rate for utility, and would require a very large devaluation in the short run, relative to the base case.

The response of the model to relaxing the maximum future export levels is not very potent, probably due to the implicit costs, in terms of consumption, of larger trade balances. A protectionist scenario would however require a devaluation of 40% and lead to slightly lower debt until the last two periods, because the model foresees that times will be difficult in the future and does not delay the necessary adjustments.

The effects of petroleum discoveries that would double domestic production in the long run are an increase of 3% in yearly income and a tilting of the time profile of consumption, favoring later periods. Higher prices for petroleum (growth of 4% yearly, instead of being stable) lead to markedly lower consumption (reduction of 8% by 2000) and exploitation of all the export opportunities, but does not affect significantly the size of

-59-

terminal debt. This seems to indicate that, given the model's assumptions. it is not optimal to borrow to delay adjustment of the economy to the higher prices.

A reduction of 20% in the non-competitive imports coefficients allows an average increase of 1.4% in the level of long run consumption, relative to the base case, while an increase of 20% has a symmetrical effect.

These sensitivity analyses are only a sample of the issues that can be addressed with a model such as this, but they will hopefully have made the point that in can provide interesting quantitative insights as to the relative importance of the several factors affecting a developing country's debt problems. Applications of the model are not limited to the analysis of the debt issue, since it can also be used as is, or with minor modifications, to tackle trade and investment policy questions.

Several possible extensions were suggested in the text, exploring the possibility of using a non-linear formulation in other parts of the model. For example, the production function could be reformulated to allow the inclusion of some measure of technological substitution and/or complementarity between capital and energy in some of the sectors, reducing the impact that adverse developments in the petroleum sector would have in the solution. Another possibility is to make the export revenue functions non-linear, to account for some degree of imperfect competition in export markets. None of these could be included in this version of the model due to time limits for this phase of the research project.

-60-

REFERENCES

- Blanchard O. [1983], "Debt and the Current Account Deficit in Brazil" in P. Armella, R. Dornbush and M. Obstfeld (eds.), <u>Financial Policies and The World Capital Market: The Problem of Latin American Countries</u>, University of Chicago Press, 1983.
- Blitzer C. and R. Eckaus [1983], "Energy-economy interactions in Mexico: A multiperiod general equilibrium model", MIT Energy Laboratory working paper 83-017, forthcoming in <u>Journal of Development Economics</u>.
- Dervis K., J. de Melo, 5. Robinson [1982], <u>General Equilibrium Models for</u> <u>Development Policy</u>, Cambridge University Press.
- Dorfman R. [1969], "An Economic Interpretation of Optimal Control Theory", American Economic Review 59, 811-831.
- Goreux L. [1977], <u>Interdependence in Planning: Multilevel Programming</u> Studies of the Ivory <u>Coast</u>, Johns Hopkins University Press.
- Kendrick D. and A. Meeraus [1985], <u>GAMS An Introduction</u>, Development Research Department, The World Bank.
- Lluch, C., A. Powell, R. Williams [1977], <u>Patterns in Household Demand and</u> <u>Saving</u>, Oxford University Press.
- Lysy F.J. and L. Taylor [1980], "Formal statement of the general equilibrium model" and "Data for the General Equilibrium Model and a Base Solution" chapters 7 and 8 in Taylor et all [1980].
- McCarthy F. D. [1983], "Brazil General Equilibrium Model", Comparative Analysis & Projections Division working paper 1983-1, The World Bank.
- Modiano, E. [1983], "Energy and the Economy: an Integrated Model for Brazil", PUC-RJ (Brazil) working paper.
- Murtagh B. and M. Saunders [1983], <u>MINOS 5.0 User's Guide</u>, Technical Report SOL 83-20, Stanford University.
- Oliveira F. B., <u>el all</u> [1985], <u>Tendencias de medio prazo da previdencia</u> <u>social brasileira: um modelo de símulacao</u>, INPES/IPEA, Rio de Janeiro.

Powell, Alan [1974], Empirical Analytics of Demand Systems, Heath, Lexington.

-61-

- Rubinstein, M. [1977], "The strong case for the generalized logarithmic utility function as the premier model of financial markets" in <u>Financial Decision Making Under Uncertainty</u>, edited by H. Levy and M. Sarnat, Academic Press.
- Svoronos A. N. [1985], "Duality Theory and Finite Horizon Approximations for Discrete Time Infinite Horizon Convex Programs", Ph.D. Dissertation, Stanford University.
- Taylor L. [1975], "Theoretical Foundations and Technical Implications", chapter 3 in C. Blitzer, P. Clark and L. Taylor (eds), <u>Economy-wide</u> <u>Models and Development Planning</u>, Oxford University Press, 1975.
- Taylor, L., E. Bacha, E. Cardoso & F. Lysy [1980], <u>Models of Growth and</u> <u>Distribution for Brazil</u>, Oxford University Press.
- Williamson C. and F.D. McCarthy [1981], "Brazil 2 Consumption: Analysis of Consumption Patterns by Region and Income Class with Emphasis on Food Categories", IIASA working paper 81-16.

.

APPENDIX A

DATABASE FOR A GENERAL EQUILIBRIUM PLANNING MODEL FOR BRAZIL

This appendix describes in detail the construction of the database which was utilized to implement the model described in the text. Most of the required data is summarized in the intersectoral transactions and final demand table for 1983 (Table A.1), which was constructed by updating, in the manner described in the following sections, a set of tables for 1975 obtained from the Brazilian statistics institute.

A.1 General methodology

The economy is divided into nine producing sectors by appropriate aggregation of the intersectoral transactions matrix. They are: (1) agriculture, (2) agro-processing, (3) construction, (4) manufacturing of capital goods, (5) other manufacturing, (6) petroleum, (7) utilities (electricity, water, gas), (8) transport and communication, (9) services. This classification is similar to the one used in the brazilian national accounts, but has the manufacturing sector broken up into its main components, and aggregates the several services sectors in a single class. The petroleum sector was separated because of its interactions with the foreign sector.

At the outset it had to be decided whether to try to adjust the inputoutput tables produced by Instituto Brasileiro de Geografia e Estatistica (IBGE) to reflect the specific values for the macroeconomic aggregates produced by Fundacao Getulio Vargas (FGV) for the 1983 National Accounts. Since the comparison of the absolute values, and of the shares, of the components of GNP in the two sources for 1975 showed several substantial discrepancies - and the reason for these was not readily apparent - it was decided not to attempt to make them compatible.

Instead, Table A.1 was constructed by updating the set of preliminary tables for 1975 obtained from IBGE¹, in a way that maintains its internal consistency as much as possible. As a consequence of this choice however, the updated table for 1983 shows a value for GNP which is 10% smaller than the FGV value. The lack of coincidence of the specific numerical values in the model with the values in the accounts is not a major problem since our concern is

¹ The aggregated versions of these matrices is presented as Tables A.18

through A.20 at the end of this Appendix.

-A.2-

with the growth rates of the several macroeconomic aggregates in the future, and not with the specific levels.

To maintain the consistency of the 1975 input-output matrix, and still reflect the economic events between 1975 and 1983, the observed real rates of growth of the sectors, and of the price indices of the commodities they produce, were used to update the estimates of the values of flows in the intersectoral part. The rows of the 1975 matrix were scaled up according to the commodity price indexes from Conjuntura Economica, and the sectoral activity columns were multiplied by the growth factors associated with the respective sector obtained from the National Accounts. Since there is not an exact correspondence between the sectoral disaggregation in the model and either of these two sources, the indexes shown in Table A.2 had to be inferred from the available data by using the classifications that seemed to be closest to ours. The final demand columns were updated with a specific methodology in each case, as discussed in the following sections.

The matrix that resulted from the adjustments outlined in the paragraphs above was then balanced by distributing in succession (in the intersectoral part of the matrix), the excess demands to the rows, and the excess costs to the columns. The procedure was implemented in a spreadsheet program and repeated until convergence was attained to the value of gross output obtained from the scaling of the 1975 value according to the indexes in Table A.2.

-A.3-

TABLE A.1

,

SECTORAL TRANSACTIONS TABLE FOR BRAZIL IN 1983 (in CR\$ billions)

Sectors Products	Agricul- ture	Agro- process.	Constr- uction		Manuf. other	Petr- oleum	Utili- ties		Other services		tconsump.	Governat consump.	ment	Stock change	Exports		FINAL # DEMAND #	DEMAND
Agriculture	2253.2	71 96. 1	15.4	412.6	2121.3	4.9	2.1	0.9	152.1	12158.6	# 3797. 1		329. 1		1540.9	9. 9	6911.3 *	19969.8
Agro-processing	682.8	3549.6	0. 8	64.2	365.8	1.8	8. 1	22.5	944.8	5552.3	* 12080.7	71.1	8. 8	442.6	2973.5	8.8	15567.9 +	21120.2
Construction	0.0	0.0	0.0	0.8	8.8	8.0	8.8	9.9	8.9	0. 8	+ 0,0	8. 8	16629.9	8. 8	8. 9	0. 6	16629.9 +	16629.9
Manuf. cap. goods	13.2	131.7	645.1	2618.6	2365.8	108.5	114.1	561.5	421.6	6844.1	* 3228.8	163.0	4737.0	132.2	1961.8	0.0	10154.8 *	16998.9
Manuf. other goods	1249.6	1335.3	5358.8	4275.0	12724.9	420.8	64.5	283.0	710.1	26341.8	# 11197.3	748.3	841.2	814.9	5481.3	0. 8	19075.0 +	45416.8
Petroleum	507.6	167.6	1077.2	735.5	3184.0	7575.3	221.1	2411.0	1462.5	17341.8	# 3195.2	299.7	0.0	28.0	678.6	4534.7	-341.2 #	17999.6
Utilities	26.1	228.6	39.4	310.9	1000.5	68.1	645.1	41.4	704.0	3864.1	+ 1677.6	81.0	8. 8	8.8	8. 8	8. 8	1758.6 #	4822.6
Transport. & commun.	248.5	492.3	202.2	396.7	1127.8	1838.9	18.7	197.6	423.8	4121.7	+ 4219.6	325.8	72.0	5.1	8.9	8.8	4622.4 +	8744.1
Other services	921.5	1181.8	2225.0	1539.9	3712.4	210.3	34.7	634.7	1158.8	11619.0	+ 32598.6	2863.0	2001.0	116.7	8. 6	8.8	37668.1 +	49279.1
Non-compet. imports	58.3	276.5	284.3	642.7	1591.0	0.0	16.5	428.5	242.9	3532.7	* 338.5	24.6	1267.3	59.3	9. 8	5222.4	-3532.7 +	.0
TOTAL INTERMEDIATE	5872.8	14559.5	9848.3	10988.1	281 33.5	9411.6	1198.8	4433.1	622 8. 4	98576.8	* 72325.4	4548.7	25958, 3	2810.7	12628.1	9757.1	108506.0 +	199882.1
Indirect Taxes	-418.8	-864.5	1757.3	7.5	-379.6	256.7	111.2	487.4	1901.2	2859.2	¥***********					5 Charles Lef His datase age as	···~··································	
Vages	1968.7	1018.4	2137.6	1434.6	3533.7	579.7	988.8	1164.7	7783.9	· 20433.3 ·	ŧ							
Expenses w/labor	388. 9	380.7	426.9	855.3	3362.9	215.4	258.8	59.4	2083.7	8831.9	÷,							
Auton. employment	595.3	45.9	534.2	1.8	24.9	.9	.9	995.4	1773.2	3978.8 ·	ŧ							
Return to capital	10670.3	5988. 3	1925.5	3711.6	10741.5	6537.2	2443.8	16 64. 1	29596.6	73210.8	•					•		1
VALUE ADDED	13197.1	6568. 7	6781.6	6010.8	17283.4	7 589. 0	3713.8	4311.1	43858.6	108506.0	•							
GROSS PRODUCTION	19869.8	21120.2	16629.9	16998.9	45416.8	17968.6	4822.6	8744.1	49279.1	199882.1	r F							

-A.4-

Table A.2Price and activity level adjustment factors 1975-1983

Products and sectors	Price ¹	Activity		
Agriculture	0.0983	1.325		
Agro-processing	0.0989	1.325		
Construction	0.0864	1.151		
Manuf. capital goods	0.0774	1.254		
Manuf. other goods	0.0844	1.254		
Petroleum	0.1896	1.553		
Utilities	0.0860	2.117		
Transport & communication	0.0900	1.834		
Other services	0.0884	1.248		
Non-competitive imports	0.1375	0.000		
Gross National Product	0.0897	1.337		
Source: National Accounts and Cor Note: 1. The unit for the 1975 I for 1983 it is Cr\$ billio 100-fold in the period, f approximately 10%.	Matrix is Cr5 mill ons. Since prices	lions, while s increased		

2. Consumption

To estimate the parameters of the utility function, note first that the extended linear expenditure system (ELES) can be derived from the following maximization problem, which has the same structure of the model we are proposing (see Lluch, Powell and Williams [1977]).²

(1) $\max e^{-\delta t} \left[\sum_{i} e_{i} \ln \left(c_{i}(t) - v_{i} \right) \right]$

subject to an intertemporal budget constraint, and to the condition that

2 In this section the notation will be the same as in Lluch, Powell and Williams [1977].

_

 $c_i(t) > v_i$. The minimum consumption levels are assumed constant through time, as are the the marginal budget shares of each good (e_i). The parameters e_i are all positive and add to unity.

The solution of this problem leads to a system of demand equations of the following form, where the time subscripts are dropped for simplicity:

(2)
$$\mathbf{v}_{i} = \mathbf{p}_{i} \mathbf{c}_{i} = \mathbf{p}_{i} \mathbf{v}_{i} + \mathbf{p}_{i}^{*} (\mathbf{y} - \Sigma_{i} \mathbf{p}_{i} \mathbf{v}_{i})$$

where v_i are the shares of expenditure in the good i, y is the income and $p_i^*=p_{\beta_i}$. The parameter p is defined by the equation $p=\delta/\rho$, where ρ is the instantaneous return on non-human wealth and δ is as before.

Since $\Sigma_i \ e_i = 1$, it follows that $\nu = \Sigma_i \ e_i^*$, and the marginal propensity to save is just $(1 - \nu)$. Noting that the derivative of v_i with respect to y is equal to e_i^* , these parameters can be calculated from information about the income elasticities of expenditure in each good (e_i) as:

(3)
$$\boldsymbol{\beta}_{i}^{*} = (\mathbf{v}_{i} / \mathbf{y}) \boldsymbol{\epsilon}_{i}$$

It is easy to see that summing all demand equations we can calculate the minimum total expenditure:

(4)
$$\Sigma_{i} p_{i} r_{i} = (\Sigma_{i} v_{i} - \mu y) / (1 - \mu)$$

With this constant we can substitute back in the demand equation for each good, and use the calculated marginal propensity to consume to obtain the minimum expenditure:

(5)
$$\mathbf{p}_{i} \mathbf{r}_{i} = \mathbf{v}_{i} - \mathbf{e}_{i}^{*} (\mathbf{y} - \Sigma_{i} \mathbf{p}_{i} \mathbf{r}_{i})$$

To estimate the value of the parameters, the equation was fitted to the 1975 observed consumption vector, which corresponds to the following expenditure equation, where the dating is denoted by the superscript O.

(6)
$$p_{i}^{o}c_{i}^{o} = p_{i}^{o}a_{i} + a_{i}^{*}(y^{o} - \Sigma_{i}p_{i}^{o}a_{i})$$

If estimates for ϕ_i exist, the value $p_i r_i$ can the be estimated as outlined above, since y^o is known. This calculation is shown in the left hand side of Table A.4. The minimum consumption of each good (r_i) can be obtained by dividing the minimum expenditure by p_i^o , which are the 1975 prices relative to 1983 (which are unity), and are displayed in the second column of the right hand side of the Table A.4.

A properly estimated ELES for Brazil was not available, so the values of the marginal expenditure shares had to be adapted from related demand studies. The income elasticities which used here (Table A.3) were estimated by Williamson and McCarthy [1981] by fitting system of log linear demand equations to the data from a survey (ENDEF) conducted in 1975 by IBGE. There are other problems, in addition to the fact that it was estimated using a different econometric specification, with using this data in the model. One is that there are significant differences between the urban and rural demand patterns, which are not contemplated in the equations of the model, and had to be ignored by adopting the average value for the country. Other is that the transactions matrix, and was circumvented by adopting the same elasticity value for more than one sector, when necessary. Finally, even taking into account the mismatch above, for some categories the expenditure shares in the

-A.7-

survey are significantly different from those in the matrix.

In spite of the difficulties listed above, the true value of the elasticities is not expected to be much different from the ones which were adopted, since these tend not to be very sensitive with respect to the estimation procedure, and the values used were in the usual range. Is is hoped that in the future an ELES can be estimated for Brazil using the appropriate econometric techniques (see Powell [1974]), and the desired aggregation, to verify whether this is really true.

Share ElasticityShare ElasticityShare ElasticityFood34.240.4957.210.5343.430.5048Manufactures18.741.1217.571.3018.271.1920Services27.240.9115.600.8722.580.8932Transportation3.191.151.461.702.501.3700Energy3.151.221.681.412.561.2960Taxes4.681.271.581.803.441.4820Savings & Investment8.782.084.922.657.242.3080	Category	UI	RBAN	1	RURAL	AVE	RAGE
Nanufactures18.741.1217.571.3018.271.1920Services27.240.9115.600.8722.580.8932Transportation3.191.151.461.702.501.3700Energy3.151.221.681.412.561.2960Taxes4.681.271.581.803.441.4820	•	Share	Elasticity	Share	Elasticity	Share	Elasticity
Nanufactures101/4111/21/10/101/4101/4Services27.240.9115.600.8722.580.8932Transportation3.191.151.461.702.501.3700Energy3.151.221.681.412.561.2960Taxes4.681.271.581.803.441.4820	Food	34.24	0.49	57.21	0.53	43.43	0.5048
Services1.111.121.011.011.01Transportation3.191.151.461.702.501.3700Energy3.151.221.681.412.561.2960Taxes4.681.271.581.803.441.4820	Manufactures	18.74	1.12	17.57	1.30	18.27	1.1920
Energy 3.15 1.22 1.68 1.41 2.56 1.2960 Taxes 4.68 1.27 1.58 1.80 3.44 1.4820	Services	27.24	0.91	15.60	0.87	22.58	0.8932
Energy3.151.221.681.412.561.2960Taxes4.681.271.581.803.441.4820	Transportation	3.19	1.15	1.46	1.70	2.50	1.3700
Taxes 4.68 1.27 1.58 1.80 3.44 1.4820	-	3.15	1.22	1.68	1.41	2.56	1.2960
Savings & Investment 8.78 2.08 4.92 2.65 7.24 2.3080		4.68	1.27	1.58	1.80	3.44	1.4820
	Savings & Investment	8.78	2.08	4.92	2.65	7.24	2.3080

	Tabl	le i	A.3		
Expenditure	shares	in	Brazil	in	1975

The social rate of time preference (S) is also implied by the parameters of ELES, once the real interest rate (ρ) that gave rise to the consumption vector is known. If the real average rate of return on non-human wealth in Brasil in 1975 can be approximated by the real interest rate on default-free federal indexed bonds (6x), $\delta = \rho p = 5x$. The value actually used in the base case of the model was 4% because it produced a smoother time path for consumption. The Frisch parameter, which measures the substitutability between consumption in two consecutive time periods, can be calculated from the above estimates by using the formula $w^{\#} = \mu w - (1-\mu)$. The parameter w is the expenditure elasticity of the marginal utility of expenditure, and is equal to the inverse of the supernumerary ratio, which is defined as the negative of the ratio of total expenditure to supranumerary expenditure:

(7)
$$w = 1/\Psi = [\Sigma_i p_i c_i] / - [\Sigma_i (p_i c_i - p_i n_i)]$$

The calculation yields a value of .54 that is close to the usual values for developing countries (0.2 to 0.5, according to Goreux [1977]).

The consumption vector for 1983 was calculated as shown in the right hand side of Table A.4, applying the formula for consumption expenditure in ELES (above), using the same e as in 1975, and the minimum consumption levels implied by the 1975 consumption vector.

Adjusted nominal income in 1983 was calculated by applying to the 1975 value the growth rate factor of nominal income obtained from the National Accounts. The growth of per-capita consumption between 1975 and 1983 was assumed to be equal to the growth of per-capita income (9.5%), and population in 1983 was taken to be 128.17 million.

		ESTIMATIO	N OF THE	PARAMETE	RS FOR 197	5 (Cr\$ of	1975)	+ *	FORECAS	ST OF 198.	3 CONSUMP	TION (Cr\$	of 1983)
SECTOR	Income Elast.	AGGREGATE EXPENDIT (Cr\$ mil)	Expend. Share		Marginal consump. shares	Utility weights		Super # numeraire# ratio #	adjust	Minimum	APITA CON Discret. (Cr\$ th)	Total	AGGREGAT EXPENDIT (Cr\$ bil
Agriculture	0. 50	30898	0.0477	293.43	0.0241	0.0287	213.39	0. 27 *	0. 0983	20.980	8.631	29.611	3795.3
Agro-processing	0.58	97894	0.1511	929.66	0.0763	0.0910	676.07	0.27 #	0.0989	66.865	27.345	94.210	12074.9
Construction	0.00	8	8. 9990	8. 99	0.0000	8. 9998	0. 00	0.00 *	0.0864	0. 000	0.000	0.000	0.9
Manuf. cap. goods	1.19	27224	0.0420	258.54	0.0501	0.0598	92.00	0.64 *	0.0774	7.124	17.957	25.081	3214.6
Manuf, other goods	1.19	89497	0.1381	849.93	0.1646	8.1965	302.46	0.64 *	0. 0844	25.541	59.033	84.574	10839.8
Petroleum	1.30	19865	0.0307	188.65	0.0397	0.0474	56.53	0.70 ±	0.1896	10.719	14.246	24,965	3199. 7
Utilities	1.30	13564	0.0210	129.00	0.0272	0.0324	38.66	0.70 +	0.0860	3.325	9.742	13.066	1674.7
Transport & comm.	1.37	33538	0.0518	318.50	0.0709	0.0846	82.71	0.74 #	0.0900	7.444	25.425	32.869	4212.8
Services	0.89	273590	0.4222	2598.20	0.3772	0, 4501	1344.13	0.48 *	0.0884	118.821	135.225	254.046	32561.1
Non-compet. import	i .00	5089	8.0079	48.33	0.0079	0.0094	22.21	0.54 *	0.1375	3.054	2.816	5.870	752.4
Total		591180	0.9124	5614.24	0.8379	1.0000	2828.17	0.50 +	0.0918	263.873	300.420	564.293	72325.4
Personal saving	2.31	56759	0, 9876	539.03	0.1621	a dia amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny f		*				58.123	7449.6
Personal income		647939		6153.27								622.415	79775.0
Supernumerary incom	e			3325.10	1			ł				358.542	
Supernumerary ratio	•			0.58			•	ŧ				0.58	
Expenditure elastic Frisch parameter	ity of a	marginal u	tility		-1.85 0.54			#	•				

Table A.4 Calculation of the parameters of the utility function from consumption data of the 75 matrix and ENDEF elasticities, and forecast of 1983 consumption vector

•

.

Population in 1975 = 105.30 millions

Per-capita consumption growth 83/75 = 1.10187

.

ł

.

3. Exports

Actual exports in 1983 (Table A.5) were used to update the exports column of the 1975 matrix. When the disaggregation of the sectors in the model was greater than the one in the table, the proportions in the 1975 matrix were used as a guide in the sectoral allocation. Since the services exports consisted mainly of commercialization margins, they were distributed to the remaining sectors on the basis of their respective goods exports. The two years are compared in Table A.6, which shows a decrease in the share of agricultural goods exports, relative to manufactured goods.

> Table A.5 Exports in 1983 (US\$ millions)

**********************		=======================================	=======================================		
ITEN	Unit	Quantity	Average	Reve	елие
			value	Sub-total	L Total
				~~	21 000 0
TOTAL					21,899.0
Agricultural	<i>,</i>				7,829.0
Coffee	10 ⁶ bags	17.8	130.6	2,325.0	
Soybeans	10 ⁶ tons	10.9	235.2	2,564.0	
Cocoa	10 ³ tons	291.0	1,895.8	552.0	
Sugar	10 ⁶ tons	2.5	206.0	515.0	
Orange juice	10 ³ tons	554.0	1,099.3	609.0	
Neat	10^3 tons	573.0	1,404.9	805.0	
Tobacco	10^3 tons	155.0	2.954.8	458.0	
Iron and other ores	10 ⁶ tons	79.3	21.2		1,682.0
Other primary goods					1,093.0
Manufactured					11,296.0
Transport equipmer	t and compon	ents		1.920.0	
Machines, mech. in			۱.	658.0	
Oil derivatives	lacit, dila er	ectri equip	•	1163.0	
	Lacoda			7555.0	
Other manufactured	. 90008				
Source: Banco Central o	lo Brasil [19	841.			

-A.12-

Table A.6 Allocation of exports to sectors in the model: Comparison of 1975 and 1983

	*********	=========================	2222222222		==================	*******
		1975			1983	
Products/Sectors	CRS mil	US\$ mil	Share	Cr\$ bil	US\$ mil	Share
Agriculture	10404.0	1280.1	14.84%	1541.9	2672.3	12.20×
Agro-processing	20076.0	2470.2	28.64%	2975.4	5156.7	23.55×
Manuf. cap. goods	9914.0	1219.8	14.14%	1963.1	3402.2	15.54*
Manuf. other goods	27698.0	3408.2	39.51*	5484.8	9505.8	43.41%
Petroleum	2006.0	246.8	2.86*	671.1	1163.0	5.31*
TOTAL	70097.0	8625.2	100.00%	21900.0	12636.3	100.00%

4. Imports

For the imports a more detailed analysis is necessary because of the need to calculate the non-competitive import coefficients. As Table A.7 shows, the main import items in 1983 were petroleum, raw materials, capital goods and agricultural products. It can be recalled that the only competitive import in this version of the model is petroleum, while the others are all assumed to be non-competitive. The imports of raw materials and capital goods were assumed to be non-competitive because it is believed that they were compressed as much as possible during the recent international financial crisis. The imports of wheat, which are expected to persist due to a range of political, technical and economic factors, are mostly responsible for the imports of the two agricultural sectors.

Table A.7 Goods Imports in 1983 and their distribution in the model (US\$ millions)

______ ITEM VALUE PRODUCT (in imports list) Sub-total Total (in model) _____ 15,429.0 TOTAL Oil and derivatives 8,179.0 Petroleum 727.0 Distributed to sectors 1 & 2 Wheat 2,505.0 Capital goods Capital goods 3,013.0 Manufactured goods Raw materials Steel, other ores 335.0 Chemical products 1,598.0 411.0 Coal Other raw materials 669.0 1,005.0 Distributed to sectors 1 to 4 Other Source: Banco Central do Brasil [1984].

