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ABSTRACT

TREATMENT OF PHYSICAL AND NUMERICAL DIFFUSION

IN FLUID DYNAMIC SIMULATIONS

by

Kang Y. Huh and Michael W. Golay

A computer code is developed to predict the behavior
of the hydrogen gas in the containment after a loss-of-
coolant accident. The conservation equations for the four
components, i.e., air, hydrogen, steam and water, are set
up and solved numerically by decoupling the continuity and
momentum equations from the energy, mass diffusion and tur-
bulence equations. The homogeneous mixture form is used
for the momentum and energy equations and the steam and
liquid droplets are assumed to be in the saturation state. A

There are two diffusion processes, molecular and tur-
bulent, which should be modelled in different ways. Mole-
cular diffusion is modelled by Wilke's formula for the
multi-component gas diffusion, where the diffusion con-
stants are dependent on the relative concentrations. Tur-
bulent diffusion is basically modelled by the k-e model
with modifications for low Reynolds number flow effects.
Numerical diffusion is eliminated by a corrective scheme
which is based on accurate prediction of cross-flow diffu-
sion. The corrective scheme in a fully explicit treatment
is both conservative and stable, therefore can be used in
long transient calculations. The corrective scheme allows
relatively large mesh sizes without introducing the false
diffusion and the time step size of the same order of mag-
nitude as the Courant limit may be used.
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CHAPTER 1

INTRODUCTION

One of the major concerns in the Three Mile Island

(TMI) accident was hydrogen gas accumulation in the con-

tainment. Some remedies have been proposed to deal with

such problems. However, it is necessary to understand

the fluid dynamic phenomena in the containment in order to

justify those remedies.

From the hydrogen transport point of view, the response

of the containment during an accident can be divided into

two stages, the fast blowdown stage and the slow mixing

stage. The distinct feature of the second stage is a much

longer time scale in comparison with the first blowdown

stage. The research work reported here is primarily con-

cerned with the formulation and validation of the physical

models and numerical schemes in the second slow mixing stage.

Some simplifying assumptions are made concerning the

thermodynamic state in the slow mixing stage. The four

components, hydrogen, air, steam and liquid droplets are

assumed to be in thermodynamic equilibrium and the relative

humidity is assumed to be 100%, although it may be less than

100% when there is no liquid component present.

The governing conservation equations are decoupled in

order to simplify the solution procedure. The error due

to decoupling is negligible in a slow transient where the

11*11044~1 1~111111-_~- -1~.-__ --(I~~U1-i*
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state change over one time step is small. In the first

step the continuity and momentum equations are decoupled

from the energy and other scalar transport equations and

solved by the Simplified Marker and Cell (SMAC) method in

order to obtain the flow field. In the second step the

energy and mass diffusion equations without phase change

and turbulence equations are solved using the flow field

obtained in the first step. Finally, the phase change

is taken into consideration to maintain 100% relative

humidity.

Convection and diffusion are the central issues in

physical modelling efforts of hydrogen transport. Convection

is assumed to occur as a homogeneous mixture, resulting in

the same convection velocity for the four components.

Diffusion occurs by two independent mechanisms, molecular

and turbulent, and the total diffusion constant is the sum

of the diffusion constants of those two mechanisms.

The molecular diffusion constant is predicted by Wilke's

formula [73) for multi-component diffusion and Chapman-

Enskog formula [5) for binary diffusion. The diffusion

constant. of each component in multi-component gas depends

on the mole fraction of that component.

The turbulent diffusion constant is predicted by the

k-c model [45). The turbulent kinetic energy, k, and

turbulent dissipation rate, c, are determined by their own

transport equations. The turbulent kinematic viscosity,
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which is the diffusion constant for momentum transport can

be calculated directly from k and E. The turbulent Prandtl

and Schmidt numbers are assumed to be equal to one.

The leading issue in numerical modelling of convection

and diffusion is to minimize the error that occurs in the

numerical solution procedures. Since the error usually

appears as an additional diffusion, the term, numerical

diffusion, has been used to describe the numerical error

in general. The numerical diffusion has two different

sources, truncation error diffusion and cross-flow dif-

fusion. Truncation error diffusion is a one dimensional

profile error and cross-flow diffusion is a multi-dimen-

sional operator error [68) of the finite difference equation.

Truncation error diffusion occurs in the flow direction

while cross-flow diffusion occurs primarily in the direction

normal to the flow. The effective diffusion constants of

the two errors are of the same order of magnitude, however

the latter turns out to be the dominant error source in most

convection dominant problems. This is because the gradient

of the scalar quantity under consideration is small in the

flow direction in comparison with that in the direction nor-

mal to the flow. Therefore, the major obstacle in accurate

numerical modelling of convection and diffusion has been the

cross-flow diffusion error which arises in donor cell treat-

ment of the convection term in multi-dimensional problems.

There has been much debate on the numerical diffusion

and many schemes have been suggested for the past two
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decades. However, a recent review paper on this topic

[65) shows that there is no scheme universally acceptable

consistent with using reasonable mesh spacings and compu-

tation times. This situation is partly due to misunder-

standing of the sources of numerical diffusion and also

partly due to use of inappropriate approaches for its

elimination.

The schemes presently being used can be divided into

two categories, skew differencing and corrective schemes.

Raithby's [53) and S. Chang's methods [16) are examples

of skew differencing schemes and Huh's corrective scheme

and tensor viscosity method [25] are examples of correc-

tive schemes. The corrective scheme is inherently better

than the skew differencing scheme in that it is conservative

and does not affect the simple solution procedure. The

conservative property is essential in a long transient

problem like the hydrogen transport in the containment.

The corrective scheme can be implemented with any of the

explicit, ADI and implicit schemes, although with different

stability conditions. The stability conditions for each of

the aforementioned schemes can be obtained by a Von Neumann

analysis and turns out to be consistent with numerical exper-

iments.

Two implementation strategies for the corrective scheme,

mesh point and mesh interface implementations, have been

tested for recirculating flow problems. The mesh interface
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implementation has always given physically reasonable

solutions and may be used extensively for all diffusion-

convection problems.

The suggested physical models and numerical schemes

have been used to simulate the LOCA experiments performed

in Battelle-Frankfurt [44) and HEDL (Hanford Engineering

Development Laboratory) [6]. Ref. [49) includes all the

simulation results compared with experimental data.
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CHAPTER 2

PROBLEM STATEMENT AND SOLUTION SCHEME

2.1 Problem Statement

Once a loss-of-coolant accident (LOCA) occurs in a Light

Water Reactor (LWR), a large amount of steam and water will

come into the containment in the fast blowdown stage

increasing the containment pressure. After a while the slow

mixing stage follows the initial blowdown stage and continues

for an extended period of time. The major safety concern

is that of keeping the containment pressure below a certain

level to prevent a large scale leakage of radioactive

materials.

In addition to the pressure increase due to the primary

coolant, hydrogen generation gave a serious concern about the

integrity of the containment in the TMI-2 accident. The

hydrogen is generated by radiolysis and chemical reaction

between water and zirconium in the cladding and may react

explosively with oxygen in the air. Thereafter, the hydrogen

has received much attention in the safety analysis of nuclear

power plants. There have been some mitigation procedures

suggested, e.g., containment inerting, installation of

ignition devices, use of flame suppressants and enhanced

venting capability, for dealing with this problem. In order

to justify the design of any mitigation system, it is

essential to understand the fluid dynamic phenomena in the

containment..
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Since a numerical method is suitable for this purpose,

a good computational tool has been required to predict the

hydrogen concentration distribution. The most difficult

aspects of this analysis are the complicated geometry and

chaotic post-LOCA conditions, e.g., thermal nonequilibrium,

laminar and turbulent flows, phase change and heat transfer

between the gas components and wall, etc. Therefore, some

simplifying assumptions should be made to use the numerical

procedure without impairing the acceptable solution accuracy.

_ _ _ _ __ _ I _ ~
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2.2 Governing Equations

The governing conservation equations are set up to

describe the post-LOCA fluid dynamics in the containment.

The physical implications of the conservation equations

will be given with

Continuity:

Momentum:

Energy:

their basic assumptions and limitations.

-Vv = 0
V'v= 0

pl + V-vv ]

e +
p[e + V-vh]

Mas s
diffusion: S+ V*vp = V-D.Vp + 4.

.t i i

Turbulence
kinetic
energy:

Dk 1 3 t 3k
1 P

k ok x

t Bui
P axk

au k aui
+ ) xkax~ X

S + t
- + gk Pr

t

Turbulence
dissipation
rate:

D _ 1 1t
Dt P Txk 0E

StE ui
] + C t*( I+

xk 1 p k xk

2 v
- t BT

-C2 + kg2k k Pr 3xt k

Equation
of state:

(2.7)p = f (i ,T)
p i

= -Vp +

= V-kVT

(2.1)

+ V-0

(2.2)

(2.3)

pgI + d

+ e fg

(2.4)

'T

xk
(2.5)

ouk au.
3x ;xk1 k

(2.6)
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Constitutive
equations: 'N = f (p ,T) (2.8)

(2.9)f (v)

(2.10)D. = D. + Dit
. Im it

v = vm + Vt

k = .km + kt

Dim = fD(Pi'T)

D. = f (Pi,T)

m = fk (PiT)

Dt = vt

kt = ,t

= C k 2/C
t E

p = Epi

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

Note that

1. The subscript i denotes the four components as
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follows:

i=l air,

i=2 H2'

i=3 steam,

i=4 liquid droplet.

2. The turbulence equations are written in terms

of the Cartesian components in tensor notation.

3. The phase change occurs between steam and liquid

droplets and the diffusion constant of liquid droplets is

equal to zero.

i = 2 = 0 (2.20)

43 + 04 = 0 (2.21)

D4 = 0 (2.22)

There are eleven conservation equations, one continuity,

three momentum, one energy, four mass diffusion and two

turbulence equations with ten primary unknowns, u, v, w,

p.i (4), T, k C for a three dimensional case. Therefore, there is

one more-equation than is required.

2.2.1 Continuity and Mass Diffusion Equations

The continuity equation is redundant with the four mass

diffusion equations and there is'an inconsistency between

them. The mass diffusion equations are summed up for the

four components, i=1-4.
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a
-- (Ep ) + V-(Ep .) = (V'D.Vp.) + E (2.23)Jt i i i 1

The sum of the phase change terms is equal to zero.

ap S+ V-p = E(V-DiVp i )  (2.24)
at 1

Now it can be seen that the continuity equation is valid

if and only if the following Eq. 2.25 and Eq. 2.26 are

satisfied.

p= 0 (2.25)
at

Vp i = 0 (2.26)

It is a reasonable assumption in a turbulent flow regime

that the four components have the same diffusion constant.

Therefore, Eq. 2.26 can be reduced to the following Eq. 2.27.

Vp = 0 (2.27)

Consequently Eq. 2.1 and Eq. 2.4 are consistent only if the

temporal and spatial variations of the total density are very

small. Since the concern is only for the slow mixing stage

after a LOCA, it is reasonable to assume that Eq. 2.25 and

Eq. 2.27 remain valid throughout the transient.
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2.2.2 Energy Equation

The energy conservation equation, Eq. 2.3, is also of

an approximate nature and the exact form is given in the

following.

-(p.iei) + V'[Ep.ih i. = V'kVT (2.28)

The temporal term can be divided as follows.

Be. p
E + e. + V [vp.ih i ] = V*kVT (2.29)
it t I at

The second term on the left hand side of Eq. 2.29

denotes the energy change due to the concentration change

in a given control volume. It is clear that the major

contribution to this term will come from the latent heat

of the phase change.

LeaPi LeQ. (2.30)

Eq.2.30 is substituted in Eq. 2.29 to give the following.

ae.
p + £e.i + V. [c pihi . = V-kVT (2.31)

The thermal equilibrium assumption is incorporated in Eq.

2.31 so that the internal energy and enthalpy can be written

in terms of the temperature.
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(Picvi )~ +V"[vTZpic pi] + efg = 9-kVT (2.32)

where ei i  = eg4g + e 4)

Sefg 
g

e. = c .T
1 Vl

h. = c .T1 p1

Eq. 2.3 and Eq. 2.32 become identical by defining average

internal energy and enthalpy as follows.

Piei Pic vi (2T 33)
e c (2.33)

p p

p.ih  p.c .T
h P (2.34)

P P

2.3 Basic Assumptions and Limitations

The governing equations are based on some simplifying

assumptions about the physical phenomena in the containment

after a LOCA. It is necessary to clarify these assumptions

and their limitations for a safe use of the given physical

models and solution scheme.
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2.3.1 Assumptions

1. The four components all have the same convection

velocity. The liquid droplets move with the gas components

with no slip.

2. The four components are treated as being nearly

incompressible and the phase change rate is moderately

small.

3. The turbulent Prandtl and Schmidt numbers are

equal to one.

4. The four components are in a state of thermodynamic

equilibrium.

5. The relative humidity in the containment is 100%.

The relative humidity may be less than 100% when there is

no liquid component left.

2.3.2 Limitations

1. The temporal and spatial variations of the total

density should be negligibly small because of the incom-

pressibility assumption.

2. The phase change rate should be moderately small

because the solution scheme decouples the phase change

term from the energy conservation equation.

3. The change of the diffusion constants, vt, Dt and

kt over one time step should be small because the turbulence

equations are decoupled from the velocity field calculations.
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2.4 Solution Scheme

Eq. 2.1-Eq. 2.7 are a coupled set of equations with

primary unknowns, u, v, , p, Pi(4), k, E, T, .i Since

it is too difficult to solve the whole system of the

equations and obtain a consistent solution for all the

unknowns, the conservation equations are decoupled into

two sets, continuity/momentum equations set and other

scalar transport equations set. In the first step the

SMAC scheme is used to get the convergent velocity field

with zero divergence for every mesh. The SMAC scheme is

explained in detail in section 2.5. In the second step,

the obtained velocity field is substituted in the scalar

transport equations, which are the four mass diffusion

equations, energy equation and two turbulence equations.

The phase change is assumed to be zero in this step. In

the third step phase change is taken into consideration to

maintain 100% relative humidity. When there is no liquid

component left, the relative humidity may be less than

100%.

The equation of state, Eq. 2.7, is used to update the

reference pressure and reference density which is important

in calculating the buoyancy force.

2.5 SMAC Scheme and Compressibility

The SMAC (Simplified Marker And Cell) scheme [21J has

been used for the incompressible fluid flow with Boussinesq

approximation for the buoyancy force. It solves the
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continuity and momentum equations to get the velocity and

pressure field in an iterative way. Since the continuity

equation used in the SMAC is an incompressible form, i.e.,

the divergence of the velocity field vanishes everywhere,

the SMAC scheme can be used only for incompressible flow

calculations. However, it is possible to modify the SMAC

scheme to accommodate a slight compressibility effect,

which can arise with net inflow or outflow boundary condi-

tions. The continuity and momentum equations are given in

two dimensional Cartesian coordinates in the following.

Continuity:

x-direction
momentum:

au av 0
ax ay

(2.35)

2 2
au au au a 1 2u 2au+ u-+v + ax 2 + 2at ax ay p ax

+ Pgx

y-direction
momentum:

(2.36)

av av av 1 a N v
ua y x2  2

+ pg (2.37)y

+ Py (2.37)

The vorticity conservation equation is derived from Eq. 2.36

and Eq. 2.37 as follows.

-(Eq. 2.36) - -(Eq. 2.37):
ay ax

1_ _ ~
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a C 2 a2
+ u- + V = v- + ) (2.38)

at ;x ay 2 2ax ay

where

au av
=ay ax

The Poisson equation for the pressure field is also derived

from Eq. 2.36 and Eq. 2.37 as follows.

-(Eq. 2.36) + -~(Eq. 2.37):
ax ay

2 a 2 22 a 2 aD +1 (a2D + a2D
= 2 axay 2 at Re 2  2ax ay ax ay

(2.39)

where

au avD= -- + -yax ay

The basic idea of the SMAC scheme is to separate each

calculational cycle into two parts, the so-called tilde

phase and pressure iteration. In the tilde phase the

approximate velocity field at time step (n+l) is obtained

from Eq. 2.36 and Eq. 2.37 as follows.

n+l -u n  1 Apn+l n
u -u 1 A + n (2.40)

At p Ax

n+l n n+l
S 1 Ap + gn (2.41)

At p by

where fn and gn are the explicit quantities at time step n.
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Since the pressure field in Eq. 2.40 and Eq. 2.41 are

still unknown, a guessed pressure field or the pressure field

at time step n is used to start the iteration. The impor-

tant point is that un+ l and vn+l calculated from Eq. 2.40

and Eq. 2.41 have the right vorticity. The equation of

vorticity transport, Eq. 2.38, shows that the vorticity

is independent of the pressure field. Therefore, the

following relations hold after the tilde phase.

au av
- (2.42)ay ax

au av - O 0 (2.43)
ax ay

It can be seen from Eq. 2.39 that the pressure field is not

right due to the fact that the divergence of the velocity

field is not equal to zero. Eq. 2.39 may be rewritten as

follows.

V2p = f(u,v) -D (2.44)

A finite difference form of Eq. 2.44 is given in the fol-

lowing.

_ Dn + l D n

Pi+j-2P +P i- Pij+ pij f(uv) - D D

Ax 2y t

(2.45)
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The pressure correction formula is obtained by con-

n+l
sidering the cell (i,j) only and putting D.. equal to zero.

1 1 D
-26p(-- + _) Dt (2.46)

Abx Ay

6p = -h 1 1 (2.47)
At( + )

A Ay

The pressure correction is given in terms of the

residual divergence for every mesh. Once the zero divergence

velocity field is obtained, no more correction will be made.

The velocity correction formula is derived from Eq. 2.36

and Eq. 2.37 so that it does not change the vorticity

implemented in the tilde phase.

(6u) = -
L pAx

(6u) = t6p (2.48)
R pAx

The SMAC scheme can be extended to a slightly com-

pressible fluid flow. The slight compressibility means

that the Navier-Stokes equations may be solved safely with

the incompressibility assumption, while the continuity

equation has the following compressible form.

S+ V"(p) = 0 (2.49)
at
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From Eq. 2.49 the nonzero divergence may be derived as

follows.

D = V'v

1 p V (2.50)
p at p

The two terms on the right hand side of Eq. 2.50 may be

given from the previous time information and boundary

conditions.

1 ;p_ 1 min/V (2.51)
p at n Atp

-n n
v =Vp - v (2.52)

p n

where

m. : total net inflow of mass at the boundary duringin

the time At.

V: total volume of the containment.

The associated physical assumption in Eq. 2.51 and Eq. 2.52

is that the pressure perturbation due to the inflow at the

boundary propagates throughout the containment instantane-

ously and the pressure and density increase is.uniform over

the whole containment.

Now the problem is how to converge to a predetermined

nonzero divergence field. This can be done with the

following modification of the pressure correction formula

of the SMAC scheme.



- (D-D
6 p = 1 1 (2.53)

2At( + -)
Ax Ay

where DO is given by Eq. 2.50. The velocity correction

formula remains the same as Eq. 2.48.
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CHAPTER 3

DIFFUSION MODELLING

The hydrogen, air, steam and liquid components are

transported by convection and diffusion in the containment.

Convection occurs as a homogeneous mixture resulting in

the same convection velocity for the four components.

Diffusion occurs by two different mechanisms, molecular and

turbulent, which should be modelled independently. The

thermal conductivity and viscosity are also diffusion

constants in a broader sense for momentum and energy

transport. Although turbulent diffusion is greater than

molecular diffusion by a few orders of magnitude, proper

modelling of the latter is important because the molecular

diffusion of hydrogen is significantly greater than those

of other gases and also because there may be a laminar flow

region in the containment.

3.1 Molecular Diffusion

Molecular diffusion occurs by the collisions of gas

molecules. As collisions occur more frequently, the process

of diffusion is also increased. Since there may be three gas

components, hydrogen, air and steam, in the containment after

a LOCA, the diffusion constant of each component is calcu-

lated separately by Wi~k-'s formula [73] in Eq. 3.1. It

gives the diffusion constant of each component in terms of
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the binary mixture diffusion constants and mole fraction

of that component. The property of air will be replaced

with that of nitrogen gas. The resulting diffusion con-

stants are given as follows,

1-Y C

A B YC

DAB CB

1-Y B

B yA YC

DBA DBC

1-Y C
D = C (3.1)

C YA YB

CA DCB

where D.: Diffusion constant of the i-th component

yi: Mole fraction of the i-th component

D..: Binary mixture diffusion constant between the

i-th and j-th components.

The binary mixture diffusion constants are calculated by

the Chapman-Enskog formula, Eq. 3.2.

T3 1  +
MA  MBD = 0.0018583 MA (3.2)

poAB D,AB

where

DAB: Binary mixture diffusion constant in [cm /sec]
AB



-39-

T: Temperature in [OK]

p: Total pressure in [atm)

aAB: Lennard-Jones parameter in [A]

MAMB : Molecular weight

QD,AB: Dimensionless function of the temperature

and intermolecular potential field for one

molecule of A and one of B.

