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ABSTRACT

TREATMENT OF PHYSICAL AND NUMERICAL DIFFUSION
IN FLUID DYNAMIC SIMULATIONS
by

Kang Y. Huh and Michael W. Golay

A computer code is developed to predict the behavior
of the hydrogen gas in the containment after a loss-of-
coolant accident. The conservation equations for the four
components, i.e., air, hydrogen, steam and water, are set
up and solved numerically by decoupling the continuity and
momentum equations from the energy, mass diffusion and tur-
bulence equations, The homogeneous mixture form is used
for the momentum and energy equations and the steam and
liquid droplets are assumed to be in the saturation state.

There are two diffusion processes, molecular and tur-
bulent, which should be modelled in different ways. Mole-
cular diffusion is modelled by Wilke's formula for the
multi-component gas diffusion, where the diffusion con-
stants are dependent on the relative concentrations. Tur-
bulent diffusion is basically modelled by the k-¢ model
with modifications for low Reynolds number flow effects.
Numerical diffusion is eliminated by a corrective scheme
which is based on accurate prediction of cross-flow diffu-
sion. The corrective scheme in a fully explicit treatment
is both conservative and stable, therefore can be used in
long transient calculations. The corrective scheme allows
relatively large mesh sizes without introducing the false
diffusion and the time step size of the same order of mag-
nitude as the Courant limit may be used.
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CHAPTER 1

INTRODUCTION

One of the major concerns in the Three Mile Island
(TMI) accident was hydrogen gas accumulation in the con-
tainment. Some remedies have been proposed to deal with
such problems. However, it is necessary to understand
the fluid dynamic phenomena in the containment in order to
justify those remedies.

From the hydrogen transport point of view, the response
of the containment during an accident can be divided into
two stages, the fast blowdown stage and the slow mixing
stage. The distinct feature of the second stage is a much
longer time scale in comparison with the first blowdown
stage. The research work reported here is primarily con-
cerned with the formulation and validation of the physical
models and numerical schemes in the second slow mixing stage.

Some simplifying assumptions are made concerning the
thermodynamic state in the slow mixing stage. The four
components, hydrogen, air, steam and liguid droplets are
assumed to be in thermodynamic equilibrium and the relative
humidity is assumed to be 100%, although it may be less than
100% when theré is no liquid component present.

The governing conservation equations are decoupled in
order to simplify the solution procedure. The error due

to decoupling is negligible in a slow transient where the
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state change over one time step is small. 1In the first
step the continuity and momentum eguations are decoupled
from the energy and other scalar transport equations and
solved by the Simplified Marker and Cell (SMAC) method in
order to obtain tﬁe flow field. 1In the second step the
energy and mass diffusion equations without phase change
and turbu}ence equations are solved using the flow field
obtained in the first step. Finally, the phase change

is taken into consideration to maintain 100% relative
humidity.

Convection and diffusion are the central issues in
physical modelling efforts of hydrogen transport. Convection
is assumed to occur as a homogeneous mixture, resulting in
the same convection velocity for the four components.
Diffusion occurs by two independent mechanisms, molecular
and turbulent, and the total diffusion constant is the sum
of the diffusion constants of those two mechanisms.

The molecular diffusion constant is predicted by Wilke's
formula [73] for multi-component diffusion and Chapman-
Enskog formula [5] for binary diffusion. The diffusion
constant. of each component in multi-component gas depends
on the mole fraction of that component.

The turbulent diffusion constant is predicted by the
k-¢ model [45). The turbulent kinetic energy, k, and
turbulent dissipation rate, e, are determined by their own

transport equations. The turbulent kinematic viscosity,
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which is the diffusion constapt for momentum transport can
be calculated directly from k and e. The turbulent Prandtl
and Schmidt numbers are assumed to be egual to one.

The leading issue in numerical modelling of convection
and diffusion is to minimize the error that occurs in the
numerical solution procedures. Since the error usually
appears as an additional diffusion, the term, numerical
diffusion, has been used to describe the numerical error
in general. The numerical diffusion has two different
sources, truncation error diffusion and cross-flow dif-
fusion. Truncation error diffusion is a one dimensional
profile error and cross-flow diffusion is a multi-dimen-
sional operator error [68] of the finite difference eguation.
Truncation error diffusion occurs in the flow direction
while cross-flow diffusion occurs primarily in the direction
normal to the flow. The effective diffusion constants of
the two errors are of the same order of magnitude, however
the latter turns out to be the dominant error source in most
convection dominant problems. This is because the gradient
of the scalar gquantity under consideration is small in the
flow direction in comparison with that in the direction nor-
mal to the flow. Therefore, the major obstacle in accurate
numerical modelling of convection and diffusion has been the
cross-flow diffusion error which arises in donor cell treat-
ment of the convection term in multi-dimensional problems.