Table A.7 also shows the allocation of the imports to several product categories of the model. As can be seen by the breakdown of the raw materials, most of the imports in this category are of goods which can be classified as manufactured in the sectoral disaggregation which was adopted. In allocating the wheat imports, they were divided between agricultural and agro-processed goods proportionately to the total imports of these goods in 1975. The imports classified as "Other" were distributed between agriculture, agro-processing and manufacturing, proportionately to the allocated imports of these goods in 1983.

Table A.8 shows the services balance for 1983, and the allocation of the flows to model categories. Imports of transportation & communication, and of other services, were considered as non-competitive because it is believed there are some limitations to import substitution - like international freight conferences, reinsurance requirements, tourism flows and technical assistance purchases - which have not been taken into account explicitly, but which appear nevertheless to be important. Remittances of profits and dividends, and the sundry flows, were included in the foreign balance equation as transfers, and are considered exogenous. Interest payments are treated separately in the foreign borrowing equations³.

Net services flows f	or 1983 a	able A.8 nd their cl S5 millions	assification in the model)
ITEN	VALU		CLASSIFICATION
S	ub-total	Total	(in the model)
TOTAL		-12.748.4	
Interest		-9.554.9	Interest
Others		-3.193.5	
	-392.0		Private consumption of trans.
Transport	-941.5		Transport demand
•	-42.4		Other services
Profits and dividends	-757.8		Transfers abroad
	-111.1		Other services
Sundry	-948.7		Transfers abroad
•	===========	================	
Source: Banco Central do B	rasil [19	84].	

Table A.9 compares forecast imports, obtained by scaling the 1975 imports coefficients matrix according to the sectoral activity and final demand growth rates between 1975 and 1983. The calculation was done in the Cr\$, using the price indices of Table A.2, and converted to USS at the adopted exchange rate. It can be seen that this projection based on simple scaling overstates the imports of petroleum and manufactured goods by US\$ 2 billions and US\$ 4

³ In the model, total transfers abroad in 1983 amount to US\$ 1687.5 million (equivalent to CR\$ 973.7 billion), discriminated as follows: Sundry services (US\$ 948.7 million) + Profits and dividends (US\$ 757.8 million) + Transfers proper (US\$ 107 million in the balance of payments) - Foreign direct investment (US\$ 657 million of capital inflow) + Errors and omissions (US\$ 531 million).

billions, respectively. For the former, the discrepancy is due to the net effect of the increase of domestic production and dollar price increases. For the latter, the major relative error is in capital goods imports, and is probably due to the maturation in the period of several import substitution projects.

Table A.9 Comparison of actual and forecast imports in 1983 (US\$ millions)

		ACTUAL ¹		*======	FORECAST ²	DIFFER- ENCE
	Good	8	Services	TOTAL		
Products	Allocated	Other				
Agriculture	472.5		0.0	548.5	920.2	371.7
Agro-processing	254.5	40.9	0.0	295.4	486.7	191.3
Construction	0.0	0.0	0.0	0.0	0.0	0.0
Manuf. cap. goods	2505.0	402.8	0.0	2907.8	5373.3	2465.5
Manuf. other goods	3018.0	485.3	0.0	3503.3	5067.5	1564.2
Petroleum	7016.1	0.0	0.0	7016.1	9047.2	2031.1
Utilities	0.0	0.0	0.0	0.0	0.0	0.0
Transport. & commun.	. 0.0	0.0	1333.5	1333.5	1562.2	228.7
Other services	0.0			153.5		40.4
TOTAL	13266.1	1005.0	1487.0	15758.1		
Notes: 1. Distribut 2. Forecast	ed to sect	ors acco	rding to d	discussio	n in text.	

To update the non-competitive imports coefficients matrix to 1983, the relative forecast error of each goods category was used as the parameter in making a proportional adjustment of the coefficients in each row of the matrix of intermediate and final demands for imports. Also, some specific information which was available for some categories of imports for final demand was also incorporated. The result of this process is shown in Table A.10, and generates the corresponding row of Table A.1, from where the NCI coefficients required for the model can be calculated.

TABLE A.10

ADJUSTED SECTORAL IMPORTS TABLE FOR BRAZIL IN 1983 (in CR\$ billions of 1983)

Sectors Products	Agricul- ture	Agro- process.		cap.pds	Manuf. other	Petr- oleum	Utili- ties		services	DELIVERY	*Private *consump.	Governat consump.	Invest- ment	FINAL * Demand *	TOTAL IMPORTS
Agriculture	7.3	223.1	0.5	2.7	15.6	.0	.0	0.9	2.0	252.1	* 64.2	0.2	9.0	64.4 *	316.5
Agro-processing	2.1	52.8	.0	1.8	9.6	.0	.0	9.2	9.5	85.1	* 85.4	8. 8	8. 8	85.4 *	178.5
Construction	0.0	0.0	0. 0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	* 0.0	0.0	8. 8	0.0 ¥	0.0
Manuf. cap. goods	.0	.0	21.9	179.8	137.0	.0	20.0	53.1	33.6	445.5	* 52.8	6.8	1172.8	1232.3 *	1677.8
Manuf. other goods	47.0	19.1	213.6	352.3	1113.9	12.4	4.3	11.5	39.8	1814.2	* 91.9	15.9	99. 4	207.2 *	2021.4
Petroleum	.0	8. i	2.3	19.3	128.5	3836.7	.0	41.4	19.9	4048.3	* 0.0	0.0	0. 9	0.0 ÷	4048.3
Utilities	0.0	0.0	0.0	8.8	9.9	0.0	0.0	0.0	0.0	0.0	+ 0.0	0.0	8. 9	0.0 *	0.0
Transport. & commun.	4.2	11.2	16.7	44.5	120.9	10. 1	0.8	331.8	151.6	691.7	# 16.6	1.2	59.9	77.7 *	769.4
Other services	.0	0.8	2.5	6.7	16.0	7.4	0.2	12.7	18.5				14.8	23.7 *	88.6
TOTAL	60. 7		257.5		1541.6	3866,6	25.3	460.6			-	24.6	1346.9	1690.8 *	9092.4

5. Intersectoral input demand

The coefficients of the input-output matrix for the technology used in the first period (Table A.11) were obtained from Table A.1, dividing each column by the gross output of the sector.

Alternative technological vectors have not been included in this version of the model for lack of reliable information readily available. However, for the agricultural, electricity and petroleum sectors it may be possible to obtain them in the future, in the context of a broader research effort, by using sectoral planning models that have already been developed in Brazil. For other sectors (manufacturing and transport) it is anticipated that econometric models incorporating substitutability between factors can be used to help generate consistent technological alternatives.

TABLE A.10

Sectors Products	Agricul- ture	Agro- process.	Constr- uction	Nanuf. cap.gds	Nanuf. other	Petr- oleum	Utili- ties			INTERNED Delivery
Agriculture	6. 118	6. 341	8.001	8. 624	8.847	.000.	. 998	. 000	8.003	8.961
Agro-processing	8. 832	8, 168	. 998	8, 884	8. 68 6	. 888 .	.008	8.883	8.019	8. 82 8
Construction	8. 999	8. 999	8, 668	8.000	8.886	8.000	1,000	8. 888	8. 888	8. 900
Manuf. cap. goods	8. 881	8, 895	8.839	8, 154	8.851	8.886	8. 524	8,857	8.889	8.834
Manuf, other poods	8, 866	8, 663	8. 322	0.251	8, 296	8.625	8, 813	8.823	8, 814	6.132
Petroleum	0.927	8.888	8.865	8, 843	8. 879	8.445	8. 846	8.276	0, 838	8.957
Utilities	8. 901	8.811	8.982	8. 818	6.622	8.984	8,134	8.885	8,814	8. 815
Transport. & commun.	. 8.013	8.823	8.912	8, 823	0.025	8.861	8.862	8.823	8.089	8.8 21
Other services	8. 948		8. 134	8, 891	8, 862	8.812	8.087	8. 873	8.824	8, 858
Non-comp. Imports	9, 983		8, 817	8, 838	8.835	8.888	8, 88 3	8. 948	8,985	8.9 18
TOTAL INTERNEDIATE	9.30	8.689	8.5%	8. 646	4.619	8.554	8,238	8.587	8, 126	0.455

Input-output coefficients matrix for 1983

6. Labor requirements

The division of value added between returns to labor and capital in the brazilian intersectoral transactions matrix assigns a suspiciously low participation to labor in some sectors⁵ (see Table A.1). This is made clear by the calculation of the implied employment levels in each sector, obtained by dividing the wage payments by the sectoral average wage. An estimate of the latter was obtained by multiplying the minimum wage for 1983 by the aggregated average sectoral wage in terms of the number of minimum wages for 1975, found in Macedo [1982]⁶.

	Tabl	e A. 12				
Employment/output	coefficients	for 1983	implied t	y payments	to	labor
	(values in Cr	<pre>\$ billion</pre>	n of 1983)			

SECTORS	UNITS	Agricul- ture	Agro- orocess.	Constr- uction		Manuf. other	Petr- oleum	Utili- ties	Transp. 4 comm.	Other services	TOTAL
Hapes	CR\$ bill	1960.7	1018.4	2137.6	1434.6	3533.7	579.7	900.0	1164.7	7703.9	20433.3
Self-employment	CR\$ bill	595. 3	45.9	534.2	1.8	24.9	8. 8	6.6	995.4	1773.2	3970.7
Formal labor payment	CR\$ bill	2556.0	1 8 64.3	2671.8	1436.4	3558.6	579.7	998.8	2160.1	9477.1	24484.0
Gross output	CR\$ bill	19869.8	21128.2	16629.9	16998.9	45416.8	17000.6	4822.6	8744. 1	49279.1	199082.0
Employment / Output	-	8.1348	8.858 4	e. 1687	0. 8 845	6. 6 784	8. 8 341	8. 1855	e. 2470	e. 19 23	8. 1226
Average # min wage		1.02	4.69	1.73	4.02	3.57	5.82	3.20	2.28	2.50	2.252
Formal emplymt	millions	7.4	€.7	4.5	1.0	2.9	8. 3	0.8	2.8	10.9	31.3
Labor unit	#/Cr\$ bill	2889	616	1670	719	809	496	90 3	1313	1155	1282

Note: Yearly minimum wage in CR\$ thous = 346.2

This procedure can only account for 31.3 million employed in 1983 of a total labor force of 47.8 million in 1984⁷. The discrepancy is 6.9 million

⁵ For agriculture the returns to capital include rents, which should be in fact classified separately.

⁶ The original data for that study was a survey conducted in 1975 by IBGE to assess the compliance of the firms with the "Law of 2/3".
⁷ Applying an yearly growth rate of 3% to an economically active population (PEA) of 43.8 million in 1980.

rural and 9.6 urban workers, which compares to 7.4 and 23.9 million respectively in the formal market, and may be associated with the fact that IBGE cannot survey precisely the informal employment contracts that exist in some sectors in the brazilian economy. These are unlikely to be significant in general manufacturing, petroleum and utilities sectors, which have more formalized labor relations. In construction, agro-processing and transports & communication, the number of informal links is likely to be larger, but they are not expected to be a majority. Most of the "informally" employed are in the agricultural and services sectors, which helps to explain the disproportionately high share of capital in these sectors. This fact will be used later in the calculation of the sectoral capital/output coefficients.

For the purposes of the model however, we need only keep track of the scarce labor, which in all likelihood has already entered the formal market. The sectoral labor/output coefficients for this factor are presented in Table A.12, and its availability can be modelled by assuming that its relative share in the total labor force will not increase in the future. The latter is assumed to grow at 3% per annum, in line with recent demographic studies in Brazil, and labor productivity is assumed to increase at an annual rate of 2% in all sectors, which implies a supply of effective labor units growing at 5% yearly.

-A.19-

-A.20-

7. Capital formation

The capital/output ratios were estimated indirectly from the returns to capital in the 1983 matrix, making use of the capital cost rate for each sector, which is the sum of the depreciation rate and the gross profit rate. The latter was estimated by dividing the net profits rate by one minus the corporate tax rate⁷, as shown in Table A.13.

The depreciation rate and net profit rates were adapted from Taylor and Lysy [1980] to yield consistent capital/output ratios across sectors. In the agriculture and services sectors, the capital shares were reduced⁸, before being divided by the capital charge ratio, to take account of the measurement problem of the labor share. In the petroleum sector the return to capital was also reduced to take into account the rent in domestic petroleum extraction, which was arbitrated to be Us\$ 5/bbl.⁹

The matrix with the relative shares of the several commodities in the sectoral composition of investment is shown in Table A.14. It was constructed in a more or less ad-hoc manner¹⁰, maintaining consistency with the investment column in Table A.1, and the capital/output ratios and depreciation rates used above.

⁷ The tax rate in all the sectors was assumed to be 20%, and in agriculture it was assumed to be null.
⁸ The adjustment was somewhat arbitrary and consisted of subtracting from the capital share an amount equal to the wage payments. This is equivalent to assuming that the payments reported in the 1975 matrix correspond to only half of actual payments.
⁹ Domestic production in 1983 was 340 thousand bbl/day, implying a total rent for the year of Cr\$ 716.1 billion.
¹⁰ In determining the relative composition of the vectors, the capital shares matrix used by Taylor and Lysy [1980], and the matrix constructed by Eckaus [1983] for Mexico, were used. The former could not be used directly because

it was not consistent with our aggregate investment vector.

Table A.13			
Calculation of the capital/output (values in Cr\$ of 1983)	ratios	for	1 98 3

PRODUCTS	Agricul- ture	Agro- process.	Constr- uction	Manuf. cao.gds	Manuf. other	Petr- oleum	Utili- ties	Transp. & comm.	Other services	TOTAL
Depreciation rate(1) Net profit rate (2) Capital cost (3)	0.016 0.080 0.096	0.037 0.140 0.186	0.042 0.160 0.213	0.048 0.158 0.210	0.036 8.140 0.185	0.036 0.120 0.165	0.034 8.198 9.143	0.045 0.140 0.196		
Capital returns (4) Non-capital ret. (4) Other labor ret. (5)		5980. 3	1925.5	3711.6	10741.5	65 37.2 716.1	2443.8	1 60 4. 1	29596.6 7783.9	73210.9 3917.1 10394.9
Capital ret. (adj.)	4778.2	5982. 3	1925.5	3711.6	10741.5	5821.1	2443.8	1 50 4.1		588 98.9
Implied cap. stock Gross production Capital/output ratic	49773.0 19069.8 2.610		9061.2 16629.9 0.545	17674.3 16998.9 1.040	58062.2 45416.8 1.278	35279.7 17000.6 2.075	17149.5 4822.6 3.556	8173.8 8744.1 8.935	104875.2 49279.1 2.128	332157.7 199882.0 1.668

Notes: (1) from Taylor and Lysy page 192

(2) Adapted from several sources ("best guess")

(3) Assumes corporate tax rate of 20% for industry and services.

(4) From the adjusted ID matrix for 1983

For petroleum sector assumes rent of US\$ 10 on extracted domestic oil.

(5) Assumes wages row in IO matrix only account for half of actual payments to labor

-

.

Table A.14

Capital shares. by sector

Sectors Products	Agricul- ture	Agro- process.	Constr- uction	Manuf. cap.gós	Manuf. other	Petr- oleum	Util1- ties	Transo. & coma.	Other services
Agriculture	0. 108				. 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199				
Construction	0.715	8.647	8.171	8.498	8.568	8.485	8.578	8.725	8. 774
Manuf. cap. poods	0.075	0.193	8.497	8.246	8.224	8.280	8.288	e. 117	8.117
Manuf. other boods	8.8 27	8. 8 34	0.088	0. 8 34	8.836	8.8 42	8.817	8.831	8.826
Transport. & commun.	8.9922	8.023	0.005	8.983	0.003	8.8 84	0.881	8.883	6.662
Other services	8. 8 65	0.885	0.109	8. 6 85	6.689	8.105	8. 8 78	e. 87 7	0. 078
Non-comp. Imports	0.0 27	0.038	0.128	0.134	0.080	8.8 84	8. 8 46	0.043	8.811
TOTAL	1.000	1.022	1.000	1.000	1.000	1.000	1.000	1.000	1.022

.

8. Foreign Debt

The amortization schedule of foreign debt at the end of 1983 is in Table A.15, and shows that 65% of the current debt is to be amortized in the first period of the model, 30% in the second and the remaining essentially in the third. This is a somewhat skewed profile, specially in light of the fact that the average maturity of the brazilian debt before the current financial crisis was believed to be around 8 years.

	An:	outstand	Table A.15 schedule for ding in decemb (US\$ billions	er of 1983)	3	
	Amortization			Allocatio	on of	TOTAL
1984 1985 1986	9.930 9.719 12.774					
1987 1988 1989	12.198 9.733 6.496	1	44.621	1.285	6.680	52.486
1990 1991 1992 1993	3.481 1.215 0.771 0.486	2	20.925	0.603	3.130	24.658
	0.317 0.223 0.160 0.128	З	1.797	0.052	0.256	2.105
1998 1999 2000 Indet	0.119 0.086 + 0.337 erm. 1.955	4 5	0.493 0.337		0.074 0.050	0.577 0.392
	70.126 e: For first c		************	============		

The repayment schedule is a scenario variable, in the sense that the

conditions under which the country will be able to borrow in the future are as yet unknown. It was assumed that the amortization of future <u>borrowing</u> is spread out over three periods in the following proportions: 40%, 30% and 30%. With constant borrowing, this generates an amortization profile on outstanding debt of 53%, 31% and 16%, which is slightly less skewed than the current schedule, implying more favorable terms on new borrowing.

The parameters of the function that models the behavior of the spread rate on brazilian borrowing, in response to variations in the macroeconomic indicators that reflect the country's creditworthiness, were estimated econometrically. Several explanatory variables were tried: debt service to export ratio, level of borrowing, borrowing to real income ratio, borrowing to debt ratio, rate of growth of real income, and level of reserves.

The data for the period in which the equation was estimated (1974 to 1984) is shown in table A.16. The data for the spread rates on individual medium term loans¹² extended after 1977 in the eurobond market was collected from <u>Euromoney</u> and averaged, using as weights the size of the loan¹³. Prior to 1976, indications on the prevailing rate for Brazil were taken from articles in the same publication. All the economic data is denominated in US\$ millions of 1983. Data on debt, borrowing and interest payments were collected from the <u>World Debt Tables</u> (1983-84 edition), published by the World Bank and complemented by <u>Brazil Economic Program</u>, of Banco Central do Brasil. Data for exports came from <u>International Financial Statistics</u> of the IMF. The series for real GNP, at 1970 prices and denominated in US\$ billions of 1983, was constructed using the index of real production of the National Accounts,

-A.23-

¹² Medium term loans are defined as those with more than 5 years maturity.
13 I thank An-Jen Tai for help with these calculations.

-1.24-

to adjust the 1983 income converted to dollars¹⁴

Table A.16 Data for the estimation of the equations for spread rates

Year	Spread	Inter-	Amorti-	Regist.	Borrow-	Reser-	Export	s Real
	rate	rest	zation	Debt	ing	Ves		Income
	(%)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
 1974	0.750	1471.0	1918.7	19114.1	8072.6	5272	7951	154510
1975	0.750	2047.9	2156.5	23423.5	7032.2	4034	8 670	162876
1976	1.250	1717.7	2521.1	28776.9	8216.9	6541	10128	178716
1977	1.806	2021.8	3663.5	34962.8	9466.1	7192	12120	188977
1978	1.728	3125.0	5192.8	46192.0	14588.0	11826	12659	198441
1979	0.956	4747.6	6503.6	51371.3	12279.0	8966	15244	211093
1980	0.968	6328.3	6808.3	56128.2	11055.2	5769	20132	226334
1981	2.084	7955.7	7330.8	64305.0	15968.8	6604	23293	222749
1982	2.125	9296.0	7332.6	70712.7	12759.2	3994	20175	224741
1983	2.125	8748.1	8361.2	81319.0	16000.0	4563	21899	217768
1984	2.000	8875.9	7986.0	91671.0	18338.0	9864	25500	217768
				*********	********	******	******	=======
ts:	(1) US\$ 1	million	6					
IICes:	see text	•						
e:	data for	1984 i	s estinat	.ed.				

The estimated coefficients of the best equations is shown in Table A.17 below, along with the relevant econometric statistics. Equations with 2 of these as explanatory variables were also explored, but they did not add much to the fit and were abandoned, because of the higher computational burden of including them in the model.

Among the single explanatory variable equations, the best fit was for the income growth, but in the model this variable does not reflect directly the situation in the foreign accounts, and was not used. The reason for a good fit might be that when the external balances deteriorated, and the spread increased, the policies that were implemented to adjust them were

14 The exchange rate used was the average for 1983, as published in IFS.

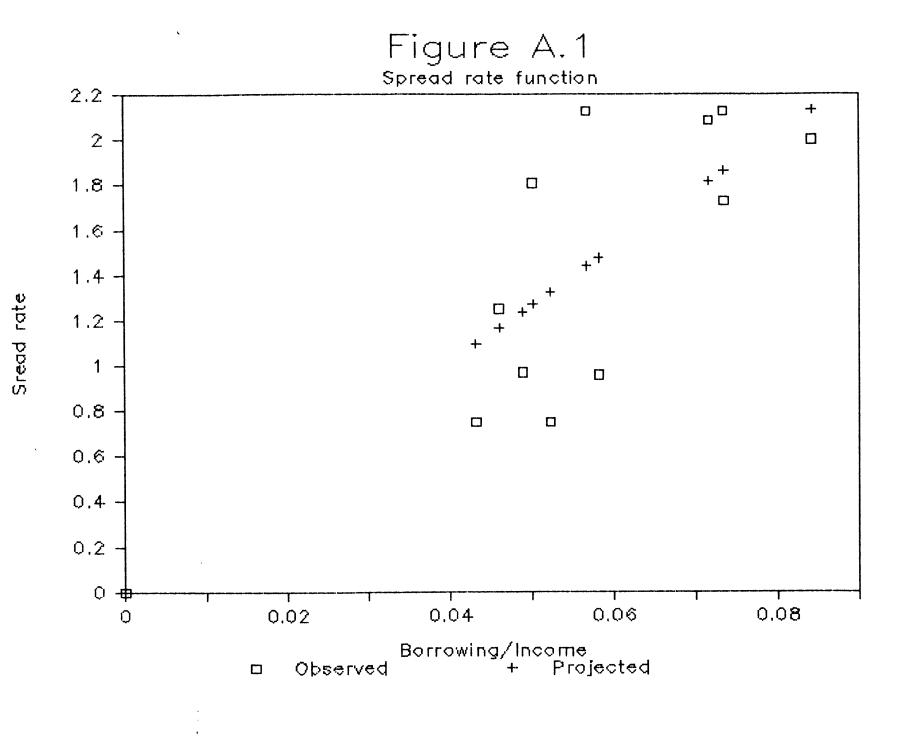
recessionary, introducing in the data the observed negative correlation between spread rates and income growth.

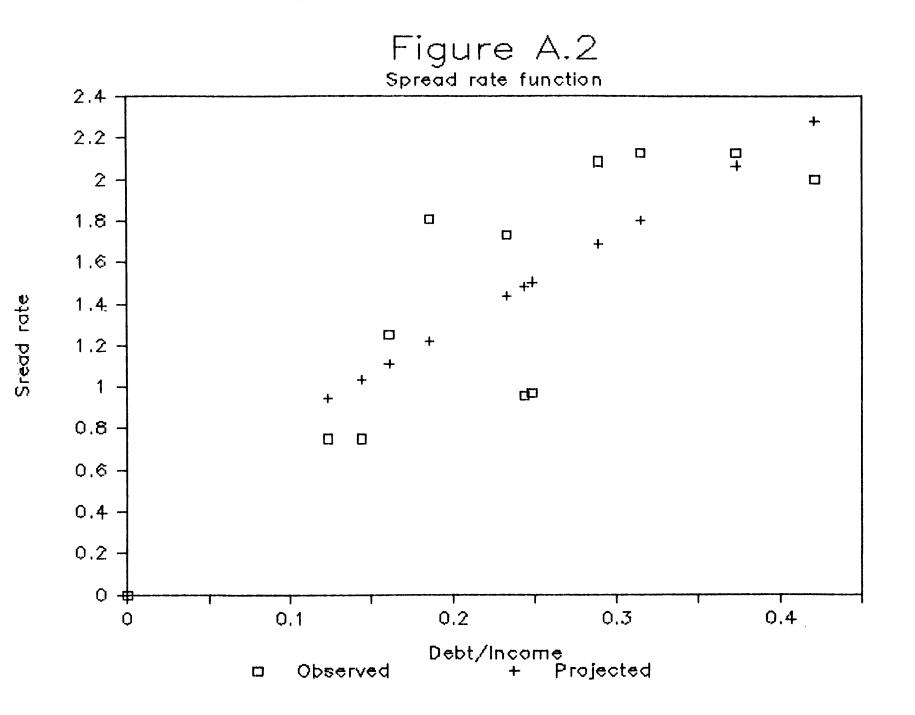
Another variable with a good fit was the level of borrowing, but it was rejected because the long horizon of the model will allow for a substantial absolute growth in income, which should increase the capacity of the brazilian economy to borrow. Therefore, the equation which was adopted is #3, which uses the borrowing to real income ratio as explanatory variable, because it will endogenize the affect described above. The intercept term was eliminated because it was not significant in a previous estimation¹⁵. Equation #4 was used for the terminal condition term of the objective function.

Table A.17 Regression coefficients and statistics for the spread rate on brazilian eurobond borrowing

	Constant	Income growth	Level of Borrowing	Borrowing	Debt	R2	D₩
Eq. #		91040		Income	Income		
1	1.942 (13.21)	-0.1063				0.668	1.76
2	-		0.00123 (13.72)			0.568	1.30
3	-			25.31 (12.35)		0.473	1.09
4	0.388 (1.09)				4.488 (3.32)	0.501	1.49

15 This was quite satisfactory, since one would expect it to be null, ex-ante.


Room 14-0551 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.5668 Fax: 617.253.1690 Email: docs@mit.edu http://libraries.mit.edu/docs


DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Mis-numbering error by the author PG. A. 26 is a blank pg.