The error range of the Chapman-Enskog formula is reported

to be about 6-10% [5). In order to calculate the para-

meters aAB and 0DAB in Eq. 3.2, the following relations

are required. For non-polar gases OAB and ODAB are calcu-

lated by Eq. 3.3.

OAB = (o A + oB

CAB = AB (3.3)

For the pair of polar and non-polar gases a correction

factor is introduced to account for the polarity.

ap = (o + o ) -np n p

£ = E-E e 2 (3.4)
np np

where the correction factor 4 is given by,

= [ n p = [+ n  , ]. (3.5)
S 2 n P nn

----- -~II-~PI-^ICI-L1I -lll~*- n~s^ UIIII -^
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The parameters in Eq. 3.5 are defined as follows.

a * = a an/ : Reduced polarizability of the

non-polar molecule

~ * = p / a co 3: Reduced dipole moment of the polar
p p pp

molecule

t * = p //8
p p

For the steam component the following values will be used.

t* .= 1.2

E/K = 3800 K

a = 2.65 A

The polarizability is given for the hydrogen and nitrogen

(air) components.

-25 3H2 : a n = 7.9 x 10 2 5 [cm

-25 3
N : a = 17.6 x 10 [cm ]2 n

The fitting functions for the binary mixture diffusion

constants are obtained by the least-square-fit method.

The containment pressure is assumed to be-1 atm.

-5 1 .6947
D = 4.9492 x 10 T
ah

D = 4.6810 x 10
- 6 T1.9035

as
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-5 1.8144
D = 2.8916 x 10 T (3.6)
hs

where

T: [OK1

D: [cm 2/sec]

The viscosity and thermal conductivity can be considered

as diffusion constants for momentum and energy transport

and calculated similarly as follows [5).

n Yipi
mix = n (3.7)

i E Yj ij

j=l

n y.k.
k. = i (3.8)

i=l

j=l j ij

where

ij 8 Mj M

The viscosity of non-polar gases may be obtained by

the following [5).

= 2.67 x 10 2 (3.10)
o2

where

-: Viscosity in [poise)

T: Temperature in [K])

a: Lennard-Jones parameter in [A)

S : Dimensionless nTumbervi

.__Li~n_ ~PIIII lii-- ~.lllI_
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The viscosity of steam is,

Wsteam = 0.009 cp at 1 atm, 200 C

There is another formula suggested for the viscosity of

multicomponent gas in the following [5].

2
n Yi

u C (3.11)mix = 2
i=l Yi n RT+ 1.385 n y.y

k=l PMiDik
k i

There is a useful relationship for the Prandtl number of

non-polar polyatomic gases.[5].

c
Pr = c (3.12)

where c is the specific heat per mole at constant pressure.
P

3.2 Turbulent Diffusion

The diffusion process is greatly enhanced by the

turbulence of fluid flow. The effective diffusion constant

is therefore the sum of the molecular and turbulent dif-

fusion constants. There are several models suggested for

calculating turbulence effects. Presently the best model

seems to be the k-c model originally developed by Launder

and Spalding [45). The k-s model sets up the transport

equations with some empirical constants for the turbulent

kinetic energy, k, and turbulent dissipation rate, E. The
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turbulent viscosity is given directly in terms of k and

C.

3.2.1 Derivation of Turbulence Equations [15, 29, 34, 45]

The transport equations for the turbulent kinetic

energy and turbulent dissipation rate are derived from

the continuity, momentum and energy equations by decomposing

the variables into mean and fluctuating parts and averaging

the resulting equations. For example,

u. = u. + u.'

= + p.' etc.Pi Pi + Pi etc.

The effect of turbulence appears as the additional terms

due to the product of fluctuations which do not necessarily

cancel out. These terms are treated by the eddy viscosity

concept of Boussinesq and eddy diffusivity concept which

are given in the following.

- u. u.= v ( + 3x_) 2 k6 (3.13)ui Dt x 3 ij
j i

-u P= Dt ax (3.14)

- u.' T'= a (3.15)
j t x.--



-44-

The transport equation for u.' u is transformed to the

turbulent kinetic energy equation by the contraction, j=i.

The turbulent dissipation rate equation can also be derived

in a similar way and some assumptions should be made in

modelling various terms that appear in the derivation.

3.2.2 k-e Model

The transport equations for the turbulent kinetic

energy and turbulent dissipation rate form the basis of

the k-E model. A two dimensional cylindrical coordinate

form of the k-E model is introduced in Eq. 3.16.

-t +  (ruk) + (wk) = -[ (r ) + (t )
at r a p r oka r az ok a

2t au aw aw au
+ -1[2(-) + 2( + + -)

p 3r 3 r

2 vu t BT
+ 2- ] - c +g2 Pr az

+ 1 (rue) + a(w) [ -= [) + ( a
Tt r ar z pr ar o ar z a az

t [2 au 2 aw
+ C p 2 (-) + 2(-)

1 p k ar az

2 2 2
+ ( + -) + 2 C

r az 2 2 k

+ atT (3.16)
k Pr zt
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The turbulent viscosity pt is given in terms of k and E

in Eq. 3.17.

= C pk 2 / (3.17)

The suggested values of the constants are given in the

following table.

C C1  C2  ok  o

0.09 1.44 1.92 1.0 1.3

The molecular effects can be included in Eq. 3.16 as follows.

it +it

a k m ok

t lit
a m a

E C

The turbulent Prandtl and Schmidt numbers are usually assumed

to be equal to one.

3.3 Low Reynolds Number Flow

While both turbulent and laminar flows are possible

in the containment after a LOCA depending on the hydrogen

generation rate and geo,metry, it is difficult to determine

whether a region under consideration is in a turbulent or

laminar flow. Since the k-E model is applicable to fully
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turbulent flow, it is required to extend the model to laminar

flow regime or to switch to laminar models according to some

criterion. The model presently being used is just to use

the sum of the molecular and turbulent contributions for

every region in the containment. A more refined model is

introduced in this section because consistent treatment

of laminar and turbulent flows and transition between

them may be required in the future modelling efforts.

The following k-c model is a modified form by Jones

and Launder [40, 41).

Dt i au 2D [(t + ) e + C + )  C E 2
Dt p ax k  k  k k x axk 2

2
t a u i 2

2.0 ( )
p ax ax

Dk 1 lit ak t aui auk - 2vak 2-[(- + l i + -- (- + e 2(-)Dt p ak k xk ax k  axi axk k

(3.18)

In the above equations C1 1 ok and a retain the values

assigned in the ordinary k-c model, Eq. 3.16, while C1

and C2 are to vary with turbulence Reynolds number, Rt.

CP = CP0 exp[-2.5/(l+Rt/50)]

C2 = 2 2 0 [1.0 - 0.3 exp(-R2t ) (3.19)

where R = pk2/VE
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The C O and C2 0 are fully turbulent values of C

and C2. This modified form of the k-s model was developed

to cover all the laminar, transitional and fully turbulent

regions. The constants were fitted to the data of a low

Re flow in a round pipe to include the effect of laminar

wall boundary layer. Although its applicability to a low

Reynolds number flow in general is questionable, the model

may be used with some confidence if it has the proper limit

of laminar regime with the decay of turbulence. It may also

be used in the transitional regime by assuming an adequate

interpolation between the two extremes. Equation 3.18

shows that k and e have the same order of magnitude with

the decay of turbulence. In other words, both k2/c and

c2/k will go to zero as k and E go to zero separately.

Therefore, the turbulent viscosity Vt which is proportional

to k2/E will vanish with the decay of turbulence. In order

to have the proper laminar limit, the total diffusion

constant should be expressed as the sum of the turbulent

and laminar diffusion constants. It may also be reasonable

to assume that the turbulent Prandtl and Schmidt numbers

are equal to one.
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CHAPTER 4

NUMERICAL DIFFUSION

The final numerical solution involves two types of

errors which come from physical modelling and numerical

solution procedure. The error in physical modelling is

an intrinsic error which cannot be eliminated by the solu-

tion procedure. The error in numerical solution procedure

is the difference between exact and numerical solutions

of the governing equation, which usually appears as addi-

tional diffusion. It is clarified that there are two

sources of numerical diffusion, truncation error diffusion

and cross-flow diffusion. This chapter is primarily con-

cerned with how to predict and eliminate these additional

false diffusions to get an accurate solution.

4.1 Truncation Error Diffusion

Truncation error diffusion occurs due to the approxi-

mate nature of the finite difference formulations. The name

of the truncation error originates from the Taylor series

expansion where the second and higher order terms are

truncated. Although the Taylor series expansibn is not a

proper way of interpreting a finite difference equation,

the name of the truncation error will be retained here.

Since the truncation error exists in multidimensional

problems in the same way as it exists in one dimensional

problems, it can be analyzed in the following one dimensional



conservation equation without any loss of generality.

--+ U a + S (4.1)at ax 2ax

where

4: any general conserved quantity

S: source term

The velocity u and diffusion constant a will be assumed

constant. Equation 4.1 is integrated in the domain

[xi, xi+ ] and [tn , tn+l].

x n+1 x tn+1
Xi at dt dx + t n u-- dt dx

xi+ tn+l 2

x t aa dt dx + S Ax At
- n a2ax

(4.2)

where

At = t n+l -t n

Ax = Xi+ - xi_

When a function f(x) is continuous, there exists a

point x=c in [a,b) such that,

b
1 f f(x) dx = f(c)

b-a a

Using Eq. 4.3, we may transform Eq. 4.2 as follows.

(4.3)

_I_ I~___ _L~ ~ _ I
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1 n+l
-t [ i+f n+ + [ 9 - n+g

n+f Ax 1+h i-

S[(a4n+g n+g + (4.4)= -- [ ) i (--x ] + s (4.4)
Lx ax a+ ax i-h

where

- <f <

0 < g-< 1

Equation 4.1 may also be reduced to Eq. 4.5. It is fully

explicit and the convection term is finitely differenced

by the donor scheme.

h+1 n

+ (Q -At Ax i 1-

= n
x2 i+

Ilx
- 24P + 4 ) + S

1 i-1
(4.5)

From Eq. 4.4 and 4.5, (4 +)EXACT and ( )FD can be

obtained as follows.

n n

n + At [ -u i  n - +  l )i Ax 2 i+1 + 1-1bx
Sn+l
i FD

n+l
i+f EXACT

+ S]
S n+g _n+g

n At i+h i-1
i+f Ax

+ a( n+g _ )n+g S ]+ - x[( ( ) ]  +  sCx ax i+6 ax i-6

(4.6)

(4.7)
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Subtracing Eq. 4.6 from Eq. 4.7, we obtain the error at

time step (n+l).

n+l
i+f EXACT

n+l n
i FD i+f

n a n+g- 4P + At [ -u( )i x i+a

3 @ n 4 n+g _ n+ u(-)n + a( )n+g - a(?) )ax i+b 2(- i+c T i+dax ax

where the following relations have already been used.

4n+g nn+g
i+ i- = ( n+g

Ax ax i+a

n n
i i-1 8a n

Ax ( ) i+b

1 ,a n+g (a n+g a 2 4n+g
x ji+ ax i-; 2ax i+c

n n n
2 4 + . 2 ni+l i 1-1 4

2 2Ax ox i+d

- < a <

-1 < b < 0

-1 < c <

-1 < d < 1

The mean value theorem, Eq. 4.3, is for a one dimensional

case. It can be extended to a two dimensional form as

follows.

af af
f(x+a,y+b) = f(x,y) + (f) a + ( ) b (4.9)

A ay Bwhere A and B denote some interior points in the domainB

where A and B denote some interior points in the domain

bounded by [x,x+a) and [y,y+b].

(4.8)



-52-

Now Eq. 4.9 reduces Eq. 4.8 to the following form.

n+l n+1 2  f )2
(4 ) - (4+) = - 2fx (f -f ) ------- Ai EXACT i FD 1 2 2

2-fAxAt ----------- Baxat

2
-u-t-x(a+b)---- -------- C

ax

22
+At g t ------------- D

+aAx(c-d)At--- ------ E
ax

2
+ag-t ---------- F (4.10);tax

The derivatives with respect to time and space in

Eq. 4.10 are at some appropriate points in the domain

[xi ,xi+ ] and [tn tn+). The terms A, C and E are

truncation error diffusion terms while the terms B, D and

F are time derivative terms which become negligible for

slow transients.

In a stable scheme the error introduced at a certain

step decreases in its absolute magnitude in the following

steps and most of the error occurs between neighboring

time steps. Although the error terms in Eq. 4.10 are based

on the assumption of perfect information at time step n,

they may represent the errors over many time steps in a

stable scheme.
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4.1.1 Truncation Error Diffusion in a One Dimensional
Problem

The truncation error diffusion in a one dimensional

problem is analyzed for a steady-state case with no source.

The results may be extended to a general one dimensional

problem if the effects of the transient and source terms

are not dominant in determining the profile of 4.

u a2-- (4.11)
ax 2ax

Consider a case in which the domain is divided into N equal

meshes and the mesh size is Ax.

o 1 2 3 i-1 1 i+l N

L

4(x=0) = 40

Q(x=L) = N

NAx = L

Two boundary values 0 and QN are given as constant.

The analytical solution of Eq. 4.11 is given as,

4= Cecx + C2 (4.12)

where c = u/a ,

cL

and C =N C1 cL 2 cLe -1 e -1
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Equation 4.11 is finitely differenced using donor cell

scheme for the convection term in the following.

i - i+l- 2.i + 4i-
u x = a 2 (4.13)

Ax

where the velocity u is positive.

Equation 4.13 can also be solved with the given

boundary conditions by reducing it to the following form.

P(4). - l -i24 + i-i

where P =-u (4.14)a

The parameter P in Eq. 4.14 is the cell Reynolds number

or cell Peclet number according to whether the diffusion

constant a is the kinematic viscosity or thermal diffusivity.

Equation 4.14 may be recast to Eq. 4.15 and solved for .

in subsequent procedures.

i+ - i = (P+l)(4) - 4)i- (4.15)

Equation 4.16 is easily obtained from Eq. 4.15.

i+l - i = (P+l)( 1 - 40) . (4.16)
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Then,

2 1 =

4' - 92 =
N N-2

N- 'N-1

(1+P) (4 - 0)

(1+P) 2 ( - 0)

= (1+P) N-1 - 0)

N - 4 =N 1

N-1
) (1+P) [(1+P) - 2)

01 can be expressed in terms of 40 and 4N by Eq. 4.17.

N
(1+P) - (1+P)

P 0 + N
1 N(l+P) - (1+P) + 1

Therefore, (1- 0) is given as follows.

P( N -¢0)i - 0 =  (1
(1+P) - 1

Inserting Eq. 4.19 into Eq. 4.16, we obtain the solution

for 4. as,1

(1+P) i - 1

(1+P) N 1

(4.17)

.18)

4.19)

(4.20)

Now the analytical solution Eq. 4.12 and numerical solution

Eq. 4.20 have been obtained without any approximation for

Eq. 4.11 and Eq. 4.13. Both the analytical and numerical

~-LI LIII~- LI II .I_. ~ -~l*IIIIX1~~^ ^I ^~Xi
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solutions will be reinserted to the finite difference

equation, Eq. 4.13, and the effective diffusion constant

for the numerical solution will be obtained. The

analytical solution Eq. 4.12 is substituted for 4i in

Eq. 4.13.

S -24 + =e l (e -P P 1) 2) (421)
i+1- i i-1 NP (e ) ( 0

e - 1

The finite difference solution Eq. 4.20 is also substituted

for 4. in Eq. 4.13.

i-i 2
4). -24 + (1+P) P ( - )  (4.22)
j.+1 i i-l (1+) N _ 1 N 0

Comparing Eq. 4.21 and Eq. 4.22 we can obtain the

effective Peclet number Pe of the finite difference solution

in terms of the real Peclet number P as follows.

e (i-l)Pe (ePe-1)2 (l+P) i-Ip2 (4.23)
NPe N
e - 1 (1+P) - 1

Therefore,

Pe = in (1+P) (4.24)

It is also possible to go through the similar procedures

with a central differencing form of the convection term in

Eq. 4.25.

i+l - i-l 4) i+l -24i + i- (4.25)
S 2Ax i- (4.25)

S2ax 2
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The effective Peclet number for the finite difference

solution of Eq. 4.25 can be derived as follows.

2+P
Pe = kn (2-P) (4.26)

where -2 < P < 2

The effective diffusion constant De can be readily obtained

from the following relation.

uLx
Pe - D (4.27)De

In general, the transient and source terms and the

mixed type of boundary conditions will not affect the

numerical diffusion appreciably if they are not dominant

terms in determining the profile of 4. Therefore, Eq. 4.24

and Eq. 4.26 may be a good indication of the truncation

error diffusion occurring in a general one dimensional

problem.

4.1.2 Another Approach For a One Dimensional Truncation
Error Diffusion

The truncation error diffusion in a one dimensional

problem can be evaluated in a different approach. Although

this approach is approximate and overpredicts the truncation

error diffusion, it helps understanding the origin of the

truncation error diffusion.

As in the previous section the velocity u is assumed

to be positive and constant. The convection terms in
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Eq. 4.4 and Eq. 4.5 may be approximated as follows.

i i-1 a4-u -u(--) (4.28)Ax ax

-u i+ -u(a) (4.29)
Ax ax i+

The truncation error diffusion can be quantified by sub-

tracting Eq. 4.29 from Eq. 4.28.

ae ae u~x a2-u( + u() - -- ( ) (4.30)
x a x i+ 2 i+f

where

0 <f <

Both Eq. 4.28 and Eq. 4.29 hold only when the Peclet number

is large, i.e, the convection is dominant over the diffusion.

If the Peclet number is small, i.e., the diffusion is

dominant over the convection, the profile of 4 will be linear

and the truncation error will be reduced to zero. It can

be shown that as P goes to zero, Pe also goes to zero

resulting in no diffusion error in Eq. 4.24 and Eq. 4.26.

Therefore, the truncation error diffusion constant for a

convection dominant problem may be given approximately as

follows.

D uAX (4.31)
ND 2
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4.1.3 Truncation Error Diffusion in a Two Dimensional
Problem

There are two sources of numerical diffusion in a

two dimensional problem, one is the truncation error dif-

fusion and the other is the cross-flow diffusion. The

formulas for the truncation error and cross-flow diffusion

constants derived in this chapter reveal that they are

approximatly of the same order of magnitude. It will be

shown that the truncation error diffusion in the direction

normal to the flow cancels out and there is only a flow

direction component left. Since the gradient of 4 in the

flow direction is negligible in a convection dominant

problem, the total diffusion quantity of 4 due to the

truncation error is not significant in comparison with

that due to the cross-flow diffusion.

A steady-state, two dimensional, conservation equation

with no source term is given in the following.

2 2
u + v + = +( + ) (4.32)

x 3y

Equation 4.32 is finitely differenced using donor cell

scheme for the convection term.

u i i-lj + v i ij- _a(i+1 i +  i-l1
6x by 4x2

+ij+l -2i + 0iji
2

by

(4.33)
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The approach in section 4.1.2 is applied to Eq. 4.33,

then the truncation error of the convection term is given

as follows.

ij 'i-1 i ij-i 1 fj+ i+ dt
Ax Ay +AxAy j i axx

1 Yj+ xi+4 a+ 1x yj+ xi+ (v-) dx dy
Axhy yj- Xiih ay

a )= -U(ax--) 3x - v( ) 
ay ij

+ u(t-)
x i+ ,j+

+ v(a)
ly i+h,j+

2 a2  A 2
Ax U(a 2 ) + A U( )+ AXAx 82 bay 924 Ax 2
2 2_-I 2 axay axayax

ay 22 2
ay

= va2  a 
S[uAx-- + (uAy+vbX) +v y-

ax yaxa

= - x[cos + (cose tane 1 + sine)- + sine tane -]
ax xY

(4.34)

where

tane = Ay/Ax

tane1 = v/u

The coordinate (x,y) is transformed to the coordinate ( ,n)

by rotation.

( = x cos6 + y sine

(4.35)I = -x sine + y cose
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where 5 is the coordinate in the flow direction.

y

v

e
Sx

Then Eq. 4.32 is reduced to the following form.

2 2
-- = ( + ) (4.36)a 2 2

where U = /u2v 2

Now Eq. 4.34 will be transformed to the coordinate system

(t,n) given by Eq. 4.35.

2 a2
(A) - [(sine tane1 + cose) + (-sine + cosetan6 1 ) a

2
+ (0) -4 U" (4.37)

an

Equation 4.37 shows that the diffusion component in

the n direction (normal to the flow direction) is zero and

the cross differential term also vanishes when e is equal to

e 1 Therefore, dominant truncation error diffusion occurs

only in the flow direction. When e is equal to 0 or 7/2,

the problem is basically one dimensional and the truncation
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error diffusion occurs in the flow direction as in a one

dimensional problem.