There has been much debate on the numerical diffusion

and many schemes have been suggested for the past two
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decades. However, a recent review paper on this topic
[65] shows that there is no scheme universally acceptable
consistent with using reasonable mesh spacings and compu-
tation times. This situation is partly due to misunder-
standing of the séurces of numerical diffusion and also

partly due to use of inappropriate approaches for its
elimination.

The schemes presently being used can be divided into
two categories, skew differencing and corrective schemes.
Raithby's [53] and S. Chang's methods [16] are examples
of skew differencing schemes and Huh's corrective scheme
and tensor viscosity method [25] are examples of correc-
tive schemes. The corrective scheme is inherently better
than the skew differencing scheme in that it is conservative
and does not affect the simple solution procedure. The
conservative property is essential in a long transient
problem like the hydrogen transport in the containment.

The corrective scheme can be implemented with any of the
explicit, ADI and implicit schemes, although with different
stability conditions. The stability conditions for each of
the aforementioned schemes can be obtained by a Von Neumann
analysis and turns out to be consistent with numerical exper-
iments.

Two implementation strategies for the corrective scheme,

mesh point and mesh interface implementations, have been

tested for recirculating flow problems. The mesh interface
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implementation has always givgn physically reasonable
solutions and may be used extensively for all diffusion-
convection problems.

The suggested physical models and numerical schemes
have been used to simulate the LOCA experiments performed
in Battelle-Frankfurt [44] and HEDL (Hanford Engineering
Development Laboratory) [6]. Ref. [49] includes all the

simulation results compared with experimental data.
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CHAPTER 2

PROBLEM STATEMENT AND SOLUTION SCHEME

2.1 Problem Statement

Once a loss-éf-coolant accident (LOCA) occurs in a Light
Water Reactor (LWR), a large amount of steam and water will
come into the containment in the fast blowdown stage
increasing the containment pressure. After a while the slow
mixing stage follows the initial blowdown stage and continues
for an extended period of time. The major safety concern
is that of keeping the containment pressure below a certain
level to prevent a large scale leakage of radioactive
materials.

In addition to the pressure increase due to the primary
coolant, hydrogen generation gave a serious concern about the
integrity of the containment in the TMI-2 accident. The
hydrogen is generated by radiolysis and chemical reaction
between water and zirconium in the cladding and may react
explosively with oxygen in the air. Thereafter, the hydrogen
has received much attention in the safety analysis of nuclear
power plants. There have been some mitigation procedures
suggested, e.g., containment inerting, installation of
ignition devices, use of flame suppressants and enhanced
venting capability, for dealing with this problem. In order
to justify the design of any mitigation system, it is
essential to understand the fluid dynamic phenomena in the

containment. .
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Since a numerical method is suitable for this purpose,
a good computational tool has been regquired to predict the
hydrogen concentration distribution. The most difficult
aspects of this analysis are the complicated geometry and
chaotic post-LOCA conditions, e.g., thermal nonequilibrium,
laminar and turbulent flows, phase change and heat transfer
between the gas components and wall, etc. Therefore, some
simpliéying assumptions should be made to use the numerical

procedure without impairing the acceptable solution accuracy.
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2.2 Governing Egquations

The governing conservation equations are set up to

describe the post-LOCA fluid dynamics in the containment.

The physical implications of the conservation equations

will be given with their basic assumptions and limitations.

Continuity:

Momentum:

Energy:

Mass
diffusion:

Turbulence
kinetic
energy:

Turbulence
dissipation
rate:

Equation
of state:

V-V = 0 (2.1)
3$~ > :
°[§E + Vevv] = -Vp + ogt + fd + V-0
(2.2)
€ " g.2v1 - u.
p[§-E + V+vh] = V-kVT + efg¢2 (2.3)
9p.
i na _ o,
T + V-vpi =V Dini + <1>i (2.4)

Dt ~ p x5y 3x,) T P o, T O%; 9%,
- € + By, Pv_;t. aaka (2.5)
De _ 1 _3_[23 2€4 4 ¢ EE.-E—(au -+3uk)§u
Dt P axk O 9%y lp k'ox 0x ;' oxy
—C2%; + %ggk ;;t jgi (2.6)
p = fp(oi,T) (2.7)
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Note that
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—-24-

ive .

: b= f4(p,,T)
3 >
c = fo(v)
D1 = Dim + Dlt
Vo= v+ v
k =.km + kt
Dim = fD(p 'T)
Vp = £,(p;/T)
kn = Ex(py/T)
D, = v,
kt = v,
v, = Cukz/e
p = 1p;

The subscript i denotes the four components as

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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follows:
i=1 air,
i=2 Hz,
i=3 steam,
i=4 liguid droplet.