-A.28-

										<u> </u>							
						Sectoral	INPUT AN		EMAND TABLI millions)	e for Brazil	IN 1975						
	Agricul- ture	Agro- process.	Constr- uction	Nanuf. cap.gds	Manuf. other	Petr oleum	Utili- ties	Transp. & com.	Other services		Private Consump	Bovernet consemp.	Invest-	Stock change	Exports		
Agriculture	17218	54145	74		17358	39	12	8	527	89384		1			7407		+ 135664
Agro-processing	4198	24576		3	2456	11		183	6826	38253 -	9566	2 522	0	4088	14293	114565	• 152818
Construction	0	0	8	8	8	0	0	8			ŀ	9: 0	166322	. 8	9	166322 +	
Manuf. cap. goods	155	1561	7151	42750	10511	1159	1169	7827	2325	73888	• 2777	1 . 965	58376	1568	7858	95725	* 169533
Manuf. other goods	14539	14529	57771	33332	149067	4693	634	2771	5312	282648	F 7219	B 🐪 6368	9585	i 88 13	19720	116686	
Petroleum	1842	477	3611	594	12598	3858	688	10259	1457	34486	+ 1 3 99	1 1146	0)- 135	1428	16702	
Utilities	189	960	146		4282	277	2340	205	3070	12176 -	• 1 9 41	3 ; 684) (9 8	11097	
Transport. & commun.	216	618	776	617	2473	3997	38	962	1479	11176 -	F 2584	1 8629	763	58	4879	34364	
Other services	8100	8684	23558	13348	33321	1872	337	8494	10291	107917 -	184 58	7 23564	8 2476	1206	15127	246914	* 35483:
TOTAL INTERNEDIATE	46377	105470	93087	91435	231976	15069	5218	29989	31287	649848	+ 45484	4 26679	850 524	27116	69912	848575	* 149842
Imports	325	3887	3840	9381	16882	23555	265	5870	612	64537	+ 437	5 35 4	23512	2 767	/ 8	29109	ŧ
Indirect Taxes	-3419	-5720	18885	1686	-5538	652	629	5982	15458	27655	F 748 2	7 2391	14832	2048	2 185	94277	*
SUB_TOTAL	43283	103637	115012	102422	243240	39296	6112	41681	47357	742848	53404	7 38824	299068	3 2992	5 70097	971961	* *
Wages	16035	5925	21917	18829	33319	1456	5063	14104	65271	181948	} }						*
Expenses w/labor	3179	2365	4313	6585	37751	532	1468	719	18458	75273 +	ł						
Auton. employment	4872		5494	. 0	133			12854	11639	34192							
Return to capital	87295	35357	19586	43385	106392	16515	13888	19424	264791	686545	ŀ					-	
value added	111373	43647	51310	68719	177595	18583	28343	46301	360159	897958	r F					-H. CA	>
GROSS PRODUCTION	154656	147284	166322	171141	420835	57799	26455	87982	467516	1639990	r					9 1	

TABLE A.18

\$

PRODUCTS	Agricul- ture	Agro- process.	Constr- uction	Manuf. cap.gds	Nanuf. other	Petr- oleum	Utili- ti es	Transp. & com.	Other services	INTERMED DEL IVERY	*Private *consump.	•	Invest-	TOTAL Imports	
 Agricultu re	93.8	2873.9	7.5	36.4	211.9	0. 1	.0	8.5	27.9	3260.0			8.8	845.0	4185. 8
Agro-processing	27.0	663.7	8.3	23.7	127.4	0.1	.0	83.5	127.3	1053.0	* 1094.0	8.8	8.8	1894.8	2147.8
Construction	0.0	0.0	8.9	0.0	8.8	0.9	8.8	0.0	0.0	0.9	* 0.0	8.8	8.8	0, 0	8.9
lanuf. cap. poods	0.2	8.8	454.3	3423.6	2698.6	9.2	225. i	69 0. 8	643.5	8847.8	* 969.0	124.9	21539.0	22632.0	38679.0
lanuf, other goods	688.3	247.5	3188.7	4815.3	15224.0	137.1	35.2	187.8	547.1	24983.8	+ 1212.0	210.0	1318.8	2732.0	27635.0
Petroleum	8.2	1.0	18.5	143.2	951.3	22935.4	0.1	209.5	147.8	24487.8	* 0.0	6.9		8. 8	24487.9
Utilities	0.0	8.8	8, 9	0.0	9. 8	0.0	8. 9	9.8	0.0	8.8	+ 0.0		8,8	8.0	9.0
Transport. & commun	. 41.2	189.9	188.7	461.5	1255.4	84.3	5.1	2355. 🛛	1588.9	6082.0	+ 166.0	12.0	800. 8	778. 8	686 8. 8
Other services	0.1	9.1	31.4	76.5	182.4	68.1	1.0	98. 7	211.8	679.0	* 92.6	6.0	163.0	261.8	948.0
TOTAL INTERMEDIATE	778.8	3985.8	3881.3	8988.2	20561.1	23225.2	266.5	3553.8	·	684 31 . 0	+ 4376.0	354.0	23612.0	28342.8	96773. 0

TABLE A.19 ADJUSTED IMPORT TABLE FOR BRAZIL IN 1975

(in CR\$ millions)

TABLE A.20

SECTORAL OUTPUT TABLE FOR BRAZIL IN 1975 (in CR\$ millions)

Sectors Products	Agricul- ture	Agro- process.	Constr- uction	_	Nanuf. other	Petr- oleum	Utili- ties	Transp. & com.	Other services	Total.
Agriculture	143267	9 960		8	422	1	3		1194	154656
Agro-processing	19	145019	8		1328	8	1		926	147284
Construction		140013	166322		8		0		•	166322
			8	104450	66838		2	8	659	171141
Manuf. cap. goods Manuf. other goods	131	542	861	67778	355501	147	28	2	6213	431283
Petroleum	131		8		795	46636		0	i 0	47431
Utilities			Å				26455		8	26455
Transport. & commun.	4		Å		3	0	8	53264	34715	87982
Other services				8	4454	0	8	6	403052	487516
TUTAL	143400	155421	167183	172228	428533	46783	26489	53266	446679	163999

-A.30-

-A.31-

REFERENCES

BACEN [1984], Brazil Economic Program, Banco Central do Brasil, 4th. edition.

- Macedo R.B.M. [1982], "Functional Distribution of Income in the manufacturing sector: aspects of labor's share in the short run" in <u>Brazilian</u> <u>Economic Studies</u> 6, IPEA/INPES, Rio de Janeiro.
- McCarthy F. D. [1983], "Brazil General Equilibrium Model", Comparative Analysis & Projections Division Working Paper 1983-1, World Bank.
- Taylor, L., E. Bacha, E. Cardoso & F. Lysy [1980], <u>Models of Growth and</u> Distribution for Brazil, Oxford University Press.
- Williamson C. and F.D. McCarthy [1981], "Brazil 2 Consumption Analysis of Consumption Patterns by Region and Income Class with Emphasis on Food Categories", IIASA working Paper 81-16.

APPENDIX B

LISTING OF THE INPLEMENTATION OF THE MODEL IN GAMS LANGUAGE

This appendix describes the implementation of the model using GAMS 2.0 -General Algebraically Modelling System - which was developed at the World Bank, and was kindly made available for this research. The solution algorithm used here was MINOS 5.0 - Modular In-Core Nonlinear Optimization System - developed at Stanford University. For an introduction to these programs, see respectively Kendrick and Meeraus [1985], and Murtagh and Saunders [1983].

The program was written by the author and is the property of Instituto de Planejamento Economico e Social (IPEA), Planning Ministry, Brazilian Government. Its use, modification, adaptation or transmission by any means without <u>express</u> written consent of the author and IPEA is a violation of the copyright and is prohibited.

***** *** MULTISECTORAL NON-LINEAR DYNAMIC PLANNING MODEL *** *** FOR BRAZIL, WITH EMPHASIS ON THE FOREIGN DEBT * * * *** * * * *** COPYRIGHT BY OCTAVIO AUGUSTO FONTES TOURINHO *** *** MAY 1985, CANBRIDGE, USA *** *** *** *** DEVELOPED UNDER UNESCO/FINEP FELLOWSHIP 82/004 *** ********** 85/08/03. 16.56.07. PAGE 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION 1 SETS TT PERIODS /1983,1984,1988,1992,1996,2000,2004/ 2 INITIAL YEAR /1983/ 3 TINIT(TT) TERMINAL YEAR /2004/ TTERN(TT) 4 T(TT) ALL PERIODS EXCEPT INITIAL /1984,1988, 5 6 1992,1996,2000,2004/; /1983,1984,1988, 7 SET G(TT) VINTAGES FOR DEBT 1992,1996,2000,2004/; 8 9 FUNCTION: G LESS THAN T PARAMETER GLTT(G,TT) 10 GLET(G,TT) FUNCTION: G LESS OR EQUAL TO T; 11 $GLTT(G,TT) \approx T(TT) = 1 \approx (ORD(G) LT ORD(TT));$ 12 $GLET(G,TT) \approx T(TT) = 1 \approx (ORD(G) LE ORD(TT));$ 13 **** NOTE THAT ONLY DEFINED FOR THE SET T 14 15 16 SET I PRODUCTS 17 /AGRIC, AGROP, CONST, MANCG, MANOG, PETRO, UTILT, TRCOM, SERVC/; 18 EXPORTABLE PRODUCTS 19 SET ITR /AGRIC, AGROP, MANCG, MANOG, PETRO/; 20 SET ICON(I) CONSUMMABLE PRODUCTS 21 /AGRIC, AGROP, MANCG, MANOG, PETRO, UTILT, TRCOM, SERVC/; 22 23 24 ALIAS(I,J) 25 *** J DENOTES SECTORS; 26 NUMBER OF YEARS PER PERIOD /4/ 27 SCALAR NYPP PARAMETER NYP(TT) NUMBER OF YEARS IN EACH PERIOD; 28 NYP(TT) \$ (ORD(TT) EQ 1) = 1; 29 NYP(TT) \$ (ORD(TT) GT 1) = NYPP; 30

1

```
85/08/03. 16.56.07. PAGE
1GAMS 2.00 CDC NOS 1.4
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION
  31
  32 ******************
      *** UTILITY FUNCTION ***
  33
      ****
  34
  35
                     SCALE FACTOR FOR UTITY FUNCTION /1000/;
       SCALAR SCALE
  36
                     INITIAL POPULATION IN MILLIONS /128.17/
  37
       SCALAR NO
                    GROWTH RATE OF POPULATION /0.025/
  38
              GRN
                            POPULATION IN MILLIONS
  39
      PARAMETER N(TT)
                            TERMINAL POPULATION:
                NTERM
  40
            N(T) = NO*(1+GRN)**(NYPP*(ORD(T)-1)+1);
  41
            NTERM = SUM(TTERN,N(TTERM)*(1+GRN)**NYPP);
  42
  43
                         DISCOUNT RATE FOR UTILITY
       PARAMETER DELTA
  44
                             DISCOUNT FACTOR PER PERIOD
  45
                DF(TT)
                           DISCOUNT FOR THE TERMINAL CONDITION;
  46
                DFTERM
            DELTA = 0.04:
  47
            DF(T) = 1/(1+DELTA) **(NYPP*(ORD(T)-1)+1);
  48
            DFTERM = SUM(TTERM,DF(TTERM)/(1+DELTA)**NYPP);
  49
  50 *** THE TERMINAL CONDITIONS ARE EVALUATED ONE PERIOD AFTER LAST ***
       DISPLAY DF, DFTERM;
  51
  52
      PARAMETER RHOK INTEREST RATE ON NON-HUMAN WEALTH,
  53
                 RHOD INTEREST RATE ON TERMINAL DEBT ;
   54
   55
            RHOD = 0.06;
            RHOK = 0.082:
  56
       PARAMETER CO(I) CONSUMPTION IN THE INITIAL PERIOD
   57
           /AGRIC
                     3797.1.
  58
  59
            AGROP
                   12080.7,
            MANCG
                    3220.8,
  60
            MANOG
                   11197.3,
  61
            PETRO
                    3195.2,
   62
   63
            UTILT
                    1677.6,
            TRCOM
                     4219.6,
   64
                    32598.6/
   65
            SERVC
                         TOTAL CONSUMPTION;
       PARAMETER CTO
   66
            CTO = SUM(I,CO(I));
   67
   68
       PARAMETER STCHO(I) STOCK CHANGE
   69
   70
           /AGRIC
                     1211.9,
                      442.6,
   71
            AGROP
                      132.2,
   72
            MANCG
                      814.9.
   73
            MANOG
                      28.0,
   74
            PETRO
                       5.1.
   75
            TRCOM
                     116.7/
   76
           SERVC
```

2

1GAMS 2.00 CDC NOS 1.485/08/03.16.56.07.PAGE3GENERAL ALGEBRAIC MODELING SYSTEMCOMPILATION

```
77
     SCALAR MNCO CONSUMP OF NCI IN FIRST PERIOD /338.5/:
 78
 79
                          ELASTICITY OF EXPENDITURE WRT INCOME
      PARAMETER BETA(I)
 80
          /AGRIC 0.028,
 81
          AGROP 0.091,
 82
           MANCG 0.0598,
 83
           MANOG 0.1965,
           PETRO 0.0474.
 84
 85
           UTILT 0.0324.
 86
           TRCOM 0.0846,
 87
           SERVC 0.4501
                            /;
    SCALAR BETANNC ELAST OF CONSUMPTION OF NCI /0.0094/
 88
 89 PARAMETER GAMMA(I) MINIMUM CONSUMPTION LEVEL OF SEVERAL GOODS
 90
          /AGRIC 20.980
 91
          AGROP 66.865,
 92
          MANCG 7.124.
          MANOG 25.541,
 93
 94
          PETRO 10.719,
 95
          UTILT 3.325.
          TRCOM 7.444,
 96
 97
           SERVC 118.821/;
 98
    SCALAR GANNANNC MINIMUM CONSUMP OF NCI /3.054/
 99 PARAMETER GAMMAT TOTAL MINIMUM CONSUMPTION AT INITIAL YEAR P;
100
           GAMMAT = SUM(I,GAMMA(I))+ GAMMANNC;
101
102
    SCALAR YO
                   INCOME IN INITIAL PERIOD /108506/
                   GROWTH RATE OF POTENTIAL INCOME /0.05/:
103
            GRY
104 * PARANETER YPOT(TT)
                          POTENTIAL INCOME;
105 *
          YPOT(T) = YO*(1+GRY)**(NYPP*(ORD(T)-1)+1);
106
     PARANETER YTERM
                           ESTIMATE OF POS-TERMINAL INCOME;
107
     * YTERM = SUM(TTERM.YPOT(TTERM));
108
         YTERM = 240000:
109
110 ************
111 *** GOVERNMENT ***
112 *************
113 PARAMETER GO(I)
                           INITIAL GOVERNMENT EXPENDITURES
          /AGRIC 32.2.
114
                71.1,
          AGROP
115
116
          MANCG 103.8.
117
          MANOG 740.3,
          PETRO 299.7,
118
          UTILT 81.0,
119
120
          TRCOM 325.8,
          SERVC 2863.0/:
121
```

1GAMS 2.00 CDC NOS 1.4 85/08/03. 16.56.07. PAGE 4 GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION GROWTH RATE OF GOVERNMENT /0.03/ 122 SCALAR GRG 123 PARAMETER GOV(I,TT) GOVERNMENT EXPENDITURES; 124 GOV(I,T) = GO(I)*(1+GRG)**(NYPP*(ORD(T)-1)+1); 125 PARAMETER GTERM TOTAL GOVERNMENT IN TERMINAL YEAR; 126 GTERM = SUM(TTERM, SUM(I,GOV(I,TTERM)))*(1+GRG)**NYPP; 127 128 SCALAR MNGO NIC IN GOVERNMENT IN 1983 126.41 129 PARAMETER MNG(TT) **PROJECTION OF NCI IN GOVERNMENT:** MNG(T) = MNGO*(1+GRG)**(NYPP*(ORD(T)-1)+1); 130 131 132 133 *********** 134 *** EXPORTS *** 135 *********** 136 PARAMETER EO(I) INITIAL EXPORTS /AGRIC 1540.9, 137 AGROP 2973.5, 138 139 CONST 0.0. 140 MANCG 1961.8, MANOG 5481.3, 141 142 PETRO 670.6/ 143 PARAMETER GRAE MAX RATE OF GROWTH OF AGRICULT EXPORTS, GRME MAX RATE OF GROWTH OF MANUFAC EXPORTS ; 144 145 GRAE = 0.05;146 GRME = 0.10;147 149 *** FOREIGN SECTOR PRICES *** 150 ******************** PARAMETER PE(I,TT) EXPORT PRICES; 151 152 PE(I,T) = 1;PARAMETER MO(I) 153 **CONPETITIVE IMPORTS IN 1983** 154 /PETRO 4534.7/; COMPETITVE INPORTS PRICE; 155 PARAMETER PM(I,TT) 156 PM(I,T) = 1.0;157 PARAMETER PMN(J,TT) PRICE OF NCI IN PRODUCTION, 158 PRICE OF NCI IN CONSUMPTION. PMNC(TT) 159 PMNG(TT) PRICE OF NCI IN GOVERNMENT; 160 PMN(J,T) = 1.0;161 PMNC(T) = 1.0:162 PMNG(T) = 1.0;163

1GAMS 2.00 CDC NOS 1.485/08/03.16.56.07.PAGE5GENERAL ALGEBRAIC MODELING SYSTEMCOMPILATION

```
164 **************
165 *** TECHNOLOGY ****
166
    *************
167
168
     PARAMETER XO(J) GROSS OUTPUT LEVELS IN 1983
169
          /AGRIC
                    19069.8.
170
          AGROP
                    21120.2,
171
          CONST
                    16629.9,
172
          MANCG
                    16998.9,
173
          MANOG
                    45416.8,
174
          PETRO
                    17000.6.
175
          UTILT
                     4822.6,
176
          TRCOM
                    8744.1,
177
          SERVC
                    49279.1/;
178
    PARAMETER SHVAO INITIAL SHARE OF VALUE ADDED IN GROSS OUTPUT
179
         /AGRIC 0.6920418,
180
          AGROP 0.3106362,
181
          CONST 0.4077955.
182
          MANCG 0.3535993,
183
          MANOG 0.3805508,
184
          PETRO 0.4463960,
185
          UTILT 0.7700825,
          TRCOM 0.4930295,
186
187
          SERVC 0.8737700/;
188
    PARAMETER LR(J) EMPLOYMENT MEASURED AS LABOR SHARE IN OUTPUT
189
       /AGRIC
                 0.1340.
190
         AGROP
                 0.0504.
191
         CONST 0.1607,
192
         MANCG 0.0845,
                0.0784.
193
         MANOG
         PETRO 0.0341,
194
195
         UTILT 0.1866.
         TRCOM 0.2470,
196
197
         SERVC 0.1923/:
198
      PARAMETER LU(J) LABOR UNITS: EMPLOYED PER UNIT OF PRODUCT
                   2889.
199
        /AGRIC
200
         AGROP
                    616,
201
         CONST
                   1670.
202
         MANCG
                    719.
203
         MANOG
                    809,
204
         PETRO
                    496,
205
                   903.
         UTILT
206
         TRCOM
                   1313,
207
         SERVC
                  1155/;
```

1GAMS 2.00 CDC NOS 1.485/08/03.16.56.07.PAGE6GENERAL ALGEBRAIC MODELING SYSTEMCOMPILATION

208	TABLE A(I	(.J) I	NPUT-OU	TPUT CO	EFFICIE	NTS FOR	THE BA	SIC TEC	HNOLOGY	
209	-	-	AGROP		MANCG	MANOG		UTILT	TRCOM	SERVC
210	AGRIC	0.118	0.341	0.001	0.024	0.047	.000	.000	.000	0.003
211		0.032	0.168	.000	0.004	0.008		.000	0.003	0.019
212		0.001	0.006	0.039	0.154	0.051		0.024	0.057	0.009
213	MANOG	0.066		0.322	0.251	0.280	0.025	0.013	0.023	0.014
214	PETRO	0.027	0.008	0.065	0.043	0.070	0.446	0.046	0.276	0.030
215	UTILT	0.001	0.011	0.002	0.018	0.022	0.004	0.134	0.005	0.014
216	TRCOM	0.013	0.023	0.012	0.023	0.025	0.061	0.002	0.023	0.009
217	SERVC	0.048	0.056	0.134	0.091	0.082	0.012	0.007	0.073	0.024
218										
219	********	*****	******	******	¥					
220	*** NON-CC	MPETIT	IVE IMP	ORTS **	*					
221	*******	*****	******	******	×					
222										
223	PARAMETER			COMPETI	TVE IMP	ORTS REG	JUIREME	NT IN P	RODUCTI	ON
224	/AGRIC									
225	AGROP		-							
226	CONST									
227	MANCG		-							
228	MANOG									
229	UTILT									
230	TRCOM									
231	SERVO		05/;							
232	PARAMETER			COMPETI	TVE IMP	ORTS REG	DUIREME	NT IN I	NVESTME	NT
233	/AGRIC									
234	AGROP									
235	CONST		-							
236	MANCG		•							
237	MANOG		•							
238	PETRO		•							
239	UTILT									
240	TRCOM		-							
241	SERVO	: 0.0	11/;							
242										

•-

```
243 ***************************
244 *** RESOURCE AVAILABILITY ***
245 ************************
246
                         INITIAL LABOR SUPPLY IN FORMAL MARKET
247
    PARAMETER LO
248
               LS(TT)
                         LABOR SUPPLY
249
               GRL
                         PER ANUUM RATE OF GROWTH OF LABOR FORCE
250
               GRLP
                         GROWTH RATE OF LABOR PRODUCTIVITY;
           GRL = 0.03;
251
252
           GRLP= 0.02:
253
           LO = SUM(J,XO(J) * LR(J));
           LS(T) = LO*(1+GRL+GRLP)**(NYPP*(ORD(T)-1)+1);
254
255
    DISPLAY LO,LS:
256
     SCALAR PETSO
                   PETROLEUM SUPPLY IN 1983 IN BBL THOS PER DAY /340/;
257
     PARAMETER PETS(TT) PETROLEUM SUPPLY IN BBL THOUS PER DAY
258
         /1983 340
259
          1984 520,
          1988 600,
260
261
          1992 600,
          1996 600,
262
263
          2000 600,
          2004 600/;
264
265
266
    **********************
267 *** CAPITAL FORMATION ***
268 ******************
269
270
     PARAMETER KR(J) CAPITAL TO OUTPUT RATIO
271 *** CAPITAL TO OUTPUT RATE IN AGRIC CHANGED FROM 3.009 IN 5/16/85
        /AGRIC 2.610,
272
273
        AGROP 1.520,
274
         CONST 0.572.
275
         MANCG 1.092,
         MANOG 1.278,
276
277
         PETRO 2.075,
278
        UTILT 3.556,
279
        TRCOM 0.935.
       SERVC 2.354/;
280
```

85/08/03. 16.56.07. PAGE 8 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION 281 PARAMETER ISH(J) SHARE OF SECTORS IN CAPITAL FORMATION 282 /AGRIC 0.10, 283 284 AGROP 0.09, CONST 0.03, 285 286 MANCG 0.10, 287 MANOG 0.24, PETRO 0.04, 288 UTILT 0.06, 289 TRCOM 0.04, 290 SERVC 0.30/; 291 292 PARAMETER DEPR(J) DEPRECIATION RATE PER SECTOR 293 294 /AGRIC 0.016, AGROP 0.037, 295 296 CONST 0.042. MANCG 0.040, 297 298 MANOG 0.036, PETRO 0.036, 299 300 UTILT 0.034, 301 TRCOM 0.045, 302 SERVC 0.039/; 303 GESTATION LAG PER SECTOR PARANETER GLAG(J) 304 305 /AGRIC 4.0. 306 AGROP 4.0. 307 CONST 4.0. 308 MANCG 4.0, 4.0, 309 MANOG 310 PETRO 4.0. UTILT 4.0, 311 TRCOM 4.0, 312 SERVC 4.0/: 313 314 INITIAL CAPITAL STOCK PARAMETER KO(J) 315 TOTAL INITIAL CAPITAL STOCK; KOT 316 KO(J) = XO(J) * KR(J);317 318 KOT = SUM(J, KO(J));DEPRECIATED INITIAL STOCK PARAMETER KONET(J,TT) 319 DEPREF(J,TT,TT) DEPRECIATION FACTORS FOR CAPITAL STOCK; 320 KONET(J,T) = KO(J)*(1-DEPR(J))**(NYPP*(ORD(T)-1)+1); 321 DEPREF(J,G,T) \$ GLTT(G,T) = GLAG(J)*(NYP(G)/NYPP)* 322 (1-DEPR(J))**(NYPP*(ORD(T)-ORD(G))); 323 PARAMETER KAVGO INITITAL AVERAGE NET CAPITAL TO OUTPUT RATIO; 324 KAVGO = YO/KOT - SUM(J,(KO(J)/KOT)*DEPR(J)); 325 326

85/08/03. 16.56.07. PAGE 9 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION INITIAL DELIVERIES TO INVESTMENT PARAMETER INVO(I) 327 329.1, /AGRIC 328 CONST 16629.9, 329 MANCG 4737.0, 330 331 MANOG 841.2, 332 TRCOM 72.0, SERVC 2081.8/; 333 334 CAPITAL SHARES MATRIX 335 TABLE KSH(I,J) AGRIC AGROP CONST MANCG MANOG PETRO UTILT TRCOM SERVC 336 0.0 0.0 0.0 0 0.0 0.0 AGRIC 0.102 0.0 0.0 337 CONST 0.731 0.645 0.169 0.495 0.565 0.482 0.567 0.726 0.761 338 MANCG 0.071 0.194 0.498 0.248 0.225 0.281 0.290 0.118 0.119 339 MANOG 0.025 0.034 0.088 0.034 0.036 0.043 0.017 0.032 0.026 340 TRCOM 0.002 0.003 0.008 0.003 0.003 0.004 0.001 0.003 0.002 341 SERVC 0.062 0.085 0.109 0.085 0.090 0.106 0.078 0.078 0.071 342 343 344 ***************** 345 *** FOREIGN DEBT *** ************ 346 347 FOREIGN EXCHANGE TRANSFERS ABROAD PARAMETER F(TT) 348 FTERM FOREIGN EXCHG TRANSF IN LAST YEAR; 349 350 F(T) = 973.68;351 FTERM = 973.68;352 SCALAR BO BORROWING IN INITITAL PERIOD /9232.0/; 353 SCALAR GRB MAXIMUM RATE OF CHANGE OF BORROW /0.15/; 354 355 PARAMETER RO(TT) REPAYMENT OF INITIAL DEBT (CUMMUL FOR PERIOD) 356 /1984 30384.4 357 14227.7 358 1988 1992 1214.6 359 1996 332.9 360 2000 361 226.2/; PARAMETER DO(TT) INITIAL DEBT BY MATURITY, 362 TOTAL INITIAL DEBT; DOT 363 DO(G) = SUM(TT\$(ORD(TT) GE ORD(G)),RO(TT)); 364 DOT = SUM(T, RO(T));365 *** CALCULATION ABOVE CONSISTENT WITH DEBT AT BEGINNING OF YEAR 366 *** USE OF INDEX G TO ALLOW CALCULATION OF INITIAL DEBT 367 368 PARAMETER RS(TT, TT) REPAYMENT SCHEDULE; 369 RS(T,T+1) = .40; RS(T,T+2) = .30; RS(T,T+3) = .30;370 371

1GAMS 2.00 CDC NOS 1.4 85/08/03. 16.56.07. PAGE 10 GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION

372 SCALAR ALPHA SLOPE OF THE SPREAD RATE FUNCTION /29.69/ 373 ALPHA1 SLOPE OF TERMINAL DEBT SPREAD RATE FUNCTION /5.26/; PARAMETER LIBOR 374 FIXED PART OF REAL INT RATE ON FOREIGN BORROW; 375 LIBOR = 5.0: 376 ***** NOTE INTEREST RATE ON BORROWING SPECIFIED IN PERCENTAGE TERMS** 377 378 ********************* 379 *** DEFINITION OF OUTPUT *** 380 ********************** 381 *PARAMETER DEMO(I) DEMAND IN INITIAL PERIOD; 382 * DEMO(I) = CO(I) + STCHO(I) + INVO(I) + GOVO(I) + EO(I) - MO(I);383 ************************* 384 **** DECLARATION OF VARIABLES ***** 385 386 387 POSITIVE VARIABLES B(TT) BORROWING OF FOREING DEBT IN PERIOD T 388 389 C(I,T)CONSUMPTION OF COMMODITY I IN PERIOD T C(I,T) CONSUMPTION OF COMMODILY I IN FERIOD . D(TT,TT) DEBT OUTSTANDING IN T CONTRACTED IN G 390 TOTAL DEBT OUTSTANDING IN PERIOD T 391 DT(TT) DK(J,TT)INVESTMENT BY SECTOR J IN PERIOD T 392 393 DKTERM PHYSICAL INVESTMENT IN LAST PERIOD 394 DTERM TERMINAL FOREIGN DEBT E(I,T)EXPORTS OF COMMODITY I IN PERIOD TH(TT,TT)INTEREST PAYMENTS IN PERIOD T OF DEBT VINTAGE GHR(TT)INTEREST RATE ON FOREING BORROWINGHT(TT)TOTAL INTEREST PAYMENTS IN PERIOD TINV(I,T)DELIVERIES TO INVESTMET OF COMMODITY I IN FERIOD T 395 396 397 398 399 400 K(J,TT)CAPITAL STOCK OF SECTOR J IN PERIOD T TOTAL CAPITAL STOCKT IN YEAR T KT(TT) 401 TERMINAL CAPITAL STOCK 402 KTERM DEMAND FOR SKILLED LABOR IN PERIOD T 403 *** L(T)404 MNC(T) M(I,T)COMPETITIVE IMPORTS OF GOOD I IN PERIOD T 405 NON-COMPETITIVE IMPORTS IN CONSUMPTION R(TT,TT)REPAYMENT IN PERIOD T ON DEBT OF VINTAGE TT 406 TOTAL REPAYMENT IN PERIOD T 407 RT(TT) SPREAD RATE ON LOANS CONTRACTED AT G 408 *** SH(G) INSTANTANEOUS UTILITY IN PERIOD T 409 *** U(T) GROSS OUTPUT OF SECTOR J IN YEAR T 410 X(J,T)Y(TT) OUTPUT INDEX IN PERIOD T 411 INTERMEDIATE DELIVERIES OF GOOD I IN PERIOD T 412 *** Z(I,T)413 POST TERMINAL UTILITY; ω 414 VARIABLE UO VALUE OF OBJECTIVE FUNCTION: 415

1GAMS 2.00 CDC NOS 1.485/08/03.16.56.07.PAGE11GENERAL ALGEBRAIC MODELING SYSTEMCOMPILATION

416	*************	
417	*** EQUATIONS ***	
418		
410	EQUATIONS	
		OBJECTIVE FUNCTION DEFINITION
420	OBJ	TERMINAL UTILITY
421	TERUTIL	
422	MATBAL	MATERIAL BALANCES
423	GNPDEF	DEFINITION OF GROSS NATIONAL PRODUCT
424	FEXBAL	FOREIGN EXCHANGE BALANCES
425	LABREQ	FABOR REQUIREMENTS BLANCE
426	CAPFOR	CAPITAL FORMATION REQUIREMENTS
427	CAPREQ	CAPITAL REQUIREMENT RESTRICTION
428	TERCAP	CALCULATION OF TERNINAL CAPITAL STOCK
429	TERINV	INVESTMENT ALLOCATION IN THE TERMINAL YEAR
430	INVDEF	DEFINITION OF INVESTMENT PER SECTOR
431	ININV	INITIAL INVESTMENT ALLOCATION
432	DEBREP	ACCOUNTING FOR DEBT REPAYMENT
433	DEBACC	ACCOUNTING FOR DEBT DUE TO BORROWING
434	TERDEB	CALCULATION OF TERMINAL DEBT
435	RCALC	CALCULATION OF AMORTIZATION REPAYMENTS
436	HCALC	CALCULATION OF INTEREST COST OF DEBT
437	HRATE	CALCULATION OF INTEREST RATE
438	ктот	TOTAL CAPITAL STOCK ACROSS SECTORS
439	RTOT	TOTALIZATION OF REPAYMENTS PER PERIOD
440	HTOT	TOTALIZATION OF INTEREST PER PERIOD
441	DTOT	TOTALIZATION OF DEBTS PER PERIOD;
442		
• • •		

1GAMS 2.00 CDC NOS 1.485/08/03.16.56.07.PAGE12GENERAL ALGEBRAIC MODELING SYSTEMCOMPILATION

443 ************************ 444 ***** EQUATION DEFINITIONS ***** **** 445 446 OBJ.. UO =E= SCALE*SUN(T,DF(T)*N(T)*NYP(T)* 447 (SUM(I\$ICON(I),BETA(I)*LOG(C(I,T)/N(T)-GAMMA(I))) + 448 BETANNC*LOG(MNC(T)/N(T)-GANNANNC))) + 449 450 ₩: 451 ******* TERMINAL CONDITIONS ******* 452 TERUTIL.. W =E= SCALE*SUM(TTERM,(DFTERM*NTERM/DELTA)* 453 LOG((YTERM - GTERM - FTERM + RHOK*KTERM -454 0.01*(LIBOR+ALPHA1*DTERM/YTERM) * DTERM 455) / NTERM - GAMMAT)); 456 457 =E= NYPP*DKTERM +SUM(TTERM, KTERM 458 TERCAP.. SUM(J,K(J,TTERM)*(1-DEPR(J))**NYPP)); 459 TERDEB.. DTERM =E= SUM(TTERM, SUM(G\$GLTT(G, TTERM), D(G, TTERM)) + 460 NYPP*B(TTERM) -461 SUM(G\$GLTT(G,TTERM),NYPP*R(G,TTERM))); 462 463 *** MATERIAL BALANCES *** 464 465 MATBAL(I,T).. X(I,T) = G = SUM(J,A(I,J)*X(J,T)) +466 C(I,T) + GOV(I,T) + INV(I,T) +467 E(I,T)\$ITR(I) - M(I,T)\$ITR(I); 468 =E= SUM(I,SHVAO(I)*X(I,T)); Y(T) 469 GNPDEF(T).. 470 ******* FOREIGN EXCHANGE BALANCE *** 471 472 FEXBAL(T).. B(T) =G= 473 SUM(I\$ITR(I),PM(I,T)*M(I,T)) + 474 PMNC(T) * MNC(T) + PMNG(T) * MNG(T) +475 SUM(J,PMN(J,T)*(MNX(J)*X(J,T) + MNK(J)*DK(J,T))) -476 SUM(I\$ITR(I),PE(I,T)*E(I,T)) + RT(T) + HT(T) + F(T); 477 478 479 *** LABOR CONSTRAINT *** 480 LABREQ(T).. SUM(J,LR(J)*X(J,T)) =L= LS(T); 481

1GAMS 2.00 CDC NOS 1.485/08/03.16.56.07.PAGE13GENERAL ALGEBRAIC MODELING SYSTEMCOMPILATION

482 **** EQUATIONS FOR CAPITAL FORMATION ***** 483 484 KR(J) * X(J,T) = L = K(J,T);485 CAPREQ(J.T).. 486 K(J,T) = E = KONET(J,T) +CAPFOR(J,T).. 487 SUM(G,DEPREF(J,G,T)*DK(J,G)); 488 *** IN THE LAST TERM THE DEPRECIATION FACTOR ELIMINATES 489 *** THE UNDESIRABLE VINTAGES FROM THE SUMMATION 490 =E= SUM(J,KSH(I,J)*DK(J,T)); INV(I,T) 491 INVDEF(I,T).. 492 INVO(I) =G= SUM(J,KSH(I,J)*DK(J,TINIT)); 493 ININV(I,TINIT).. 494 DKTERM*ISH(J) =E= SUM(TTERM,DK(J,TTERM)); 495 TERINV(J).. 496 *** EQUATIONS FOR FOREIGN DEBT ** 497 498 DEBREP(G,T) \$ (GLTT(G+1,T) \$ (ORD(G) GT 1)).. 499 D(G,T) = E = D(G,T-1) - NYP(T) * R(G,T-1);500 *** FIRST PERIOD ELIMINATED BECAUSE CALCULATED SEPARATELY 501 502 503 DEBACC(G-1,G)\$(ORD(G) GT 2).. D(G-1,G) = E = NYP(G-1) * B(G-1);504 505 RCALC(G,T) \$ (GLTT(G,T) \$ (ORD(G) GT 1)).. 506 R(G,T) = E = RS(G,T) * B(G);507 *** THE INITIAL YEAR IS EXCLUDED FROM THE CALCULATION BECAUSE 508 *** REPAYMENTS ON INITIAL DEBT ARE GIVEN EXOGENOUSLY 509 510 HRATE(G)\$(ORD(G) GT 1).. 511 SCALE*HR(G) =E= SCALE*LIBOR + SCALE*ALPHA/Y(G)*B(G); 512 HCALC(G,TT) \$ (GLTT(G,TT) \$ (ORD(G) GT 1)).. 513 H(G,TT) = E = D(G,TT) * 0.01 * HR(G);514 *** NOTE THAT INTEREST ON DEBT SPECIFIED IN PERCENTAGE TERMS 515 516 *** TOTALIZATIONS *** 517 KTOT(T).. KT(T) =E= SUM(J,K(J,T)); 518 RTOT(T).. RT(T) = $E = SUM(G \leq GLTT(G,T), R(G,T));$ 519 HTOT(T).. HT(T) =E= SUM(GSGLTT(G,T), H(G,T)); 520 DTOT(T).. DT(T) = $E = SUM(G \neq GLET(G,T), D(G,T));$ 521 522

```
85/08/03. 16.56.07. PAGE
                                                                           14
1GAMS 2.00 CDC NOS 1.4
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION
 523 ***********
 524 *** BOUNDS ***
 525 **********
      B.UP(T) = BO*(1+GRB)**(NYPP*(ORD(T)-1)+1);
 526
       B_{LO}(T) = BO*(1-GRB)**(NYPP*(ORD(T)-1)+1);
 527
 528
       C.UP(I,T)$ICON(I) = (CO(I)+STCHO(I))*(1+5*GRN)**(NYPP*(ORD(T)-1)+1);
 529
 530 *** GROWTH OF CONSUMPTION NOT LARGER THAN 5 TIMES POP GROWTH
       C_{LO}(I_{T}) \leq ICON(I) = GANNA(I) * N(T) + 1;
 531
 532
       DTERM.UP = 250000:
 533
       D.FX(TINIT,G) = DO(G);
 534
 535
 536
       DK.UP(I,T) = KO(I)/2;
 537
       E.UP("AGRIC",T) = EO("AGRIC")*(1+GRAE)**(NYPP*(ORD(T)-1)+1);
 538
       E.UP("AGROP",T) = EO("AGROP")*(1+GRAE)**(NYPP*(ORD(T)-1)+1);
 539
       E.UP("MANCG",T) = EO("MANCG")*(1+GRME)**(NYPP*(ORD(T)-1)+1);
 540
       E.UP("MANOG",T) = EO("MANOG")*(1+GRME)**(NYPP*(ORD(T)-1)+1);
 541
 542
       H.FX(TINIT,T) = DO(T)*0.01*(LIBOR + ALPHA*(BO/YO));
 543
 544
       KTERM.UP = 1700000;
 545
       KTERM.LO = KOT;
 546
 547
 548
       MNC.LO(T) = GAMMANNC*N(T) + 100;
 549
 550
       R.FX(TINIT,T) = RO(T)/NYP(T);
 551
      X.UP("PETRO",T) = XO("PETRO") + (PETS(T)/PETSO - 1) *
 552
            (XO("PETRO") *A("PETRO", "PETRO") - MO("PETRO"));
 553
 554 *** ABOVE LIMITS ATTEMP TO MODEL EXPANSION OF EXTRACTION ONLY
      *** KEEPING THE SIZE OF THE REFINING SECTOR CONSTANT.
  555
      *** IN THE NEXT FORMULA THE WHOLE SECTOR EXPANDS PROPORTIONATELY.
  556
  557 *X.UP("PETRO",T) = XO("PETRO")*(PETS(T)/PETSO);
  558 *** EXPRESSION ABOVE MEASURES INITIAL DOMESTIC PROCUCTION OF OIL
  559
       X.LO(I.T) = XO(I)/2;
  560
      ****
  561
      *** STARTING POINT ****
  562
      *****
  563
  564
      C.L(I,T) = CO(I)*(1+GRN)**(NYPP*(ORD(T)-1)+1);
  565
       E.L(I,T) = EO(I)*(1+GRN)**(NYPP*(ORD(T)-1)+1);
  566
      M.L(I,T) = MO(I)*(1+GRN)**(NYPP*(ORD(T)-1)+1);
  567
       B_{L}(T) = BO*(1+GRN)**(NYPP*(ORD(T)-1)+1);
  568
       X_{L}(J_{T}) = XO(J)*(1+GRN)**(NYPP*(ORD(T)-1)+1);
  569
       Y_{L}(T) = YO*(1+GRN)**(NYPP*(ORD(T)-1)+1);
  570
       K_{L}(J_{T}) = KO(J) * (1+GRN) * * (NYPP*(ORD(T)-1)+1);
  571
```

85/08/03. 16.56.07. PAGE 15 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION 572 573 ***************************** 574 ******* CONTROL COMMANDS ******** ************** 575 *** 576 MODEL MODGA /ALL/; 577 OPTION ITERLIM=3000; OPTION LIMROW = 0; 578 579 OPTION LIMCOL = 0; 580 SOLVE MODGA USING NLP MAXIMIZING UO; 581 582 583 ****************************** 584 *** REPORT GENERATION ******** 585 **************************** SET AG MACROECONOMIC AGREGATES 586 /XT,ZT,YT,CT,INVT,GOVT,ET,MNT,MT,TRBAL,DTT,RTT,HTT,FET,CA,BTT, 587 KT, DKT, POP, EMP, CPI, INTR, WAGE, EXGR, AIR/; 588 TABLE OF ECONOMIC AGGREGATES; 589 PARAMETER AGG(AG,TT) AGGREGATE CONSUMPTION AT 1983 PRICES СТ 590 * AGGREGATE INVESTMENT INVT 591 * GOVT AGGREGATE GOVERNMENT EXPEND 592 * ET AGGREGATE EXPORTS 593 × AGGREGATE NON-COMPET IMPORTS 594 * MNT AGGREGATE INPORTS MT 595 × TRBAL TRADE BALANCE 596 × 597 * DTT TOTOAL DEBT OUSTANDING RTT TOTAL REPAYMENTS ON DEBT 598 × HTT TOTAL INTEREST 599 × CURRENT ACCOUNT CA 600 * BTT TOTAL BORROWING 601 * EXGR EXCHANGE RATE 602 * AVERAGE INTEREST RATE ON CURRENT BORROWING AIR 603 * EMP, UNR ENPLOYMENT LEVEL AND UNEMPLOYMENT RATE 604 * CONSUMER PRICE INDEX 605 * CPI PRICE OF GOODS IN CONSUMPTION UNITS 606 WAGE PARAMETER Z(I,T) INTERMEDIATE DEMANDS, 607 SWAGE(I,T) SECTORAL YEARLY WAGES IN CRS MILL 608 PRICE(I,T) RELATIVE PRICES OF GOODS 609 SEMP(I,T) SECTORAL EMPLOYMENT 610 SINT(I,T) SECTORAL INTEREST RATES 611 SEXP(I,T) SHADOW PRICE OF EXPORTS; 612

16 85/08/03. 16.56.07. PAGE 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION = SUM(J,A(I,J)*X.L(J,T)); 613 Z(I,T)AGG("CPI",T) = 0 - SUM(I,MATBAL.M(I,T)*CO(I))/CTO; 614 615 *** WEIGHTING ON CONSUMPTION INDEX EQUAL TO INITAL CONSUMPTION = 0 - MATBAL.M(I,T)/AGG("CPI",T); 616 PRICE(I,T) 617 AGG("WAGE",T) = LABREQ.N(T)/AGG("CPI",T); 618 619 *** THIS MEASURES THE PRICE OF LABOR IN CONSUMPTION UNITS = AGG("WAGE",T)*1000/LU(I); SWAGE(I,T) 620 621 *** YEARLY SECTORAL WAGES IN 1983 CRS MILLIONS = $X_L(I,T) * LR(I) * LU(I) *$ 622 SEMP(I.T) (1-GRLP) ** (NYPP*(ORD(T)-1)+1)/1000000; 623 AGG("EMP",T) = SUM(I, SEMP(I, T));624 625 *** LAST TERM ACCOUNTS FOR LABOR PRODUCTIVITY INCREASE 626 AGG("KT",T) = SUM(I,K.L(I,T));627 AGG("DKT",T) = MAX(1000,SUM(I,DK.L(I,T))); 628 SINT(I,T) = CAPREQ.M(I,T)/AGG("CPI",T); 629 AGG("INTR",T) = SUM(I,SINT(I,T)*DK.L(I,T))/AGG("DKT",T); 630 *** WEIGHTING IS IN PROPORTION TO CAPACITY CHANGE 631 632 AGG("EXGR",T) = O - FEXBAL.M(T)/AGG("CPI",T);633 = E.M(I,T)/AGG("CPI",T);634 SEXP(I,T) AGG("CT",T) 635 = SUM(I,C.L(I,T));AGG("INVT",T) = SUM(I,INV.L(I,T)); 636 AGG("GOVT",T) = SUM(I,GOV(I,T));637 = SUM(I\$ITR(I),PE(I,T)*E.L(I,T)); 638 AGG("ET",T) AGG("MNT",T) = PMNC(T) * MNC_L(T) + PMNG(T) * MNG(T) + 639 SUM(J,PMN(J,T)*(MNX(J)*X.L(J,T) + MNK(J)*DK.L(J,T))); 640 AGG("MT",T) = SUM(I\$ITR(I),PM(I,T)*M.L(I,T)) + AGG("MNT",T); 641 AGG("TRBAL",T) = AGG("ET",T) - AGG("MT",T);642 AGG("YT",T) = AGG("CT",T)+AGG("INVT",T)+AGG("GOVT",T)+ 643 AGG("TRBAL",T); 644 AGG("ZT",T) = SUM(J,Z(J,T));645 AGG("XT",T) = SUM(J,X.L(J,T));646 AGG("POP",T) = N(T);647 AGG("TRBAL",T) = AGG("ET",T) - AGG("MT",T);648 AGG("FET",T) = F(T);649 AGG("CA",T) = AGG("TRBAL",T) - HT.L(T) - F(T);650 AGG("AIR",TT)\$T(TT) = HT.L(TT)/DT.L(TT); 651 AGG("DTT",TT) = DT.L(TT);652 AGG("RTT",TT) = RT.L(TT);653 AGG("BTT",TT) = B.L(TT);654 AGG("HTT",T) = HT.L(T);655 DISPLAY DELTA, LIBOR, RHOK, GRN, GRL, GRLP, GRB, GRAE, GRME; 656 DISPLAY W.L, KTERM.L, KTERM.UP, DTERM.L, DTERM.UP, YTERM; 657 DISPLAY AGG, X.L, Z, C.L, INV.L, DK.L, K.L, GOV; 658 DISPLAY E.L, E.UP, M.L, M.UP, D.L, R.L, B.L, H.L; 659

660 DISPLAY SWAGE, PRICE, SEMP, SINT, SEXP;

1GAMS 2.00 CDC NOS 1.485/08/03.16.56.07.PAGE17G E N E R A L A L G E B R A I C M O D E L I N G S Y S T E MSYMBOL LISTING

SETS

AG	MACROECONOMIC AGREGATES
G	VINTAGES FOR DEBT
ICON	CONSUMMABLE PRODUCTS
ITR	EXPORTABLE PRODUCTS
I	PRODUCTS
J	ALIASED WITH I
TINIT	INITIAL YEAR
TTERM	TERMINAL YEAR
TT	PERIODS
Т	ALL PERIODS EXCEPT INITIAL

PARAMETERS

AGG	TABLE OF ECONOMIC AGGREGATES
ALPHA1	SLOPE OF TERMINAL DEBT SPREAD RATE FUNCTION
ALPHA	SLOPE OF THE SPREAD RATE FUNCTION
A	INPUT-OUTPUT COEFFICIENTS FOR THE BASIC TECHNOLOGY
BETANNC	ELAST OF CONSUMPTION OF NCI
BETA	ELASTICITY OF EXPENDITURE WRT INCOME
BO	BORROWING IN INITITAL PERIOD
СТО	TOTAL CONSUMPTION
CO	CONSUMPTION IN THE INITIAL PERIOD
DELTA	DISCOUNT RATE FOR UTILITY
DEPREF	DEPRECIATION FACTORS FOR CAPITAL STOCK
DEPR	DEPRECIATION RATE PER SECTOR
DFTERM	DISCOUNT FOR THE TERMINAL CONDITION
DF	DISCOUNT FACTOR PER PERIOD
DOT	TOTAL INITIAL DEBT
DO	INITIAL DEBT BY MATURITY
EO	INITIAL EXPORTS
FTERM	FOREIGN EXCHG TRANSF IN LAST YEAR
F	FOREIGN EXCHANGE TRANSFERS ABROAD
GAMMAMNC	MINIMUM CONSUMP OF NCI
GANNAT	TOTAL MINIMUM CONSUMPTION AT INITIAL YEAR P
GAMMA	MINIMUM CONSUMPTION LEVEL OF SEVERAL GOODS
GLAG	GESTATION LAG PER SECTOR
GLET	FUNCTION: G LESS OR EQUAL TO T
GLTT	FUNCTION:G LESS THAN T
GOV	GOVERNMENT EXPENDITURES
GRAE	MAX RATE OF GROWTH OF AGRICULT EXPORTS
GRB	MAXIMUM RATE OF CHANGE OF BORROW

1GAMS 2.00 CDC NOS 1.485/08/03.16.56.07.PAGE18G E N E R A L A L G E B R A I C M O D E L I N G S Y S T E MSYMBOL LISTING

PARAMETERS

GRG	GROWTH RATE OF GOVERNMENT
GRLP	GROWTH RATE OF LABOR PRODUCTIVITY
GRL	PER ANUUN RATE OF GROWTH OF LABOR FORCE
GRME	MAX RATE OF GROWTH OF MANUFAC EXPORTS
GRN	GROWTH RATE OF POPULATION
GRY	GROWTH RATE OF POTENTIAL INCOME
GTERM	TOTAL GOVERNMENT IN TERMINAL YEAR
GO	INITIAL GOVERNMENT EXPENDITURES
INVO	INITIAL DELIVERIES TO INVESTMENT
ISH	SHARE OF SECTORS IN CAPITAL FORMATION
KAVGO	INITITAL AVERAGE NET CAPITAL TO OUTPUT RATIO
KR	CAPITAL TO OUTPUT RATIO
KSH	CAPITAL SHARES MATRIX
KONET	DEPRECIATED INITIAL STOCK
KOT	TOTAL INITIAL CAPITAL STOCK
KO	INITIAL CAPITAL STOCK
LIBOR	FIXED PART OF REAL INT RATE ON FOREIGN BORROW
LR	EMPLOYMENT MEASURED AS LABOR SHARE IN OUTPUT
LS	LABOR SUPPLY
LU	LABOR UNITS: EMPLOYED PER UNIT OF PRODUCT
LO	INITIAL LABOR SUPPLY IN FORMAL MARKET
MNCO	CONSUMP OF NCI IN FIRST PERIOD
MNGO	NIC IN GOVERNMENT IN 1983
MNG	PROJECTION OF NCI IN GOVERNMENT
MNK	NON-COMPETITVE IMPORTS REQUIREMENT IN INVESTMENT
MNX	NON-COMPETITVE IMPORTS REQUIREMENT IN PRODUCTION
MO	CONPETITIVE IMPORTS IN 1983
NTERM	TERMINAL POPULATION
NYPP	NUMBER OF YEARS PER PERIOD
NYP	NUMBER OF YEARS IN EACH PERIOD
NO	INITIAL POPULATION IN MILLIONS
N	POPULATION IN MILLIONS
PETSO	PETROLEUM SUPPLY IN 1983 IN BBL THOS PER DAY
PETS	PETROLEUM SUPPLY IN BBL THOUS PER DAY
PE	EXPORT PRICES
PNNC	PRICE OF NCI IN CONSUMPTION
PMNG	PRICE OF NCI IN GOVERNMENT
PMN	PRICE OF NCI IN PRODUCTION
PM	COMPETITVE IMPORTS PRICE
PRICE	RELATIVE PRICES OF GOODS

1GAMS 2.00 CDC NOS 1.485/08/03.16.56.07.PAGE19G E N E R A L A L G E B R A I C M O D E L I N G S Y S T E MSYMBOL LISTING

PARAMETERS

RHOD	INTEREST RATE ON TERMINAL DEBT
RHOK	INTEREST RATE ON NON-HUMAN WEALTH
RS	REPAYMENT SCHEDULE
RO	REPAYMENT OF INITIAL DEBT (CUMMUL FOR PERIOD)
SCALE	SCALE FACTOR FOR UTITY FUNCTION
SEMP	SECTORAL EMPLOYMENT
SEXP	SHADOW PRICE OF EXPORTS
SHVAO	INITIAL SHARE OF VALUE ADDED IN GROSS OUTPUT
SINT	SECTORAL INTEREST RATES
STCHO	STOCK CHANGE
SWAGE	SECTORAL YEARLY WAGES IN CRS MILL
XO	GROSS OUTPUT LEVELS IN 1983
YTERM	ESTIMATE OF POS-TERMINAL INCOME
YO	INCOME IN INITIAL PERIOD
Z	INTERMEDIATE DEMANDS

VARIABLES

В	BORROWING OF FOREING DEBT IN PERIOD T
C	CONSUMPTION OF COMMODITY I IN PERIOD T
DKTERM	PHYSICAL INVESTMENT IN LAST PERIOD
DK	INVESTMENT BY SECTOR J IN PERIOD T
DTERM	TERMINAL FOREIGN DEBT
DT	TOTAL DEBT OUTSTANDING IN PERIOD T
D	DEBT OUTSTANDING IN T CONTRACTED IN G
E	EXPORTS OF COMMODITY I IN PERIOD T
HR	INTEREST RATE ON FOREING BORROWING
нт	TOTAL INTEREST PAYMENTS IN PERIOD T
Н	INTEREST PAYMENTS IN PERIOD T OF DEBT VINTAGE G
INV	DELIVERIES TO INVESTMET OF COMMODITY I IN FERIOD T
KTERM	TERMINAL CAPITAL STOCK
КT	TOTAL CAPITAL STOCKT IN YEAR T
К	CAPITAL STOCK OF SECTOR J IN PERIOD T
MNC	NON-COMPETITIVE IMPORTS IN CONSUMPTION
М	COMPETITIVE IMPORTS OF GOOD I IN PERIOD T
RT	TOTAL REPAYMENT IN PERIOD T
R	REPAYMENT IN PERIOD T ON DEBT OF VINTAGE TT
UO	VALUE OF OBJECTIVE FUNCTION
W	POST TERMINAL UTILITY
X	GROSS OUTPUT OF SECTOR J IN YEAR T
Y	OUTPUT INDEX IN PERIOD T