4.2 Cross-flow Diffusion

Most of the confusion about the nature of numerical

diffusion comes from the fact that there exists an addi-

tional source of false diffusion, that will be named here

as the cross-flow diffusion. It is entirely different

from the truncation error diffusion. Recently this addi-

tional false diffusion was explained by Patankar [52]

and Stubley et al. [67,68) and it was clarified that this

is the dominant source of the error in most multi-dimensional

problems. In this section the origin of the cross-flow

diffusion will be illustrated and the corresponding dif-

fusion constant will be quantified so that they can be

used in the corrective scheme of section 4.3.4.

The cross-flow diffusion comes from the multi-dimen-

sionality of the problem, therefore it exists only in two

or three dimensional problems when the flow direction is

not aligned with the mesh configuration. The origin of the

cross-flow diffusion is illustrated in Fig. 4.1, which shows

a single mesh with pure convection. In Fig. 4.l1(A), the hot

and cold fluid enters the mesh from the left and bottom

surfaces at 45* angle. The hot fluid will come out of the

top surface and the cold fluid out of the right surface.

In the donor cell scheme Fig. 4.1(A) is transformed into



-63-

Hot Mledium

Hot 7 Hot

Cold Cold Cold

(A) (B) (C)

Fig. 4.1. Illustration of the cross-flow diffusion in a
single mesh with pure convection
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Fig. 4.1(B) where the velocity components normal to the

surface are considered. Then homogeneous mixing occurs

in the mesh,and intermediate temperature fluid will come

out of the top and right surfaces. The numerical results

in Fig. 4.1(B) are again interpreted as Fig. 4.1(C) by a

program user. Therefore, an appreciable amount of false

diffusion occurs in multidimensional donor cell differencing

of the convection term.

Another illustration of the cross-flow diffusion is

given in Fig. 4.2 which shows a row of meshes aligned in

the x-direction. The value of 0 at the point A should

reappear at the point X because there is no physical

diffusion. In the donor cell scheme it is distributed all

along the points A1 , A2 , A3 . . . and the sum of the values

at those points is exactly equal to 4. This distribution

of the value of 4 causes the cross-flow diffusion.

(l-p)[l+p+p2+ . . . ] = (l-p)4- =

where u
.&x

u v
ax Ay

The effective diffusion constant for the cross-flow

diffusion will be calculated in the two dimensional Cartesian

coordinate in Fig. 4.3. This is a pure convection problem

with no physical diffusion. Consider the fluid element

CAB which looks like a long one-dimensional rod. The fluid
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(1-p) 4'

Ay

A

x p (1-p) 2
p (l-p)

3p (l-p)4

Ax 2

p4 (1-p)

A5

4
y p
t-*

U

where p =

Ax Ay

Fig. 4.2. Illustration of the cross-flow diffusion in a
row of meshes aligned in the x-direction with
pure convection
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4.
V

A2

e

Ax t^ t

where -t0= t =  3/U

tane= Ly/Ax
tane = v/u

u/Ax
P U v

Ax by

Fig. 4.3. Geometry for explanation of the cross-flow
diffusion in a two dimensional Cartesian
coordinate

-A,

B

AY
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element was on the line CAB at time t and is translated

in the velocity direction, v.

The value 4A at the point A should reappear at the

Point A'. In the donor cell scheme it is divided into

two portions, p4A and (l-p)4A and appears at the points

Al and A2 . The travel of the fluid element is analyzed

in Fig. 4.4, which shows that the value 4A diffuses out

along the fluid element. The diffusion occurs both to the

right and left hand sides. The diffusion to the right hand

side is considered first in the following.

Gradient) A /k
of 4 =A 1

Current 2 2 U

of 4 A t1 - t 0 PA £3

Therefore,

Diffusion (Current) 2 1
constant )  (Gradient) = U3

where

1 = Lx/cose,

k2 = Ax sine/sin(el+8)

k3 = Ax sine 1/sin(e 1+8)

After substituting appropriate expression for each term,

the following right hand side diffusion constant results.

sine cose
DRHS cos= U sxS acos61 sin(O+e I )
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ti

t2

t3

Fig. 4.4. Geometry for explanation of the cross-flow
diffusion in a rotated two dimensional
Cartesian coordinate

. Ya.- ct
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Repeating the same procedure for the left hand side we

can find that the right and left hand side diffusion con-

stants are equal to the following.

sine cose
RHS LHS cos1 sin(+8) (4.38)

Equation 4.38 is the effective diffusion constant when

the diffusion is confined to the one dimensional fluid

element. There are two diffusion components in a two

dimensional problem as follows.

2 82 2
x 2 29x By

The current on the one dimensional fluid element can be

factored into the x and y components. The cross-flow

diffusion constants are the ratios of the current and

gradient of 4 in the x and y directions.

sine cos6D = UAx sin cos8
x sin(e+e1 ) 1osel

2
sin 8sine cose 1

D = UAx (4.39)
y sin (8+81 ) cos1

Equation 4.39 is identical to the following simple expres-

sions.

D = uAx(l-p)

(4.40)D = VAy p
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where
u

p = u v
Ax By

Equation 4.38 should be differentiated with respect to

6 in order to find out the velocity direction with maximum

cross-flow diffusion. It can be shown that,

RHS 3
D = 0 when tan 6 = tan61 . (4.41)

Equation 4.41 shows that DRH S (or DLHS ) is maximum at an
Tr7LHS

angle of e between 4 and e1, that is to say, < 6 < 81 or

61 < 6 < . De Vahl Davis and Mallinson [24] also derived

the effective cross-flow diffusion constant and their

result is given in Eq. 4.42.

D = UAlxy sin2e= UAx tan61 sin26

D 3 3 3 3DM 4(by sin36 + Ax cos36) 4(tan8 sin6 + cos3)

(4.42)

Equation 4.42 underestimates the cross-flow diffusion as

shown in Fig. 4.5. When both 6 and 61 are equal to ,

Eq. 4.40 and Eq. 4.42 give the same result.

Now the analysis will be extended to a three dimensional

case in Fig. 4.6. In Fig. 4.6 the value at the point 0 is

4 and that value should reappear at the point X where the

velocity vector meets the plane ABC. In the donor cell

scheme the value 4 is divided into three portions px 0 p' y
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Cross flow Dcf
Diffusion UAx

2.0t

1.5

1.0

0.5

0.0

de Vahl Davis & Mallinson

Huh

81=8C

80 \%%

4

0 .0 I

I

150 300 450 600 750 900

Fig. 4.5. Comparison of the prediction formulas for cross-
flow diffusion constant by De Vahl Davis and
Mallinson and Huh
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z

C

V

Az X

0 a AY B y
X

o Ay

x

z C

p , p

Fig. 4.6. Geometry for explanation of the cross-flow
diffusion in a three dimensional Cartesian
coordinate
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z occurring at the points A, B, and C instead of at the

point X. This is the so-called cross-flow diffusion pheno-

menon. The currents due to the cross-flow diffusion are

along the directions XA, XB, XC,and nA , nB , nC denote

unit vectors along those directions. The coordinate of the

point X is given as follows.

X(£ 4cosa, t4 cos8, £4cosy)

Any point on the plane ABC should satisfy the following

Eq. 4.43.

S+ + = 1 plane ABC (4.43)
Ax Ly Az

Since the point X is on the plane ABC, the following

relation holds.

cosa cosB cosy (4.44)
4 zAx + y z

Therefore,

S= 1 (4.45)
4 cos+ cos cosy+ +

Ax Ay Az

The lengths of AX, BX, CX which are denoted as £i' z2' k3

can be obtained as follows.

£1 = AX =/(x- 4cosa)2 + (4cos)2 4cos) 2

= Ax2 + 42 -2Ax£ 4 cosa
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k2 = BX = /( 4cos)) 2 + (Ay-_4cos) 2 + (k 4 cosy)2

= y2 + 42 4
- + L

£3 = CX = /( 4cosc) 2 + (£4cos8)2 + (Az-L 4 cosy)

-/z + £42 -2Azi 4 cosy

-+ +

The unit vectors nA , nB, nC can be obtained in terms of

their components in x, y, z directions.

- XA OA - OX
n = -

A +1A

etc.

Therefore,

1

nB = [-i4cosa, (Ay- 4 cosS),

2

-4 cosy]

-14cosy]

-o 1
C = -- £ 4 cosa, -Z 4 cos8, (Az- 4cosy)]

The currents in the directions nA, nB' n C can

(4.48)

simply be given

as the products of the transported quantities and velocities.

1
I (Current)xAi 

= px C1
XAI Px Lt

(4.46)

(4.47)

''
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I(Current) XB

I(Current) XCI

p 2
= Py t

'3
z At (4.49)

where

At = k /U

The gradients of 4 in the x, y, z directions are given

as follows.

(Grad)x =

(Grad) =

(Grad)z =

4,/ Ax

4,/ Ay4/6x
Q/by

4/Azl (4.50)

Now the x direction cross-flow diffusion constant may be

given as the ratio of the current to the gradient of 4

in the x direction.

Px D Py D
(Current)x - (Ax-£ 4 cosa) + -nC-(-4 c osa)

+ (- (cosa)At 4

(Grad)x = 4/Ax (4.51)

Therefore,

p Ax p Ax pz x
D = (Ax-k cosa) + -- (-4 co s a ) + ( - 4cosa)

x lt 4 ct 4 at 4
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p Ax
D A2 t cosa(p +p +p)x At At 4 x y z

SxA Ax L cosa (4.52)
At at 4

Inserting the expression for At given by At = £4/U, we can

simplify the result as follows.

p Ax
D = ux[ - 1

x £4cos

= uAx(l-px) (4.53)

The cross-flow diffusion constants in the y and z direc-

tions can be obtained in the same way. The rotation of

indices will also give the same result.

Dy = vLy(l-py)

Dz = wAz(l-pz )  (4.54)

4.3 Discussion of Skew Differencing and Corrective Schemes

The origins of the numerical diffusion and their effec-

tive diffusion constants have been given in the previous

sections. This section is a review of the schemes that

have been used to eliminate the numerical diffusion. The

most important ones may be the skew differencing, tensor

viscosity method, finite element method, etc. although none

of them has been successful enough to be accepted widely.
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Most of the schemes in Table 4.1 can be categorized

into two types, skew differencing and corrective schemes.

S. Chang's method 1161 and Raithby's scheme 1533 are of a

skew differencing type while the tensor viscosity method

[25] and Huh's corrective scheme that will be introduced

in section 4.3.4 fall in the category of a corrective

scheme. In the skew differencing type schemes finite

differencing of the convection term is done not in terms

of the x and y directions, but directly along the velocity

direction. Since the upstream point in the velocity direc-

tion does not necessarily fall on the mesh point where the

quantity under consideration is defined, the interpolation

should be done between neighboring points to obtain the

value at the upstream point. The donor cell treatment

of the convection term results in a 5-point relationship

in a two dimensional problem. In the skew differencing

scheme the 5-point relationship becomes a 9-point relation-

ship. Basically the inclusion of four additional corner

points contributes tomore accurate numerical modelling of

the convection. However, the interpolation between

neighboring points may still give some cross-flow diffusion.

The cross-flow diffusion is not eliminated entirely in the

skew differencing scheme, but just appreciably lower than

that of the donor cell scheme.

The corrective scheme is to reduce the diffusion

constants in order to compensate for the additional false

~_ 1 1_1___~1___*_____11__ i-_- - .^ILli- -....- II1~LI1I~~ ICII---



-78-

Snd u hod m es
Chss' iction Con-ribo:r/me;hod macsh? mesh

Cen:ered .inte
di 'frencc

Gt:Iz:kin ,.j.e elements

Firs.ordc; up wind f~iite
di Teretn

.Highe cdtr upwi:nd
:"'ie Cdi't;tnce

Vuer:o: upwind

Up'nd f-t( e elemmnt
!.thod of chaaceriics

Fiite anuryic method

Tenso; viscosity method

Sel;-ad.aptjve me;hod

Mesh *txLnsformation
rr,thod

LLx-W'en d-off

Lillinron
Ozlandi

Clif ft
Dontcl t al.
Grandotto
Hickmott atl.

£Ebzhau t aL/PATANKAR
Lilinpion
Orlandi
Priddin
Wada cit l.
Wilkes

Elbahu ct l.1QUICK
ETovh ci t ./LLUE
Huint/QUICK
Wilkes/LUE

Lillimpon/SUD
LiiL-.ronLUD
Lillinion/VUDCC

Nuana.

Esposito
Glas and Rodi
Huffenus Lnd Khali;zky

Chen

Rue) ct &L

Schonaucr

Sykes

Yes 23 x 11
- 40 x 40

- 65 x 33
- 41 x 21

Yes 21 x 11
Yes 41 x 21

Pc = 10' only 41 X 21
Yes 21 x 1

- 40 x 40
Yes 100 x 50

- 81 x41
- 100 x 50

Yes
Pe = 10' only

Yes
Yes
Yes

Yes

41 x 21
4l x 21
3E x 19
80 x 40

2) x II
21 x ]1
21 x 11

21 x 11

41 x 21
41 x 21
21 x 11

81 x 41

28 x 14

Se Tzb)t 2

- 21 x11

Wad ct aL 80 x 400

Table 4.1. List of the schemes for numerical representation
of advection presented at the Third Meeting of
the International Association for Hydraulic
Research, 1981 [65)
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diffusion. The corrective scheme is valid only if the

effective numerical diffusion constant can be predicted

accurately. Since the cross-flow diffusion is dominant

over the truncation error diffusion and the effective

diffusion constants for the cross-flow diffusion can be

predicted theoretically, the corrective scheme can give a

numerical solution which is almost free from numerical

diffusion. The tensor viscosity method is one example of

the corrective scheme, although the validity of its

correction formula is not clear. The correction formula

used here is Eq. 4.53 and Eq. 4.54. The diffusion con-

stants in x, y and z directions will be reduced by the

amounts of D , D.. and Dz in Eq. 4.53 and Eq. 4.54.

4.3.1 Raithby's Scheme

Raithby's scheme [53] is an Eulerian type of approach,

where the balance equation is set up for a given control

volume by considering convection and diffusion at the con-

trol surface. It is therefore a conservative scheme.

The finite difference equation for Raithby's scheme is

derived on the assumption of a linear profile of 0 normal

to the flow and a uniform profile in the flow direction.

4 = C1 + C2 n = C1 + C2 ( - (4.55)

where n is the distance normal to the flow and U = /u 2 +v 2
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Fig. 4.7. A segment of. the calculation domain showing
grid lines, control volume and notations in
Raithby's scheme
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The convection quantity at the control surface is

calculated from the upstream value in the flow direction

and the upstream value is obtained by interpolating two

neighboring points. This should be repeated for the four

control surfaces of every mesh in a two dimensional prob-

lem, which may be too complicated and time consuming for

a practical purpose. The inclusion of the four additional

points also complicates the structure of the coefficient

matrix in an implicit scheme.

4.3.2 Skew Differencing By Huh

Skew differencing scheme here treats the convection

term in a Lagrangian way. The convection term is differ-

enced in the velocity direction between mesh points,

not in terms of the convection that occurs at mesh

interfaces. Although this scheme is nonconservative, it is

much simpler than Raithby's scheme and becomes conservative

in a unidirectional flow.

u 4 + 'v- = U (4.56)
ax dy SC

where is the coordinate in the velocity direction and

U = /u 2 +v 2 .

'ij- US (4.57)

where the upstream value €US may be calculated by
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interpolating two neighboring points. Some of the results

of this skew differencing scheme is given in section 5.3.2.

4.3.3 Tensor Viscosity Method

The tensor viscosity method treats the numerical dif-

fusion constant as a tensor quantity. The expression for

the tensor viscosity [25) is given in the following.

T = Lt uu

2u  uv
U= t2 (4.58)

Eq. 4.58 for the numerical diffusion constant is apparently

not consistent with the results in Eq. 4.53 and Eq. 4.54.

4.3.4 Corrective Scheme By Huh

The corrective scheme is to use the reduced diffusion

constants, D-Dx, D-D , D-D in x, y, z directions to compen-x y z

sate for the cross-flow diffusion effect. The validity of

this scheme is based on the fact that the cross-flow dif-

fusion can be predicted accurately. The expressions for

the cross-flow diffusion constants D , D , D are derived

in section 4.2.

Dx = uAx(l-px)

D = Ay (l-py )Yy
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Dz = wAz(l-p z )  (4.59)

where
u

p = etc.x u v w-- + -- +
x Ay Lz

Two implementation strategies have been tested so far,

the mesh point implementation and mesh interface imple-

mentation.- These two become identical when the flow field

is uniform or a very fine mesh is used so that the flow

change over neighboring meshes is negligible. In a coarse

mesh or recirculating flow field the latter implementation

strategy is definitely preferred.

4.3.4.1 Mesh Point Implementation

The mesh point implementation is to assign the cross-

flow diffusion constants Dx , Dy ,Dz at the center of a mesh

where all quantities are defined except the flow field.

The velocities at two boundary faces are averaged to get

the representative velocity, which is used with the cell

dimensions to get the cross-flow diffusion constants.

After the cross-flow diffusion constants are assigned

to every mesh point, they should be averaged again between

neighboring mesh points to calculate the cross-flow dif-

fusion current at mesh interfaces.

_IIU__lpULI~~I___~l--Llt ~Lli--- i- ~-i . ~iL~p-n-~sl-
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4.3.4.2 Mesh Interface Implementation

The mesh interface implementation is to assign the

cross-flow diffusion constants directly to the mesh inter-

faces where the cross-flow diffusion current should be

calculated. The mesh interface implementation is always

recommended although it has a more complex program logic

than the mesh point implementation.

There are three possible cases that should be treated

independently in a two dimensional case, as shown in Fig.

4.8. Note that the cross-flow diffusion constant for the

interface with an inward velocity does not have to be

considered in that mesh because it will be considered in

the neighboring mesh. For the first two cases the cross-

flow diffusion constants are zero because the velocity

vector is aligned with the mesh configuration. For the

second case the two outward velocities, U and V, can be

directly used with cell dimensions in Eq. 4.59, and the

resulting D and D will be assigned to each interface.
x y

The third case is expected to have a flow split as shown

in the figure. The velocity U is split into two components,

U1 and U2, so that they are proportional to V1 and V2.

The two velocity sets (Ul,Vl) and (U2,V2) are used to give

(DxlDyl) and(Dx2 'Dy2 ). The right interface will have the

cross-flow diffusion constant (Dx1+Dx2) and the top and

bottom interfaces, Dyl and Dy2 . The same logic can easily

be extended to a three dimensional case. Appendix C includes
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(2) (3)

Ul

U2

V2

VI U U V2
V14-V2

U2 = UV2
VI+V2

U = Ul + U2

T V2

Fig. 4.8. Three possible flow configurations for mesh
interface implementation of the corrective
scheme in a two dimensional problem

_~I~~ _~~~~_I__~__~~ __
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the fortran program for calculating cross-flow diffusion

constants in an arbitrary flow field.

4.4 Comparison of Explicit, Implicit and ADP schemes

There are three typical solution schemes, Explicit,

Implicit and ADI (Alternate Direction Implicit), for the

general conservation equation, Eq. 4.60, which is a para-

bolic partial differential equation. The pros and cons

of the three schemes will be compared in the following

four viewpoints.

1. conservation

2. physical constraint

3. accuracy

4. stability

2 2 2
+at +ux + 7 + -T7) + S (4.60)

ax 2 y sz

Explicit (l-D):

n+l -n

I i u n n D n n n+ -(i - i- ) = ( l -2i +  i- ) + SAt x i i-1 i+1 i-1Ax

(4.61)

Implicit (l-D):

n+1 n
i i u n+l n+l D n+l n+l n+l

6t -( - A ) =  i+-2 + i )At Ax i i-1 2 i+l i i-1

(4.62)
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ADI (2-D): (A)

n+ _n In+ _ cn+ n n
ij ij + u ij i- + v ij-1

At Ax Ay
2

)n+ 2 4 n+ +n+ n n n
i+lj -l + D j+l ij ij-i + S

2 2
Ax Ay

n+l n+ n+ n+ n+l n+l
ij ij ) ij i-1 ij ij-1

At Ax Ay
2

n+ n+ n+ n+l n+1 n+lS2. + 4n+ - 2 + 4
=D i+i + D ij+l i i-1 +

Ax2 Ay2

ADI (2-D) : (B)

* n *i *
1 j + 1 1- i+l

At +Ax

- 24.. + 4).
Ax2

_ * n+l n+l n+1 n+l n+l
S ij )v ij 13j-1 ij+l -2 1j-1 + S

At Ay Ay2

(4.63)

4.4.1 Conservation

The conservation principle is that the total amount of

4 should be conserved (S=0), or affected only by the source

term contribution (SO), when the net inflow or outflow at
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the domain boundary is equal to zero. A scheme may be both

stable and nonconservative and also both unstable and

conservative because the conservative property is independent

of the stability. When we are concerned with a steady state

solution, the conservative property may not be crucial.

For a long time transient, however, the conservative pro-

perty is as important as the stability because the error

from nonconservation may accumulate over many time steps.

All the explicit, implicit and ADI schemes can be made

conservative by using appropriate differencing forms for the

convection term. In order to guarantee conservation, the

same exchange term should be used for neighboring meshes.