2. The turbulence equations are written in terms
of the Cartesian components in tensor notation.
3. The phase change occurs between steam and liquid

droplets and the diffusion constant of liquid droplets is

equal to zero.

&, = &, = 0 (2.20)
¢3 + ¢>4 =0 | (2.21)
D4 =0 (2.22)

There are eleven conservation equations, one continuity,
three momentum, one energy, four mass diffusion and two
turbulence eguations with ten primary unknowns, u, v, W,
pi(4L T, k € for a three dimensional case. Therefore, there is

one more equation than is required.

2.2.1 Continuity and Mass Diffusion Eguations

The continuity eguation is redundant with the four mass
diffusion equations and there is an inconsistency between
them. The mass diffusion equations are summed up for the

four components, i=1l-4.
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° >
§E(Zpi) + V~V(Zpi) = Z(V»Dini) + Z¢i (2.23)
The sum of the phase change terms is egual to zero.

op on = .
5z + Vrvp = I(V-D;Vp,) (2.24)

Now it can be seen that the continuity equation is valid

if and only if the following Eg. 2.25 and Eg. 2.26 are

satisfied.
90 _
3¢ = © | (2.25)

It is a reasonable assumption in a turbulent flow regime
that the four components have the same diffusion constant.

Therefore, Eg. 2.26 can be reduced to the following Eq. 2.27.

Vp =0 (2.27)

Consequently Eg. 2.1 and Eq. 2.4 are consistent only if the
temporal and spatial variations of the total density are very
small. Since the concern is only for the slow mixing stage
after a LOCA, it is reasonable to assume that Eg. 2.25 and

Eg. 2.27 remain valid throughout the transient.
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2.2.2 Energy Eguation

The energy conservation equation, Eg. 2.3, is also of

an approximate nature and the exact form is given in the

a e

The temporal term can be divided as follows.

aei api -
Zp.jﬁ? + e, —— + V [vaihi] = V-kVT (2

i i9t
The second term on the left hand side of Eg. 2.29
denotes the energy change due to the concentration change
in a given control volume. It is clear that the major
contribution to this term will come from the latent heat

of the phase change.

ap
Zei——— = Zei¢. . (2

Eg.2.30 is substituted in Eq. 2.29 to give the following.

ce.,

Ip;—e + Le; ¢ + V- [VIp,h.] = V-kVT (2.

19t

The thermal equilibrium assumption is incorporated in Eq.

.28)

.29)

.30)

31)

2.31 so that the internal energy and enthalpy can be written

in terms of the temperature.
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)BT

->
(Zpicvi =t +.V-[vTZpicpi] + efg¢g = V-kVT (2.32)

where Zei

h34
L}

e o + e,%

=eq)
fg'g
el = cvi
h. = c_.
i pi

Eg. 2.3 and Eg. 2.32 become identical by defining average

internal energy and enthalpy as follows.

p.e. p.C..

e = 1p1 - lp"l (2.33)
p.h. P . T

h = 101 = lppl (2.34)

2.3 Basic Assumptions and Limitations

The governing equations are based on some simplifying
assumptions about the physical phenomena in the containment
after a LOCA. It is necessary to clarify these assumptions
and their limitations for a safe use of the given physical

models and solution scheme.
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2.3.1 Assumptions

1. The four components all have the same convection
velocity. The liquid droplets move with the gas components
with no slip.

2. The four‘components are treated as being nearly
incompressible and the phase change rate is moderately
small.

3. The turbulent Prandtl and Schmidt numbers are
egual to one.

4. The four components are in a state of thermodynamic
equilibrium.

5. The relative humidity in the containment is 100%.
The relative humidify may be less than 100% when there is

no liguid component left.

2.3.2 Limitations

1. The temporal and spatial variations of the total
density should be negligibly small because of the incom-
pressibility assumption.

2. The phase change rate should be moderately small
because the solution scheme decouples the phase change
term from the energy conservation eguation.

3. The change of the diffusion constants, v Dt and

tl
kt over one time step should be small because the turbulence

equations are decoupled from the velocity field calculations.
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2.4 Solution Scheme

Eg. 2.1-Eg. 2.7 are a coupled set of equations with
primary unknowns, v, Vv, W, p, pi(4), k, €, T, &. Since
it is too difficult to solve the whole system of the
equations and obtain a consistent solution for all the
unknowns, the conservation equations are decoupled into
two sets, continuity/momentum equations set and other
scalar transport equations set. 1In the first step the
SMAC scheme is used to get the convergent velocity field
with zero divergence for every mesh. The SMAC scheme is
explained in detail in section 2.5. 1In the second step,
the obtained velocity field is substituted in the scalar
transport equations, which are the four mass diffusion
eguations, energy equation and two turbulence eguations.
The phase change is assumed to be zeré in this step. 1In
the third step phase change is taken into consideration to
maintain 100% relative humidity. When there is no liguid
component left, the relative humidity may be less than
100%.