1GAMS 2.00 CDC NOS 1.485/08/03.16.56.07.PAGE20G E N E R A L A L G E B R A I C M O D E L I N G S Y S T E MSYMBOL LISTING

EQUATIONS

CAPFOR	CAPITAL FORMATION REQUIREMENTS
CAPREQ	CAPITAL REQUIREMENT RESTRICTION
DEBACC	ACCOUNTING FOR DEBT DUE TO BORROWING
DEBREP	ACCOUNTING FOR DEBT REPAYMENT
DTOT	TOTALIZATION OF DEBTS PER PERIOD
FEXBAL	FOREIGN EXCHANGE BALANCES
GNPDEF	DEFINITION OF GROSS NATIONAL PRODUCT
HCALC	CALCULATION OF INTEREST COST OF DEBT
HRATE	CALCULATION OF INTEREST RATE
HTOT	TOTALIZATION OF INTEREST PER PERIOD
ININV	INITIAL INVESTMENT ALLOCATION
INVDEF	DEFINITION OF INVESTMENT PER SECTOR
KTOT	TOTAL CAPITAL STOCK ACROSS SECTORS
LABREQ	FABOR REQUIREMENTS BLANCE
MATBAL	MATERIAL BALANCES
OBJ	OBJECTIVE FUNCTION DEFINITION
RCALC	CALCULATION OF AMORTIZATION REPAYMENTS
RTOT	TOTALIZATION OF REPAYMENTS PER PERIOD
TERCAP	CALCULATION OF TERMINAL CAPITAL STOCK
TERDEB	CALCULATION OF TERMINAL DEBT
TERINV	INVESTMENT ALLOCATION IN THE TERMINAL YEAR
TERUTIL	TERMINAL UTILITY

MODEL STATISTICS

= 22	
= 328	
= 23	
= 4 61	
= 1976	
= 98	
= 1685	
= 39	
=	29.076 SECONDS
	= 328 = 23 = 461 = 1976 = 98 = 1685 = 39

EXECUTION TIME = 34.770 SECONDS

-C.1-

APPENDIX C

SOLUTION REPORT FOR THE BASE CASE

**** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** OBJECTIVE VALUE 27230572.2745 408.705 1000.000 RESOURCE USAGE, LIMIT ITERATION COUNT, LIMIT 1202 3000 EVALUATION ERRORS 0 0 MINOS --- VERSION 5.0 APR 1984 COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) -- 36727 WORDS. WORK SPACE AVAILABLE -- 43038 WORDS. -- 85700 WORDS.) (MAXIMUM OBTAINABLE

EXIT -- OPTIMAL SOLUTION FOUND

85/08/03. 16.59.00. PAGE 47 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING

 656	PARAMETER	DELTA	=	0.040	DISCOUNT RATE FOR UTILITY
	PARAMETER	LIBOR	=	5.000	FIXED PART OF REAL INT RATE ON FOREIGN BORROW
	PARAMETER	RHOK	=	0.082	INTEREST RATE ON NON-HUMAN WEALTH
	PARAMETER	GRN	=	0.025	GROWTH RATE OF POPULATION
	PARAMETER	GRL	=	0.030	PER ANUUM RATE OF GROWTH OF LABOR FORCE
	PARAMETER	GRLP	=	0.020	GROWTH RATE OF LABOR PRODUCTIVITY
	PARAMETER	GRB	=	0.150	MAXIMUM RATE OF CHANGE OF BORROW
	PARAMETER	GRAE	=	0.050	MAX RATE OF GROWTH OF AGRICULT EXPORTS
	PARAMETER	GRME	=	0.100	MAX RATE OF GROWTH OF MANUFAC EXPORTS

 657 VAR.L	ω	=	1.5538E+7	POST TERMINAL UTILITY
VAR.L	KTERM	=	1108310.250	TERMINAL CAPITAL STOCK
VAR.UP	KTERM	=	1700000.000	TERMINAL CAPITAL STOCK
VAR.L	DTERM	=	65359.814	TERMINAL FOREIGN DEBT
VAR.UP	DTERM	=	250000.000	TERMINAL FOREIGN DEBT
PARAMETER	YTERM	=	240000.000	ESTIMATE OF POS-TERMINAL
				INCOME

---- 658 PARAMETER AGG TABLE OF ECONOMIC AGGREGATES

	1984	1988	1992	1996	2000	2004
XT	207777.845	250651.889	303714.812	368044.572	445744.941	542421.452
ZT	90539.899	109387.448	132312.569	160707.462	194659.259	237979.704
ΥT	111319.219	134127.583	162621.355	196571.722	237804.527	287505.195
СТ	76631.549	91388.837	112177.718	134820.397	163186.639	193828.345
INVT	27392.124	35225.631	41310.708	50152.051	60859.276	75778.705
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12927.530	15669.996	22022.520	30407.392	39998.153	53774.582
MNT	5918.727	7136.858	8780.888	10765.388	13281.155	16936.553
MT	10284.391	13393.207	18783.121	25441.338	33705.288	44279.201
TRBAL	2643.139	2276.790	3239.399	4966.054	6292.865	9495.381
DTT	46385.800	53672.151	64518.916	74261.785	79039.452	79057.468
RTT	7596.100	7324.000	7143.233	9750.819	10319.037	10286.672
HTT	3491.046	4014.801	4701.437	5186.790	5323.689	5097.287
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-1821.588	-2711.691	-2435.717	-1194.417	-4.504	3424.414
BTT	9417.688	10035.691	9578.950	10945.235	10323.541	6862.258
KT	358294.848	426727.221	517795.943	623056.131	751363.171	907985.313
DKT	28946.768	36951.675	43481.330	52742.945	64084.466	80205.232

1GANS 2.00 CDC NOS 1.485/08/03.16.59.00.PAGE48G E N E R A L A L G E B R A I C M O D E L I N G S Y S T E NE X E C U T I N G

658 PARANETER AGG

TABLE OF ECONOMIC AGGREGATES

	1984	1988	1992	1996	2000	2004
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	31.999	35.623	40.008	44.743	50.071	56.019
CPI	11.701	8.798	6.306	4.720	3.520	2.706
INTR	0.168	0.148	0.129	0.124	0.127	0.113
WAGE	2.335	2.371	2.653	2.706	2.661	2.843
EXGR	1.086	1.027	1.027	1.023	1.022	1.022
AIR	0.075	0.075	0.073	0.070	0.067	0.064

	658 VAR.L	X	GROSS OUT	PUT OF SECTO	R J IN YEAR	Т
	1984	1988	1992	1996	2000	2004
AGRIC	18764.683	20852.900	26115.255	31287.246	37542.103	45160.352
AGROP	21679.999	22585.644	29952.553	35370.563	41864.958	49541.205
CONST	18287.610	24107.569	28054.462	34146.601	41248.851	50686.498
MANCG	18491.141	23164.447	26293.300	32677.142	38353.481	45984.855
MANOG	47000.510	60102.541	75751.362	96715.741	123616.951	159201.520
PETRO	16910.385	19331.093	19331.093	19331.093	19331.093	19331.093
UTILT	4827.461	5899.004	7324.211	9029.605	11108.310	13648.195
TRCOM	8544.441	10319.179	12389.336	14896.090	18079.813	21475.098
SERVC	53271.615	64289.513	78503.241	94590.490	114599.381	137392.636

INTERNEDIATE DEMANDS ----658 PARANETER Z 1988 1992 1996 2000 2004 1984 21401.066 25821.446 31271.445 13760.089 17750.338 AGRIC 12438.026 11608.637 13900.491 5730.472 6287.617 8107.631 9689.788 AGROP 16552.867 20424.284 10916.931 13573.099 7290.522 9153.478 MANCG 81619.484 27722.180 34902.171 42416.646 52838.419 65284.783 MANOG 27508.533 31892.778 37330.127 21183.755 23934.615 17674.445 PETRO 8958.702 7251.118 3876.166 4771.272 5890.630 UTILT 3163.718 10309.414 7190.665 8567.125 4279.496 5122.136 6048.919 TRCOM 34165.757 15102.037 18366.217 22615.261 27680.504 SERVC 12241.040

1GAMS 2.00 CDC NOS 1.485/08/03.16.59.00.PAGE49GENERAL ALGEBRAIC MODELING SYSTEMEXECUTING

	658 VAR.L	С	CONSUMPTIO	N OF COMMOD	ITY I IN PER	IOD T
	1984	1988	1992	1996	2000	2004
AGRIC	4458.534	4651.910	5479.643	6386.900	7472.518	8718.023
AGROP	12754.119	14499.415	17139.278	19969.384	23323.486	27224.388
MANCG	3431.342	4225.504	5293.350	6512.662	8046.392	9705.578
MANOG	11535.487	14355.566	18064.576	22199.248	27363.970	33070.490
PETRO	3292.913	4056.253	5007.670	6058.391	7367.024	8786.084
UTILT	1580.313	1928.937	2447.252	3020.024	3723.311	4538.809
TRCOM	3850.092	4723.692	5801.408	7089.544	8806.075	10345.452
SERVC	35728.749	42947.561	52944.540	63584.246	77083.863	91439.522
	658 VAR.L	INV	DELIVERIES FERIOD T	TO INVESTM	ET OF COMMOD	ITY I IN
	1984	1988	1992	1996	2000	2004
AGRIC	217.012	436.950	452.819	546.396	663.147	818.093
CONST	18287.610	24107.569	28054.462	34146.601	41248.851	50686.498
MANCG	5504.383	6505.634	7852,998	9467.064	11636.724	15027.252
MANOG	950.904	1158.906	1379.597	1667.985	2039.527	2571.380
TRCOM	79.278	95.660	113.913	137.434	168.116	214.148
SERVC	2352.937	2920.913	3456.918	4186.571	5102.911	6461.333
	658 VAR.L	DK	INVESTMENT	BY SECTOR	J IN PERIOD '	Г
	1983	1984	1988	1992	1996	2000
AGRIC		2127.568	4283.826	4439.401	5356.826	6501.439
AGROP	2038.695	1497.412	4000.868	3652.169	4349.406	5143.979
CONST	1347.727	1244.684	1108.090	1503.872	1785.710	2279.845
MANCG	2372.039	2036.324	1806.893	2824.190	2893.599	3660.782
MANOG	4113.518	6234.506	7619.227	9999.565	12810.066	16756.825
PETRO	1082.748	2452.357	1367.909	1367.909	1367.909	1367.909
UTILT	600.358	1507.163	1944.666	2357.475	2885.258	3534.041
TRCOM	181.227	750.805	889.641	1073.092	1329.897	1504.531
SERVC	13922.498	11095.949	13930.555	16263.656	19964.274	23335.114
+	2004					
AGRIC	8020.523					
AGROP	7218.471					
CONST	2406.157					
MANCG	8020.523					
MANOG	19249.256					
PETRO	3208.209					
UTILT	4812.314					
TRCOM	3208.209					
SERVC	24061.569					

1GAMS 2.00 CDC NOS 1.485/08/03.16.59.00.PAGE50G E N E R A L A L G E B R A I C M O D E L I N G S Y S T E ME X E C U T I N G50

	658 VAR.L	К	CAPITAL ST	TOCK OF SECT	OR J IN PERI	OD T
	1984	1988	1992	1996	2000	2004
AGRIC	48975.823	54426.069	68160.816	81659.711	97984.889	117868.519
AGROP	32953.599	34330.178	45527.880	53763.255	63634.736	75302.632
CONST	10460.513	13789.530	16047.152	19531.856	23594.343	28992.677
MANCG	20192.325	25295.576	28712.283	35683.439	41882.001	50215.461
MANOG	60066.652	76811.048	96810.240	123602.717	157982.463	203459.542
PETRO	35089.048	40112.018	40112.018	40112.018	40112.018	40112.018
UTILT	17166.452	20976.858	26044.894	32109.276	39501.151	48532.981
TRCOM	7989.052	9648.432	11584.029	13927.845	16904.625	20079.217
SERVC	125401.382	151337.513	184796.630	222666.014	269766.944	323422.266
DERVO	1204011002	10100/ 010	1017 201000			
	658 PARAME	TER GOV	GOVERNMEN'	T EXPENDITUR	RES	
	1984	1988	1992	1996	2000	2004
AGRIC	33.166	37.329	42.014	47.287	53.222	59.901
AGROP	73.233	82.424	92.769	104.413	117.517	132.267
MANCG	106.914	120.333	135.435	152.434	171.566	193.099
MANOG	762.509	858.211	965.924	1087.156	1223.603	1377.176
PETRO	308.691	347.434	391.041	440.120	495.358	557.530
UTILT	83.430	93.901	105.687	118.951	133.881	150.684
TRCOM	335.574	377.691	425.095	478.448	538.498	606.084
SERVC	2948.890	3319.002	3735.566	4204.412	4732.103	5326.023
	659 VAR.L	Е	EXPORTS O	F COMMODITY	I IN PERIOD	т
	1984	1988	1992	1996	2000	2004
AGRIC	1617.945	1966.622	2390.442	2905.597	3531.771	4292.890
AGROP	3122.175	1716.187	4612.874	5606.978	6815.316	8284.060
MANCG	2157.980	3159.499	2094.585	2971.883	1945.997	634.643
MANOG	6029.430	8827.688	12924.619	18922.934	27705.068	40562.990
	659 VAR.UP	E	EXPORTS O	F COMMODITY	I IN PERIOD	т
	1984	1988	1992	1996	2000	2004
AGRIC	1617.945	1966.622	2390.442	2905.597	3531.771	
AGROP	3122.175	3795.023	4612.874	5606.978	6815.316	8284.060
MANCG	2157.980	3159.499	4625.822	6772.666	9915.860	
MANOG	6029.430	8827.688	12924.619	18922.934	27705.068	40562.990

•

-C.5-

1GAMS 2.00 CDC NOS 1.485/08/03.16.59.00.PAGE51G E N E R A L A L G E B R A I C M O D E L I N G S Y S T E ME X E C U T I N G

	659 VAR.L	M	COMPETITI	VE IMPORTS O	F GOOD I IN	PERIOD T
	1984	1988	1992	1996	2000	2004
MANCG Petro	4365.664	6256.349	10002.232	14675.950	0.066 20424.067	27342.648
	659 VAR.UP	M	COMPETITI	VE IMPORTS O	F GOOD I IN	PERIOD T
		ALL	+INF			
	659 VAR.L	D	DEBT OUTS	TANDING IN	T CONTRACTE	ED IN G
	1983	1984	1988	1992	1996	2000
1983 1984 1988 1992 1996	46385.8 00	46385.800	16001.400 37670.751	1773.700 22602.450 40142.765	559.100 11301.225 24085.659 38315.801	226.200 12042.830 22989.481 43780.942
+	2004					
1992 1996 2000	11494.740 26268.565 41294.163					
	659 VAR.L	R	REPAYMENT	IN PERIOD T	ON DEBT OF	VINTAGE TT
	1984	1988	1992	1996	2000	2004
1983 1984 1988 1992 1996 2000	7596.100	3556.925 3767.075	303.650 2825.306 4014.277	83.225 2825.306 3010.707 3831.580	56.550 3010.707 2873.685 4378.094	2873.685 3283.571 4129.416
	659 VAR.L	В	BORROWING	OF FOREING	DEBT IN PER	IOD T
	984 9417.688 900 10323.541		0035.691, 3862.258	1992 9578.9	950, 1996	10945.235

-C.6-

1GAMS 2.00 CDC NOS 1.485/08/03.16.59.00.PAGE52GENERAL ALGEBRAIC MODELING SYSTEMEXECUTING

	659 VAR.L	Н	INTEREST G	PAYMENTS IN I	PERIOD T OF D	EBT VINTAGE
	1984	1988	1992	1996	2000	2004
1983 1984		1204.283 2810.518	133.491 1686.311	42.078 843.155	17.024	
1988			2881.635	1728.981	864.491	
1992				2572.575	1543.545	771.773
1996					2898.629	1739.178
2000						2586.337
	660 PARAMETE	R SWAGE	SECTORAL	YEARLY WAGES	IN CRS MILL	
	1984	1988	1992	1996	2000	2004
AGRIC	0.808	0.821	0.918	0.937	0.921	0.984
AGROP	3.790	3.850	4.307	4.393	4.320	4.615
CONST	1.398	1.420	1.589	1.620	1.593	1.702
MANCG	3.247	3.298	3.690	3.763	3.701	3.954
MANOG	2.886	2.931	3.280	3.345	3.289	3.514
PETRO	4.707	4.781	5.349	5.456	5.365	5.732
UTILT	2.586	2,626	2.938	2.997	2.947	3.148
TRCOM	1.778	1.806	2.021	2.061	2.027	2.165
SERVC	2.021	2.053	2.297	2.343	2.304	2.461
	660 PARAMETE	R PRICE	RELATIVE	PRICES OF GO	DDS	
	1984	1988	1992	1996	2000	2004

	1984	1988	1992	1996	2000	2004
AGRIC	0.710	0.943	0.942	0.939	0.942	0.931
AGROP	0.990	1.027	1.009	1.003	1.007	0.990
CONST	1.172	1.046	1.093	1.095	1.090	1.104
MANCG	1.035	1.015	1.027	1.023	1.022	1.022
MANOG	1.037	1.000	1.003	0.999	0.999	0.995
PETRO	1.086	1.027	1.027	1.023	1.022	1.022
UTILT	1.224	1.214	1.207	1.198	1.199	1.183
TRCOM	1.272	1.258	1.309	1.317	1.309	1.351
SERVC	0.966	0.948	0.947	0.950	0.950	0.954

1GAMS 2.00 CDC NOS 1.485/08/03.16.59.00.PAGE53G E N E R A LA L G E B R A I CM O D E L I N GS Y S T E NE X E C U T I N G

	660 PARAMETER	SEMP	SECTORAL	EMPLOYMENT		
	1984	1988	1992	1996	2000	2004
AGRIC	7.119	7.297	8.429	9.314	10.309	11.438
AGROP	0.660	0.634	0.775	0.844	0.922	1.006
CONST	4.810	5.848	6.277	7.047	7.852	8.900
MANCG	1.101	1.272	1.332	1.527	1.653	1.828
MANOG	2.921	3.446	4.006	4.717	5.561	6.606
PETRO	0.280	0.296	0.273	0.251	0.232	0.214
UTILT	0.797	0.898	1.029	1.170	1.328	1.505
TRCOM	2.716	3.025	3.350	3.715	4.159	4.557
SERVC	11.595	12.907	14.537	16.157	18.055	19.965
	660 PARAMETER	SINT	SECTORAL	INTEREST RATES		

	1984	1988	1992	1996	2000	2004
AGRIC	0.047	0.125	0.109	0.105	0.108	0.094
AGROP	0.181	0.151	0.131	0.126	0.129	0.115
CONST	0.331	0.134	0.132	0.122	0.124	0.098
MANCG	0.159	0.149	0.135	0.128	0.130	0.116
MANOG	0.173	0.148	0.130	0.125	0.127	0.113
PETRO	0.193	0.144	0.130	0.124	0.126	0.110
UTILT	0.149	0.146	0.128	0.123	0.125	0.112
TRCOM	0.168	0.166	0.143	0.139	0.141	0.136
SERVC	0.166	0.156	0.131	0.128	0.131	0.117

	660 PARANETER	SEXP	SHADOW PR	ICE OF EXPORT	rs	
	1984	1988	1992	1996	2000	2004
AGRIC	0.376	0.084	0.086	0.084	0.080	0.091
AGROP	0.096	EPS	0.019	0.020	0.015	0.031
MANCG	0.051	0.012	-1.3836E-5	-3.0040E-4	1.9192E-5	-1.9051E-4
MANOG	0.049	0.027	0.024	0.024	0.023	0.026
PETRO	EPS	EPS	EPS	EPS	EPS	EPS

EXECUTION TIME = 17.498 SECONDS

APPENDIX D

LISTINGS CONTAINING THE MAIN RESULTS OF THE SENSITIVITY RUNS

Table of contents

	Α.	Sensitivity to the model's horizon A.1. 7 periods A.2. 8 periods A.3. 10 periods	2 5 8
	в.	Sensitivity to the discount rate B.1. Delta = 5% B.2. Delta = 6%	11 13
		B.3. Delta = 8%	15
	с.	Sensitivity to the real LIBOR rate	4.7
		C.1. LIBOR = $2x$	17
•		C.2. LIBOR = 4%	19
		C.3. LIBOR = 6%	21
		C.4. LIBOR = 8%	23
	D.	Balanced current account acenario	25
	Ε.	Sensitivity to export markets	
		E.1. Protectionism	27
		E.2. Expansionist	29
	F.	Sensitivity to petroleum sector assumptions	~
		F.1. Large domestic oil finding	31
		F.2. International oil price increase	33
	G.	Sensitivity to non-competitive imports coefficients	
		G.1. 20% Reduction	35
		G.2. 20% Increase	37
	н.	Model with alternative apread rate function	
		H.1. Base case	39
		H.2. High petroleum prices	41
		H.3. Protectionism in export markets	43

LISTING D.A.1

SENSITIVITY TO THE MODEL'S HORIZON (7 PERIODS)

SETS 1 TT PERIODS /1983,1984,1988,1992,1996,2000,2004,2008/ 2 TINIT(TT) INITIAL YEAR /1983/ 3 TTERM(TT) TERMINAL YEAR /2008/ 4 T(TT) ALL PERIODS EXCEPT INITIAL /1984,1988, 5 6 1992,1996,2000,2004,2008/; 7 SET G(TT) VINTAGES FOR DEBT /1983,1984,1988, 1992,1996,2000,2004,2008/; 8 257 PARAMETER PETS(TT) PETROLEUM SUPPLY IN BBL THOUS PER DAY /1983 340 258 1984 520, 259 1988 600, 260 1992 600. 261 1996 600, 262 2000 600, 263 2004 600, 264 265 2008 600/; **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** OBJECTIVE VALUE 28390910.4520 565.874 1000.000 RESOURCE USAGE, LIMIT ITERATION COUNT, LIMIT 3000 1441 0 0 EVALUATION ERRORS MINOS --- VERSION 5.0 APR 1984 - - - - - -COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) -- 44744 WORDS. WORK SPACE AVAILABLE -- 52256 WORDS. -- 85700 WORDS.) (MAXIMUM OBTAINABLE EXIT -- OPTIMAL SOLUTION FOUND

85/08/11. 16.35.13. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING

---- 657 PARAMETER DELTA = PARAMETER LIBOR = 0.040 DISCOUNT RATE FOR UTILITY 5.000 FIXED PART OF REAL INT RATE ON FOREIGN BORROW 0.082 INTEREST RATE ON NON-HUMAN PARAMETER RHOK = WEALTH PARAMETER GRAE = 0.050 MAX RATE OF GROWTH OF AGRICULT EXPORTS PARAMETER GRME = 0.100 MAX RATE OF GROWTH OF MANUFAC EXPORTS

 658	VAR.L	W	=	1.4905E+7	POST TERMINAL UTILITY
	VAR.L	KTERM	=	1314131.149	TERMINAL CAPITAL STOCK
	VAR.UP	KTERM	=	1700000.000	TERMINAL CAPITAL STOCK
	VAR.L	DTERM	=	72187.703	TERMINAL FOREIGN DEBT
	VAR.UP	DTERM	=	250000.000	TERMINAL FOREIGN DEBT
	PARANETER	YTERM	=	292000.000	ESTIMATE OF POS-TERMINAL
					INCOME

---- 659 PARAMETER AGG TABLE OF ECONOMIC AGGREGATES

	1984	1988	1992	1996	2000	2004
ХT	207789.836	250555.950	303360.343	367798.842	444051.633	540410.892
ZT	90552.835	109299.681	132032.002	160368.855	193431.036	235272.490
ΥT	111317.076	134139.046	162561.724	196769.893	237463.417	288537 .9 67
CT	76669.464	91552.995	112474.882	135786.909	164041.899	202161.374
INVT	27367.377	35182.121	41520.434	49558.150	62446.605	70015.711
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12927.530	15552.044	21446.302	30161.293	40616.149	53139.940
MNT	5919.925	7117.222	8766.617	10660.094	13157.180	16600.436
MT	10299.701	13384.439	18773.424	25369.679	37106.984	45181.823
TRBAL	2627.829	2167.605	2672.878	4791.614	3509.165	7958.117
DTT	46385.800	53733.390	65041.279	77247.308	83755.362	96501.036
RTT	7596.100	7330.124	7196.388	10059.411	10852.617	12195.910
HTT	3491.046	4020.897	4750.706	5444.947	5721.903	6501.812
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-1836.897	-2826.972	-3051.507	-1627.013	-3186.419	482.625
BTT	9432.997	10157.096	10247.895	11686.425	14039.036	11713.286
KT	358296.813	426623.796	517450.097	623609.054	749124.989	912287.398
DKT	28920.471	36889.308	43693.370	52062.054	65637.017	74253.883
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	31.998	35.617	40.042	44.735	50.252	55.907
CPI	11.691	8.770	6.279	4.672	3.493	2.550
INTR	0.168	0.147	0.130	0.127	0.124	0.127
WAGE	2.324	2.387	2.640	2.663	2.703	2.730
EXGR	1.082	1.026	1.027	1.023	1.023	1.032
AIR	0.075	0.075	0.073	0.070	0.068	0.067

85/08/11. 16.35.13. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING

.

659 PARAMETER AGG TABLE OF ECONOMIC AGGREGATES

.