Although a conservative form is preferred to a nonconserva-

tive one, there are some nonconservative solution schemes

like ICE (Implicit Continuous Eulerian), where the convection

terms of momentum equations are linearized in a noncon-

servative way.

+ CI

4.4.2 Physical Constraint

The physical constraint is closely related with the

stability in a practical sense. Although they usually give
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similar constraints on the time step size and mesh spacing,

they are from entirely different origins. The laws of

physics impose some restrictions on the numerical scheme

to get physically reasonable solutions. The Courant

condition and Hirt's stability condition [36] that the

finite domain of influence should at least include the

continuum domain of influence are good examples of the

physical constraint condition.

4.4.2.1 Diffusion

There is a maximum net flow that can occur between

neighboring meshes by diffusion.

)C 4 - R 6y 4R C

Ax Ax

Exchanged quantity of 4) = DR CAy At
by diffusion for time At Ax

After the exchange of the diffusion current, new values

of 4 are given as follows.

R C
C AxAy = CAxy + D Ax y At

R CAy
¢4AxAy = 1RAxAy - D Ax At
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Since the relationship, t' > Q' , should still hold,

we have the following physical constraint.

(R C
AxAy(4) R C ) > 2D Ax -yAt

2 DAt < 1 (4.64)
X2  -

Eq. 4.64 may be extended to a d-dimensional case as follows.

d 2D t < 1 (4.65)
Ax

Equation 4.65 may be a too conservative criterion in a real

problem. When the physical constraint is ignored and the

time step size greater than that given by Eq. 4.64 or

4.65 is used, the solution will be unstable or stable with

damping oscillations. Both of the oscillation and insta-

bility should be avoided in a transient problem. The ADI

scheme given in Eq. 4.63 is unconditionally stable; however,

there will be a damping oscillation in the solution when the

time step size is greater than that given by Eq. 4.64 or

4.65. Therefore the physical constraint should be respected

in addition to the stability condition to get a meaningful

transient solution.
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4.4.2.2 Convection

C A B

u

C A ).B 4y

S

The explicit and donor cell treatment of the convection

term gives the convection quantity at interface S as

ulAAtAy. It is based on the assumption that 4A is the repre-

sentative value of the control volume A. If At is greater

than the Courant limit, a portion of the control volume

C will cross the interface S. Then uAttay is no more an

appropriate expression for the convection quantity during

At. Therefore,

At < 'x (4.66)
- u

When a time step size greater than the Courant limit is

used, the damping oscillation or instability may occur

as in the case of diffusion.

4.4.3 Accuracy

Realistic interpretation of a finite difference equa-

tion comes from an integral form of the conservation



-92-

n+l4'

I. -

n n+1

Explicit

~~CIIL CIIII

Is

I!

US Ds >

Donor Cell

where US(Upstream)
DS (Downstream)

Fig. 4.9. Profile assumptions of Q in space and time for
various differencing schemes
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equation. The infinitesimal approximation of differential

terms is not appropriate in most problems of our considera-

tion. The accuracy expressed in terms of O(At), 0(Ax 2 ) is

also not appropriate for finitely large At and Ax. The

accuracy depends on how well we can compute the convection

and diffusion quantities at control surfaces over the time

At. In other words, the accuracy depends on the profiles

assumed for 4 in time and space because the exact profiles

are not known a priori.

Since the exact profile depends on the Peclet and

Strouhal numbers of the governing equation, appropriate

schemes should be chosen according to those numbers or

weighting should be done between neighboring time steps

and mesh points to increase the accuracy of the solution.

However, the accuracy is usually the least important among

the given four considerations.

4.4.4 Stability

The stability is a mathematical problem, whether the

error introduced at a certain step will increase or decrease

as the calculation goes over to the following steps. It

depends on the maximum eigenvalue of the iteration matrix.

If its absolute magnitude is less than one, the error

propagation is suppressed and the largest error contribution

will be from the previous time step.

The stability can be checked by the theorems about

matrix eigenvalues or Von Neumann analysis. The Von Neumann
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analysis is to expand the solution of a finite difference

equation in Fourier series and check the decay of each

mode separately. The stability is not a sufficient con-

dition for an acceptable numerical scheme. In the fol-

lowing sections, stability criteria will be derived for

the explicit, implicit and ADI schemes using the Von Neumann

analysis.

4.4.4.1 Explicit Scheme

The Von Neumann stability analysis of a finite dif-

ference equation is simple in its idea, but its algebra

may get complicated.

4.4.4.1.1 One Dimensional Central Differencing of Convection
Term

The finite difference equation is given for a one

dimensional general conservation equation with central

differencing of the convection term.

n+l n n n n - 2 n n
- €i+i i-i i+l - 2i +  -ii I + u i+1 i_1 D i+1 i i-1 (4.67)

lt 2Ax 2

The solution 4. is expanded in Fourier series as follows..1

4n = E~nei (4.68)

where I = - .
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The absolute value of should be less than one for every

mode to achieve stability. When Eq. 4.68 is substituted

in Eq. 4.67, the following expression for results.

= l-Cxsin xI - 2d (l-cos x) (4.69)

where

uAt
c Ax tx

Dbtd Dt
x 2Tx.

Therefore,

11 2 = [1 - 2dx(-cosex) 2 + [Cxsinex 2 < 1

Equation 4.70 may be rewritten as follows by defining

cos6 as t.x

2 2(1-t 2 )  1[i - 2dx(-t) ] +C

(4.70)

(4.71)

where

t = cose

-1 < t < 1

The function f(t) will be defined as follows.

f(t) = i 12

= (4d2_ 2 )t2 + (-Sd 2+4d )t + C 2+4d 2-4d (4.72)

In order to get the stability of Eq. 4.67, the function
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f(t) should be less than or

[-1,1].

equal to zero for any t in

f(t) < 0

for any t in [-1,1]

(4.73)

Equation 4.73 can be solved by a graphical method using the

characteristics of a quadratic equation. The parabola

f(t) always meets the t-axis because the discriminant is

always greater than or equal to zero.

D(Discriminant) = (C 2 - 2d )2 > 0 (4.74)

One of the two meeting points with the t-axis is the point

t=l because f(l) is equal to zero.

f(1) = 0 (4.75)

The parabola f(t) may have three distinct shapes according

to the sign of the coefficient of the second order term.

(1) 4d 2 -Cx 2 > 0x x

2 2(2) 4d 2 -C

2 2(3) 4d -C
x x

= 0

< 0

: concave upward

: linear

: concave downward.

In case (1) f(t) is a parabola concave upward and f(-l)

should be less than or equal to zero as shown in Fig.

4.10(1). Therefore,
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(1) 4d 2 -c 2 >0x x

Fig. 4.10.

2 2
(3) 4d2-c2<0x x

2 2(2) 4d 2 -c =0x x

Three distinct shapes of the parabola, f(t),
according to the sign of the coefficient of
second order term

f (t)
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f(-l) = 8d x(2dx-1) < 0

0 < d < (4.76)

In case (2) f(t) is a straight line and f(-l) again

should be less than or equal to zero. In case (3) the

parabola f(t) is concave downward and the axis of symmetry

should be on the right hand side of the point, t=l as

shown in Fig. 4.10(3).

4d 2 - 2d
Axis of symmetry: t = x >

4dx  - C

dx > C 2  (4.77)

Summing up the results in Eq. 4.76 and Eq. 4.77, we get

the following stability conditions.

4d -C > 0 : 0 < d <

2  2 2

4d C < 0 : dx > Cx

The stable region in the coordinate system (Cx,dx) is shown

in Fig. 4.11.

4.4.4.1.2 One Dimensional Donor Cell Differencing of
Convection Term

The following Eq. 4.78 is a finite difference equation

with donor cell differencing of the convection term.
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d
x

1

-1 0 1 C

dx = C2x 2x

Fig. 4.11. Stability -ondition in the plane (Cx,d ) for
an explicit scheme with central differencing
of convection term in a one dimensional
problem
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n+l n n n n n n
i i i i-i i+l i i-iAt + u Ax = D 2 (4.78)At Ax 2

where the velocity u is positive.

The Von Neumann analysis of Eq. 4.78 gives the following

stability condition.

2 [ 1-(C +2d x )(1-cose x ) 2 + [C sine ) 1 (4.79)x x (479)

It can be shown that the value of IC12 in Eq. 4.79 does not

change when the velocity u is less than zero, if the Courant

number, Cx, is defined such that it is always positive.

The function f(t) is defined as follows to make it easier

to solve Eq. 4.79.

f(t) = 12 1-

S[(C x+2d) 2-Cx ] t2 + [-2(C x+2d )2 + 2(C x+2d )]t

+ [(C +2d ) +C -2(C +2d ) ]  (4.80)

The function f(t) in Eq. 4.80 should be less that or

equal to zero for any t in [-1,1] for the stability of

Eq. 4.78.

f(t) < 0 for any t in [-1,1] (4.81)

The parabola f(t) meets the t-axis at the point, t=l.

f(1) = .0 (4.82)
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Equation 4.81 canbe solved by the graphical method as in

the previous section.

2 2
(C +2d ) - C > 0

2 2
(c +2d ) -C < 0x x x

: 0 < C +2d < 1
- x X -

d >(C 2-C )
dx x

The results, Eq. 4.83 and Eq. 4.84, are shown graphically

in Fig. 4.12.

4.4.4.1.3 Two and Three Dimensional Donor Cell Differencing
of Convection Term

The two dimensional extension of Eq. 4.78 is given in

the following.

n+l n n n n n
ij ii + u ij i-1 + vii ij-i

At Ax by

n n n n n n
D . - 24 + 4 4 - 24 +
i+D 3 1i-l3 + D2+l - i-iA 2 ,_2

Lx

(4.85)

The Von Neumann analysis is applied to the finite difference

equation, Eq. 4.85, yielding the following result.

- 1 = -C (l-ex

lex) - C (l-e
y

-I (-csexy) _ 2d (l-cos8 )
x x

(4.86)- 2dy (1-cosey)

(4.83)

(4.84)

ay
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dx

1 1 1
2 x- 2xx

1 2d 1 C -Cx)

Fig. 4.12. Stability condition in the plane (Cx,d x ) for an
explicit scheme with donor cell differencing
of convection term in a one dimensional
problem
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where

C -x Ax

DAtd - 2

x x 2

vat
C -

DAt

Y Ay2

The Courant numbers, C and C , are defined so thatx y

they are always positive, independent of the directions of

the velocities u and v. Equation 4.86 can be simplified

by defining al and a2 as given in the following Eq. 4.87.

= 1 + al1 + a2 (4.87)

where

-I6 x  le xa= -C - 2d + (C +dx)e + de1 x x x x x

-I6 x  Iy
S = -C -2d + (C +d )e + de

2 Y Y YY Y

The stability condition is that the absolute magnitude of 5

should be less than or equal to one for any values of 8x

and e By. From Fig. 4.13 and Fig. 4.14 it can be seen that

a1 and a2 should satisfy the following conditions 
inde-

pendently.

(4.88)a + 1 4

(4.89)
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Im
\

-2
al +2

1 SRe

1+a +a2

Fig. 4.13. The region in the complex plane where (a +c )

should exist for the stability of an explicit
scheme with donor cell differencing of con-
vection term in a general two dimensional problem

- - - -
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. .Re

Both al and a 2 should be in

the shaded circle to ensure

that Ial+a2 +1I< i.

Fig. 4.14. The region in the complex plane where the
amplificatior factor, ;, should exist for
the stability of an explicit scheme with donor
cell differencing of convection term in
a general two dimensional problem
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Both Eq. 4.88 and Eq. 4.89 can be solved by the

graphical method as in the previous sections. The results

are given in Fig. 4.15, where the points (Cx,dx) and

(C y,d) should be in the shaded region for stability.

A three dimensional case can also be solved through the

same procedures and the results are given in Fig. 4.16.

The stable region shrinks on a linear scale with dimen-

sionality.

4.4.4.1.4 Stability Condition in Terms of Cell Reynolds
Number

The stability conditions in the previous three

sections are in terms of the dimensionless numbers, Cx and

d , which depend on both the mesh spacing, Ax, and time

step, At. When Ax and At are already given, the stability

can be checked directly. However, our usual concern is

the stable time step size for a given mesh spacing.

Therefore, the stable range of C should be determinedx

in terms of the cell Reynolds number Cx/dx', which is

independent of the time step size, At. The stability

condition is again given by Eq. 4.88 and 4.89 and al and

a2 may be rewritten as follows.

2 1 -I 1 Ie
a1 = C [- + (1+-)e + - e 3 (4.90)

1 x R R Rx x x

a = C [-1 2 + (1+)e Y + - e Y) (4.91)
2 y R R R
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d (d )

x 1d -= + -
x 2 4

1 C x(C )

16

d= C2_ C
x x 2x

Fig. 4.15. Stability cc.idition in the planes (Cx,dx) and
(Cy,dy) fcr an explicit scheme with donor cell
differencing of convection term in a general
two dimensional problem.
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d (d or d )xy z

C xdx 1d- +

1 Cx

(C or Cz)y z

d! CxS3 2 x
d - (C )

Fig. 4.16. Stability condition in the planes (Cx,dx) etc.
for an explicit scheme with donor cell differ-
encing of convection term in a general three
dimensional problem
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The following condition for C and R can be derived fromx x

Eq. 4.88 and Eq. 4.90.

[ - C (+2 - - ) (1-cose )) + [C sine ] < (4.92)
x R x x x

X

Equation 4.92 can be simplified as follows.

f(t) = C (1+K) 2 (l-t) - C K(l-t) + C ( l_1-t

2 2 2 22 2 2 22 22
= (C K-C )t2 + (2C K +C K)t + C K - C K

2
+ C < 0 (4.93)

2
where K = 1 +- andR

x

t = cosex

The stability condition is now that f(t) should be less than

or equal to zero for any t in [-1,1]

f(l) = 0 (4.94

2 2
D(Discriminant) = C (K-2C ) > 0 (4.95

The function f(t) satisfies Eq. 4.94 and Eq. 4.95, and has

distinct shapes for the Following three cases.

(1) C 2 K2 -1) > 0 concave upward
x

)
)

__LI___IIII__LI*X__ ID I--

)
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(2) C 2(K 2-1) = 0 linear

22
(3) C 2(K 2_-1) < 0 concave downward

For case (1) and (2), f(-l) should be less than or equal

to zero. For case (3) the axis of symmetry of the parabola

should be on the right hand side of the point, t=l. The

solution procedure is similar to those in the previous

sections and the results are given in the following as,

R > 0 : 0 < C < 2 and (4.96)
x x- 22(1+-)

x

R < -1 0 < C < (1+2-) . (4.97)
x x R

x

The results in Eq. 4.96 and Eq. 4.97 are shown in Fig. 4.17.

The same result will be obtained for the y-direction,

therefore the subscript x may be replaced with the subscript

y in Fig. 4.17. The stability condition in Fig. 4.17 is

applicable to all general 2-D problems, although it can

be relaxed if there is a constraint on the velocity direc-

tion and mesh spacings such that the following' relation is

satisfied.

V

f y- - < 1 (4.98)
u

Ax
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1 2
C - (1+ L)x 2 R

x

-2 0

x (C y

C =

2(1+ )

x

R (R
x y

Fig. 4.17. Stability condition in the plane (Rx,Cx) and
(Ry,Cy) for an explicit scheme with donor cell
ditferencing of convection term in a general
two dimensional problem
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1 1

1+f

1 0
-1-

f

x

C X
x 1

(l+f) (1+ )
x

x

V

where f =-y
u
Ax

Fig. 4.18. Stability condition in the plane (Rx,Cx) for an
explicit scheme with donor cell differencing of

convection term in a two dimensional problem
with f v

u/Lx
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Then the number on the C -axis in Fig. 4.17 should be

replaced with 1 in Fig. 4.18. Table 4.2 shows the com-l+f

parison between the analytical result in Fig. 4.17 and

numerical experiments.

4.4.4.2 Implicit Scheme

The following Eq. 4.99 is a fully implicit finite

difference equation for a general one dimensional problem

and the Von Neumann analysis will be applied in the same

way as in the explicit scheme.

n+l n n+l n+l n+l n+l n+l
S i + u i i -i= D i+l i i-i (4.99)

+xu D (4.99)t Lx 2

The stability condition is shown in Fig. 4.19 and

Fig. 4.20, and it can be seen that the implicit scheme is

unconditionally stable if the diffusion constant is greater

than - uLx.

d > - Cx (4.100)

For a general two dimensional problem, the stability condi-

tion is found to be the following.

dx > - Cx (4.101)

d > - C (4.102)
Y- y
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Maximum Stable C,

R Von Neumann Numerical
x Analysi s Experiments

0.833 0.147 0.180

8.333 0.403 0.540

83.333 0.488 0.660

833.3 0.499 0.660

-8.333 0.380 0.780

-4.167 0.260 0.720

-2.629 0.120 0.120

-2.083 0.019 0.060

Table 4.2. Comparison of the stability conditions in
terms of the cell Reynolds number by Von
Neumann analysis and numerical experiments
in a two dimensional explicit scheme with
donor cell differencing of convection
term
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-d = -x

d =- -Cx 2x

x 2x

Cx

d 1(C2+C )x 2xx

Fig. 4.19. Stability c-ndition in the plane (Cx,dx) for an
implicit scheme with donor cell differencing of

convection term in a one dimensional problem
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2C =-1 -
x Rx

-2 -1 0 Rx

-R
C -

x R +2

Fig. 4.20. Stability condition in the plane (Rx,Cx) for
an implicit scheme with donor cell differencing
of convection term in a one dimensional
problem
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4.4.4.3 ADI Scheme

There are two possible formulations of the Alternate

Direction Implicit (ADI) scheme given in Eq. 4.63.

One of the formulations has both the x and y direction

components in each step, treating them implicitly one by

one at each fractional step and the other formulation has

only the x or y direction component treated implicitly

in each step.

The Von Neumann analysis of the first formulation in

Eq. 4.63 gives the following stability condition.

2 _-

C C 2

{[(-cos )(-+d X))] [sine I2} {(1-cos6 )(- -- +d )]

C C 2 C
{[1+(l-cosex +dx)) +[fsinex }{[l+(1-cosy) (+dy) ) +

Y[siney }

(4.103)

jsj <1

In order for I;j to be less than or equal to one, the

following condition should be satisfied.

C
d > - (4.104)

x- 2



-118-

The same condition should hold for the y-direction.

C
d > - -  - 4 (4.105)

y- 2

The stability condition of the second formulation in Eq. 4.63

can also be given by the Von Neumann analysis as follows.

C
d > 2 x (4.106)

x- 2

C
d > - -~ (4.107)

y - 2

Therefore the second formulation of the ADI scheme in Eq.

4.63 has the same stability condition as the fully implicit

scheme.
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CHAPTER 5

RESULTS

Some calculations are performed to validate the physi-

cal models and numerical schemes in the previous chapters.

The physical models are tested in a natural convection

problem and the numerical schemes are tested in a simple

geometry to compare numerical solutions with exact solutions.

Finally, the ADI scheme is explored to -use a time step size

larger than the Courant limit to save the overall computa-

tional time.

5.1 Natural Convection Results

The containment is modelled as a two dimensional

rectangular compartment with an obstacle as a heat sink.

Natural convection occurs due to the heat transfer between

the obstacle and containment air. Updating of the reference

state, energy convection and heat transfer models are con-

sidered and the resulting flow fields are given in Fig. 5.1

and Fig. 5.2.

5.1.1 Updating of the Reference State

The state of air is determined by any two independent

properties. For example, density is determined by tempera-

ture and pressure. Since the natural convection of air

occurs as a result of the buoyancy force due to density
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-p ). 0.5 ft/sec

h = 1.8537x10-tu/ft20 F sec

(Cp) = 1.0 Btu/lbm 0F

(Q ob = 208.29 Ibm

A= 2 ft2

T. = 677.4 sec

AT = 100F

T . = 680Fair
T = 580F

Fig. 5.1. Natural convection flow field due to heat transfer
between the obstacle and air in the containment
at t = 10.8 sec
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> 0. 5 ft/sec

h = 1.8537x10- tu/ft2 F sec

(c p)ob = 1.0 Btu/lbm OF

(K )b = 208.29 ibm
2

A= 2 ft

T. = 677.4 sec1

AT = 100F

T . = 680Fair
T = 580F

ab

Fig. 5.2. Natural convection flow field due to heat transfer
between the obstacle and air in the containment
at t = 62.5 sec
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gradients, temperature and pressure are equally important

parameters in determining the flow field. The density

change of liquid, however, depends primarily on the tempera-

ture, not on the pressure because of a high modulus of

elasticity.

The equation of state of an ideal gas is given in

the following.

Pnew
new RTnew

(5.1)

Pnew = Pold

TtotalT +old c M
v  f,total

Told

Qcell
new old cv Mf,cell

where

Pold' Pnew: Density of the fluid at old and new time

steps.

Pold' Pnew: Pressure of the fluid at old and new time

steps.