The egquation of state, Eq. 2.7, is used to update the
reference pressure and reference density which is important

in calculating the buoyancy force.

2.5 SMAC Scheme and Compressibility

The SMAC (Simplified Marker And Cell) scheme [21] has
been used for the incompressible fluid flow with Boussinesqg

approximation for the buoyancy force. It solves the
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continuity and momentum equations to get the velocity and
pressure field in an iterative way. Since the continuity
equation used in the SMAC is an incompressible form, i.e.,
the divergence of the velocity field vanishes everywhere,
the SMAC scheme cén be used only for incompressible flow
calculations. However, it is possible to modify the SMAC
scheme to accommodate a slight compressibility effect,
which can arise with net inflow or outflow boundary condi-
tions. The continuity and momentum equations are given in

two dimensional Cartesian coordinates in the following.

inuity: 284 2V
Continuity: ™ + 3y 0 (2.35)
x-direction 2 2
ou ou Ju 1l sp u _ 9u
momentum: = tT Ur= + Ve = == + v(E—= )
ot X 3y p ox 3x2 -

+ P9y (2.36)
y-direction dv dv v 13 a%v | alv
momentum: AL AL A N N VY ¢ A )

ot X % p oy axz ayz
+ P9 (2.37)

The vorticity conservation equation is derived from Eg. 2.36

and Eg. 2.37 as follows.

3 3 _
-a—}-;(Eq. 2.36) - -a—;(Eq. 2.37):
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. 2 T a2
3L 4 W3% 3t _ 3%, 3%z
3t T Yax T Vay T V(axz + ayz’ (2.38)
where
= 8a _ 3V
oy X

The Poisson equation for the pressure field is also derived

from Egq. 2.36 and Eg. 2.37 as follows.

3 3
3% (E9. 2.36) + 5-(Eq. 2.37):

2 2 2 2 2
2 ? 2 23 9 2 3D . 1 ,8°D 9°D
Vp:—-—-—(u)——_(uv)—_(v)-_—-}-_—(__—.-}-.—)
ax2 9xdy 3y ot Re axz ayz
(2.39)
where
su v
D=13x"*3y

The basic idea of the SMAC scheme is to separate each
calculational cycle into two parts, the so-called tilde
phase and pressure iteration. 1In the tilde phase the
approximate velocity field at time step (n+l) is.obtained

from Eg. 2.36 and Eg. 2.37 as follows.

n+l n n+l
u "-w _ _1sp — n .
X3 S % + £ (2.40)
n+l n n+l
v _"-v _ _124p n
B Y + g (2.41)

where f% and gn are the explicit gquantities at time step n.
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Since the pressure field in Eg. 2.40 and Eq. 2.41 are
still unknown, a guessed pressure field or the pressure field
at time step n is used to start the iteration. The impor-
tant point is that un"'l and vn+l calculated from Eg. 2.40
and Eq. 2.41 have'the right vorticity. . The equation of
vorticity transport, Eg. 2.38, shows that the vorticity

is independent of the pressure field. Therefore, the

following relations hold after the tilde phase.

su vV _
B (2.42)
Ju oV _
-é—;{. + -5? =D + 0 (2.43)

It can be seen from Eg. 2.39 that the pressure field is not
right due to the fact that the divergence of the velocity
field is not equal to zero. Eg. 2.39 may be rewritten as

follows.

v2p = £(u,v) - & (2.44)

A finite difference form of Eg. 2.44 is given in the fol-

lowing.
n+l . n
- s q=2P. tP. D,. -D..
Pi+l5 2pij+pidj . Pij+1 2p13+p1131 = f(u.v) - _ilzg_il
2 ' 2 !
bAx Ay
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The pressure correction formula is obtained by con-

sidering the cell (i,j) only and putting DE;l egual to zero.

1 1 D
-28p( + ) = — (2.46)
ax? oy O
I o (2.47)
A Ay

The pressure correction is given in terms of the
residual divergence for every mesh. Once the zero divergence
velocity field is obtained, no more correction will be made.
The velqcity correction formula is derived from Eqg. 2.36

and Eg. 2.37 so that it doés not change the vorticity

implemented in the tilde phase.

- _ Atép
(6u)L - pbOX
_ Atdp
(6u) o Shx (2.48)

The SMAC scheme can be extended to a slightly com-
pressible f£luid flow. The slight compressibility means
that the Navier-Stokes equations may be solved safely with
the incompressibility assumption, while the continuity

equation has the following compressible form.

[ 3]

p (v =
2+ U (vp) =0 (2.49)
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From Eg. 2.49 the nonzero divergence may be derived as

follows.