+ 2008

XT	655638.676
ZT	286843.677
YT	347902.209
CT	238080.329
INVT	87691.590
GOVT	9457.386
ET	85861.834
MNT	20892.790
MT	73188.930
TRBAL	12672.904
DTT	94570.538
RTT	12402.952
HTT	6103.515
FET	973.680
CA	5 595.7 09
BTT	6807.244
ΚT	1088222.350
DKT	92813.994
POP	237.620
EMP	61.819
CPI	2.002
INTR	0.118
WAGE	2.771
EXGR	1.016
AIR	0.065

LISTING D.A.2

SENSITIVITY TO THE MODEL'S HORIZON (8 PERIODS)

1 SETS 2 TT PERIODS /1983,1984,1988,1992,1996,2000,2004,2008,2012/ 3 TINIT(TT) INITIAL YEAR /1983/ 4 TTERM(TT) TERMINAL YEAR /2012/ 5 T(TT) ALL PERIODS EXCEPT INITIAL /1984,1988, 6 1992,1996,2000,2004,2008,2012/; 7 SET G(TT) VINTAGES FOR DEBT /1983,1984,1988, 8 1992,1996,2000,2004,2008,2012/; 257 PARAMETER PETS(TT) PETROLEUM SUPPLY IN BBL THOUS PER DAY 258 /1983 340 1984 520, 259 1988 600, 260 261 1992 600. 262 1996 600, 263 2000 600, 264 2004 600, 2008 600, 265 2012 600/: 266 **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** OBJECTIVE VALUE 29502315.4737 RESOURCE USAGE, LIMIT 759.989 1000.000 ITERATION COUNT, LIMIT 3000 1716 EVALUATION ERRORS 0 0 MINOS --- VERSION 5.0 APR 1984 - - - - - -COURTESY OF B. A. MURTAGH AND N. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) -- 53522 WORDS. 62291 WORDS. WORK SPACE AVAILABLE - -(MAXIMUN OBTAINABLE --85700 WORDS.) EXIT -- OPTIMAL SOLUTION FOUND

1GAMS 2.00 CDC NOS 1.485/08/13.23.19.09.GENERAL ALGEBRAIC MODELING SYSTEMEXECUTING

 658 PARAMETER DELTA PARAMETER LIBOR	= =	0.040 DISCOUNT RATE FOR UTILITY 5.000 FIXED PART OF REAL INT RATE
PARAMETER RHOK	=	ON FOREIGN BORROW 0.082 INTEREST RATE ON NON-HUMAN WEALTH
PARAMETER GRAE	=	0.050 MAX RATE OF GROWTH OF Agricult exports
PARAMETER GRME	=	0.100 MAX RATE OF GROWTH OF MANUFAC Exports

 659	VAR.L	ω	=	1.4280E+7	POST TERMINAL UTILITY
	VAR.L	KTERM	=	1548520.486	TERMINAL CAPITAL STOCK
	VAR.UP	KTERM	=	1700000.000	TERMINAL CAPITAL STOCK
	VAR.L	DTERM	Ξ	75743.437	TERMINAL FOREIGN DEBT
	VAR.UP	DTERM	=	250000.000	TERMINAL FOREIGN DEBT
	PARAMETER	YTERM	=	354000.000	ESTIMATE OF POS-TERMINAL
	• • • • • • • • • • • • • • • • • • • •				INCOME

	660 PARAMETER AGG		TABLE OF	ECONOMIC AGG	REGATES	
	1984	1988	1992	1996	20 00	2004
XT	207797.859	250524.631	303261.578	367507.017	443762.0 00	537758.494
ZT	90561.472	109274.668	131940.248	160135.259	193040.882	233251.691
ΥT	111315.387	134136.619	162572.732	196728.038	237712.773	288824.606
CT	76691.234	91595.774	112639.326	136033.748	165155.198	203237.294
INVT	27351.888	35195.049	41473.035	49764.114	61654.472	72028.479
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12927.530	15496.136	21331.562	29645.865	38052.426	53139 .954
MNT	5921.000	7113.345	8748.597	10643.720	13008.345	15682.197
MT	10307.673	13386.665	18764.720	25348 .9 08	34615.071	47983.885
TRBAL	2619.857	2109.471	2566.842	4296.956	3437.355	5156.068
DTT	46385.800	53765.276	65318.419	78053.637	86825.961	100915.338
RTT	7596.100	7333.313	7224.580	10145.349	11180.917	12705.349
HTT	3491.046	4024.076	4776.966	5516.357	5986.019	6878.460
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-1844.869	-2888.286	-3183.805	-2193.081	-3522.344	-2696.072
BTT	9440.969	10221.598	10408.385	12338.430	14703.261	15401.421
KT	358298.595	426561.640	517426.040	623344.915	749724.112	909127.500
DKT	28904.551	36897.367	43632.594	52267.261	64716.057	75541.982
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	31.997	35.616	40.045	44.766	50.239	56.157
CPI	11.688	8.762	6.267	4.657	3.460	2.537
INTR	0.169	0.146	0.132	0.126	0.128	0.132
WAGE	2.310	2.411	2.615	2.695	2.658	2.585
EXGR	1.079	1.024	1.026	1.024	1.022	1.028
AIR	0.075	0.075	0.073	0.071	0.069	0.068

-D.6-

85/08/13. 23.19.09. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING

660 PARAMETER AGG TABLE OF ECONOMIC AGGREGATES

4

+	2008	2012
XT	649774.332	804080.723
ZT	282224.130	351062.337
YT	347523.999	428684.023
СТ	241579.199	300689.544
INVT	97513.445	87691.590
GOVT	9457.386	10644.371
ET	74675.643	105532.264
MNT	20026.204	24334.363
MT	75701.673	75873.745
TRBAL	-1026.031	29658.519
DTT	111699.625	149491.016
RTT	14273.076	18519.774
HTT	7448.137	10247.944
FET	973.680	973.680
CA	-9447.848	18436.895
BTT	23720.923	82.879
KT	1090710.316	1357079.067
DKT	102716.201	92813.994
POP	237.620	262.288
EMP	63.452	69.546
CPI	1.956	1.428
INTR	0.106	0.116
WAGE	2.978	2.789
EXGR	1.019	1.017
AIR	0.067	0.069

LISTING D.A.3

SENSITIVITY TO THE MODEL'S HORIZON (10 PERIODS)

1

SETS

2 TT PERIODS /1983,1984,1988,1992,1996,2000,2004, 3 2008,2012,2016,2020/ TINIT(TT) 4 INITIAL YEAR /1983/ 5 TTERM(TT) TERMINAL YEAR /2020/ 6 T(TT) ALL PERIODS EXCEPT INITIAL /1984.1988. 7 1992, 1996, 2000, 2004, 2008, 2012, 2016, 2020/; 8 SET G(TT) VINTAGES FOR DEBT /1983,1984,1988, 9 1992,1996,2000,2004,2008,2012,2016,2020/; 258 PARAMETER PETS(TT) PETROLEUM SUPPLY IN BBL THOUS PER DAY 259 /1983 340 260 1984 520, 1988 600, 261 1992 600, 262 263 1996 600. 264 2000 600. 2004 600, 265 2008 730, 266 267 2012 880, 268 2016 1070, 269 2020 1300/; **** SOLVER STATUS ERROR INTERNAL SOLVER ERROR **** MODEL STATUS 7 INTERMEDIATE NONOPTIMAL **** OBJECTIVE VALUE 31549487.2275 RESOURCE USAGE, LIMIT 1500.000 1152.999 ITERATION COUNT, LIMIT 2084 3000 EVALUATION ERRORS 0 0 MINOS --- VERSION 5.0 APR 1984 COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY. STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) --73592 WORDS. - -80818 WORDS. WORK SPACE AVAILABLE 85700 WORDS.) (MAXIMUM OBTAINABLE - -41 MAJOR ITERATIONS

1GAMS 2.00 CDC NOS 1.485/08/20.00.10.45.GENERAL ALGEBRAIC MODELING SYSTEMCOMPILATION

 662	PARAMETER	DELTA	=	0.040	DISCOUNT RATE FOR UTILITY
	PARAMETER	LIBOR	=	5.000	FIXED PART OF REAL INT RATE
					ON FOREIGN BORROW
	PARAMETER	RHOK	=	0.082	INTEREST RATE ON NON-HUMAN
					WEALTH
	PARAMETER	GRAE	=	0.050	MAX RATE OF GROWTH OF
					AGRICULT EXPORTS
	PARAMETER	GRME	=	0.100	MAX RATE OF GROWTH OF MANUFAC
					EXPORTS

 663	VAR.L VAR.L VAR.UP VAR.L VAR IID	W KTERM KTERM DTERM DTERM	=	1700000.000 1700000.000 97631.666	POST TERMINAL TERMINAL CAPIT TERMINAL CAPIT TERMINAL FORE TERMINAL FORE	TAL STOCK TAL STOCK IGN DEBT
	VAR.UP	DTERM			TERMINAL FORE	
	PARAMETER	YTERM	Ξ	523000.000	ESTIMATE OF PO	US-TERMINAL

664 PARAMETER AGG

_ _ _ _

TABLE OF ECONOMIC AGGREGATES

2000 2004 1996 1988 1992 1984 444151.344 538004.860 303270.528 367353.865 XT 207799.204 250526.801 160022.560 193291.885 233723.257 131943.179 109277.663 ZT 90562.858 288049.381 237834.141 YT 111315.076 134134.814 162588.028 196664.146 201929.477 112659.850 136100.328 165146.655 91589.396 CT 76693.777 61169.109 73238.448 41426.148 49950.039 INVT 27350.357 35203.477 8402.765 7465.747 5893.530 6633.220 4652.407 5236.325 GOVT 53140.010 29349.740 38052.270 15493.782 21366.457 12927.530 ET 13025.319 16232.223 10667.158 7114.323 8739.322 5921.270 MNT 18757.958 25369.180 33999.640 48661.319 13388.166 MT 10308.994 4052.630 4478.691 3980.560 2105.616 2608.499 TRBAL 2618.536 87909.026 99914.333 65341.229 77918.445 53770.562 DTT 46385.800 12616.058 11287.879 7226.940 10132.362 7596.100 7333.841 RTT 6781.731 5504.525 6080.277 4779.123 3491.046 4024.603 HTT 973.680 973.680 973.680 973.680 973.680 973.680 FET -2497.645 -3001.327 -3276.721 -3144.304 -2892.667 CA -1846.191 15892.778 14289.205 10371.244 12630.007 9442.291 10226.508 BTT 907771.790 623146.499 750414.872 517457.284 KT 358298.897 426555.969 77234.811 64229.099 43576.358 52482.421 28903.069 36906.382 DKT 215.272 176.684 195.026 145.013 160.067 131.374 POP 56.159 44.783 50.193 40.042 31.996 35.617 EMP 2.559 3.459 4.654 8.762 6.265 CPI 11.684 0.129 0.132 0.126 0.128 0.169 0.145 INTR 2.655 2.609 2.697 2.662 2.308 2.416 WAGE 1.023 1.021 1.025 1.024 1.023 1.079 EXGR 0.071 0.068 0.069 0.073 AIR 0.075 0.075

-D.9-

85/08/20. 00.14.38. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING

664 PARAMETER AGG TABLE OF ECONOMIC AGGREGATES

+	2008	2012	2016	2020
XT	652943.507	787212.455	942935.780	1029805.503
ZT	283358.064	340989.620	402015.245	419756.641
ΥT	349443.316	421441.165	511947.119	581306.137
СТ	248440.668	299401.324	388211.743	512829.605
INVT	84341.779	104895.994	111628.927	27802.459
GOVT	9457.386	10644.371	11980.333	13483.970
ET	67496.303	93292.925	115196.476	170765.100
MNT	20142.127	24781.670	28973.416	28742.725
MT	60292.819	86793.448	115070.360	143574.999
TRBAL	7203.484	6499.477	126.115	27190.102
DTT	113021.215	118216.814	126542.158	161575.740
RTT	14432.875	15347.305	16458.822	20035.012
HTT	7528.704	7607.133	7910.8 31	10230.403
FET	973.680	973.680	973.680	973.680
CA	-1298.900	-2081.336	-8758.395	15986.019
BTT	15731.775	17428.641	25217.218	4048.993
KT	1096259.644	1306906.815	1574237.632	1830020.393
DKT	89176.457	110632.910	117096.654	29426.508
POP	237.620	262.288	289.517	319.573
EMP	62.180	69.046	76.399	74.984
CPI	1.891	1.437	1.004	0.692
INTR	0.126	0.114	0.099	0.312
WAGE	2.656	2.859	3.029	
EXGR	1.018	1.011	1.016	1.072
AIR	0.067	0.064	0.063	0.063

LISTING D.B.1

SENSITIVITY TO THE DISCOUNT RATE (DELTA = 5%)

85/08/21. 01.25.26. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING **** SOLVER STATUS ERROR INTERNAL SOLVER ERROR **** MODEL STATUS 7 INTERMEDIATE NONOPTIMAL **** OBJECTIVE VALUE 20433838.2985 430.809 1000.000 RESOURCE USAGE, LIMIT ITERATION COUNT, LIMIT 3000 1273 0 EVALUATION ERRORS 0 MINOS --- VERSION 5.0 APR 1984 = = = = = COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTINATE) -- 36727 WORDS. WORK SPACE AVAILABLE -- 43038 WORDS. -- 85700 WORDS.) (MAXINUN OBTAINABLE MAJOR ITERATIONS 37

85/08/21. 01.25.26. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING

0.050 DISCOUNT RATE FOR UTILITY ---- 656 PARAMETER DELTA = PARAMETER LIBOR = 5.000 FIXED PART OF REAL INT RATE PARAMETER LIBOR ON FOREIGN BORROW PARAMETER RHOK = 0.092 INTEREST RATE ON NON-HUMAN PARAMETER GRAE = 0.050 MAX RATE OF GROWTH OF AGRICULT EXPORTS PARAMETER GRME = 0.100 MAX RATE OF GROWTH OF MANUFAC EXPORTS WEALTH

 657	VAR.L	ω	=	9787035.667 POST TERMINAL UTILITY
	VAR.L	KTERM	=	1031915.793 TERMINAL CAPITAL STOCK
	VAR.UP	KTERM	=	1700000.000 TERMINAL CAPITAL STOCK
	VAR.L	DTERM	=	108129.637 TERMINAL FOREIGN DEBT
	VAR.UP	DTERM	=	250000.000 TERMINAL FOREIGN DEBT
	PARANETER	YTERM	=	240000.000 ESTIMATE OF POS-TERMINAL
				INCOME

.

---- 658 PARAMETER AGG TABLE OF ECONOMIC AGGREGATES

	1984	1988	1992	1996	2000	2004
XT	207977.439	249346.160	301974.429	367320.522	442742.448	542607.983
ZT	90753,738	108214.686	131060.968	159856.738	192632.294	235678.765
YT	111274.757	134021.678	162152.337	196868.397	236569.667	290763 .579
CT	77244.607	93343.273	113098.455	136770.567	163806.992	207110.259
INVT	27006.799	34813.642	42216.827	48891.349	64156.011	55735.679
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12927.530	14108.055	19783.510	29926.089	38052.155	63609.354
MNT	5948.943	7109.796	8761.125	10595.387	13540.486	16165.639
MT	10556.586	13479.617	18839.986	25352.829	36911.239	44094.478
TRBAL	2370.944	628.437	943.524	4573.260	1140.916	19514.877
DTT	46385.800	54760.930	72637.492	94745.042	108715.236	140078.138
RTT	7596.100	7432.878	7971.422	11960.119	13857.715	17364.670
HTT	3491.046	4123.898	5496.732	7092.128	8007.962	10554.071
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-2093.782	-4469.140	-5526.888	-3492.548	-7840.725	7987.125
BTT	9689.882	11902.018	13498.310	15452.668	21698.441	9377.544
KT	358327.184	425143.639	514538.112	623768.611	746386.143	918323.897
DKT	28543.642	36508.201	44389.972	51347.437	67747.100	58991.415
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	31.976	35.517	40.021	44.709	50.363	54.894
CPI	11.435	8.089	5.718	4.085	2.976	2.032
INTR	0.176	0.145	0.141	0.139	0.131	0.170
WAGE	2.172	2.442	2.503	2.513	2.645	2.016
EXGR	1.012	1.024	1.023	1.022	1.024	1.060
AIR	0.075	0.075	0.076	0.075	0.074	0.075

LISTING D.B.2

SENSITIVITY TO THE DISCOUNT RATE (DELTA = 6%)

85/08/21. 00.05.33. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** OBJECTIVE VALUE 16157805.9171 RESOURCE USAGE, LIMIT ITERATION COUNT, LIMIT 432.255 1000.000 3000 1277 0 0 EVALUATION ERRORS MINOS --- VERSION 5.0 APR 1984 - - - - - -COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTINATE) -- 36727 WORDS. WORK SPACE AVAILABLE -- 43038 WORDS. -- 85700 WORDS.) (MAXINUM OBTAINABLE EXIT -- OPTIMAL SOLUTION FOUND

1GAMS 2.00 CDC NOS 1.485/08/21. 00.05.33.GENERAL ALGEBRAIC MODELING SYSTEMEXECUTING

 656 PARAMETE	R DELTA	=	0.060 DISCOUNT RATE FOR UTILITY
PARAMETE	R LIBOR	=	5.000 FIXED PART OF REAL INT RATE ON FOREIGN BORROW
PARAMETE	R RHOK	=	0.102 INTEREST RATE ON NON-HUMAN WEALTH
PARAMETE	R GRAE	=	0.050 MAX RATE OF GROWTH OF AGRICULT EXPORTS
PARAMETE	R GRME	=	0.100 MAX RATE OF GROWTH OF MANUFAC EXPORTS

 657	VAR.L	ω	=	6440245.648	POST TERMINAL UTILITY
	VAR.L	KTERM	=	1014060.470	TERMINAL CAPITAL STOCK
	VAR.UP	KTERM	=	1700000.000	TERMINAL CAPITAL STOCK
	VAR.L	DTERM	=	171617.850	TERMINAL FOREIGN DEBT
	VAR.UP	DTERM	=	250000.000	TERMINAL FOREIGN DEBT
	PARAMETER	YTERM	=	240000.000	ESTINATE OF POS-TERMINAL
					INCOME

	658 PARAMETER AGG		TABLE OF	ECONOMIC AGG	REGATES	
	1984	1988	1992	1996	2000	2004
ХT	207643.424	248457.980	301009.635	365770.899	442790.687	534280.905
ZT	90470.346	107291.442	130342.820	159112.993	192929.473	229052.594
ΥT	111241.855	133940.153	161740.725	195845.101	236396.696	289235.343
СТ	78209.583	95279.125	114117.586	136070.549	163146.239	213759.327
INVT	26935.838	33867.375	41154.352	49586.000	62062.938	54406.031
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	11837.662	13953.809	19940.882	29283.876	37721.110	59373.701
MNT	5931.224	7226.386	8926.089	10812.804	13464.518	15992 .9 67
MT	10393.636	14396.482	19365.625	25728.544	33999.338	46706.481
TRBAL	1444.026	-442.673	575.257	3555.332	3721.772	12667.220
DTT	46385.800	58468.600	82159.224	109740.139	134011.692	165488.599
RTT	7596.100	7803.645	8979.210	13735.931	16858.300	20594.488
HTT	3491.046	4506.303	6496.806	8649.540	10617.319	13225.853
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-3020.700	-5922.656	-6895.229	-6067.888	-7869.227	-1532.313
BTT	10616.800	13726.301	15874.439	19803.819	24727.527	22126.801
KT	358302.130	424809.358	510817.563	616136.879	742358.784	905038.453
DKT	28467.343	35671.550	43370.628	52106.363	65396.660	57584.098
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	32.002	35.400	39.614	44.310	49.913	54.521
CPI	11.090	7.461	5,180	3.642	2.551	1.611
INTR	0.186	0.154	0.146	0.145	0.143	0.219
WAGE	2.014	2.339	2.437	2.455	2.490	1.240
EXGR	0.996	1.033	1.029	1.028	1.025	1.124
AIR	0.075	0.077	0.079	0.079	0.079	0.080

-D.14-

-D.15-

LISTING D.B.3

SENSITIVITY TO THE DISCOUNT RATE (DELTA = 8%)

85/08/21. 00.15.31. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** MODEL STATUS **** OBJECTIVE VALUE 11225073.2612 RESOURCE USAGE, LIMIT 430.300 ITERATION COUNT, LIMIT 1264 0 1000.000 3000 0 MINOS --- VERSION 5.0 APR 1984 ----COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) -- 36727 WORDS. WORK SPACE AVAILABLE -- 43038 WORDS. -- 85700 WORDS.) (MAXINUM OBTAINABLE

EXIT -- OPTIMAL SOLUTION FOUND

1GAMS 2.00 CDC NOS 1.4 85/08/21. 00.15.31. GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING

- 656 PARANETER DELTA = PARAMETER LIBOR = ----0.080 DISCOUNT RATE FOR UTILITY 5.000 FIXED PART OF REAL INT RATE ON FOREIGN BORROW PARAMETER RHOK = 0.122 INTEREST RATE ON NON-HUMAN WEALTH PARAMETER GRAE = 0.050 MAX RATE OF GROWTH OF AGRICULT EXPORTS PARAMETER GRME = 0.100 MAX RATE OF GROWTH OF MANUFAC EXPORTS
- ----657 VAR.L ω = 3035828.506 POST TERMINAL UTILITY

 KTERM
 =
 982202.447
 TERNINAL CAPITAL STOCK

 KTERM
 =
 1700000.000
 TERMINAL CAPITAL STOCK

 CENTRAL
 CONTRAL STOCK
 CONTRAL STOCK

 VAR.L VAR.UP DTERM = 250000.000 TERMINAL FOREIGN DEBT VAR.L VAR.UP DTERM PARAMETER YTERM = 250000.000 TERMINAL FOREIGN DEBT = 240000.000 ESTIMATE OF POS-TERMINAL INCOME

2004

658 PARAMETER AGG TABLE OF ECONOMIC AGGREGATES ----1984 1988 1992 1996 2000 XT 207694.760 245993.677 298960.299 364694.085 444505.606 522428.988 ZT 90446.143 105219.406 128697.116 158452.395 194160.241 220947.997 YT 111357.544 133542.054 161335.706 195263.145 237167.578 285893.857 79034.314 98200.631 115877.687 135670.015 162480.618 218494.917 CT

INVT	26226.797	33666.675	41207.004	50435.368	57533.291	50870.545
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	11839.745	13953.809	19941.015	28601.197	43382.173	59374.598
MNT	5891.073	7232.217	8927.477	10978.545	13177.786	15587.134
MT	10395.719	17515.386	21583.529	26076.655	33694.251	51248.968
TRBAL	1444.026	-3561.577	-1642.514	2524.541	9687. 922	8125.630
DTT	46385.800	58468.600	94632.718	136915.440	177970.811	206435.749
RTT	7596.100	7803.645	10226.560	16640.563	22110.887	26001.342
HTT	3491.046	4505.773	7954.486	11814.704	15830.476	18043.013
FET	973.68 0	973.680	973.680	973.680	973.680	973.680
CA	-3020.700	-9041.030	-10570.680	-10263.843	-7116.234	-10891.063
BTT	10616.800	16844.675	20797.240	26904.406	29227.121	36892.405
KT	358371.848	421761.116	507346.440	613192.394	743756.832	886177.951
DKT	27688.687	35501.477	43432.774	53123.085	60426.322	53842.090
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	31.969	35.326	39.490	44.272	49.531	54.053
CPI	10.700	6.465	4.281	2.875	1.872	1.081
INTR	0.196	0.180	0.161	0.161	0.161	0.295
WAGE	1.884	2.027	2.264	2.250	2.245	
EXGR	0.988	1.032	1.046	1.047	1.048	1.222
AIR	0.075	0.077	0.084	0.086	0.089	0.087

-D.17-

LISTING D.C.1

SENSITIVITY TO LIBOR RATE (value = 2%)

**** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** OBJECTIVE VALUE 27334762.5827 RESOURCE USAGE, LIMIT 132.050 1000.000 ITERATION COUNT, LIMIT 297 2000 EVALUATION ERRORS 0 0 0 M I N O S --- VERSION 5.0 APR 1984 = = = = = COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) -- 36727 WORDS.

WORK SPACE AVAILABLE -- 43038 WORDS. (MAXIMUM OBTAINABLE -- 85700 WORDS.)