Told' Tnew: Temperature of the fluid at old and new

time steps.

c : Specific heat of the fluid at constant

volume.
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Mf,cell, Mf.,total : Mass of the fluid in one cell

and in the total domain.

Qcell total : Heat input to the fluid in one

cell and in the total domain.

The VARR calculations 121] have shown that the magni-

tude of velocity can be affected by a factor two by updating

the reference pressure at every time step.

5.1.2 Energy Convection

Another difference between liquid and gas is the ratio

of the Specific heats, k = c /C . The value of k is 1.0

for liquid and 1.4 for air. Monatomic, diatomic and poly-

atomic gases have different values of k. Therefore, the

convection energy transfer should be in terms of enthalpy

instead of internal energy. The energy convection will be

underestimated by a factor of 1.4 when internal energy is

used for enthalpy in air flow.

5.1.3 Heat Transfer Modelling

The heat transfer to the obstacle is modelled as a

natural convection from a vertical surface. The Nussett

and Grashof numbers here are based on the axial length of

one computational mesh, but they may also be based on the

vertical height of the obstacle. An experimental correlation

is given in Eq. 5.2 in terms of the dimensionless numbers.
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Nu = C(Gr-Pr) n  (

3 2
Gr = gS(AT)L p2 (

Pr = 0.708 (air)

Gr-Pr C n

105 - 109 0.555 0.25

> 109 0.021 0.4

The following data are used to calculate the heat

transfer coefficient at the obstacle wall.

L = 2 ft

AT = 500 F

p = 0.0763 ibm/ft 3

5.2)

5.3)

g = 32.2 ft/sec'

-5
V = 1.2179 x 10 lbm/ft-sec

B = 1.923 x 10-3

Therefore,

Gr = 9.7134 x 108

Nu = 89.876

The heat transfer coefficient is given as,

h = 1.8537 x 10 - 4 Btu/ft 2 F.sec .

This may be a typical value for the natural convection heat

transfer in the containment without any phase change.
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The VARR input [21) requires the time constant of

the heat transfer instead of the heat transfer coefficient.

CQ = Cpob (T-T) (5.4)

where -CQ is the source term in the energy equation of fluid.

The time constant, T, can be obtained from heat balance

between the obstacle and fluid as follows.

(Mc )ob f(MC) obf (5.5)
hApo bob

where

M : Mass of one computational mesh.

A Heat transfer area between the obstacle and

fluid over one computational mesh.

pf Fluid density.

Pob: Obstacle density.

c : Specific heat at constant pressure.

h Heat transfer coefficient between the fluid and

obstacle.

Therefore,

T = 677.4 sec.

5.1.4 Turbulence Modelling

Laminar flow is assumed in obtaining the results in

Fig. 5.1 and Fig. 5.2. If the flow is turbulent, the heat
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transfer- to the obstacle will be enhanced and the diffusion

transport of momentum and energy will also be enhanced

in the containment air.

5.2 Numerical Diffusion

The truncation and cross-flow diffusion errors are

compared in a simple geometry where an analytical solution

can be obtained. The skew differencing and corrective

schemes are tested for various problems. Huh's formula

is compared with De Vahl Davis and Mallinson's in predicting

the magnitude of cross-flow diffusion. The corrective scheme

is tested in recirculating flow problems for mesh point and

mesh interface implementations.

5.2.1 Truncation Error and Cross-flow Diffusion

The truncation error diffusion is compared with the

cross-flow diffusion in a two dimensional, steady-state

problem in Fig. 5.3. The flow in Fig. 5.3(A) is parallel

with the mesh orientation so that no cross-flow diffusion

occurs. The results in Fig. 5.4 and Fig. 5.5 show that the

numerical solutions is close to the analytical solution and

the truncation error can be neglected. The flow in Fig.

5.3(B) is skewed at 450 to the mesh orientation and both

truncation error and cross-flow diffusions are included in

the solution error. Figure 5.6 and Fig. 5.7 show that

excessive numerical diffusion has occurred due to the
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- 0.0

B T_ -0.0
ay

=0. 0

BT S=0.0
x

BT aT- a(@x 2

2
+ )

a2
ay

Th= 10.0

a= 1.0

(A) AB=BC=5.0

u = 10.0

(B) AB=BC=5.0

u = v = 7.07

ST B T specified
=0.0

By

Fig. 5.3. Problem geometry for the two cases, (A) parallel
flow and (B) cross flow, for evaluation of numeri-
cal diffusion

(A)

(B)
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Analytic solution

Numerical solution with Donor Cell

T
10,

spatial
coordinate

Fig. 5.4. Comparison of the analytic solution and numerical
solution with donor cell differencing of
convection term in 10x10 meshes along the line
CD in Fig. 5.3(A)
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Analytic solution

Numerical solution with Donor Cell

spatial
C coordinate

Fig. 5.5. Comparison of the analytic solution and numerical
solution with donor cell differencing of
convection term in 6x6 meshes along the line
CD in Fig. 5.3(A)

ill I~LX-_L-~LI.~ I~.-__~ r.^XI __LL l.-~l .~
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Analytic solution

Numerical solution with Donor Cell

Analytic solution with D+Dfcf

T
10

spatial A
coordinate

Fig. 5.6. Comparison of the analytic solution, analytic
solution with increased diffusion constant and
numerical solution with donor cell differencing
of convection term in 10x10 meshes along the
line CA in Fig. 5.3(B)
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Analytic solution

Numerical solution with Donor Cell

Analytic solution with D+Dcf

T

10

/

/
,J

I

/

0 I'

C spatial A
coordinate

Fig. 5.7. Comparison cT the analytic solution, analytic
solution with increased diffusion constant and

numerical solution with donor cell differencing
of convection term in 6x6 meshes along the
line CA in Fig. 5.3(B)s' /,. ,/ 1/
line CA in Fig. 5.3(B)
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cross-flow diffusion. Figure 5.4 and Fig. 5.6 are for

10 x 10 meshes and Fig. 5.5 and Fig. 5.7 are for 6 x 6

meshes. It is seen that a finer mesh gives a better

solution. Since the cross-flow diffusion constant is pro-

portional to the mesh spacing, more diffusion has occurred

in Fig. 5.7 than in Fig. 5.6.

5.2.2 Validation of Huh's Correction Formula

The cross-flow diffusion can be predicted by Huh's

formula, Eq. 4.53 and Eq. 4.54. Since the corrective scheme

is based on the validity of those correction formulas, it

is necessary to test them for various cases.

Figure 5.6 and Fig. 5.7 show that the numerical solu-

tion can be reproduced by the analytical solution with

increased diffusion constants by the amount given by Huh's

formula. De Vahl Davis and Mallinson's and Huh's formulas

give the same cross-flow diffusion constants for the case,

6 = 6 = 450. The problem geometry in Fig. 5.8 has the

arbitrary angles of 6 and 61 such that 6 = 600 and 61

76.810. Figure 5.9 is the result by Huh's formula and

Fig. 5.10 by De Vahl Davis and Mallinson's for the problem

in Fig. 5.8. It can be seen that the former result is much

better than the latter.

5.2.3 Skew Differencing Scheme

Two skew differencing schemes, Raithby's and Huh's,

are tested in Fig. 5.11 and Fig. 5.12 for a simple pure
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Yo
2

T=0

D

8 Meshes

A

a = 1.0

Ax = 0.2406
by = 1.0267 e1 = 76.810

u = 5.0
v = 8.6603

DDM= 0.7674

DHu h= 3.335Huh

8 = 600

24 Meshes

Fig. 5.8. Problem geomctry with arbitrary angles of 6 and
81 to compare De Vahl Davis and Mallinson's and

Huh's formulas for prediction of cross-flow
diffusion constant
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Analytic solution with D+Dcf

Numerical solution with Donor Cell

spatial
coordinate

Fig. 5.9. Comparision of the numerical solution with donor
cell differencing of convection term and
analytic solution with increased diffusion con-
stant, (D+Dcf ), by Huh's formula along the line

BD in Fig. 5.8

T
10.

5

0
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Analytic solution with D+DDM

Numerical solution with Donor Cell

spatial
coordinate

Fig. 5.10. Comparision of the numerical solution donor cell
differencing of convection term and analytic
solution with increased diffusion constant,
(D+DDM ), by De Vahl Davis and Mallinson's formula
along the line BD in Fig. 5.8

T

101
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Donor cell Skew differencing
by Raithby

100

100

100

100

100

Skew differencing
by Huh

(True solution)

100 100 100 50

100 100 50 0

100 50 0 -0

Fig. 5.11.

100

100

100

100

100 100 100 50

100 100 50 0

100 50 0 0

50 0 0 0

50 0 0 0 0

V

0 0 0. 0

Comparison of the true solution and solutions
by donor cell scheme, skew differencing scheme
by Raithby and skew differencing scheme by Huh
in a pure convection problem with e = 45*
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87.5 68.75 50 34.38
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Donor cell

50 0 0

Skew differencing
by Huh

90.6- 59.3E 21.88 3.13

81.25 37.5C 6.25 0

62.E 1 2 .5 0 0

21 0 0

50 0 0 0 0

Fig. 5.12. Comparison of the

100

100

100

100

100

100

100

100

80.25 53.91 31.96 17.33

70.3' 40.71 20.99 10.01

55.5E 25.9 11.11 4.52

33.3: 11.11 3.70 1.2!

50 0 0 0 0

100

100

100

100

true solution and solutions
by donor cell scheme, skew differencing scheme
by Raithby and skew differencing scheme by Huh
in a pure co-vection problem with e = 63.430

Skew differencing
by Raithby

96.91 71.43 7.47 -23.1

90.74 38.89-22.83 6.50

72.22 -9.25 -1.86 2.26

16.67 -5.56 1.85 -0.6

True solution

100 50 0 0

100 25 0 0

50 0 0 0

25 0 0 0

63.430

100
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convection problem. The details of those schemes are

given in sections 4.3.1 and 4.3.2. Figure 5.11 has a flow

at a 450 angle with respect to the mesh orientation and

shows that the donor cell scheme introduces appreciable

cross-flow diffusion while Raithby's and Huh's skew dif-

ferencing schemes give the true solution. Fig. 5.12 has

a flow at a 63.430 angle and neither Raithby's nor Huh's

scheme can reproduce the true solution. It is indicated

that Raithby's scheme may give unphysical results in problems

with steep gradients of the quantity under consideration.

Some cross-flow diffusion has occurred in Huh's scheme, but

less than inthe donor cell scheme.

Figure 5.13 and Fig. 5.14 show that the analytical

solution can be reproduced by Huh's skew differencing scheme

for the case, 8 = 1e = 45*. Raithby's scheme is an Eulerian

method while Huh's scheme is Lagrangian. Therefore, the

former is conservative while the latter is not. However,

both of them are conservative in a uni-directional flow.

5.2.4 Corrective Scheme

The prediction formulas of the cross-flow diffusion

constants are validated by showing that the numerical solu-

tion can be reproduced by the analytical solution with the

appropriately increased diffusion constant. The purpose

of the corrective scheme is, however, to obtain the true

solution by subtracting the additional cross-flow diffusion
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Analytic solution

Numerical solution with Donor Cell

Skew differencing scheme by Huh

C spatial A
coordinate

Fig. 5.13. Comparison c f the analytic solution and numerical
solutions by donor cell scheme and skew differ-
encing scheme by Huh for 10x10 meshes along the
line CA in Fig. 5.3(B)
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Analytic solution

Numerical solution with Donor Cell

Skew differencing scheme by Huh

spatial A
coordinate

Fig. 5.14. Comparison of the analytic solution and numerical
solutions by donor cell scheme and skew dif-
ferencing scheme by Huh for 6x6 meshes along the
line CA in Fig. 5.3(B)

10

5

0
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constant from the total diffusion constant of the finite

difference equation.

In Fig. 5.15 numerical solutions are given for a simple

pure convection problem with various diffusion corrections.

The flow is at a 45* angle with respect to the mesh orienta-

tion. The full correction of the cross-flow diffusion gives

the true solution without any numerical diffusion error.

Fig. 5.16 has a flow with 8 = 63.430. The corrective scheme

gives a physically reasonable solution, although not identi-

cal to the true solution.

The corrective scheme is also tested in the problem

geometry of Fig. 5.3(B). Figure. 5.17 and Fig. 5.18 show

that the cross-flow diffusion can be eliminated by the cor-

rective scheme and that a finer mesh spacing always gives a

better solution.

Two implementation strategies of the corrective scheme,

mesh point and mesh interface, are introduced in Chapter 4.

Both of them are tested in a recirculating flow problem

with pure convection. Figure 5.19 is a hypothetical 3 x 3

recirculating flow field where the inlet boundary values

are specified on the left and bottom surfaces. Fig. 5.20

shows the diffusion corrections of the mesh point and mesh

interface implementations at each interface. Figure 5.21

gives the true solution, donor cell solution and the solu-

tions by mesh point aand mesh interface implementations.

The mesh point implementation gives an unphysical solution
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D=0. 0

8.75

D=-0.1
V ________

6.88 5

7.5 - 3.13

2.5 1.25

4.01 7.12 5.0

7.71 5.0 2.88

5.0 2.29 0.99

0 0 0

D=-0.3

9.59 7.92 5.0

8.29 5.0 2.08

5.0 1.71 0.41

D=-0.5 (True
Solution)

u=v=l

Ax=Ay=l

D =D =0.5
x y

Fig. 5.15. Donor cell solutions with various diffusion
corrections for a pure convection problem with
e = 450
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D=0. 0

True Solution

D-2 3

9.96 3.93 0.73

6.91 0.82 -0.07

3.07 0.41 0.11

V

63.430

u=l, v=2

x= y=l
2D =D =--x y 3

Fig. 5.16. True solution and donor cell solutions with
and without diffusion correction for a pure
convection problem with e = 63.430

10

10
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7.04 4.07 2.10

5.56 - 2.59 1.11

3.33 1.11 0.37
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Analytic solution

Numerical solution with donor cell

Solution by corrective scheme

spatial A
coordinate

Fig. 5.17. Comparison of the analytic solution, numerical
solution by donor cell scheme and numerical
solution by corrective scheme for 10x10 meshes
along the line CA in Fig. 5.3(B)

10
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Analytic solution

Numerical solution with donor

Solution by corrective scheme

spatial
coordinate

Fig. 5.18. Comparisoin of the analytic solution, numerical
solution by donor cell scheme and numerical
solution by corrective scheme for 6x6 meshes
along the line CA in Fig. 5.3(B)
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5

0
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10 5 0

1 1

1 3 3,

3 2

Fig. 5.19. Simple recirculating flow field for test of the
implementation strategies of the corrective
scheme
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/
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0.75 0 5

0.75 1.25 0

1.125 0 .625

0.5 0.625

0 0 .25

mesh point implementation

0.5 0.75

0.75 1.2

0.75 1.2

0 0

0

0 0

mesh interface implementation

Fig. 5.20. Diffusion coastant corrections at each interface
for the mesh point and mesh interface implementa-
tions of the corrective for the recirculating
flow field given in Fig. 5.19
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True solution Donor cell

mesh point implementation

-5.18 7.21 7.21

11.26 8.86 12.94

9.75 6.08 -9.51

mesh interface implementation

Fig. 5.21. Comparison of the true solution, donor cell
solution and solutions by the mesh point and mesh
interface implementations of the corrective
scheme for the recirculating flow field given
in Fig. 5.19

-0.83 6.16 6.16

9.82 8.10 8.10

10 5 0
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while the mesh interface implementation gives a physically

reasonable solution. The true solution cannot be reproduced

because some of the information about the flow field has

already been lost in Fig. 5.19.

Another test calculation is done for a two dimensional,

rectangular containment with an arbitrary recirculating

flow field. There was initially air in the containment

and steam is introduced in the source mesh at the rate of

0.2 kg/sec. After a while a flow field is set up in the

containment by the input mass and momentum of steam. This

flow field is used here to test the mesh point and mesh

interface implementations of the corrective scheme. Since

the steam concentration distribution and flow field are

given at the start of the calculation, the steam concentra-

tion for the new time step can be calculated in an explicit

way. Figure 5.22 shows the flow field in the containment

and more detailed information about the flow field is given

in Fig. 5.23. The steam concentration distribution at the

beginning is given in Fig. 5.24 in which the source mesh has

the highest steam concentration. Figure 5.25 and Fig. 5.26

show the diffusion constant corrections of the mesh point

and mesh interface implementations and Fig. 5.27 and Fig.

5.28 show the steam concentration distributions after one

time step, 0.3 sec with the corrections in Fig. 5.25 and

Fig. 5.26, respectively. The result in Fig. 5.28 is not a

reasonable solution while the mesh interface implementation

result in Fig. 5.27 is physically reasonable and even better
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Ax = 0.5m

Ay = 1.0m

Fig. 5.22. Recirculating flow field for calculation of
the steam concentration distribution in the two
dimensional containment to test the mesh point
and mesh interface implementations of the con-
vective scheme
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0. 3563 0.3 095 0.456 0.5174

0.7126 0.0937 1.531 0.1229 1.0348

0 2148 04 1379 0. 045 0 . 861

1.1422 0.2474 2.2159 0.1139 1.207

0. 0648 0.2216 0. 1317 0 .1385

1.0127 0.3253 2.3957 0.1276 0.93

0.2629 0. 5955 0.3074 0 .2190
SOURCE

0.4870 0.34 0.5893 0.0492 0.4920

0.2435 0. 0735 0. 2214 0 .2460

velocity [m/sec]

Ax = 0.5 m Ay = 1 m

Fig. 5.23. Detailed flow field for calculation of the steam
concentration distribution in the two dimensional
containment to test the mesh point and mesh
interface implementations of the corrective
scheme
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0.0819 0.1420 0.1750 0.1592 0.1085

0.0620 0.1178 0.1712 0.1266 0.0676

0.0358 0.1244 0.1710 0.0305 0.0346

0.0179 0.0298 0.1859 0.0095 0.0136

SOURCE

0.0049 0.0011 0.0002 0.0007 0.0031

Ax = 0.5m

= Im steam concentration in

Source: 0.2 kg/sec of steam

Fig. 5.24. Initial steam concentration distribution in
the two dimensional containment to test the
mesh point and mesh interface implementations
of the corrective scheme

by Ikg/m 3
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0.0 278 0. C209 0. 0227 0. 0396

0.1763 0.0794 0.0937 0.0311 0.1694

0.0 362 0.0224 0. 0086 0. 3106

0.1178 0.0731 0.1854 0.0440 0.1014

0. 116 0. 2422 0. 0488 0. 258

0.1279 0.0193 0.2740 0.0600 0.1451

0.0253 0.0311 0.0348 0.0255
SOURCE

0.1583 0.0590 0.1701 0.0300 0.1452

0.1 389 0.3262 0. 0152 0.0 183

Ax = 0.5m

by = Im

Diffusion constant in Im2/sec]

Fig. 5.25. Diffusion co.,stant corrections of the mesh point
implementation of the corrective scheme for cal-
culation of the steam concentration distribution
in the two dimensional containment
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0 0 0 0

0 0.9769 0.4732 0.0518 0

0.0192 0.0 76 0. 0706 0. 024-

0 0 0.3694 0.0479 0

0.0287 0.0 923 0.0215 0.0534

0.1149 0 0 0.0860 0.2134

0.0632 0 0 0. 0579
SOURCE

0.2529 0.1026 0 0.0443 0.2317

0 0.0 257 0.0 111 0

Lx = 0.5m

by = lm

Diffusion constant in Im2/sec]

Fig. 5.26. Diffusion constant corrections of the mesh inter-
face implementation of the corrective scheme
for calculation of the steam concentration
distribution in the two dimensional containment
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0.0947 0.1475 0.1733 0.1623 0.1243

0.0735 0.1135 0.1711 0.1321 0.0833

0.0448 0.1363 0.1706 0.0342 0.0465

0.0233 0.0342 0.1847 0.0107 0.0195

SOURCE

0.0068 0.0016 0.0003 0.0011 0.0046

Lx = 0.5m

Ly = Im

steam concentration in [kg/m 3]

Source: o.2 kg/sec of steam

Fig. 5.27. Steam concentration distribution after one time
step, 0.3 sec, with donor cell differencing
of convection term without any diffusion
correction
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0.0433 0.1247 0.1911 0.0250 0.0465
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SOURCE

0.0068 0.0005 -0.0092 0.0010 0.0042

Lx = 0.5m

Ly = Im

steam concentration in Ikg/m 3

Source: 0.2 kg/sec of steam

Fig. 5.28. Steam concentration distribution after one
time step, 0.3 sec, with mesh point imple-
mentation of the corrective scheme
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Source: 0.2 kg/sec of steam

Fig. 5.29. Steam concercration distribution after one time
step, 0.3 sec, with mesh interface implementation
of the corrective scheme
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than the donor cell solution. In the meshes at the top of

the source mesh, the steam concentration should decrease

as the flow goes up to the ceiling because most of the

steam introduced in the source mesh goes upward and gets

distributed by convection and diffusion.