S 3¢ 5 (2.50)

The two terms on the right hand side of Eg. 2.50 may be
given from the previous time information and boundary

conditions.

p 3t ;3 5t : (2.51)
> 2N n
. .V
v-Ve _ V '¥p (2.52)
o n
p
where
m ¢ total net inflow of mass at the boundary during

the time At.

V: total volume of the containment.

The associated physical assumption in Eq. 2.51 and Eq. 2.52
is that the pressure perturbation due to the inflow at the
boundary propagates throughout the containment instantane-
ously and the pressure and density increase is.uniform over
the whole containment.

Now the problem is how to converge to a predetermined
nonzero divergence field. This can be done with the
following modification of the pressure correction formula

of the SMAC scheme.
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Sp = -0 : ‘ (2.53)
20t (-1 + )
bx Ly

where D0 is given by Eg. 2.50. The velocity correction

formula remains the same as Eg. 2.48.
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CHAPTER 3

DIFFUSION MODELLING

The hydrogen, air, steam and liquid components are
transported by coﬁvection and diffusion in the containment.
Convection occurs as a homogeneous mixture resulting in
the same convection velocity for the four components.
Diffusion ;ccurs by two different mechanisms, molecular and
turbulent, which should be modelled independently. The
thermal conductivity and viscosity are also diffusion
constants in a broader sense for momentum and energy
transport. Although turbulent diffusion is greater than
molecular diffusion by a few orders of magnitude, proper
modelling of the latter is important because the molecular
diffusion of hydrogen is significantly greater than those
of other gases and also because there may be a laminar flow

region in the containment.

3.1 Molecular Diffusion

Molecular diffusion occurs by the collisions of gas
molecules. As collisions occur more fregquently, the process
of diffusion is also increased. Since there may be three gas
components, hydrogen, air and steam, in the containment after
a LOCA, the diffusion constant of each component is calcu-

lated separately bg/ﬁi;ké{é formula [73)] in Eg. 3.1. It

gives the diffusion constant of each component in terms of
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the binary mixture diffusion constants and mole fraction

of that component.

The property of air will be replaced

with that of nitrogen gas.

The resulting diffusion con-

stants are given as follows,

where Di:
it

D..
i3]

l—yc

Yg  Yc

Diffusion constant of the i-th component

Mole fraction of the i-th component

(3.1)

: Binary mixture diffusion constant between the

i-th and j-th components.

\

The binary mixture diffusion constants are calculated by

the Chapman-Enskog formula, Eqg. 3.

Pas

where

D

AB:

= 0.0018583

2.

PO,p

T 1. 1

T (- + )

/MA My
2

(3.2)

Binary mixture diffusion constant in [cmz/sec]
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T: Temperature in [°K]
P: Total pressure in [atm]

(-]
Orp: Lennard-Jones parameter in [A)

MA,MB: Molecular weight

QD,AB: Dimensionless function of the temperature
and intermolecular potential field for one
molecule of A and one of B.
The error range of the Chapman-Enskog formula is reported
to be about 6-10% [5]. 1In order to calculate the para-

meters SAB and QD,AB in Eq. 3.2, the following relations

are required. For non-polar gases Oam and.QD,AB are calcu-
lated by Eg. 3.3.
opag = (95 * og)
= Je -e_ 3.3
€ap €A €B ( )

For the pair of polar and non-polar gases a correction

factor is introduced to account for the polarity.

_ -¥
%np s(on ¥ cp) ¢

= /oo g2 : (3.4)
®np ~ “n®p &

where the correction factor § is given by,

x %) /2 ok % [t
£ = [l+ka, wy ,/éi = [+ oy ) “/Ei ]. (3.5)
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The parameters in Eq. 3.5 are defined as follows.

a * =a_/o : Reduced polarizability of the

non-polar molecule

~
*
"

up/»ébop3: Reduced dipole moment of the polar

molecule

t *
P

*
Mo /V8

For the steam component the following values will be used.

t* = 1.2
e/x = 380°K
o= 2.65 i

The polarizability is given for the hydrogen and nitrogen

(air) components.

-25

7.9 x 10 [cm3]

fa v}
Q
]

25

17.6 x 10°2% [em?)

R
0

The fitting functions for the binary mixture diffusion
constants are obtained by the least-sguare-fit method.

The containment pressure is assumed to be- 1 atm.

D. = 4.9492 x 10°° pt-6947
ah

4.6810 x 106 p1-9033

o
"

as
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D, = 2.8916 x 107° pl-8144 (3.6)
S
where

T: [°K]

D: [cmz/sec]

The viscosity and thermal conductivity can be considered
as diffusion constants for momentum and energy transport

and calculated similarly as follows [5].

n V.U,
_ iti
z ,
j=1 y3¢13
n v.k.
_ il
kmix - iEl n (3.8)
Tl oy.
j=1 J i3]
where
M. . M.
1 i\ =% ik, 3.%,2
.. = —(1+ =) F[1+(=) (=) ") (3.9)

The viscosity of non-polar gases may be obtained by

the following [5].