EXIT -- OPTIMAL SOLUTION FOUND

85/06/01. 21.22.22. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING 0.040 DISCOUNT RATE FOR UTILITY 718 PARAMETER DELTA Ξ _ _ _ _ 2.000 FIXED PART OF REAL INT RATE = PARAMETER LIBOR **ON FOREIGN BORROW** 0.082 INTEREST RATE ON NON-HUMAN = PARAMETER RHOK WEALTH 0.050 MAX RATE OF GROWTH OF PARAMETER GRAE = AGRICULT EXPORTS 0.100 MAX RATE OF GROWTH OF MANUFAC PARAMETER GRME = EXPORTS 1.5517E+7 POST TERMINAL UTILITY = 719 VAR.L ω = 1108319.263 TERMINAL CAPITAL STOCK KTERM VAR.L = 1700000.000 TERMINAL CAPITAL STOCK VAR.UP KTERM Ξ 132615.513 TERMINAL FOREIGN DEBT VAR.L DTERM 250000.000 TERMINAL FOREIGN DEBT VAR.UP DTERM = 240000.000 ESTIMATE OF POS-TERMINAL = PARAMETER YTERM INCOME TABLE OF ECONOMIC AGGREGATES 720 PARAMETER AGG _ _ _ _ 2004 1988 1992 1996 2000 1984 444831.363 543085.122 206767.503 247597.410 301231.121 366277.121 XT 193684.768 238514.641 89666.564 106484.691 129877.803 158927.990 ZT 165297.396 193405.257 138317.769 79202.017 96476.379 116740.352 CT 41334.589 50139.720 60818.317 75630.486 27477.268 35370.864 INVT 8402.765 7465.747 5236.325 5893.530 6633.220 GOVT 4652.407 19927.935 28699.045 38052.460 54461.851 12271.884 9791.828 ET 16953.809 10703.278 13316.210 8665.527 5716.795 6984.825 MNT 44283.687 27143.903 33803.536 MT 9739.375 15227.556 21208.615 10178.164 1555.143 4248.924 52.452 -2955.673 -1280.680 TRBAL 130895.914 143165.254 85194.539 111319.922 58468.600 DTT 46385.800 13939.439 16679.690 18293.067 9282.742 7803.645 7596.100 RTT 6342.579 6567.049 4276.986 5475.461 2752.132 HTT 2099.472 973.680 973.680 973.680 973.680 FET 973.680 973.680 -3067.335 2637.435 -3020.700 -6681.485 -6531.346 -4893.998 CA

15814.088

43522.637

160.067

40.207

5.917

0.122

2.795

1.027

0.050

518079.058

18833.437

623547.030

52765.628

176.684

44.881

4.538

0.117

2.849

1.024

0.049

14485.130

37090.996

145.013

35.854

8.029

0.141

2.528

1.018

0.047

10616.800

28876.982

131.374

32.090

11.042

0.170

2.282

1.007

0.045

358191.438 426339.104

BTT

KT

DKT

POP

EMP

CPI

INTR

WAGE

EXGR

AIR

15655.632

80048.354

215.272

55.999

2.713

0.106

2.942

1.022

0.046

908701.297

19747.025

64125.830

195.026

50.136

3.453

0.122

2.749

1.022

0.048

751947.677

-D.18-

LISTING D.C.2

SENSITIVITY TO LIBOR RATE (value = 4%)

*****SOLVER STATUS1NORMAL COMPLETION*****MODEL STATUS2LOCALLY OPTIMAL*****OBJECTIVE VALUE27261293.9237 RESOURCE USAGE, LIMIT 94.148 1000.000 ITERATION COUNT, LIMIT 190 2000 EVALUATION ERRORS 0 0 MINOS --- VERSION 5.0 APR 1984 COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) -- 36727 WORDS. WORK SPACE AVAILABLE -- 43038 WORDS. -- 85700 WORDS.) (MAXIMUN OBTAINABLE EXIT -- OPTIMAL SOLUTION FOUND MAJOR ITERATIONS 11 NORM RG / NORM PI 1.426E-04

TOTAL USED96.97 UNITSMIN055 TIME87.49 (INTERPRETER -22.72)

85/06/01. 21.12.11. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING 0.040 DISCOUNT RATE FOR UTILITY ----718 PARAMETER DELTA = 4.000 FIXED PART OF REAL INT RATE = PARAMETER LIBOR ON FOREIGN BORROW 0.082 INTEREST RATE ON NON-HUMAN = PARAMETER RHOK WEALTH 0.050 MAX RATE OF GROWTH OF PARAMETER GRAE = AGRICULT EXPORTS 0.100 MAX RATE OF GROWTH OF MANUFAC PARAMETER GRME = EXPORTS = 1.5529E+7 POST TERMINAL UTILITY ---- 719 VAR.L ω KTERM=1108307.560TERMINAL CAPITAL STOCKKTERM=1700000.000TERMINAL CAPITAL STOCKDTERM=87698.838TERMINAL FOREIGN DEBT VAR.L VAR.UP VAR.L

VAR.UP DTERM = 250000.000 TERMINAL FOREIGN DEBT PARAMETER YTERM = 240000.000 ESTIMATE OF POS-TERMINAL

INCOME

	720 PARAMETER AGG		TABLE OF	ECONOMIC AGG	REGATES	
	1984	1988	1992	1996	2000	2004
XT	207865.542	249512.138	302734.179	367405.884	445443.681	542674.085
ZT	90640.487	108380.175	131407.716	160040.861	194338.843	238186.081
CT	77180.043	93004.178	113721.257	136184.275	163887.226	193630.055
INVT	27197.778	35404.347	41422.670	50117.184	60836.553	75729.821
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12753.328	16572.856	20540.576	29763.550	39351.079	54062.876
MNT	5907.638	7087.283	8739.899	10743.816	13293.691	16944.195
MT	10466.139	16173.026	18991.470	26077.021	33729.460	44281.708
TRBAL	2287.190	399.830	1549.106	3686.529	5621.619	9781.168
DTT	46385.800	53240.514	69295.351	84867.873	95190.798	99740.715
RTT	7596.100	7280.836	7614.402	10867.535	12276.480	12852.323
HTT	3027.188	3439.859	4468.557	5293.580	5785.418	5797.018
FET	973.680	973.680	973.680	973.680	973.68 0	973.680
CA	-1713.679	-4013.709	-3893.130	-2580.731	-1137.479	3010.469
BTT	9309.779	11294.546	11507.532	13448.266	13413.959	9841.854
KT	358305.334	425781.151	517580.455	623364.401	751582.193	908216.631
DKT	28707.935	37108.809	43599.672	52723.783	64090.784	80153.493
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	31.990	35.654	40.082	44.795	50.093	56.010
CPI	11.552	8.533	6.172	4.647	3.497	2.710
INTR	0.164	0.140	0.131	0.119	0.126	0.110
WAGE	2.360	2.510	2.633	2.786	2.682	2.881
EXGR	1.015	1.017	1.024	1.025	1.022	1.022
AIR	0.065	0.065	0.064	0.062	0.061	0.058

-D.21-

LISTING D.C.3

SENSITIVITY TO LIBOR RATE (value = 6%)

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE 27202557.1622
RESOURCE USAGE, LIMIT 98.060 1000.000
ITERATION COUNT, LIMIT 196 2000
EVALUATION ERRORS 0 0
M I N O S --- VERSION 5.0 APR 1984
= = = = =
COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS,
DEPARTMENT OF OPERATIONS RESEARCH,
STANFORD UNIVERSITY,
STANFORD CALIFORNIA 94305 U.S.A.
WORK SPACE NEEDED (ESTIMATE) -- 36727 WORDS.
HORDS

WORK SPACE AVAILABLE -- 43038 WORDS. (MAXIMUM OBTAINABLE -- 85700 WORDS.)

85/06/01. 21.23.25. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING

---- 718 PARAMETER DELTA = 0.040 DISCOUNT RATE FOR UTILITY PARAMETER LIBOR = 6.000 FIXED PART OF REAL INT RAT 6.000 FIXED PART OF REAL INT RATE ON FOREIGN BORROW 0.082 INTEREST RATE ON NON-HUMAN = PARAMETER RHOK WEALTH PARAMETER GRAE = 0.050 MAX RATE OF GROWTH OF AGRICULT EXPORTS PARAMETER GRME = 0.100 MAX RATE OF GROWTH OF MANUFAC EXPORTS

 719	VAR.L	ω	=	1.5548E+7	POST TERMINAL UTILITY
	VAR.L	KTERM	=	1108452.375	TERMINAL CAPITAL STOCK
	VAR.UP	KTERM	=	1700000.000	TERMINAL CAPITAL STOCK
	VAR.L	DTERM	=	43280.369	TERMINAL FOREIGN DEBT
	VAR.UP	DTERM	=	250000.000	TERMINAL FOREIGN DEBT
	PARAMETER	YTERM	=	240000.000	ESTIMATE OF POS-TERMINAL
					INCOME

.

---- 720 PARAMETER AGG TABLE OF ECONOMIC AGGREGATES

	1984	1988	1992	1996	2000	2004
XT	207551.705	251416.034	305003.648	368713.924	446089.271	542155.735
ZT	90305,336	110052.607	133362.330	161492.898	194972.430	237793.607
CT	76090.826	90157.490	110806.014	133028.491	162572.518	193876.977
INVT	27689.349	35159.349	40880.342	50375.260	60763.510	75906.844
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12927.530	17748.832	24553.757	31859.173	41390.702	53528.642
MNT	5879,716	7184.214	8822.563	10790.685	13265.829	16936.073
MT	9993.460	14122.784	19314.888	25465.802	34341.466	44289.173
TRBAL	2934.070	3626.049	5238.868	6393.371	7049.236	9239.468
DTT	46385.800	54363.855	62262.872	65676.943	64529.928	59443.182
RTT	7596.100	7393.171	6928.004	8883.395	8640.041	7860.791
HTT	3954.904	4627.123	5118.706	5132.937	4803.869	4225.085
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-1994.514	-1974.754	-853.518	286.754	1271.687	4040.703
BTT	9590.614	9367.925	7781.522	8596.642	7368.354	3820,087
KT	358260.434	427919.996	518891.602	622244.504	751430.801	907536.821
DKT	29252.582	36951.019	43042.136	52946.137	63960.304	80340.856
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	32.024	35.673	39.919	44.688	50.046	56.025
CPI	11.859	9.034	6.420	4.823	3.538	2.707
INTR	0.165	0.173	0.113	0.136	0.126	0.117
WAGE	2.437	1.981	2.873	2.538	2.668	2.791
EXGR	1.172	1.055	1.038	1.019	1.024	1.021
AIR	0.085	0.085	0.082	0.078	0.074	0.071

LISTING D.C.4

SENSITIVITY TO LIBOR RATE (value = 8%)

**** SOLVER STATUS1 NORMAL COMPLETION**** MODEL STATUS2 LOCALLY OPTIMAL**** OBJECTIVE VALUE27150358.2557 RESOURCE USAGE, LIMIT 109.670 1000.000 2000 ITERATION COUNT, LIMIT 233 0 EVALUATION ERRORS 0 MINOS --- VERSION 5.0 APR 1984 - - - - - -COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) -- 36727 WORDS. -- 43038 WORDS. WORK SPACE AVAILABLE -- 85700 WORDS.) (MAXIMUM OBTAINABLE

EXIT -- OPTIMAL SOLUTION FOUND

-

85/06/01. 21.24.10. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING

 718	PARAMETER	DELTA	=	0.040	DISCOUNT RATE FOR UTILITY
	PARAMETER	LIBOR	=	8.000	FIXED PART OF REAL INT RATE
					ON FOREIGN BORROW
	PARAMETER	RHOK	=	0.082	INTEREST RATE ON NON-HUMAN
					WEALTH
	PARAMETER	GRAE	=	0.050	MAX RATE OF GROWTH OF
					AGRICULT EXPORTS
	PARAMETER	GRME	=	0.100	MAX RATE OF GROWTH OF MANUFAC
					EXPORTS

---- 719 VAR.L W = 1.5568E+7 POST TERMINAL UTILITY VAR.L KTERM = 1111184.633 TERMINAL CAPITAL STOCK VAR.UP KTERM = 1700000.000 TERMINAL CAPITAL STOCK VAR.L DTERM = 11991.947 TERMINAL FOREIGN DEBT VAR.UP DTERM = 250000.000 TERMINAL FOREIGN DEBT PARAMETER YTERM = 240000.000 ESTIMATE OF POS-TERMINAL INCOME

---- 720 PARAMETER AGG TABLE OF ECONOMIC AGGREGATES

	1984	1988	1992	1996	2000	2004
XT	206943.922	251592.103	305155.193	370056.833	449662.178	540937.757
ZT	89708.119	110156.963	133341.937	162705.189	198169.557	237231.644
CT	75164.062	88914.621	110004.843	130278.919	157744.268	192598.159
INVT	27865.892	35165.705	40738.597	50520.741	59580.984	77471.114
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12927.530	17748.832	24553.757	34208.174	47454.592	52618.277
MNT	5753.874	7094.181	8802.506	10943.588	13248.728	17024.677
MT	9127.962	12724.525	18179.977	25232 .99 9	34001.699	44408.879
TRBAL	3799.568	5024.307	6373.779	8975.175	13452.894	8209.398
DTT	46385.800	54612.727	61396.285	64838.932	58231.107	30063.213
RTT	7596.100	7418.058	6845.078	8795.555	7959.896	4821.970
HTT	4882.620	5746.517	6260.761	6349.539	5437.240	2717.902
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-2056.732	-1695.889	-860.662	1651.956	7041.973	4517.817
BTT	9652.832	9113.947	7705.740	7143.598	917.922	304.154
КT	358215.723	428577.436	519596.549	622579.531	752826.132	903217.245
DKT	29427.680	36976.444	42974.022	53230.960	62596.287	81996.501
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	32.071	35.719	39.895	44.593	49.799	55.999
CPI	12.299	9.295	6.499	4.979	3.696	2.737
INTR	0.226	0.196	0.108	0.134	0.123	0.135
WAGE	1.599	1.513	2.858	2.504	2.718	2.533
EXGR	1.478	1.268	1.208	1.097	1.030	1.018
AIR	0.105	0.105	0.102	0.098	0.093	0.090

LISTING D.D

BALANCED CURRENT ACCOUNT SCENARIO

85/06/05. 00.35.25. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION 658 ****************** 659 *** PARAMETER CHANGES *** 660 ******************** 661 662 B.UP(T) = 20000; 663 B.LO(T) = 0;664 EQUATION BALCA ENFORCES CURRENT ACCOUNT BALANCING; 665 BALCA(T).. B(T) = L = RT(T);666 **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL 27217363.2562 **** OBJECTIVE VALUE RESOURCE USAGE, LIMIT 108.683 ITERATION COUNT, LIMIT 277 1000.000 2000 0 EVALUATION ERRORS 0 MINOS --- VERSION 5.0 APR 1984 - - - - - -COURTESY OF B. A. NURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) -- 37159 WORDS. -- 43506 WORDS. WORK SPACE AVAILABLE -- 85700 WORDS.) (MAXIMUM OBTAINABLE

85/06/05. 00.36.00. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING

 721	PARAMETER	DELTA	=	0.040	DISCOUNT RATE FOR UTILITY
	PARAMETER	LIBOR	=	5.000	FIXED PART OF REAL INT RATE
					ON FOREIGN BORROW
	PARAMETER	RHOK	=	0.082	INTEREST RATE ON NON-HUMAN
					WEALTH
	PARAMETER	GRAE	=	0.050	MAX RATE OF GROWTH OF
					AGRICULT EXPORTS
	PARAMETER	GRME	=	0.100	MAX RATE OF GROWTH OF MANUFAC
					EXPORTS

---- 722 VAR.L W = 1.5557E+7 POST TERMINAL UTILITY VAR.L KTERN = 1118708.633 TERMINAL CAPITAL STOCK VAR.UP KTERM = 1700000.000 TERMINAL CAPITAL STOCK VAR.L DTERM = 46385.800 TERMINAL FOREIGN DEBT VAR.UP DTERM = 250000.000 TERMINAL FOREIGN DEBT PARAMETER YTERN = 240000.000 ESTIMATE OF POS-TERMINAL INCOME

---- 723 PARAMETER AGG TABLE OF ECONOMIC AGGREGATES

	1984	1988	1992	1996	2000	2004
ХT	206444.701	251203.317	304021.406	367095.027	443980.618	539568.163
ZT	89242.609	109898.079	132458.392	160054.261	192864.886	235705.806
CT	74745.176	89522.337	112053.135	135166.646	166583.718	196103.617
INVT	27670.191	35138.806	40816.939	50668.782	60194.928	78745.884
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12927.530	17432.931	22726.458	29284.552	38052.155	53139.940
MNT	5669.592	7107.852	8722.446	10662.762	13097.321	16925.184
MT	8462.804	13133.014	18649.495	25375.197	34278.137	49455.032
TRBAL	4464.726	4299.917	4076.964	3909.355	3774.018	3684.908
DTT	46385.800	46385.800	46385.800	46385.800	46385.800	46385.800
RTT	7596.100	6595.365	5220.626	6428.915	6172.913	5964.028
HTT	3491.046	3326.237	3103.284	2935.675	2800.338	2711.228
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	3.1941E-9	-2.7139E-9	-1.1372E-8	2.4513E-8	3.3157E-8	6.4138E-8
BTT	7596.100	6595.365	5220.626	6428.915	6172.913	5964.028
KΤ	358206.614	427764.309	518541.466	621508.069	751809.653	905399.278
DKT	29227.618	36894.062	42932.165	53193.810	63332.860	83345.735
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	32.096	35.718	39.977	44.805	50.144	56.287
CPI	12.711	9.165	6.310	4.708	3.418	2.661
INTR	0.312	0.201	0.121	0.137	0.131	0.106
WAGE	0.283	1.603	2.759	2.514	2.600	2.944
EXGR	1.768	1.080	1.043	1.019	1.023	1.023
AIR	0.075	0.072	0.067	0.063	0.060	0.058

LISTING D.E.1

SENSITIVITY TO EXPORT MARKETS (protectionist scenario)

```
658 *****************
659 *** PARAMETER CHANGES ***
660 ******************
661
662 GRAE = 0.031;
663 GRME = 0.075;
664
665 E.UP("AGRIC",T) = EO("AGRIC")*(1+GRAE)**(NYPP*(ORD(T)-1)+1);
666 E.UP("AGROP",T) = EO("AGROP")*(1+GRAE)**(NYPP*(ORD(T)-1)+1);
667 E.UP("MANCG",T) = EO("MANCG")*(1+GRME)**(NYPP*(ORD(T)-1)+1);
      E.UP("MANOG",T) = EO("MANOG")*(1+GRME)**(NYPP*(ORD(T)-1)+1);
668
669
**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS
                   2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE
                        27209380.9857
RESOURCE USAGE, LIMIT
                          254.375
                                     1000.000
ITERATION COUNT, LIMIT
                                      2000
                          642
                                       0
EVALUATION ERRORS
                           0
    MINOS --- VERSION 5.0 APR 1984
    - - - - - -
    COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS,
               DEPARTMENT OF OPERATIONS RESEARCH,
               STANFORD UNIVERSITY,
               STANFORD CALIFORNIA 94305 U.S.A.
WORK SPACE NEEDED (ESTIMATE) -- 36727 WORDS.
                               43038 WORDS.
                           --
WORK SPACE AVAILABLE
                           -- 85700 WORDS.)
 (MAXIMUM OBTAINABLE
```

85/06/16. 11.17.34. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING 725 PARAMETER DELTA = PARAMETER LIBOR = 0.040 DISCOUNT RATE FOR UTILITY ----5.000 FIXED PART OF REAL INT RATE ON FOREIGN BORROW 0.082 INTEREST RATE ON NON-HUMAN = PARAMETER RHOK WEALTH PARAMETER GRAE = 0.031 MAX RATE OF GROWTH OF AGRICULT EXPORTS PARAMETER GRME = 0.075 MAX RATE OF GROWTH OF MANUFAC EXPORTS

 726	VAR.L	ω	=	1.5497E+7	POST TERMINAL UTILITY
	VAR.L	KTERM	=	1112513.911	TERMINAL CAPITAL STOCK
	VAR.UP	KTERM	=	1700000.000	TERMINAL CAPITAL STOCK
	VAR.L	DTERM	=	119679.904	TERMINAL FOREIGN DEBT
	VAR.UP	DTERM	=		TERMINAL FOREIGN DEBT
	PARAMETER	YTERM	=	240000.000	ESTIMATE OF POS-TERMINAL INCOME

	727 PARAMETER AGG		TABLE OF	ECONOMIC AGG	REGATES	
	1984	1988	1992	1996	2000	2004
XT	207062.688	250453.079	302114.296	364265.495	440234.821	535455.972
ZT	89836.463	109144.331	130626.123	157549.813	189480.55 3	232701.051
ΥT	111479.459	134343.141	163007.162	196351.071	237979.951	286205.179
СТ	75799.487	90807.414	113991.938	137202.234	169782.916	197452.275
INVT	27699.180	34896.484	40340.276	50356.165	58897.552	79263.316
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12655.679	15944.414	20212.136	25771.122	33036.313	42559.479
MNT	5746.766	6965.607	8481.011	10364.611	12774.317	16549.742
MT	9327.294	12541.496	17430.718	23611.670	31202.577	41472.655
TRBAL	3328.385	3402.918	2781.418	2159.453	1833.7 36	1086.824
DTT	46385.800	50931.164	56203.947	64735.177	77429.639	94717.148
RTT	7596.100	7049.901	6270.621	8574.758	9787.357	11689.234
HTT	3491.046	3747.434	3940.545	4359.388	5181.933	6353.833
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-1136.341	-1318.196	-2132.807	-3173.616	-4321.877	-6240.689
BTT	8732.441	8368.097	8403.429	11748.373	14109.234	17929.923
KT	358221.279	427764.113	517468.551	618526.990	747817.547	896639.393
DKT	29222.716	36637.397	42461.369	52921.972	62142.522	83893.392
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	32.062	35.699	39.876	44.626	49.786	55.856
CPI	12.032	8.966	6.170	4.627	3.348	2.644
INTR	0.207	0.193	0.116	0.138	0.134	0.099
WAGE	1.840	1.529	2.601	2.242	2.270	2.834
EXGR	1.368	1.308	1.395	1.422	1.466	1.388
AIR	0.075	0.074	0.070	0.067	0.067	0.067

LISTING D.E.2

SENSITIVITY TO EXPORT MARKETS (expansionist scenario)

658 ******************** 659 *** PARAMETER CHANGES *** 660 ********************* 661 662 GRAE = 0.05;663 GRME = 0.135; 664 665 E.UP("AGRIC",T) = EO("AGRIC")*(1+GRAE)**(NYPP*(ORD(T)-1)+1); 666 E.UP("AGROP",T) = EO("AGROP")*(1+GRAE)**(NYPP*(ORD(T)-1)+1); E.UP("MANCG",T) = EO("MANCG")*(1+GRME)**(NYPP*(ORD(T)-1)+1); 667 668 E.UP("MANOG",T) = EO("MANOG")*(1+GRME)**(NYPP*(ORD(T)-1)+1); 1 NORMAL COMPLETION **** SOLVER STATUS **** MODEL STATUS 2 LOCALLY OPTIMAL 27236490.5518 **** OBJECTIVE VALUE RESOURCE USAGE, LIMIT 105.903 1000.000 239 ITERATION COUNT, LIMIT 2000 0 EVALUATION ERRORS 0 MINOS --- VERSION 5.0 APR 1984 - - - - - -COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) --36727 WORDS. --43038 WORDS. WORK SPACE AVAILABLE -- 85700 WORDS.) (MAXIMUN OBTAINABLE

85/06/16. 14.49.57. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING

 725 PARANETER DELTA	=	0.040 DISCOUNT RATE FOR UTILITY
PARAMETER LIBOR	=	5.000 FIXED PART OF REAL INT RATE
		ON FOREIGN BORROW
PARAMETER RHOK	=	0.082 INTEREST RATE ON NON-HUMAN
		WEALTH
PARAMETER GRAE	z	0.050 MAX RATE OF GROWTH OF
		AGRICULT EXPORTS
PARAMETER GRME	=	0.135 MAX RATE OF GROWTH OF MANUFAC
		EXPORTS

726VAR.LW=1.5539E+7POST TERMINAL UTILITYVAR.LKTERM=1106772.597TERMINAL CAPITAL STOCKVAR.UPKTERM=1700000.000TERMINAL CAPITAL STOCKVAR.LDTERM=61353.723TERMINAL FOREIGN DEBT ----VAR.UP DTERM = 250000.000 TERMINAL FOREIGN DEBT PARAMETER YTERM = 240000.000 ESTIMATE OF POS-TERMINAL INCOME

---- 727 PARAMETER AGG TABLE OF ECONOMIC AGGREGATES

	1984	1988	1992	1996	2000	2004
VT	202022 417	250630.789	303429.037	367079.820	446278.626	545268.203
XT	207922.417		131992.490	159460.700	194314.978	238810.570
ZT	90673.848	109378.542			238735.627	289473.385
YT	111320.244	134170.415	162819.230	197053.930		193697.032
CT	76555.669	91201.887	112205.538	136057.114	163442.165	
INVT	27295.010	35458.524	41818.210	51050.542	61910.491	73461.518
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	13188.038	15688.983	24136.825	36946.038	57533.093	87396.575
MNT	5928.325	7081.833	8617.317	10565.191	13228.021	16984.248
MT	10370.880	13415.305	21234.874	33632.985	51615.871	73484.505
TRBAL	2817.158	2273.678	2901.951	3313.054	5917.22 3	13912.070
DTT	46385.800	52976.072	63560.390	74286.905	85661.025	89413.704
RTT	7596.100	7254.392	7036.939	9713.894	10965.231	11444.158
HTT	3491.046	3946.078	4609.900	5182.904	5881.713	5923.394
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-1647.568	-2646.080	-2681.629	-2843.530	-938.170	7014.995
BTT	9243.668	9900.472	9718.568	12557.424	11903.401	4429.163
KT	358317.488	426338.292	518106.101	624934.558	756472.263	917016.301
DKT	28844.559	37115.469	43862.387	53557.606	65132.137	77752.689
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	31.983	35.611	40.118	44.987	50.359	55.989
CPI	11.731	8.821	6.308	4.655	3.510	2.711
INTR	0.170	0.141	0.135	0.125	0.122	0.114
WAGE	2.293	2.482	2.558	2.675	2.748	2.826
EXGR	1.075	1.018	1.024	1.041	1.013	0.997
AIR	0.075	0.074	0.073	0.070	0.069	0.066
UTK	0.075	0.074	0.0,0	010/0		

LISTING D.F.1

SENSITIVITY TO DOMESTIC PETROLEUM PRODUCTION (large oil find scenario)

725 ********************** 726 *** PARAMETER CHANGES *** 727 ********************** 728 729 PETS("1992") = 700; 730 PETS("1996") = 800; 731 PETS("2000") = 1000; 732 PETS("2004") = 1200; 733 X.UP("PETRO",T) = XO("PETRO")*(PETS(T)/PETSO); 734 **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** OBJECTIVE VALUE 27273677.9447 RESOURCE USAGE, LIMIT 114.219 ITERATION COUNT, LIMIT 259 1000.000 2000 0 EVALUATION ERRORS 0 MINOS --- VERSION 5.0 APR 1984 = = = = = COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) -- 36727 WORDS. WORK SPACE AVAILABLE -- 43038 WORDS. -- 85700 WORDS.) (MAXIMUM OBTAINABLE

85/06/05. 22.47.03. 8 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING 0.040 DISCOUNT RATE FOR UTILITY ----789 PARAMETER DELTA = 5.000 FIXED PART OF REAL INT RATE PARAMETER LIBOR = ON FOREIGN BORROW 0.082 INTEREST RATE ON NON-HUMAN z PARAMETER RHOK WEALTH PARAMETER GRAE = 0.050 MAX RATE OF GROWTH OF AGRICULT EXPORTS PARAMETER GRME = 0.100 MAX RATE OF GROWTH OF MANUFAC EXPORTS

 790	VAR.L	ω	=	1.5584E+7 POST TERMINAL UTILITY
	VAR.L	KTERM	=	1173316.997 TERNINAL CAPITAL STOCK
	VAR.UP	KTERM	=	1700000.000 TERMINAL CAPITAL STOCK
	VAR.L	DTERM	=	64970.447 TERMINAL FOREIGN DEBT
	VAR.UP	DTERM	z	250000.000 TERMINAL FOREIGN DEBT
	PARAMETER	YTERM	=	240000.000 ESTIMATE OF POS-TERMINAL
				INCOME

	791 PARAMETER AGG		TABLE OF	ECONOMIC AGG	REGATES	
	1984	1988	1992	1996	2000	2004
XT	207910.337	254078.439	310502.723	376796.072	458478.259	560133.827
ZT	90643.622	111445.040	135449.628	164926.425	200544.57 0	246349.759
ΥT	111060.602	135561.237	166481.312	201321.769	245020.784	297478.557
СТ	75542.647	89684.238	113269.073	135388.562	165238.545	197048.865
INVT	28802.619	39163.347	43272.117	54276.142	65628.156	79717 .9 77
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12679.295	10794.311	20243.754	27435.509	47968. 015	53139.940
MNT	6206.113	7072.161	8571.783	10547.877	12912.904	16305.511
MT	10616.367	9316.983	16197.163	22411.663	41279.679	40830.988
TRBAL	2062.928	1477.327	4046.591	5023.845	6688.336	12308.951
DTT	46385.800	55992.992	70972.223	79948.752	86513.956	87404.832
RTT	7596.100	7556.084	7823.376	10499.865	11323.537	11281.105
HTT	3491.046	4248,455	5317.043	5691.466	5937.375	5726.675
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-2401.798	-3744.808	-2244.132	-1641.301	-222.719	5608.596
BTT	9997.898	11300.892	10067.508	12141.166	11546.256	5672.508
КT	358339.419	433566.790	539457.384	650194.238	79 2344.290	963802.514
DKT	30649.272	40964.006	45580.505	57118.203	69174.226	84374.612
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	31.957	35.486	40.057	44.871	50.218	56.163
CPI	12.018	9.077	6.210	4.690	3.459	2.645
INTR	0.144	0.181	0.128	0.124	0.132	0.112
WAGE	2.981	1.891	2.677	2.717	2.579	2.856
EXGR	1.076	1.008	1.034	1.022	1.023	1.022
AIR	0.075	0.076	0.075	0.071	0.069	0.066