5.3 ADI Solution

The ADI scheme is tested to use a time step size

larger than the Courant limit. Although the Von Neumann

analysis shows that the ADI scheme is unconditionally

stable, it has the maximum time step size that can give

a physically reasonable solution. It is found that a wise

use of the ADI scheme can reduce the overall computation

time in comparison with the explicit and implicit schemes.

The results of the ADI and explicit schemes are com-

pared in the problem geometry of Fig. 5.30. In Fig. 5.30

there is an inflow from the bottom surface at the velocity

of v=1.0 and the inlet boundary value of 4 is, =10.0.

There is a source of 4 on the right boundary over two compu-

tational meshes and the profile of Q along the dotted line

is affected by that source. Figure 5.31 shows the profiles

of 4 along the dotted line for the time step size of 0.5 sec,

when the Courant limit is 1 sec. The ADI and explicit

schemes give almost identical results during all the transi-

ent. Figure 5.32 shows the profiles of 4 at the same loca-

tion for the time step size of 1 sec, which is exactly the
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Fig. 5.30. Problem geometry for comparison of the
explicit and ADI solution schemes
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Fig. 5.31. Comparison of the explicit and ADI solutions for
the profile of along the line AB in Fig. 5.30
for Lt=0.5 sec and the Courant limit of 1.0 sec
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Fig. 5.32. Comparison of the explicit and ADI solutions for
the profile of 4 along the line AB in Fig. 5.30
for At=1.0 sec and the Courant limit of 1.0 sec
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the Courant limit. Initially, there is some deviation

between the two results, but it damps out rapidly and the

ADI scheme gives almost identical results with the explicit

scheme. No cross-flow diffusion corrections are involved

in the results of Fig. 5.31, Fig. 5.32 and Fig. 5.33.

Fig. 5.33 shows that the ADI scheme can use a time step

size up to five times the Courant limit. The deviation

for the time step size of 5 sec is expected to damp out

as the calculation goes over to the next time steps because

of the unconditional stability.
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CHAPTER 6

CONCLUSION

6.1 Physical Models

(1) The solution scheme presented in Chapter 2 has

been adequate for modelling the slow mixing stage in the

containment after a loss-of-coolant accident. The con-

tinuity/momentum equations are decoupled from the scalar

transport equations and solved by the SMAC scheme to obtain

the flow field. The mass diffusion, energy, and turbulence

equations are solved separately using that flow field.

The thermal equilibrium is assumed and the phase change

occurs to maintain 100% relative humidity, or superheated

steam as may be appropriate.

(2) The models of laminar and turbulent diffusions in

Chapter 3 may be adequate for predicting the hydrogen

transport in the containment. The total diffusion con-

stant is the sum of the laminar and turbulent diffusion

constants.

6.2 Numerical Schemes

(1) There are two numerical diffusion sources,

truncation error and cross-flow diffusion, in the finite

difference donor cell treatment of convection. Cross-flow

diffusion occurs due to the donor cell treatment of the

convection term in a multi-dimensional problem. The
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effective diffusion constants of the truncation error

and cross-flow diffusion are of the same order of magni-

tude, ~unx. The truncation error diffusion occurs in the

flow direction while the cross-flow diffusion occurs in

the diagonal direction of neighboring mesh points. The

gradient of the scalar quantity under consideration is

usually small in the flow direction in comparison with

that in the direction normal to the flow. Therefore, most

of the numerical diffusion error in a multi-dimensional,

convection dominant, recirculating flow problem is due

to the cross-flow diffusion.

(2) Two types of approaches, skew differencing and

corrective schemes, have been tried in order to eliminate

the numerical diffusion. The skew differencing scheme

gives good results for some problems, but not always.

It gives unphysical results for most recirculating flow

and coarse mesh problems. The inclusion of corner points

complicates the matrix structure and a fully implicit scheme

should be used for maintenance of stability. The corrective

scheme is based on the fact that the additional cross-flow

diffusion can be predicted theoretically for every mesh

at every time step. It is conservative and an explicit

scheme can be used without affecting the simple solution

structure. Therefore, the corrective scheme is generally

preferred to the skew differencing scheme.
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(3) Two implementation strategies, mesh point and

mesh interface, are tried for the corrective scheme. They

are identical in a unidirectional flow. The mesh interface

implementation is always preferred to the mesh point imple-

mentation in a recirculating flow problem. The results of

various sample problems show that the mesh interface imple-

mentation of the corrective scheme always gives a physically

reasonable solution with negligible numerical diffusion

error.

(4) The Von Neumann stability analysis is applied to

various finite difference forms of a general conservation

equation. The graphical method is used to obtain the

stability condition in terms of the Courant, diffusion and

cell Reynolds numbers, i.e., Cx, dx and Rx , using the

characteristics of a quadratic equation. The results of

numerical experiments are found to be consistent with the

Von Neumann analysis.

(5) The maximum time step size is limited by the Courant

condition in an explicit scheme. The Alternate Direction

Implicit (ADI) scheme can be used to increase the time step

size and decrease the overall computational effort.

Although the Von Neumann analysis shows that the ADI scheme

is unconditionally stable, it has its own limitations due

to the following factors.

First, the physical constraint in section 4.4.2 imposes

a maximum time step size that can give a physically
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reasonable solution.

Second, the ADI scheme is a fractional step method. The

asymmetry of the given problem may give different results

according to the sweeping sequence. For example, a steady-

state solution may never be reached due to the fact that

one time step is composed of a few fractional steps.
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CHAPTER 7

RECOMMENDATIONS FOR FUTURE WORK

7.1 Physical Models

Since both the laminar and turbulent flow regimes

are possible in a complicated geometry and flow field, it

is necessary to predict the flow regime in order to use

appropriate physical models. A criterion for the flow

regime should be developed in such a form that it may be

implemented into a computer code. The important parameters

may be the velocity, geometry (e.g., distance from the wall),

velocity gradient, previous time step information, time step

size, etc.

The flow regime criterion may be replaced with a model

that covers all the turbulent, transitional and laminar flow

regimes. The model should show proper limiting behaviors

as the Reynolds number goes to infinity (turbulent) and

zero (laminar). The modified k-E model in a low Reynolds

number flow may be a guide in this approach.

7.2 Numerical Schemes

There have been two approaches, skew-differencing and

corrective schemes, to eliminate the cross-flow diffusion.

They may still be improved further to get an accurate

solution in a transient, multi-dimensional recirculating

flow problem.
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Corrective scheme

The corrective scheme has been successful by the mesh

interface implementation strategy in the scope of this work.

More tests and validation calculations are required in

recirculating flow problems.

Skew differencing scheme

1. The conservative form of the skew differencing

scheme is complicated and time consuming in comparison with

the corrective scheme. It may be possible to develop a

reasonably simple form that may or may not include the

corner points. The solution in Appendix A may be a useful

guide in this work.

2. The stability of the skew-differencing scheme is

open to question in the explicit, ADI and implicit schemes

although only the implicit scheme has been used up to now.
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APPENDIX A

ANALYTICAL SOLUTION FOR THE PROBLEM IN FIGURE 5.3(B)

A steady state two dimensional energy conservation

equation without any source is given in the follbwing

Eq. A.1.

aT a2T 2aT
pc u = k(- + (A.1)

p x x2 2
ax ay

In Eq. A.1 convection occurs in the x direction and

diffusion occurs in both x and y directions. The boundary

conditions are specified in Fig. 5.3(B) and the constants

can be grouped into one constant, c, as follows.

ka=--
PCp

uC =2

2 2Therefore, Eq.. A.1 is reduced to the following form.aT a2T a22c-- 2 + 2 (A.2)
ax 2 yax ay

Equation A.2 is simplified further by substitution of 4 for

T as follows.

2 2x a 2
2 = c (A.3)

ax ay
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where

4 = e-CXT (A.4)

The boundary conditions should also be expressed in terms of

4 as given in Fig. A.1.

Equation A.3 can be solved by the method of separation

of variables. The variable 1 is separated into two vari-

ables, X and Y, which are functions of x and y only respec-

tively.

(x,y) = X(x)Y(y) (A.5)

Then Eq. A.3 is reduced to the following form.

I d2X 1 d 2Y 21 + C = c (A.6)
dx dy

The two terms on the left hand side of Eq. A.6 should be

equal to some constants because they are functions of x and

y only respectively and the sum of them is equal to a con-

2
stant, c

X = (A.7)
cx

2
d -Y c - a = - (A.8)

dy

where a > c > 0
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;-= 0
T i -- ii iiYO

h

YO + co = 0

4 = 0.0

0 x
= 0

Fig. A.1. Boundary conditions in terms of 4 for the

problem in Fig. 5.3(B) where 0 is given by,

4 = ec T
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The solutions to Eq. A.7 and Eq. A.8 can be easily

obtained as follows.

X = Cleax + C2 e-ax

Y = C3sin8y + C4cosSy

(A.9)

(A.10)

The boundary conditions in Fig. A.1 may be given in terms

of the variables X and Y as follows. The boundary con-

dition at x=0 will be considered later.

dY
dy Y=Oy=O

dY

dy=Y 0

(d _cX)dx

0 (A.11)

= 0

x=xO

(A.12)

(A. 13)= 0

In order to satisfy the boundary conditions given in

Eq. A.11, Eq. A.12 and Eq. 13, the constants in Eq. A.9

and Eq. A.10 should satisfy the following relations.

C 3 = 0 (A.14)

(A.15)ny0 = n

C2 _ n+c 2e nX

1 n
(A.16)(a n 9 C)
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where

2
n

2 n 2
=c + (O)

yO

2 2=c + 8 .

Therefore, the final solution can be expressed as follows.

-ax C ax
= A0e + Z A [e

n=l n

T(x,y) = e cx (x,y)

a +c 2a x -ea xn n 0 n
+ ( )e e ]cOSSnYa -c nn

(A. 17)

(A.18)

nr

n n

Since the boundary condition at x=0 should also be satisfied,

the constants A. are determined as follows.
1

Th

0 2.0

- 2 Thh 1 . nwA- sin-
n nr a +c 2a x 2

1 n nO0
1+( )ea -cn

(n=1,2,3 . . .)

where

(A.19)
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APPENDIX B

ADI SCHEME FOR MOMENTUM EQUATION

The ADI scheme can replace the explicit scheme in

the momentum equation in order to eliminate the Courant

condition for the time step size. When the tilde phase of

the SMAC scheme and other scalar transport equations are

solved by the ADI scheme, the computational effort for one

time step is greater than that of the explicit scheme.

Therefore, the time step size in the ADI should be at

least two or three times the Courant limit in order to

have a gain in the overall computational efforts required

for a problem. The time step size limitation in the ADI

scheme comes from the semi-implicit treatment of the non-

linear convection term. Since there are two steps involved

in solving the momentum equation in each direction, there

are six sweeps in a three dimensional problem and four

sweeps in a two dimensional problem. The sequence of the

sweeps is arbitrary and depends on the problem under con-

sideration. The most important sweep should be given the

first priority and most updated information.

The ADI scheme is applied to a two dimeraional

momentum equation in the following Eq. B.1-Eq. B.4. They

are formulated for a natural convection problem where the

gravity acts in the z-direction. Equations B.1 and B.3 are

the z and x direction sweeps of the x direction momentum

iillaY~i~~l_ ^YII^^~II ( -. i.--
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equation. Equations B.2 and B.4 are the x and z direction

sweeps of the z-direction momentum equation. The z direction

sweep of the z direction momentum equation is treated as

the last one in order to be given the most updated informa-

tion.

* n n *
u - u
Ui+D j -i+ j + i+ j+ Ui+ jDt

*
ui+ j+l

- Wi+ j Ui+ j 1

Az

- 2ui+. + Ui+ -12

Az

P n  *
- -- i+j i+ jui+4j

(B.1)

* n * *

ij+ ij+ + i+Ij+wij+
At

- 2ii+ + Wi-lj+
2Ar

n+l * * n+l
i+j - ui+ j u i+lj i+

At

n+l - 2 n+l n+l
ui+2 +2u j ui j

Ar2

ui-j+Wi-lj+

- 1P- n~

.P n  *
z - RZij+ ij+ ij+

(B.2)

* n+1- u .u

Lr

, RX * n+l
ar - Rxi+ jui+ jui+ j

(B.3)

Wi+1 j+
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n+l * * n+l
i+ wij+ i +lWij+

At

* n+l
zW. w

Az

n+l n+1 n+l
Wi.+ -2wi + w _P -P0 RZ n+l

z -z P -g z ij + wij+ 3wij+

(B.4)

Equations B.1, B.2, B.3, and B.4 have given almost

identical results with the explicit scheme for a time step

size below the Courant limit.
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APPENDIX C

COMPUTER PROGRAMS

The files, 'progl fortran', 'prog2 fortran' and

'prog3 fortran', are the computer programs for calculating

the numerical values of the analytical solution in the

problem geometries, Fig. 5.3(A), Fig. 5.3(B) and Fig.

5.8.

The file, 'difprg fortran', is the program for testing

the calculational logic of the mesh interface implementation

of the corrective scheme in section 4.3.4.2. There are

two different cases treated separately. When there are

inflow and outflow, or all inflows in x, y and z direction

mesh interfaces, the cross-flow diffusion constants can be

calculated in a simple way as in the first part of the pro-

gram. When there are two outflows in any of the x, y and z

directions, a flow split occurs as shown in Fig. 4.8.. In the

second part of the program the flow split is considered such

that every outflow velocity is partitioned into four compo-

nents in a three dimensional case in proportion to the velo-

cities of the four neighboring surfaces in contact with

the surface under consideration. All the inflow velocities

are assumed to be zero. The component velocities are used

to calculate the cross-flow diffusion constants for eight

subspaces in a three dimensional coordinate space. Then

four cross-flow diffusion constants at every interface are

summed up to give a total cross-flow diffusion constant
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because one axis direction, the positive x direction,

has four neighboring subspaces. The total cross-flow

diffusion constant can be calculated in the same way for

every mesh interface.

The subroutine 'tdm' solves tridiagonal matrix prob-

lems by forward and backward sweeps. It is used to solve

a one dimensional implicit finite difference equation in

the ADI scheme.

A portion of the VARR program is introduced to show

how the ADI scheme is implemented in the energy and

momentum equations. The ADI scheme for the momentum equation

is given in Appendix B.



-N

FILE: PROG FORrRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM

IMPLICIT REAL*0 (A-H.O-Z)
DIMENSION T(tO)

REAO(10.1 ) DX.NX.NY,Tl,U,ALP
II FOIRMAT(F7.2.215.3F7.2)

PI a 3.1415926536
C = U/(2.04ALP)
CSO . C*C
XO " NXOX
YO * NY*OX

YSO v PI*PI/(YO.YO)
CCOrrF 2.0*TII/PI
IHPI PI/2.0

DO 10 JJ-I,NY
SUM - 0.0

00 20 IPsi.26
II - IP - I

ALN = DSORT(CSO*II*II*YSO)
IF (II.EO.O) GO TO 55
ALNX - IALNIC)*DEXP(2.O*ALNXO)/(ALN-C)
COF * CCOFF/lI
AAN - -COF*DSIN(II*HPI)/(1.4ALNX)
ATOT , AAN*2.OALNOEXP(ALN.XO)/(ALN-C)
GO TO ,14

55 ATOT * THIODEXP(-ALN*XO)/2.0
44 YY I IIPI*(UJ-0.5)/NY

ADD * ATOTTDCOS(YY)
SUM v SUM + ADO

20 CONTINUE
T(d) * SUM * DEXP(C*XO)

10 CONTINUE

WRITE(G.100) (T(I).I=l,NY)
100 FOnMAT(IOX.5F11.3)

SlOP
END

PAGE 001

PROOOO0
PROOOO20
PROOO30
PROO0040
PRO000OOOO

P14000070
PRO000OGO
P11000090
POOOOT100
PROOOO10
PIIOO0120
PRO00130
PROOO140
PROOO150
PRO00160
PROO000170
PRO00100
P1,000190
PI00O200
PRO00210
PRO00220
PROO0230
P1ZOOO240
P1I000250
PROOO260
PROOO270
PROOO200
PROOO290
P11000300
PROO0310
PRO00320
PRO00330
PROOO00340
PRO00350
PROOO360
PROOO370
PROOO300
PROOO390
PROOO400



FILE: PROG2 FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM

MPI. IC1l REALi0 (A-II,0-Z)

DIMENSION TII(10). TL(10), GH(10), GL(10). TC(IO)

READ(10.11) DX. NX.
11 FORMAT(F7.2.215,3F7

PI - 3. 1415926536
C - U/(2.OALP)
CSO = C'C
XO * DX'NX
YO " DXNY
VSO " rPI*P/(YOYO)
CCOTF = 2.OTH-IH/PI
11PI = PI/2.0
NY2 - NY/2.0

XXX - 1.0
RTO = OSORT(XXX)

DO 10 JJ=1.NY2
SUMO - 0.0

SUMI r 0.0
SUM2 = 0.0
SUM3X 0.0
SjU3 " = 0.0

SUMaX • 0.0
SUM4 = 0.0
X = (JJ-O.5)*DX
XN = X + XO/2.0

YC = (JJ,2-1)*DX
vI = X 4 YO/2.0

Y2 = YO/2.0 - X
Y3 = 1.5*YO - XN

Y4 = XN - O.5+YO

NY. TH14, U, ALP
.2)

00 20 IPs1.21
II 

= 
IP - I

ALN = DSORT(CSO + IIII*YSQ)
EXALO = DEXP(ALN*XOO.5)
XALO = DEXP(-ALN*XO*O.5)
EXAL = OEXP(ALNOX)
XAL = DEXP(-ALN'X)
EXALN D EXP(ALN*XN)
XALN = DEXP(-ALNXN)
IF(II.FO.O) GO TO 55
ALNX - (ALN#C)*DEXP(2.O*ALN*XO)/(ALN-C)
COF = CCOFF/II
AAN - -COF*DSIN(II*HIPI)/(I.+ALNX)
BEN 1 1*PI/YO
YOO - DCOS(BEN*YC)
YI - DCOS(BEN*YI)
Y22 • DCOS(BENY2)
Y3C OCOS(BEN*Y3)
Y3S - DSIN(BEN+Y3)
Y4C - OCOS(OEN*Y4)
Y4S DOSIN(3EN'Y4)

ADO * AAN*(EXALO + ALNX*XALO)*YOO

p A

PAGE 001

PROOOO O
PRO00OO20
P R 000030PROOOO40
PROO00SO
POOG0050
PROOOO000

PROOOOOO
PROO0090
PIR000 100
P11000110
PRO00 120
PROOO 1.30
P1OOO 140
POOO00150
900440

PROO0170
PRO00180
PROOO 190
PROO0200
PROOO0210
PROO0220
PROOO230
PRO00O240
PRO00250
PR11000260
PRO00270
P1O00200
PR000290
PROOO300
PROO0310
PR000320
PROOO330
PROO0340
PRO00350
PROO03GO
PROO0370
PROOO300PR000390

P11000400
PROOO4 O
PROOO420
PROO0430
PROO440
POO450
PI0OO0460
PR000O470
PROO0480
PR000490
PROOOSOO
PR00510

PROOO520
PR000530
P1OOO00540
PR000550
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FILE: PROG2 FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM PAGE 002

ADOI w AAN*(EXAL+ALNX*XAL)*YII PROO000560
AD02 - AAN*(EXALALNX*XAL)*Y22 PROO0570
ADO3X v AAN*((C+ALN),EXALN + ALNX*(C-ALN)*XALN)*Y3C PROOOS80
ADO3Y * EN*AAN#(EXALN . ALNX*XALN)*Y3S PROOO590
ADD4X * AAN*((C+ALN)*EXALN + ALNX*(C-ALN)*XALN)*Y4C PROOO600
AIDD4Y * -EN*AAN*(EXALN + ALNX*XALN)#Y4S PROO0610
GO TO 77 PROOOG0620

55 AOOI = TIIH*XAL*O.5 PR000G30
A)DO * TIHl'XALO*O.5 PROOO640
A002 * TMI-IIXAL0.5 PRO0650
ADO3X 0.0 PRIOOOG60
ADO3Y * 0.0 PROOG0670
AOOX a 0.0 PROOO680
ADOvY * 0.0 PROOOG90

77 SUMI = SUMI + ADO PROOO700
SIIMO a SUMO + A000 PROOO7 O
SUM2 a SUM2 + A002 PROO0720
SUM3X = SUM3X + A00O3X PROOO730
SUM3Y w SUM3Y + ADD3Y PROO00740
SUM4X s SUM4X + AOO4X PROOO750
SUM4Y a SUM4Y + ADO4Y PROOO7GO I0760

20 CONTINUE 1PI000770 00
C PROOO700 oo

TC(dJ) - SUMO*DEXP(C*XO0O.5) P000790 I
THI(JJ) - SUMI*DEXP(C*X) PROO000000
TL(J) - SUM2*DEXP(C'X) PROOOIO1
G-i(JJ) = (SUM3X+SUM3Y)*DEXP(C*XN)/RTO PIOO000120
GL(dJ) = (SUM4X+SUM4Y),DEXP(COXN)/RTO PROOO030