L=2.67 x 107° @ (3.10)

0 Q
u
where
p: Viscosity in [poise]
T: Temperature in [°K]

) ©
o: Lennard-Jones parameter in [A]

Q : Dimensionless number
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The viscosity of steam is,

Yeream = 0.009 cp at 1 atm, 20°C

There is another formula suggested for the viscosity of

multicomponent gas in the following [5].

2
Yy

5 (3.11)
1y
1 4 1.385 RT

u

Y.y
itk pMiDik

Ymix =

NS

i

i

b S o e

k=1
k#i

There is a useful relationship for the Prandtl number of
non-polér polyatomic gases. [5].

C
, P
Pr = s, F 175K (3.12)

where cp is the specific heat per mole at constant pressure.

3.2 Turbulent Diffusion

The diffusion process is greatly enhanced by the
turbulence of fluid flow. The effective diffusion constant
is therefore the sum of the molecular and iurbulent dif-
fusion constants. There are several models suggested for
calculating turbulence effects. Presently the best model
seems to be the k-¢ model originally developed by Launder
and Spalding [45). The k-t model sets up the transport
equations with some empirical constants for the turbulent

kinetic energy, k, and turbulent dissipation rate, e. The
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turbulent viscosity is given directly in terms of k and

€.

3.2.1 Derivation of Turbulence Equations [15, 29, 34, 45]

The transporﬁ equations for the turbulent kinetic
energy and turbulent dissipation rate are derived from
the continuity, momentum and energy eqguations by decomposing
the variables into mean and fluctuating parts and averaging

the resulting equations. For example,

p. = p. + p." etc.

The effect of turbulence appears as the additional terms
due to the product of fluctuations which do not necessarily
cancel out. These terms are treated by the eddy viscosity
concept of Boussinesg and eddy diffusivity concept which

are given in the following.

aGi ou. 2
- ui' ‘Llj = \)t(gg.- —-lax.) - § kéij (3.13)
] 1
T 05 ' (3.14)
B T U T .
3
[ [ J— _a_:_T.__
- T T oy ‘ (3.15)
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The transport equation for G;rE; is transformed to the
turbulent kinetic energy equation by the contraction, j=i.
The turbulent dissipation rate eguation can also be derived
in a similar way and some assumptions should be made in

modelling various terms that appear in the derivation.

3.2.2 k-e Model

The transport eguations for the turbulent kinetic
energy and turbulent dissipation rate form the basis of
the k-¢ model. A two dimensional cylindrical coordinate

form of the k-¢ model is introduced in Eq. 3.16.

3k . 1 3 3 _1.1 5 Mok, L 3 Meoak
£tz ar(ruk) + az(wk) D[r ar(rok ar) + az(ok az)]
M 2 2 2
t Ju oW, - oW ou
+ p[2(ar + 2(82) + (ar + az)
2 v
u _ t o7
+ 2:? £ +ngr 3;

B e+ Foe = bk Zegt 80+ Figt 39
rc) SERED ¢ 205
+ (%¥ + gg) + 2{; - 02 %;
+ £ gggft_ & (3.16)



-45-

The turbulent viscosity Mo is given in terms of k and ¢

in Eg. 3.17.

_ 2
By = Cupk /€ (3.17)

The suggested values of the constants are given in the

following table.

0.08 1.44 1.92 1.0 1.3

The molecular effects can be included in Eg. 3.16 as follows.

The turbulent Prandtl and Schmidt numbers are usually assumed

to be equal to one.

3.3 Low Reynolds Number Flow

While both turbulent and laminar flows are possible
in the containment after a LOCA depending on the hydrogen
generation rate and geonetry, it is difficult to determine
whether a region under consideration is in a turbulent or

laminar flow. Since the k-¢ model is applicable to fully
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turbulent flow, it is regquired to extend the model to laminar
flow regime or to switch to laminar models according to some
criterion. The model presently being used is just to use
the sum of the molecular and turbulent contributions for
every region in the containment. A more refined model is
introduced in this section because consistent treatment

of laminar and turbulent flows and transition between

them may be required in the future modelling efforts.

The following k-¢ model is a modified form by Jones

and Launder [40, 41).