LISTING D.F.2

SENSITIVITY TO PETROLEUM PRICES (yearly growth rate of 4%)

659 660	*** PARAMETER CHANGES *** *************************										
661											
662 663	PARAMETER GRPP GROWTH RATE OF PETROLEUM PRICES; GRPP = 0.04:										
664	PM("PETRO",T) =	(1+GRPP)**	(NYPP*(ORD(T)-1)+1);							
	DISPLAY GRPP, PM;										
	6 = E.FX("PETRO",T) = 0;										
	665 PARAMETER	PM	COMPETITVE I	MPORTS PRICE							
	1984	1988	1992	1996	2000	2004					
PETRO	1.040	1.217	1.423	1.665	1.948	2.279					
****	**** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** OBJECTIVE VALUE 26980411.4599										
RESO	URCE USAGE, LIMIT ATION COUNT, LIMI	' 152 т 357	2.284 100 200	0.000							
EVAL	UATION ERRORS	C)	0							
	MINOS V = = = = =	ERSION 5.0) APR 1984								
			PERATIONS RES								
			ORNIA 9430	5 U.S.A.							
	SPACE NEEDED (ES SPACE AVAILABLE		- 36727 WOR - 43038 WOR								
	INUM OBTAINABLE		- 85700 WDR								
EXIT	OPTIMAL SOLUT	ION FOUND									

,

1GAMS 2.00 CDC NOS 1.485/06/06. 22.46.20.GENERAL ALGEBRAIC MODELING SYSTEMEXECUTING---- 722 PARAMETER DELTA = 0.040 DISCOUNT RATE FOR UTILITY

122 FARABLES DELIS	_	
PARAMETER LIBOR	=	5.000 FIXED PART OF REAL INT RATE
		ON FOREIGN BORROW
PARAMETER RHOK	=	0.082 INTEREST RATE ON NON-HUMAN
		WEALTH
PARAMETER GRAE	=	0.050 MAX RATE OF GROWTH OF
		AGRICULT EXPORTS
PARAMETER GRME	z	0.100 MAX RATE OF GROWTH OF MANUFAC
		EXPORTS

 723	VAR.L	ω	=	1.5483E+7	POST TERMINAL UTILITY
	VAR.L	KTERM	=	1078531.685	TERMINAL CAPITAL STOCK
	VAR.UP	KTERM	=	1700000.000	TERMINAL CAPITAL STOCK
	VAR.L	DTERM	=	107862.995	TERMINAL FOREIGN DEBT
	VAR.UP	DTERM	=	250000.000	TERMINAL FOREIGN DEBT
	PARAMETER	YTERM	=	240000.000	ESTIMATE OF POS-TERMINAL
					INCOME

	724 PARAMETER AGG		TABLE OF	E OF ECONOMIC AGGREGATES		
	1984	1988	1992	1996	2000	2004
XT	207247.073	251661.689	305096.748	369256.462	449913.039	545530.740
ZT	90006.611	110211.404	133215.490	161428.254	198334.178	238773.193
ΥT	111263.427	133151.292	159559.897	188815.567	222169.046	261415.061
СТ	75548.320	88703.799	108706.846	129388.435	150291.322	186377.160
INVT	27875.089	35206.715	41191.286	49936.628	62856.235	66993.283
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12927.530	17748.832	24553.757	34208.174	47968.015	67657.750
MNT	5826.520	7119.235	8738.382	10806.798	13293.176	16348.453
MT	9739.919	13744.380	20785.521	31350.891	46412.273	68015.897
TRBAL	3187.611	4004.453	3768.236	2857.284	1555.743	-358.147
DTT	46385.800	51494.262	54577.004	58619.373	66593.959	81465.106
RTT	7596.100	7106.211	6116.373	7959.045	8538.785	10026.526
HTT	3491.046	3801.458	3805.148	3877.250	4299.849	5267.646
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-1277.116	-770.685	-1010.592	-1993.647	-3717.787	-6599.472
BTT	8873.216	7876.897	7126.965	9952.692	12256.572	16625.998
KT	358227.172	428629.869	519765.627	624434.174	752233.747	916895.022
DKT	29437.641	37008.065	43398.912	52686.961	66141.555	70906.619
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	32.052	35.712	39.934	44.562	49.939	55.365
CPI	12.066	9.361	6.700	5.156	4.102	3.038
INTR	0.173	0.196	0.092	0.139	0.084	0.156
WAGE	2.385	1.424	2.790	1.896	2.583	1.261
EXGR	1.253	1.144	1.174	1.181	1.128	1.154
AIR	0.075	0.074	0.070	0.066	0.065	0.065

`

LISTING D.G.1

SENSITIVITY TO NON-COMPETITIVE IMPORTS COEFFICIENTS (20% reduction)

85/08/11. 17.42.13. 1GANS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION 662 ****************** 663 *** PARAMETER CHANGES *** 664 ********************* 665 666 PARAMETER MNX1(J) TEMPORARY VARIABLE MNK1(J) TEMPORARY VARIABLE: 667 668 MNX1(J) = MNX(J) * 0.8;669 MNX(J) = MNX1(J);670 MNK1(J) = MNK(J)*0.8; $671 \quad MNK(J) = MNK1(J);$ 672 DISPLAY MNX, MNK; **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** OBJECTIVE VALUE 27288951.0313 107.062 1000.000 RESOURCE USAGE, LIMIT ITERATION COUNT, LIMIT 224 2000 0 0 EVALUATION ERRORS MINOS --- VERSION 5.0 APR 1984 - - - - -COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) -- 36727 WORDS. WORK SPACE AVAILABLE -- 43038 WORDS. -- 85700 WORDS.) (MAXIMUM OBTAINABLE EXIT -- OPTIMAL SOLUTION FOUND

1GAMS 2.00 CDC NOS 1.485/08/11.17.42.51.GENERAL ALGEBRAIC MODELING SYSTEMEXECUTING

 728	PARAMETER	DELTA	=	0.040	DISCOUNT RATE FOR UTILITY
	PARAMETER	LIBOR	=	5.000	FIXED PART OF REAL INT RATE
					ON FOREIGN BORROW
	PARAMETER	RHOK	=	0.082	INTEREST RATE ON NON-HUMAN
					WEALTH
	PARAMETER	GRAE	=	0.050	MAX RATE OF GROWTH OF
					AGRICULT EXPORTS
	PARAMETER	GRME	=	0.100	MAX RATE OF GROWTH OF MANUFAC
					EXPORTS
 729	VAR.L	₩	=	1.5551E+7	POST TERMINAL UTILITY
	VAR.L	KTERM	=	1125268.701	TERMINAL CAPITAL STOCK
	VAR.UP	KTERM	=	1700000.000	TERMINAL CAPITAL STOCK
	VAR.L	DTERM	=		TERMINAL FOREIGN DEBT
	VAR.UP	DTERM	±	250000.000	TERMINAL FOREIGN DEBT

A 111/ 1 O L							
PARAMETER	YTERM	=	240000.000	ESTIMATE	OF	POS-TERMINAL	
				INCOME			

TABLE OF ECONOMIC AGGREGATES _ _ _ _ 730 PARAMETER AGG 2000 2004 1996 1984 1988 1992 540570.898 367077.521 445585.701 XT 207953.271 249887.880 302511.583 159861.841 194254.104 237025.835 108695.330 131428.989 90722.568 ZT 289459.332 240443.255 198313.743 135285.429 163850.486 YT 112306.470 165553.863 193663.797 113494.379 136578.883 77062.204 92974.544 CT 80649.833 34925.792 41767.302 50559.214 59560.671 INVT 27140.498 7465.747 8402.765 5236.325 5893.530 6633.220 GOVT 4652.407 28222.991 39653.850 53139.940 14485.251 20083.908 12927.530 ΕT 14085.730 10888.342 8901.937 MNT 4924.234 5907.121 7232.107 31790.876 46397.002 12336.484 17388.634 23680.565 9476.169 MT 6742.938 4542.426 7862.974 2148.767 2695.275 TRBAL 3451.361 70958.018 76234.600 69026.673 60543.079 46385.800 50439.262 DTT 9210.642 9930.243 7000.711 6697.156 9244.420 RTT 7596.100 5087.312 4357.140 4887.892 4325.329 HTT 3491.046 3701.042 973.680 973.680 FET 973.680 973.680 973.680 973.680 1801.982 1412.118 -2525.954 -2603.735 -1319.146 CA -1013.365 7798.523 10563.566 8128.261 9526.666 9300.890 8609.465 BTT 752869.361 903684.103 622694.045 425720.881 515561.677 KT 358320.086 85360.902 36629.938 43893.735 53188.824 62677.785 28689.523 DKT 176.684 195.026 215.272 160.067 POP 131.374 145.013 56.300 35.540 39.993 44.839 50.033 31.980 EMP 2.710 4.629 3.449 8.537 6.194 CPI 11.588 0.102 0.121 0.127 0.130 INTR 0.170 0.136 3.020 2.787 2.675 2.574 2.660 2.282 WAGE 1.003 1.012 1.008 1.013 1.011 1.035 EXGR 0.067 0.063 0.071 0.069 0.073 AIR 0.075

LISTING D.G.2

SENSITIVITY TO NON-COMPETITIVE IMPORTS COEFFICIENTS (20% increase)

85/08/11. 17.53.33. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING 662 ********************* 663 *** PARAMETER CHANGES *** 664 ********************* 665 PARAMETER MNX1(J) TEMPORARY VARIABLE 666 MNK1(J) TEMPORARY VARIABLE; 667 668 MNX1(J) = MNX(J)*1.2; 669 MNX(J) = MNX1(J);670 MNK1(J) = MNK(J)*1.2; $671 \quad MNK(J) = MNK1(J);$ 672 DISPLAY MNX, MNK; **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** OBJECTIVE VALUE 27169495.4360 88.586 1000.000 RESOURCE USAGE, LIMIT 179 2000 ITERATION COUNT, LIMIT 0 0 EVALUATION ERRORS MINOS --- VERSION 5.0 APR 1984 - - - - -COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) -- 36727 WORDS. -- 43038 WORDS. WORK SPACE AVAILABLE -- 85700 WORDS.) (MAXIMUM OBTAINABLE EXIT -- OPTIMAL SOLUTION FOUND

1GAMS 2.00 CDC NOS 1.485/08/11.17.53.33.GENERAL ALGEBRAIC MODELING SYSTEMEXECUTING

 728	PARAMETER	DELTA	=	0.040	DISCOUNT RATE FOR UTILITY
	PARAMETER	LIBOR	=	5.000	FIXED PART OF REAL INT RATE
					ON FOREIGN BORROW
	PARAMETER	RHOK	=	0.082	INTEREST RATE ON NON-HUMAN
					WEALTH
	PARAMETER	GRAE	2	0.050	MAX RATE OF GROWTH OF
					AGRICULT EXPORTS
	PARAMETER	GRME	=	0.100	MAX RATE OF GROWTH OF MANUFAC
					EXPORTS
			_	1 55045.7	POST TERMINAL UTILITY
 729	VAR.L	ω	=		
	VAR.L	KTERM	=	1091105.964	TERMINAL CAPITAL STOCK
	VAR.UP	KTERM	=	1700000.000	TERMINAL CAPITAL STOCK
	VAR.L	DTERM	=	67716.629	TERMINAL FOREIGN DEBT
	VAR.UP	DTERM	=	250000.000	TERMINAL FOREIGN DEBT

PARAMETER YTERM = 240000.000 ESTIMATE OF POS-TERMINAL INCOME

	730 PARAMETER AGG		TABLE OF	ECONOMIC AGG	REGATES	
	1984	1988	1992	1996	2000	2004
XT	207564.877	251233.153	304728.858	369069.753	446013.612	544317.711
ZT	90318.704	109868.969	133119.991	161695.960	195136.506	238994.756
ΥT	110342.574	132951.630	161237.928	194723.010	235142.576	285588.691
CT	76157.117	90270.497	110716.711	132590.881	160773.779	193781.032
INVT	27676.515	35130.938	41062.292	49893.642	62095.618	70877.461
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12927.530	16847.787	23790.437	32848.117	41973.93 1	59518.417
MNT	6903.599	8412.554	10370.939	12650.782	15734.530	19734.264
MT	11070.995	14533.917	20225.041	27242.849	37166.500	46990 .98 4
TRBAL	1856.535	2313.870	3565.395	5605.268	4807.431	12527.433
DTT	46385.800	56818.564	68790.436	78894.958	82806.724	90062.065
RTT	7596.100	7638.641	7617.581	10391.480	10836.915	11514.240
HTT	3491.046	4333.158	5117.846	5609.530	5647.586	5967.394
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-2608.191	-2992.968	-2526.131	-977.942	-1813.835	5586.359
BTT	10204.291	10631.609	10143.712	11369.421	12650.750	5927.881
KΤ	358260.051	427847.570	518676.856	622920.881	750001.753	912161.059
DKT	29234.492	36914.796	43258.428	52445.166	65428.789	75017.687
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	32.024	35.671	39.938	44.638	50.098	55.727
CPI	11.840	9.011	6.428	4.846	3.594	2.709
INTR	0.161	0.172	0.115	0.136	0.124	0.126
WAGE	2.469	1.980	2.837	2.518	2.684	2.639
EXGR	1.144	1.055	1.051	1.032	1.038	1.041
AIR	0.075	0.076	0.074	0.071	0.068	0.066

-D.38-

-D.39-

LISTING D.H.1

MODEL WITH ALTERNATIVE SPREAD RATE FUNCTION (base case)

85/09/01. 12.07.47. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING 508 **************************** 509 *** NEW SPREAD RATE FUNCTION *** 510 ******** 511 HRATE(G)\$(ORD(G) GT 1).. SCALE*HR(G) =E= SCALE*LIBOR + SCALE*ALPHA1/Y(G)*DT(G); 512 513 HCALC(G,TT) \$ (GLTT(G,TT) \$ (ORD(G) GT 1)).. H(G,TT) = E = D(G,TT) * 0.01 * HR(G);514 **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** OBJECTIVE VALUE 27231499.2084 RESOURCE USAGE, LIMIT 828.082 1000.000 ITERATION COUNT, LIMIT 2555 3000 EVALUATION ERRORS 0 0 MINOS --- VERSION 5.0 APR 1984 COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTINATE) -- 36727 WORDS. . -- 43038 WORDS. WORK SPACE AVAILABLE (MAXIMUM OBTAINABLE -- 85700 WORDS.)

 1GAMS 2.00 CDC NOS 1.4
 85/09/01.
 12.07.47.

 G E N E R A L A L G E B R A I C M O D E L I N G S Y S T E M
 E X E C U T I N G

 656	PARAMETER	DELTA	=	0.040	DISCOUNT RATE FOR UTILITY
	PARAMETER	LIBOR	=	5.000	FIXED PART OF REAL INT RATE
					ON FOREIGN BORROW
	PARAMETER	RHOK	=	0.082	INTEREST RATE ON NON-HUMAN
					WEALTH
	PARAMETER	GRAE	2	0.050	MAX RATE OF GROWTH OF
					AGRICULT EXPORTS
	PARAMETER	GRME	=	0.100	MAX RATE OF GROWTH OF MANUFAC
					EXPORTS
 657	VAR I	ы ы	=	1.5514E+7	POST TERMINAL UTILITY

 657	VAR.L	ω	=	1.5514E+7	POST TERMINAL UTILITY	
	VAR.L	KTERM	=	1074142.955	TERMINAL CAPITAL STOCK	
	VAR.UP	KTERM	=	1700000.000	TERMINAL CAPITAL STOCK	
	VAR.L	DTERM	=	64415.066	TERMINAL FOREIGN DEBT	
	VAR.UP	DTERM	=	250000.000	TERMINAL FOREIGN DEBT	
	PARAMETER	YTERM	=	240000.000	ESTIMATE OF POS-TERMINA	L
					INCOME	

	658 PARAMETER AGG		TABLE OF ECONOMIC AGGREGATES			
	1984	1988	1992	1996	2000	2004
XT	207896.222	249471.138	303898.943	367835.536	443213.240	549439.153
ZT	90666.703	108348.839	132457.924	160455.453	192721.98 3	242754.910
ΥT	111324.640	133968.059	162668.178	196769.194	236790.96 0	289910.970
СТ	77023.729	92980.177	112146.202	135530.822	164601.088	193017.114
INVT	27160.064	35492.691	41330.040	49524.115	63776.132	65411.624
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12927.530	13745.075	22068.144	2.8676E+9	38052.155	67357.626
MNT	5904.879	7154.240	8772.842	10610.890	13700.297	16773.273
MT	10439.090	13486.209	18769.738	2.8676E+9	37104.163	44278.158
TRBAL	2488.440	258.866	3298.405	5081.037	947.9 93	23079.468
DTT	46385.800	54290.945	72914.510	84376.833	92296.313	119062.078
RTT	7596.100	7385.879	7992.074	10910.534	12082.539	14634.010
HTT	3491.046	3941.077	5190.306	6087.226	6665.754	8444.035
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-1976.286	-4655.891	-2865.581	-1979.869	-6691.441	13661.753
BTT	9572.386	12041.771	10857.655	12890.404	18773.981	972.257
KT	358310.450	425643.754	518046.636	623312.579	748506.147	919282.658
DKT	28672.246	37257.831	43487.810	51974.608	67516.724	69232.569
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	31.986	35.640	40.015	44.724	50.319	55.345
CPI	11.597	8.537	6.303	4.687	3.475	2.721
INTR	0.168	0.141	0.121	0.132	0.124	0.107
WAGE	2.291	2.494	2.781	2.604	2.717	2.922
EXGR	1.032	1.018	1.027	1.020	1.024	1.022
AIR	0.075	0.073	0.071	0.072	0.072	0.071

LISTING D.H.2

MODEL WITH ALTERNATIVE SPREAD RATE FUNCTION (high petroleum prices)

85/09/01. 12.18.29. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION 662 ****************** 663 *** PARAMETER CHANGES *** 664 ******************** 665 666 PARAMETER GRPP GROWTH RATE OF PETROLEUM PRICES; 667 GRPP = 0.04;668 PM("PETRO",T) = (1+GRPP)**(NYPP*(ORD(T)-1)+1); 669 DISPLAY GRPP, PM; 670 E.FX("PETRO",T)= 0; 671 **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** OBJECTIVE VALUE 26979286.6160 RESOURCE USAGE, LIMIT 173.331 ITERATION COUNT, LIMIT 338 1000.000 2000 0 EVALUATION ERRORS 0 MINOS --- VERSION 5.0 APR 1984 - - - - - -COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTINATE) -- 36727 WORDS. WORK SPACE AVAILABLE -- 43038 WORDS. -- 85700 WORDS.) (MAXIMUM OBTAINABLE EXIT -- OPTIMAL SOLUTION FOUND

1GAMS 2.00 CDC NOS 1.485/09/01.12.19.11.G E N E R A L A L G E B R A I C M O D E L I N G S Y S T E ME X E C U T I N G

 726	PARAMETER	DELTA	=	0.040 DISCOUNT RATE FOR UTILITY
	PARAMETER	LIBOR	=	5.000 FIXED PART OF REAL INT RATE
				ON FOREIGN BORROW
	PARAMETER	RHOK	=	0.082 INTEREST RATE ON NON-HUMAN
				WEALTH
	PARAMETER	GRAE	=	0.050 MAX RATE OF GROWTH OF
				AGRICULT EXPORTS
	PARAMETER	GRME	=	0.100 MAX RATE OF GROWTH OF MANUFAC
				EXPORTS
 707	VAD I	ы	=	1 5477F+7 POST TERMINAL UTILITY

 727	VAR.L	ω	=	1.5477E+7	POST TERMINAL UTILITY		
	VAR.L	KTERM	=	1078090.972	TERMINAL CAPITAL STOCK		
	VAR.UP	KTERM	=	1700000.000	TERMINAL CAPITAL STOCK		
	VAR.L	DTERM	=	114106.984	TERMINAL FOREIGN DEBT		
	VAR.UP	DTERM	=	250000.000	TERMINAL FOREIGN DEBT		
	PARAMETER	YTERM	=	240000.000	ESTIMATE OF POS-TERMINAL		
					INCOME		

	728 PARAME	TER AGG	TABLE OF			
	1984	1988	1992	1996	2000	2004
ХT	207380.510	251718.854	305126.934	369296.725	450009.188	545381.248
ZT	90141.531	110288.637	133232.548	161483.364	1984 64.913	238551.888
ΥT	111221.282	133106.981	159567.910	188727.621	222084.423	261677.393
СТ	75754.158	88697.405	108753.851	129472.830	150187.671	186508.063
INVT	27852.557	35245.659	41160.532	49909.353	62971.388	66827.725
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12927.530	17748.832	24553.757	34208.174	47968.015	67657.750
MNT	5859.791	7132.077	8742.175	10832.033	13299.526	16294.082
MT	9965.371	13821.240	20793.760	31495.956	46508.399	67718.910
TRBAL	2962.159	3927.592	3759.997	2712.218	1459.616	-61.160
DTT	46385.800	52396.068	55801.351	60461.911	70242.767	87098.814
RTT	7596.100	7196.392	6252.335	8194.129	8951.843	10683.388
HTT	3491.046	3805.233	3951.457	4183.752	4699.948	5717.202
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-1502.567	-851.321	-1165.140	-2445.214	-4214.012	-6752.042
BTT	9098.667	8047.713	7417.475	10639.343	13165.855	17435.430
KT	358234.691	428551.924	519847.543	624388.822	752092.725	917197.418
DKT	29416.278	37045.460	43369.380	52661.552	66246.811	70731.390
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	32.043	35.711	39 .9 32	44.559	49.945	55.363
CPI	11.967	9.359	6.695	5.141	4.100	3.048
INTR	0.151	0.196	0.091	0.141	0.082	0.155
WAGE	2.710	1.447	2.812	1.912	2.627	1.220
EXGR	1.179	1.118	1.173	1.153	1.111	1.186
AIR	0.075	0.073	0.071	0.069	0.067	0.066

LISTING D.H.3

MODEL WITH ALTERNATIVE SPREAD RATE FUNCTION (protectionist export markets)

85/09/01. 12.20.30. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM COMPILATION 662 ****************** 663 *** PARANETER CHANGES *** 664 ******************** 665 GRAE = 0.03;666 667 GRME = 0.075; 668 E.UP("AGRIC",T) = EO("AGRIC")*(1+GRAE)**(NYPP*(ORD(T)-1)+1); 669 670 E.UP("AGROP",T) = EO("AGROP")*(1+GRAE)**(NYPP*(ORD(T)-1)+1); 671 E.UP("MANCG",T) = EO("MANCG")*(1+GRME)**(NYPP*(ORD(T)-1)+1); 672 E.UP("MANOG",T) = EO("MANOG")*(1+GRME)**(NYPP*(ORD(T)-1)+1); **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 2 LOCALLY OPTIMAL **** OBJECTIVE VALUE 27208426.6223 265.326 RESOURCE USAGE, LIMIT 1000.000 ITERATION COUNT, LIMIT 2000 650 0 EVALUATION ERRORS 0 MINOS --- VERSION 5.0 APR 1984 COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS, DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY, STANFORD CALIFORNIA 94305 U.S.A. WORK SPACE NEEDED (ESTIMATE) -- 36727 WORDS. -- 43038 WORDS. WORK SPACE AVAILABLE 85700 WORDS.) - -(MAXIMUM OBTAINABLE EXIT -- OPTIMAL SOLUTION FOUND

85/09/01. 12.21.29. 1GAMS 2.00 CDC NOS 1.4 GENERAL ALGEBRAIC MODELING SYSTEM EXECUTING

 729 PARAMETER I	DELTA =	0.040	DISCOUNT RATE FOR UTILITY
PARAMETER I	LIBOR =	5.000	FIXED PART OF REAL INT RATE
			ON FOREIGN BORROW
PARAMETER I	RHOK *	• 0.082	INTEREST RATE ON NON-HUMAN
			WEALTH
PARAMETER (GRAE =	• 0.030	MAX RATE OF GROWTH OF
			AGRICULT EXPORTS
PARAMETER (GRME =	. 0.075	MAX RATE OF GROWTH OF MANUFAC
			EXPORTS

 730	VAR.L	ω	=	1.5489E+7	POST TERMINAL UTILITY		
	VAR.L	KTERM	=	1112351.645	TERMINAL CAPITAL STOCK		
	VAR.UP	KTERM	=	1700000.000	TERMINAL CAPITAL STOCK		
	VAR.L	DTERM	=	128273.371	TERMINAL FOREIGN DEBT		
	VAR.UP	DTERM	=	250000.000	TERMINAL FOREIGN DEBT		
	PARAMETER	YTERM	=	240000.000	ESTIMATE OF POS-TERMINAL		
					INCOME		

---- 731 PARAMETER AGG TABLE OF ECONOMIC AGGREGATES

	1984	1988	1992	1996	2000	2004
ХТ	207213.419	250526.628	302128.435	364281.481	440254.023	535272.829
ZT	89981.660	109218.472	130648.283	157586.498	189534.364	232488.185
YT	111452.452	134326.161	162987.591	196303.120	237940.238	286286.223
CT	76000.229	90920.343	114094.738	137412.759	169867.403	197472.820
INVT	27701.144	34880.770	40322.899	50328.429	58960.850	79223.975
GOVT	4652.407	5236.325	5893.530	6633.220	7465.747	8402.765
ET	12651.164	15918.960	20160.467	2.8676E+9	32912.199	42386.583
MNT	5779.307	6981.994	8492.561	10391.868	12779.422	16498.421
MT	9552.493	12630.235	17484.043	2.8676E+9	31265.961	41199,919
TRBAL	3098.672	3288.724	2676.424	1928.711	1646.238	1186.663
DTT	46385.800	51850.017	57654.599	67139.994	81942.921	101580.466
RTT	7596.100	7141.787	6429.469	8870.078	10302.999	12496.442
HTT	3491.046	3766.189	4074.093	4655.760	5581.944	6886.210
FET	973.680	973.680	973.680	973.680	973.680	973.680
CA	-1366.054	-1451.145	-2371.349	-3700.728	-4909.386	-6673.226
BTT	8962.154	8592,932	8800.818	12570.810	15212.385	19169.669
KT	358228.869	427785.628	517420.308	618413.551	747604.757	896666.046
DKT	29226.141	36620.771	42444.966	52895.625	62198.477	83851.753
POP	131.374	145.013	160.067	176.684	195.026	215.272
EMP	32.052	35.693	39.867	44.614	49.776	55.844
CPI	11.930	8.940	6,159		3.344	2.647
INTR	0.187	0.190	0.116	0.138	0.133	0.097
WAGE	2.126	1.591	2.615	2.273	2.297	2.813
EXGR	1.289	1.271	1.379	1.380	1.451	1.442
AIR	0.075	0.073	0.071	0.069	0.068	0.068
UTV	0.075	0.0/5	V.V/1	01005		