10 CONTINUE PROO0040
C PROO000050

WI ITE(6.tOO) (TC(I).II.NY2) PROOO060
WRITE(. 1OO) (TH(I).I-I.NY2) PROOO870
WRITE(6.tOO) (TL(l).I = I,NY2) PROO000
WRITE(6.100) (GH(I).I-I.NY2) PROOO090
WRITE(G6.00) (GL(I).I = t.NY2) PRO00900

1OO FORMAT(IOX.SFII.3) PROO0910
PROOO920

STOP PRO00930
ENO PR000940
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FILE: PROG3 FORIRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM

IMPLICIT REALtO (A-H.0-2)
DIMENSION 111(10). ( 10). TL(IO). G1(10). GL( O). TC(1tO)

C
READ( 10, I 1) DX. NX. NY. TI-Il. U. ALP

11 rORMAT(F7.2.215.3F7.2)
PI = 3.1415926536
C = U/(2.0*ALP)
CSOQ C*C
XO = DX'NX
YO = DX*NY
YSO = PI*PI/(YO*YO)
CCOFF = 2.OtTIIIM/PI
HIPI = PI/2.0
NY2 = NY/2.0
nRo - SO5T(2.0)

RT3 = SORT(3.0)
C

DO 10 00=1.NY2
SUMO = 0.0
SUMI = 0.0

SUM2 = 0.0
SUM3X = 0.0
SUM3Y = 0.0
SUM4X = 0.0
SUM4Y = 0.0
XC=Y0/(2.0*RT3)+(J-0.5)*(XO-YO/1r3)/NY2
YC=(J-O.5) * (YO/3.O' XO/RT3)/NY2
XI=(dJ-0.5)*(XO-YO/(2.0*RTJ))/NY2
YIYO/2.0+(dJ-O.5)*(XO/RT3-YO/6.0)/NY2
X2=(JJ-0.5)*YO/(2.0*RT3#NY2)
Y2=YO/2.0-(JJ-0.5)*YO/(2.0*NY2)
X3-YO/(2.0,RT3)+(dJ-O.S)#(XO-YO/(2.0*RT3))/NY2
Y3=(JJ-O.S)*(XO/RT3-YO/6.0)/NY2
X4-XO-YO/(2.O*RT3)+(JJ-O.5)YO/(2.*0RT3#NY2)
Y4=YO/3.0,-XO/RT3- (dJ-0.5)YO/(2 .O*NY2)

.- C

00 20 IP=1.22
II IP - I

ALN = DSORT(CSO + II*laIYSO)
Ir(II.EO.o) GO 10 55
ALNX = (ALNwC)tDEXP(2.O*ALN*XO)/(ALN-C)
COF = CCOFF/II
AAN = -COF*OSIN(II'HPI)/(I.+ALNX)
OEN = II'PI/YO
YOO - DCOS(UENOYC)
YIl DCOS(OEN'YI)
Y22 - DCOS(iEN*tY2)
YV3C = DCOS(BEN'Y3)
Y3S = DSIN(BENtY3)
YAC = OCOS(3EN*Y,4)
Y4S = DSIN(6ENlY4)
ADDO=AAN*(DEXP(ALN*XC)4ALNX*DEXP(-ALN*XC))*YOO
ADDI-AAN9(DEXP(ALN*XI)+AI.NX*DEXP(-ALNXI))*YI I
ADD2-AAN*(DEXP(AI.N*X2)+ALNX')OEXP(-ALN*X2))*Y22
AD003XwAAN((C+ALN)*DEXP(ALN9X3)4ALNX*(C-ALN)*DEXP(-ALNtX3))Y3C

PAGE 001

PROOOO10
PROO0020
PROO0030
PROO0040

PnOOO050
PROOG000
P000O070
PROOOOOO13100000

PROOO0000

PRO00110

PROO000120
PROO000130
PROO0140
PROOO150
PR000O160
PR00O170
PR000100
PROO0190
PR000200
PlO00210
P11000220
PROO0230
PROO0240
P1000250
PROOO2GO
PROO0270
P11000200
PROO290
PR000300
PROO03 10P 11000310
PROOO320
PRO00330
PR00OO340
PROO0350

PR00360
PRO00370
PROOO3UO

P(1000390
P000400
PRO000410
PROO420
PR000430
1R'000440
P1100050
PR00O4GO
PROO0470
PlOOO400
POO11000490
PROOOSOO
1100005 10PROOO520
P0000520
P1OO0530
PROOO040
P1000550

00



VM/SP CONVERSATIONAL MONITOR SYSTEM

AO3Y=BEN*AAN*(DEXP(ALN*X3)4ALNXODEXP(-ALN*X3))*Y3S
ADI)4XAAN*((CALN)*DEXP(ALN.X4) ALNX*(C-ALN)*OEXP(-ALN*X4))*Y4C
ADO4Y- OEN*AAN(DEXP(ALN*X4)4ALNX*)DEXP(-ALN*X4))*Y4S
GO TO 77

55 ADDO-TIII-I*DEXP( -ALN*XC)*O.5
ADDH11-H*DEXP(-ALN*XI)*0.5
ADD2TtII#DEXP(-ALN*X2)*O.5
ADO3X = 0.0
ADO3Y = 0.0
ADDOX a 0.0
ADO4Y = 0.0

77 SUM1 - SUMI + ADO
SUMO w SUMO + ADO
SUM2 a SUM2 + A002
SUM3X * SUM3X + ADD3X
SUtM3Y = SUM3Y + ADO3Y
SUM4X * SUM4X + ADD4X
SUM4Y * SUM4Y + AO04Y

20 CONTINUE

TC(JJ)=SUMO*OEXP(C*XC)
TtI(JJ)=SUMI,0OEXP(CXI)
TL(JJ)=SUM20+EXP(CX2)
GL(JJ)=(SUM3X*O.5+SUM3Y*0.5*RT3)*DEXP(COX3)
GHi(JJ)-(SUM4X#O.5*RT3+SUM4YtO. 5)*DEXP(C*X4)

10 CONTINUE

WRITE(6.100) (TC(I).I-1.NY2)
WRITE(6.100) (TH(I).1-1.NY2)
WRITE(G.1OO) (TL(I).I-=.NY2)
WRITE(6. 100) (GI(I).I= .NY2)
WRITE(6.100) (GL(I).I=I,NY2)

tOo rORMAT(IOX.SF11.3)

STOP
ENO

PROOOSGO
PROO00570
PR1000500
PROO000590
PROOOGOOP1100000,

..PROOO6tIO
P1I000620
PROO00630
PRO00640

PROO0670
PR000600
PROOOG90
PRO00700
PRO000710
PROO00720
PROO0730
PROO00740
PROO00750
PR 00760
PROO070

PRO00790

PRO00810

PRO00020
P'11000830
P1i000840
PROOO00OSO
PRO006O
PROO00070
PRO0000
PR000890
PRO00900
PROOO0910

FILE: PROG3 FORTRAN A PAGE 002
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O FI'IlG FOITIAN A VM/SP COINVERSATIONAL MONITOR SYSTEM

DIMENSION VELX(0).VELZ(0).VELT(O),DIFRA(0)1,IFZA(0),DIFTA(0)

REA( 10O.5) DELR,DELZ.DEL'TII.UM.UP,VM.VP.WM.WP

1SI * 0
152 - O
15S3 - O
151 4 0
ISS1 O
156 O

RFGRI = 0.0
RFGCR 0.0
RFGTI - 0.0
RFOT 2 0.0

OMTI m 0.0
OMT - 0.0

IF(UM.LT.O.0)
IF(UP.GT.O.0)
IF(VM.LT.O.0)
IF(VP.GT.O.0)
IF(WM.L1.0.O)
IF(WP.GT.O.)

ISI - t
IS2 = 1
IS3 = i
IS4 v 1
155 -*
ISG - I

ISA - ISt + IS2
ISO IS3 + IS4
ISC ISS5 + ISG

UI = -0.5+( UM
U2 - 0.5*( UP
VI -0.5*( VM
V2 - 0.5*( VP
WI * -0.5.( WM
W2 - 0.5*( WP

- AOS(UM)
+ ABS(UP)
- AOS(VM)
+ AOS(VP)
- AUS(WM)

+ AOS(WP)

IF( ISA.EO.2.OR.IS .EQ.2.OR.ISC.EO.2) GO TO 00
UU * UI + U2
VV - VI + V2
WW = WI 4+ W2
PPX - UU/DFLR
PPZ * VV/OELZ
PPT - WW/DELTII
PSUM - PPX $ PPZ + PPT
IF( PSUM.EO.O.0 ) GO TO 500

DIFR - UU*DELR*( PPZ + PPT )/PSUM
DIFZ * VV*DELZ*( PPX + PPT )/PSUM
DIFT - WW4DELTII#( PPX + PPZ )/PSUM

RiFGII - DIrn*ISI
rGR - DIFII'IS2
RfGTI - DIFZ'IS3
RFGr * DIFZ*IS4
bMtt ; bt ts

-FILE: PACE 001

DIFOOOIO
DIFOOO20
DIFOOO30
OIF0040
011:O0050
DIFOOOGO
DIF00070DIFOOOTO

DIF00110

n I FOO 130

DI F 00170DIFOO IGO
DIFOO00190DIFOOlOO

01o00200
DIF00210
DIF00220
DIFOO230
DIFOO240
DIF00250
DIF00260
DIFO0270
DIF00200
OlFOO290
DIFOO300
DI F003 10
DIF00320
DIFOO00330
DIF0340
DIF00350

01F00370

D)1F0030
D roo390
DIF00400
DIFOO4 IO

1FOO00420
I) FO0430

DIFOO440
DIFOO450
DIFOO4GO
)DIFOO470
D r004flO
DIFOO4O

DIFOO500
DIFO0510
DIOO00520
ODFOO530
DIFOO540
DIF00550

C

C

C

C

I-

'-I



FILE: DFPRG FOTRAN AVM/SI' CON4VERSATIONAL MONITOR SYSTEM PG 0

OMT a 0IFT'156
GO TO 999

*0.0
-0.0

(UI+U2).NIE.0.0
(Vl*V2).NE.0.0
(W1#W2).NC.0.o

VELX( 1)
VCL~X(7)
VELX(3)
VCLX(4 )
VEIX(S)
VELX(6)
VIELX(7)
VELX(0)

VEL7( I)
V El. Z(2)
vrI-.Z (3 )
VELZ(4)
V E L ( 5 )
VELZ( 6)
VELZ(7)
V EL Z( 0)

VrELT( I)
VELT(2)
VELT( 3)
VELT(4)
VELT(5)
VELT (6)
VELT (7)
VELT (0)

PFX - U1/(UI'U2)
i'rz - Vt/(VI14V2)
PFT - Wl/(W14W2)

Ut 'PFZ .PFT
u i.( i.o-PF7Z)'PFT
UIs .I-PFZ)s( 1.0-PFT)
U I PFZ (I 1.0-PFT.)
U2 4PF Z PET
1J2'( 1.0-PFZ)*PFT
U20( 1.0-PFZ)'$( .0-PFT)
U2*PFZ*( 1.0-PET)

Vt .PFX*PFT
V2* I'F X'PF T
V2,o 'FX'( 1. 0-PET)
Vi*PFX*( 1.0-PET)
Vl*( 1.0-PFX)*PrET
V2*( 1.0-PFX)#PFT
V2-( 1.0-9'FX)#(t1.0-PFT)
V t.( .O-PFX)O( I .- PFT)

WI#PI'X#PFZ
WI'*ix( .0-PFz)
W2 &1EX'&( 1.0O-PF Z)
W2 *P F X' IF Z
WI',( 1.0-PFX)'PFZ
Wt'(I.0-PFX)#(t.0-PFZ)
W20( 1.0-PFX)o( t.0-PFZ)
W2$( t.0-PFX)*PFZ

DO 30 1-1.0
PPX - VELX( I)/I)ELR
PPZ - VELZ(I)/DELZ
PPT - VELT(I)/OELTH
PSUM a PPX + PVZ + PPT
IE( PSUM.EQ.O.0 ) GO TO 600
DIFRA(I) - VEU.X(I)'DELR*( PPZ + PPT )0'PSLJM
DIFZA(1) m VELZ(I)*DELz#( rrX +- PrT )/PSUM
DIFTA(I) - V(LT(I).DELTH.*( PPX + PPZ )/PSUM
GO TO 30

600 OIFRA(I) - 0.0
oirZA(l) - 0.0
oiETA(I) - 0.0

30 CONTINUE

RFGRI - DIFRA(5) + DIFRA(6) + DIFPA(7) + OIFRA(fl)
RFGR v DIFfIA(t) + DIFRA(2) + OIFRA(3) + OlfRA(4)
RFCTI aDIFZA(2) + OIFZA(3) + DIFZA(6) + DIFZA(7)

00 PFX
PF Z
Pr T
I r

I r

DI F00560
DIF00570
DoI r ooseo
01F00590
DirooGoo,
oi rooG to
Dl F00G20
D1F00630
01F00640
DIFO00650
oDI roofGo
oir00670
nir006s0
mro f0069
ot rooioo
DIF00710o
011'00720
DIF00730o
DI F00740
ui roo75o
DI F007GO
ui FO0llO
DIF 00700
0D F00190
0117OO8OO
OIFOOII10
o)1roos~o
OI F001130
DI FOO 40
otrooaso
01 roooGo
Dl FOOD 70
Dl FOODO
DIFOOR90
0 fF00900
01 FO009tiO
01F-00920
DIFOO930
oDIF 00940
OlE 00950
Di FOO960
Dl F00970
0 F 009-0
01 F00990
oiro0tooo
DIFO 10 tO
011:'01020
DIFO 1030
01 FOt040
DO 1050s
DI FOtOGO
DIFO 1070
DIFO 01000
01 FOtO0J0
OIFOi tOO

FILE: DIFPRC', ronTRAN A PACE 002

r % I



FILE: OIFPRG FOR TRAN A

RFGT
OMrt
OMT

= DIFZA(1) * DIFZA(4)
a DIFTA(3) + OIFTA(4)
- DIFTA(1) + DIFTA(2)

VM/SP CONVERSATIONAL MONITOR SYSTEM

DIFZA(S) + DIFZA(0) DIFOi
D DIFTA(7) 4 OIFA(D) DIFOI

4 DIFTA(5) I DIFTA(6) DIFOI

WIllTE(GG) RFGRI .RFGR.RrGT I .RFGT.OMT I .OMT
GO TO 200
WRITE(G.7)
FORMAT(9F5.2)
FOIMAT( III .2X.6F5.2)
FORMAT( ItII .20X.511S ORRY)
STOP
ENO

oDIFO 140
DIFO 150
DIFOI 160
DIFO 170
DIOt t0100oo
oIro 190
DIFO1200

DIF01220

I,

999

500
5
G
7

200

PAGE 003

IfO
120
130

I

I



SUarIouT INE TDM(A .0.C ,D.XN)

DIMENSION A(N) .o(N).C(N).O(N).X(N),P(400).0t4O01

X( I ) - I~)
0(i1) 13( )
NM I *N -I

00) 2 1-I.NMI
P( 1+I) -A( 1+1 )/0( I)
0(11-1) N(I+ I) -P( 141)#*C( I)

X(N) *X(N)/0(N)

DO 3 1-I.NMI
K-N - I

3 X(K) a (X(I() - X(K41)*COK))/O(K)
RE TURN
END

VAR09Z350

VAflo9:160
VA1109370
VA11093001
VAI.1O9:190
VA1109"IO()
VAn0094 t
VA11O0d1O
'4A110943?0
VAIIW14 40
VAfl0O450
VAI*0946)
VAI?94 70)
VAR0O9400
VAR094 90
VAIR095C
VAflfO!'j 10
VA110IJ520
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C "hT.. U AND v LDE VELOCITY EDU.TIONS SECT ION
C

]F(ICLL-].EO.1) GO T0 49998
C A D SOLUTiON FOR SIE. 1CONV,3.4
C

C !ST SwEEP IN X-DORECTION
!KS'-= a DOR-KS

K1 2

K12 KEP

C CRO5S-FLD'- DFFUSI'O CONSTA'NT CLLCULATION
DO -O40000 =.JSP2
DO 4000 K- I.KBP2

;K t " (3;- )-K2NC " (K-i)-'NWPC

-KXX a jK - K2NC
JKZ2 - ]K - NPC
]F(K.E0..O;.LE0. 1) GO TO 400 o1

IF(K.EO.KS 2.CR.I.E0.0.P2) GO TO 40002
LUG = LS(O.S ( U(iK)*U(-KX)))
..G - ,S(0.5-(V( K)*:(.KZ2)))

rooOT UC- '-S( U(]K) )

00G2 LUGc .S( U(3KXX) )
4 .C - L!S( -(]KZZ) )

0005 FP" * .E-1O
IF(.UG.LT.PM..ItD.L.G.LT.P.) G0 TO rOOiC

D',FFX ( .K) a LUGDX.-VG-RD2/(.UG, DA-'' G, D2).xx'.

DNF.F2(J.K) • AVG.2D -LUG-RDX/(AUGOX +~D-G'RD)' .:X

GO TO 40000
"0OO D,-FX(3.K) * 0.0

D'rF2( I .K) z 0.0
OOC COI~'T2]'UE

C

VAR17980
VAR 7 990 •
VAR i8000
V/R 160O0
VAR 8010
VA 18020
VAR1C030
VR180^0

vR 14BO1O
VAR, I O50

VI8090

V RIS150

VAR, iB10 .

vtR I5S0 I

VLRi 1210

vAR1E230
VAR E20
VAR P182

vLR a210
VAR E220

VAR-;E230



-196-

C

RD20 RDZDRD2

3F(3~..0.1.R2CLI.E.2)GO TO 29990-
3 KS-0 a SRKSr-I
S 3G'~ to * a N
BUOJY a LP0-E7.P( TJ"'.ET/TADD3

3F~lDw.E003 GO TO50205

DO E0100O 222.]BR
"00 Z-0100 K=2.KSPI

) K ( ',- I) -K2WC' +

I KL - I I-I)-K NC
!PK a lK *K2NC

I KLS a3)K - NP
31. KS z lK - 2 I

I KP a I K N 1--PC

UL
UR
UT

DCR

DCL

ULH

(K- I ) I KIPC
# (K-I)'tN'PCL

UD( 3K)

Uo PK)
UD( 3 KP)
U0( 3KMS)
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UO(IPK) ),0.5
uJD(2K) -UODUMKS) )r0.5

CON'. a ( IR-'-(L'C-4UV) * .-S(Uft-H)-(UC-UQ) - ULWM'(uLLIC)

VAR 8340:

VARIS5360'

V AR i !-:-0,

VALR i S..1

VAR IS420

VL-O IS440

1A -054 0;

VAR16D

VAR 11510
VARi18520

VAR 185501
YLR 15560
VAR 1C570

VARias590

VAR 86201

VARi1Es30.

-VL21S660.

VLRIE6-t0
V4RI15650
VAR 15690
VARIE *7 DO.