H u ou 0 Ju
D=l it it Tagtehgtoo
] p X, o 8xy " Tl op kooxp o 8%yt oxy X
Vi azu- 2
- 2.0 —S(—2)
p axzaxk
Dk o1 o3 Me L akg  Re Wy ek
Dt ~ b 3% o) ST p a%, | Xy Xy 8%,
(3.18)

In the above equations Cl’ Oy and °e retain the values
assigned in the ordinary k-¢ model, Eg. 3.16, while Cu

and 02 are to vary with turbulence Reynolds number, Bt.

Cu = Cpo exp[—2.5/(l+Rt/50)]

C

2
, = Cpo 1.0 - 0.3 exp(-R.)) (3.19)

where Rt = pkz/ue
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The Cuo and C2 o are fully turbulent values of Cu
and C2. This modified form of the k-e model was developed
to cover all the laminar, transitional and fully turbulent
regions. The constants were fitted to the data of a low
Re flow in a rouna pipe to include the effect of laminar
wall boundary layer. Although its applicability to a low
Reynolds number flow in general is guestionable, the model
may be used with some confidence if it has the proper limit
of laminar regime with the decay of turbulence. It may also
be used in the transitional regime by assuming an adequate
interpolation between the two extremes. Equation 3.18
shows that k and € have the same order of magnitude with
the decay of turbulence. 1In other words, both k2/e and
ez/k will go to zero as k and € go to zero separately.
Therefore, the turbulent viscosity My which is proportional
to kz/e will vanish with the decay of turbulence. In order
to have the proper laminar limit, the total diffusion
constant should be expressed as the sum of the turbulent
and laminar diffusion constants. It may also be reasonable

to assume that the turbulent Prandtl and Schmidt numbers

are egual to one.
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CHAPTER 4

NUMERICAL DIFFUSION

The final numerical solution involves two types of
errors which come'from physical modelling and numerical
solution procedure. The error in physical modelling is
an intrinsic error which cannot be eéliminated by the solu-
tion procedure. The error in numerical solution procedure
is the difference between exact and numerical solutions
of the governing equation, which usually appears as addi-
tional diffusion. It is clarified that there are two
sources of numerical diffusion, truncation error diffusion
and cross-flow diffusion. This chapter is primarily con-
cerned with how to predict and eliminate these additional

false diffusions to get an accurate solution.

4.1 Truncation Error Diffusion

Truncation error diffusion occurs due to the approxi-
mate nature of the finite difference formulations. The name
of the truncation error originates from the Taylor series
expansion where the second and higher order terms are
truncated. Although the Taylor series expansion is not a
proper way of interpreting a finite difference equation,
the name of the truncation error will be retained here.
Since the truncation error exists in multidimensional
problems in the same way as it exists in one dimensional

problems, it can be analyzed in the following one dimensional



3¢ T uzxy = o~ + S (4.1)

where

$: any general conserved guantity

S: source term

The velocity u and diffusion constant o will be assumed
constant. Equation 4.1 is integrated in the domain

! xi+%] and [tn' tn+1]‘

Savs el 30 o g, it [+l 30

L e 3t ke 7% 9t ax

X,
= f i+ s n+l 32®
xi_% tn a— dt dx + S Ax At (4.2)
ox

where

When a function f(x) is continuous, there exists a

point x=c in [a,b] such that,

1 P
b-a fa f(x) dx = f(c) . (4.3)

Using Eqg. 4.3, we may transform Eq. 4.2 as follows.
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1 n+l _ &g
ag L9 tee) * ax Biip - 919
=2 o n+g _ 90 n+g
[(8x)1+4 Bx i- %] + 8
where
“5<f <)
0 <g-<1

Equation 4.1

explicit and

may also be reduced to Eg. 4.5.

(4.4)

It is fully

the convection term is finitely differenced

by the donor scheme.
$?+l B ¢2 u ,,.n n
e tax %7 Gi-n)
_ a n _ o4l n
= Z—5(¢i+l 2¢; + 9, ,) + S (4.5)
X
n+l n+l
From Eg. 4.4 and 4.5, (¢i+f)EXACT and (¢ )FD can be
obtained as follows.
o _eP
n+l _ &0 i Ti-1 a _
(¢ pp = & + ot [ u—Fp—+ —5{8y 2; + &)
+ S ] (4.6)
¢n+g _ ¢n+g
n+l . .\ itk i-
(¢ 48 Exact = %i+g T O [ v Bx
3% n+g _ n+g ]
[(ax)l+1 (Bx i- ] + S (4.7)
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Subtracing Eq. 4.6 from Eg. 4.7, we obtain the error at

time step (n+l).

n+l - n+l _ AN n o ¢, n+g
(ielexace = (%1 pp T %iap - % T At [-ulgp)ig
dd n gé n+g f@ n
+ u(-a-;(—) i+b + a(——axz)i+c = a("a"'xi') i+d ] (4'8)

where the following relations have already been used.