C
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IMKS ]K - K2NC
IKt.$ - ]K - NWPC

DCT 3

DC. =
WRT 3

WRS

DIFFCO(IKL+1)
DIFFCD(IKL+3)
(W(3K) + W(iPK))-O.'5
(W(1KMS) * W(IPK-NWPC))-O.5

AI(J) a 0.5-RD02( -WRe - AeS(WRB)) - SIGMhARDZDODCB
E1(J) = RDT * 0.5-RDZ*( VRT * ASS(wRT) - VRE + ABS(WRB) )
1 * SIGMA*RDZD,( DCT + DCS )
C1(J) a 0.5*RD2-( WRT - ABS(VRT) ) - SIGIArRDZD3DCT
01(J) a U(IK)-ROT

81000 CONTINUE
C

CALL TDM(A 1. .C1 .0.X.IKBR)
C

00 l8100 I=2.IBR
DO 81100 K-2.KSPI
]K = 1 + (1-1)-K2NC + (K-I)-NWPC
1X a (1-2).KBR + K -

81100 U(IK) a X(IX)
C

DO 82000 K=2.KER
D00 82000 1-2.1SP
J a (K-2)]IeR * 1 - 1
]K -£ + (1]-)-K2NC + (K-i)-NWPC

IKL a 1 + (1-)'K2NCL + (K-1)-NWPCL
C

IPK - ]K + K2NC
IKP a 1K + NWPC
1MKS ]K - K2NC
1KIAS = K - NWPC

C
DCR - DIFFCO(IKL)
DCL a D0FFCD(IKL+2)
URT x 0.5-( U(IK) + U(]KP) )

ULT a 0.5-( U()]KS) * U(IMKS+NWPC) )
C

Ai(J) = 0.5*RDX-( -ULT - ABS(ULT) ) - SIGMA-RDXD*DCL
81(J) - ROT * 0.5-RDX-( URT ACBS(URT) - ULT * ABS(ULT) )
1 + SIGMA-RDXD,( DCL * DCR )
C1(J) z 0.5,RDX,( URT - EAS(URT) ) - SIGt.'-RDXDDCR
D01(J) - W(1K)-RDT

82000 CONTINUE
C

CALL TDM(A .8e1.C1.DI.X.KBR)
C

DO 82100 Ka2.KBR
DO 62100 1=2.16PI
1K a 1 * (]-i)-K2NC + (K-1)NWPC
IX x (K-2)-ISR + I 1

E2100 W(]K) * x(Ix)

00 823000 K2.,Ke1P

VAR 19260
VAR 19270
VAR19 280vLRlg2O
VAR 19290
VAR19300.
VAR19310
VAR19320
VAR19330
VLR193AO
VAR19350
VAR19360
VAR1S370
VARie380

VAR 19390
VAR19400
VAR 194 10 :
VAR19420
VAR19430
VAR19440
VAR19450
VAR19460
VAR 19470
VAR19480
VAR19490
VAR19500
VR 19510
VAR19520
VAR 9530
VAR 19540
VAR19550
VAR19560
VAR19570
VAR19580
VARi9590
VAR19600
VAR19610
VAR19620
VAR19630
VAR19640
VAR 19650
VAR19660
VAR19670
VA2 1960O
VAR 19690
VLR 19700
VAR19710O

VAR19720
VARIC720
VAR197540

VARS19760
VR 197 70
VAR19780
VR 19790
VAR19800
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CALL TDM(A ,B.Ci.D1.X.IKBR)

DO 84100 l=2.1SP1
00 84100 K-2,KSR
IK a I + (I-1)*K2NC + (K-i)*NWPC

IX - (1-2)-(KER--1) + K - 1

84100 W(JK) a X(lX)
C
89999 CONTINUE

IF(ICONV.LE.2.0P.1CALI.EO.1) GO TO 2040

ISEO = ISEO + 1

IF(ISEO.EO.NSEO) 15E0 a 0
33333 CONTINUE

DO 60000 K=Ki.K2
DO 60000 13a1.12
J . IBR-(K-2) + I ' i
IK = (1-i)-K2NC + (K-1)-NWPC

IKL a 1 + (1-1)-K2NCL + (K-1)-NWPCL

RC a FLOAT(I-1)bDX - HDX

RRC a I.0/RC
OR = CYL-0.25*RRC
CYRX = CYLO0.5-RRC*RDX

CFC - CF(UK)
IF (CFC.NE.I) GO TO
DCR - DIFFCC(IKL)
DCT - DIFFCO(1KL*i)
DCL a D!FFCO(1KL+2)
DCB * D]FFCO(JKL*3)
]PK a ]K + K2NC

)KP a IK * NWPC
7]KS = 1K - K2NC

IKMS = IK - NWPC

55000

VAR203G0
VAR20370
VAR20380
VAR20390
VAR20400
VAR20410 .
VAR20420;
VAR20430
VAR20440
VAR20450
VAR204GO0

VAR20470
VAR20480
VAR20490
VAR20500
VAR20510
VAR20520
VAR20530
VAR20540
VAR20550

VLR2050O
VAR20570
VAR20580
VAR20590

VAR20600
VAR20610
VAR20620
VAR20630
VAR20640
VAR20650
VAR20660
VAR20670
VAR2060
VAR20690
VAR20700 i
VAR20710
VAR20720
VAR20730
VAR20740
VAR20750
VAR20760
VAR20770
VAR20780

VAR20790
VAR20800
VAR208 10
VAR20820

VAR20830
VAR20840
VAR20850
VAR20860
VAR20870
VAR20880
VAR20890

VAP20S00

CFR = CF(1PK)
CFL - CF(]MKS)

UC c U(IK)

WC = W(!K)
UL - U(JMKS)
vW = W(IKMS)
AUC - DASS(UC)

AUL - DLeS(UL)

ALC = DAES(WC)
1wS * DASS(WE)

S!EC
= SIE(1K)

SIER - SIE(IPK)

S*EL - SIE(IMKS)

SIET - SIE(IKP)

S]EB * SIE(]KW.S)

SIECO - S]EO(]K)

TSRA - 0.5-(TS(IK)+TS(IPK))

TSLA - O.5-(TS(]K)+TS(lMKS))
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IF ( CFC.NE.1) GO TO 65000 VAR21460
C VAR21470

DCR - DIFFCO(IKL) VAR21480
OCT = D]IFFCO(IKL+1) VA021490
DCL = DIFFCO(]KL+2) VAR21500
DC8 - DIFFCO(IKL+3) VAR215 O

C VAR21520
1PK a 1K + K2NC VAR2rS30
IKP a !K + NWPC VLR21540
IMKS a 1K - K2NC VAR21550
IKWS = ]K - NWPC VAR21560

C VAR21570
CFT = CF(IKP) VAR21580
CFB - CF(IKt S) VAR21590
WS W(IKMS) VAR21600
WC a W(IK) VAR21610
AWB a DLeS(we) VAR21620
AWC DOASS(WC) VAR21630
TSTA a 0.5-(TS(]K)+TS(3KP)) VAR21640
TSeL - 0.5-(rS(lK)+TS(lKMS)) VAR21650

C VAR216GO0
GAT a TGA.M VAR21670
IF(TS(]K).LE.NU) GAMT * RPRAN VAR21680
DIFFT * GAMT-TSTA - 0.5-(DNFF2(3.k)+DNFFZ(1.K+1))-X,.X VAR21690
DIFFB * GtA.TTSPLL - 0.5-(DNFFZ(I.K)*DNFF2( .K- I) )XMX VAR2I700

C VAR217 tO
C VAR21720

DI(J) * RDTSIE(]K) - CO(IK)-0.5 VA,21730
A2(J) = -0.5"(ws*Aw )'RD2 - DIFFE-DC-RD2D VAR21740

B2(J) = RDT * (DIFFTDCT+D)FFS*DC6)*A02D . VAR21750
1 * 0.5,(WC*AwC-WS*iWB),RDZ VAR21760
C2(J) = 0.5-(WC-WC),RDZ - OlFFT-DCT-RDZD VAR21770
IF(CFB EO.1) GO TO e9950 VAR21780
Dl(J) = 01() - A2(J)-SIE(3KMS) VAR21790
A2(J) • 0.0 VAR2800

69950 IF(CFT.EO.i) GO TO 70000 VAR21810
IF(CFT.EO.11..ND.NNOPT.E0.1) GO TO 65500 VAR21820
D1(J) * 01(J) - C2(J)-SIE(IKP) VAR21830
C2(J) = 0.0 VAR21840

GO TO 70000 VAR21850
65500 C2(j) E82(J) - DIFFT-DCT-RDZD VAR21860

C2(J) a 0.0 VAR21870
DI(J) D(J) + DIFFT-DCT*RDZ VAR21880
GO 70 70000 VAR21890

65000 01( ) = 
SIE(]K) VAR21900

L2(j) a 0.0 VAR2190
E2(J) - 1.0 VAR21920
C2(J) = 0.0 VAR21030

70000 CONTINUE VAR2190 ;
C VAR21950

CALL TDM.(A2.B2.C2.01.X.IKBR) VAR21960
C VAZR21970

DO 71000 ]=m1.12 VAR21980
DO 71000 KKI.,K2 VAIR21990
Ix = KS.-(1-2) + K - I VAR22000
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IK r 1 + (I-I)*K2NC + (K-1),NwPC
71000 SIE(]K) = X(IX)
C

IF(KIRK.E0.1) GO TO 33333
IF(ISEQ.NE.O) GO TO 33339
00 33335 I11i.12
DO 33335 K=KI.K2
IK v 1 + (1-I1)K2NC + (K-1)*NWPC

STOR(I.K) = SIE(IK)
333335 SIE(IK) - SIEO(IK)

KIRK a i
GO TO 33334

33337 CONTINUE
DO 33338 1=1112
DO 33338 K=KI,K2
1K 1 + (]-i)'K2NC + (K-I)*NWPC

33338 SIE(K) = 0.5'( SIE(IK) + STOR(I.K) )
KIRK a 0

33329 CONTINUE
C -
C NOTE. TRANSFERS VELOCITIES TO
2040 KI1

K2xKBP2
LWPC=I - NWPC
DO 2,09 KzK1.K2
LWPC=LWPC+NWPC
IK=LWPC
IKS212K2 4 1K
SIE(IKS)=SIE(IK)
U(IKS)=U(1K)
W(IKS)uW( K)
TO( IKS)TO( IK)
TS(IKS)rTS( K)

2109 CONTINUE

12-]BPI
K1=2
K2rKSP2
KK=0
KKL O0
DO 29F9 l,11. 12
KK=KK4K2NC
KKL = KKL + K2NCL
LWPCL = 1
LWPC=I

SIE( 1)=S [(KMS)
U(1)=U(!KMS)
w( ) ( IKVS)

0(l)-TO(IKMS)
TS(i)=TS(IKMS)

SIE(]K S)=SIE(KK4+ )
U(KtMS)U(KK+1)
W(IKt.-S)=W(KK+)
TO(KMS)=TO(KK+1)

STORAGE ARRAY( AT TIME-N ) .

VAR22010
VAR22020
VAR22030
VAR22040
VAR2 2050
VAR22060
VAR?22070
VAR22080
VAR220s0O
VAR22100
VAR22 110
VAR22120
VAR22130
VAR?22140
VAR22150
vLR22160
VAR22170
VAR22180

VAR22190
VAR22200
VAR222A0
VAR22220
VAR22230
VtR22240
VAR22250
VAR22260
VAR22270
VAR22280

VAR22290
VAR22300

VAR22310
VAR22320

VAR22330
VAR22340
VAR22350
VAR22360
V R22370
VAR22380
VAR22390
VAR22A00
VAR22410
VAR22420
VAR22430
VLR2240

VAR22450

VAR22460
VAR22470
VAR22480

VAR22490
VLR22500
VAR22510
VAR 22520
VAR22530
VAR225ZO
VAR22550
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APPENDIX D

TYPICAL INPUT FILES

The file, 'input mom', is the input to test the

stability of the ADI scheme for momentum equation. The

file, 'inputn dat', is for calculating the natural convection

flow field in a Cartesian closed compartment. The output

results are in Fig. 5.1 and Fig. 5.2. The files, 'inputd

3' and 'inputd 7', are for calculating the numerical solution

by donor cell scheme in the problem geometry, Fig. 4.3(B).

The output results are in Fig. 5.6 and Fig. 5.7. The files,

'inputd HUH' and 'inputd DM', are for comparing Huh's And

De Vahl Davis and Mallinson's correction formulas in the

problem geometry, Fig. 5.8.



VM/SP CONVERSATIONAL MONITOR SYSTEM

4 4 O
ADI STABILITY TEST FOR MOMENTUM

1.0

10.0

2.44
0.0
1.0
0.0
0.0

0.0
0.0
0.0

2.0 1.t20 1.120

10.0
1.0

4.9
0.0
10.0

1.0
0.0

0.0
0.0
0.0

0.0
0.045
0.01
0.2
10.0
-1.0
0.0

60.0
60.0
60.0

0.0
1.5

0.01 0
1.0
0.0 4
0.0
0.0

0
0.0
0.0
0.0

0.5 O O

6.0 0 2 1 3 O0 2 2

1.0
10.0

0.0
0.0 I 3

I 16G
-1.0
0.0

1.0
0.75

0.0

0.0
0.0

0 0

0.0 1.7
1.-4 0.09375

0.0 0.0

1.0
1.0

1.0

2 5 2 5 1
10.0 l.-4 1.-4 0.0 0.0

rTh
FILE: INPUT MOM PAGE 001

1.-4
0.013

0.0

10.0

0.0
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5 10 0 1 0.0
NATURAL CONVECTION IN A CARTESIAN CLOSED COMPARTMENT

1.0 10.0 1. 20 1.+20 60.0 8 2 I 3 1 3 3

0.0
0.045
0.01
1.0

-32.2
1.5

0.01

1.0 1.0 0.0
1.0 0.751.2179-5

68.0 0.5 5 I 43

0 0 0

1.67
1 1 1 I

2.44
0.0
1.0

1.0
1.0
1.0

677.4
0
0
0
0
O
0
0

2
0.0

6
50.0

0.0

0.0

1.0
1.0

0 0

1.7 1.-5
1.-20 1.-20

1.0 0.0

0.0

0.0

1.0

II I
1.-20
030
1.-20

2.0
1.0

4.90
0.0

60.0

0.0
0.0
0.0

6 2
1.-20

6 2
1.-20

FILE: INPUTN DAT A 'PAGE 001



FILE: INPUTD 3 A

10 10 0
NUMERICAL blFFUSION - CASE 3

0.02 2.0
I 0.000 0.002
1 0.000 -0.002
0.70711 0.70711
2 4 2 4 1.0

2.44 4.9
0.0 0.0
1.0 5.0
0.0 1.0
0.0 0.0

1. 020
0.014

-0.014
0.0

0.045
0.01
0.0
5.0

-1.0
0.0

1.+20
0.063
-0.063 -(

0.0
1.5

0.01
-1.5
0.0
0.0
0.0

VM/SP CONVERSATIONAL MONITOR SYSTEM

0.0 0 0

2.0 0 2 5 3 0 7 6
).204 0.497 0.940 1.457 1.061
).204 -0.497 -0.948 -1.457 -1.OGI

1.0 1.0 0.0 1.5
1.0 0.75 1.0 0.09375

0 0.0 0.0 0.0 0.0
1.-3 1 I

4 I 36
-1.0 0.0 1.0 1.0
0.0 0.0 1.0

2.207
-2.207

1.-47.07107
0.013

0.0

0.05.000024
0.0 1.0
0.0 0.0
1 1.0
2 1.0
3 1.0
4 1.0
5 1.0
G 1.0
7 1.0
0 1.0
9 1.0

10 1.0
0
0O
O I.O
2 1.0
2 1.0
3 1.0
4 1.0
5 1.0
6 1.0
7 1.0
8 1.0
9 1.0
10 1.0
0
0
0
O

2 11 2
0.0 1.0

2 1t 1
5.0 1.0

1 1 2
5.0 1.0

2 11 12
5.0 1.0

12 12 2
5.0 1.0

GO.O.000024
60.0 5.0
60.0 0.0
1.511
0.249
0.009
0.026
0.009
0.003
0.001
0.000
0.000
0.000

0.409
9.751
9.911
9.974
9.991
9.997
9.999

10.000
10.000
10.000

.II I
1.0 7.07107 7.07107

113
1.0 0.0 7.07107

111

121

Ill

3
1
t

.0 7.07107 0.0

1.0 0.0 7.07107

1.0 7.07107 0.0

PAGE 001
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6
NUMER ICAL

0.0
DIFFUSION - CASE 7

0.01 2.4
0.001 0.014

-0.001 -0.014
17051 1.17051

4 2 4 1.0
2.44 4.9
0.0 0.0
1.0 5.0
0.0 1.0
0.0 0.0

2
0.00.333327
0.0 1.0
0.0 0.0
I 1.0
2 1.0
3 1.0
4 1.0
5 1.0
6 1.0
0
0
0
1 1.0
2 1.0
3 1.0
4 1.0
5 1.0
6 1.0
O0
0
0
0

2 7 2
5.0 1.0

2 7 I
5.0 1.0

1 1 2
5.0 1.0

2 7 8
5.0 1.0

8 8 2
5.0 1.0

0

1.420 1.+20 2.4 8 2 1 3 0
0.143 0.633 1.457 2.003
0.143 -0.633 -1.457 -2.003

0.0 0.0 1.0 1.0
0.045 1.5 1.0 0.75

0.01 0.01 0 0.0 0.0
0.0 -3.167 1.-3 1 1
5.0 0.0 4 I 36

-1.0 0.0 -1.0 0.0
0.0 0.0 0.0 0.0

2
60.00.333327
60.0
60.0

0.626
0.009
0.013
0.002
0.000
0.000

9.374
9.911
9.907
9.990

10.000
10.000

7 1
1.0

113
1.0

713
1.0

1.0
711

0 1

2 2

0.0 1.5 1.-47.07 07
-2.0 0.09375 0.013

0.0 0.0 - 0.0

1.0 1.0 0.0

1.0
0.0

7.07107 7.07107

0.0

7.071107

0.0

1.0 7.07107

7.07107

0.0

7.07107

0.0

FILE: INPUTO 7 A PAGE 001



1bl b
690*6
£00*0
LC9 0
90c, 0
L G0 ,L
Z01 'L

iLO'O
1'LO*0
GL00O
LLO'0
£00.0
CGO, 0
1'0l '0
011 '0
sCl '0
LSI *0
6LI -0
G0Z 0
cpz *0
I a z 0
6ZC *0
OLC 0
&Pt'v O
CZi; *0
PI 9,0
9?LL '0
G'.;u * 0
Ul'
I 6P I
0011* I

0*0 0,09
0 *1 0,09
D99C00 W '09

L'09C91C

P09c91''?
1'Q9C9p

0'19C91' 1

01
01

0 oz

01 61

01 L I
01 91

0 *I c I
O'l z I

0' *1II1
01l 01
0*1 6
0 1 0
0'L
01

O'1

0.1 1'

0,0 0,0
0*1 i 0*0
099C00'LOOo

0'1
0*0 01 0IO'

0*0 010

CI0'0 £LC6OO0 0*1

0*0 0*0 0'0
0*0 0 *I- 0*0

9c 1 t, 1'0
C -*I riI

0*0 0'0 0 10*0
GL'O 0'l -
0'l 01l 0*0

0,0

0'0-
00

0i'00
10'o

0'0
01l
0' C-
0*0
6 v
0 1
L910*

0*0
0,0
0'I
0*0
top' ,z

1O1 '0 I

199*0 099,0 GLO10 ZU10
VL9'C) P99*0 OWO' SL9*0 109,0 09G"0 9Cs£0 661''0 6sv1'. 6IP'0

LLC'O 1'CC*0 16L' O1'1 LOCO0 991'0 9LV'O 060*0 Cc£00 910'0 1

9L1 0 C Iz 0 0*1 OL+*t OZ4*1 Ylz zlo'
IfIAH - NOIS(fJJIG IV:)IUIW(IN

0 0 0

100 3~~~)Vd ~W31.SAS kOIINOW IVNOIIVSU3ANIX) dS/W~A VIIi O~N IIv III)II OIMINI :311Atoo 39vd



FILE: INPUTO IIU4U

2 25
0.0

2 25
5.0

I 1
5.0

2 25
5.0

26 26
5.0

0

2
1.-20

1
1.-20

2
1.-20

10
1.-20

2
1.-20

9 1
1.-20
I 13
1.-20
913
1.-20

1011
1.-20
911
1.-20

5.0

0.0

5.0

0.0

5.0

VM/SP CONVERSATIONAL MONITOR SYSTEM

0.6603

0.6603

0.0

8.6603

0.0
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rILE: INPUIO OM A VM/SP CONIVEIlSATIONAL MONI(fro SYSTEM PAGE 001

24 f( 0 I 0.0 0 0
NUMEtICAL IrFFUSION - OM

0.02 2.0 1.,20 1.120 2.0 0 2 1 3 0 7 6
I -0.002 -0.026 -0.099 -0.260 -0.522 -0.0,0 -1.144 -1.30i9
1 0.034 0.OGI 0.000 0.115 0.156 0.197 0.246 0.302 0.360 0.420
0.496 0.566 0.636 0.705 0.767 0.030 0.076 0.920 0.951 0.969
0.903 0.96G 0.949 0.932
0.2406 1.0267 0.0 0.0 1.0 1.0 0.0 1.5 1.-4 10.0

2 4 2 4 1.0 0.045 1.5 1.0 0.75 1.0 0.09375 0.013
2.44 4.9 0.01 0.01 0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.5 1.-3
1.0 5.0 5.0 0.4 4 1 36
0.0 1.0 -1.0 0.0 -1.0 0.0 1.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0

2 2 2
0.02.003660 60.02.0036G0
0.0 1.0 60.0 1.0
0.0 0.0 60.0 0.0
I 1.0 1.GOG

2 1.0 1.223
3 1.0 0.0411
4 1.0 0.460
5 1.0 0.33G
6 1.0 0.242
7 1.0 0.174

1.0 0.133
3 1.0 0.093 '
10 1.0 0.072
II 1.0 0.051
12 1.0 0.030
13 1.0 0.029
14 1.0 0.021
15 1.0 0.016
16 1.0 0.011"
17 1.0 0.009
10 1.0 0.007
19 1.0 0.005
20 1.0 0.003
21 1.0 0.003
22 1.0 0.003
23 1.0 0.002
24 1.0 0.002

0
0
0
I 2.463604 7.4GI6
',. 2. 4G1IG04 0.526
3 2-..463604 9.044
4 2.403604 9.365
5 2.463G04 9.567
G 2.463704 9.700



SILr.: INP.10 OM A

2 29
0.0

2 25
5.0

I I
5.0

2 25
5.0

26 26
5.0

0

2
1.-20

I

2
1.-20

1.-0
2

1.-20

9 1
1.-20
113
1.-20
913
1.-20

1011
1.-20
911
I.-20

VM/SP CONVERSATIONAL MONITOnr SYSTEM

5.0

0.0

5.0

0.0

5.0

. GG03

0.6603

0.0

0. 6603

0.0

PAGE 002

I* - . &