a8 - &9
1+ i-% _ n+g -
Ax (Bx)i+a % <a <Xk
R
i i-1 sd. n
Bx = )i+ "tk <
2. n+g
1 9 ¢, n+g 3 ¢, n+g 3 ¢
revy [(—:) 1 ("_) -1 ] ("—_') -]’i <c < lﬁ
AX 93’ i+ ox’ 1-% axz i+c
n n n
o, - 2¢, + & 2, n
i+l 12 i-1 _ (3 g) -1 <a <1
Ax ox” 144

The mean value theorem, Eg. 4.3, is for a one dimensional
case. It can be extended to a two dimensional form as

follows.

of of
f(x+a,y+b) = £(x,y) + (=) a + (=) b (4.9)
9xX A oy B

where A and B denote some interior points in the domain

bounded by [x,x+a)] and [y,y+b].
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Now Eg. 4.9 reduces Eg. 4.8 to the following form.

2

n+l +
(95" pyacr = (% 1)FD - 'foz(fl'fz)'a_; “““““ A
oxX
2
_ oY
fAXAt§§§E B
2
-uAtAx(a+b)a—§ -------- C
ax
2
2 9°¢
+At 95esx oTTTTTTToe D
3
+qu(c-d)At3—§ -------- E
ex
2
237 %
+aght T F (4.10)

The derivatives with respect to time and space in
Eg. 4.10 are at some appropriate points in the domain
[xi_%,xi+%] and [tn'tn+1]' The terms A, C and E are
truncation error diffusion terms while the terms B, D and
F are time derivative terms which become negligible for
slow transients.

In a stable scheme the error introduced at a certain
step decreases in its absolute magnitude in the following
steps and most of the error occurs between neighboring
time steps. Although the error terms in Eg. 4.10 are based
on the assumption of perfect information at time step n,
they may represent the errors over many time steps in a

stable schemg.
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4.1.1 Truncation Error Diffusion in a One Dimensional
Problem ) :

The truncation error diffusion in a one dimensional
problem is analyzed for a steady-state case with no source.
The results may be extended to a general one dimensiocnal
problem if the effects of the transient and source terms

are not dominant in determining the profile of ¢.

udl o 2 (4.11)

Consider a case in which the domain is divided into N equal

meshes and the mesh size is Ax.

0 1 2 3 i-1 1 i+l N
L
(x=0) = ¢O
d(x=L) = Q’N
NAX = L

Two boundary values ¢0 and ¢N are given as constant.

The analytical solution of Eg. 4.11 is given as,

$=Cc,e” +C, , (4.12)

where c = u/a ,

and C, = L — ' C, =
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Equation 4.11 is finitely differenced using donor cell

scheme for the convection term in the following.

¢, - ¢, ®. - 20, + ¢,
i i-1 _ i+l i i-1l
iy T B (4.13)

Ax

where the velocity u is positive.
Equation 4.13 can also be solved with the given
boundary conditions by reducing it to the following form.

PO, = & 1) = &) 20, + &

i+l 1

where P = Eéi (4.14)

The parameter P in Eg. 4.14 is the cell Reynolds number
or cell Peclet number according to whether the diffusion
constant a is the kinematic viscosity or thermal diffusivity.

Equation 4.14 may be recast to Eg. 4.15 and solved for ¢i

in subsequent procedures.
¢i+l - ¢i = (P+l)(4>i - Qi-l) (4.15)
Equation 4.16 is easily obtained from Eg. 4.15.

= e, - :
. — & = (P18 = &) (4.16)
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Then,
%, = & = (1+P) (& - c>0)
o, - o, = (1+1=*)2(<1> - %)
3 2 1 0
o N-1
o - ¢N-l = (1+P) (& - @0)
N-1
_ - _ (1+P) [ (1+P) - 1)
o ¢ (¢l 4>0) 5 (4.17)

°l can be expressed in terms of QO and @N by Eg. 4.17.

(l+P)N - (1+P) ®

+ ¢
8 = e 0 X (4.18)
(1+P) - (1+4P) 1
P
Therefore, (@l - ¢0) is given as follows.
P(d, =9.)
o - 0y = — (4.19)
(1+P)" - 1

Inserting Eg. 4.19 into Eg. 4.16, we obtain the solution

for 9¢. as,
i

(1+p)i -1
N
1+ - 1

. = ¢ +

i 0 (¢, - ¢

N 0) (4.20)

Now the analytical solution Eg. 4.12 and numerical solution
Eg. 4.20 have been obtained without any approximation for

Eqg. 4.11 and Eg. 4.13. Both the analytical and numerical
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solutions will be reinserted to the finite difference
equation, Eg. 4.13, and the effective diffusion constant
for the numerical solution will be obtained. The

analytical solution Eg. 4.12 is substituted for Qi in

Eq. 4.13.

(i-1)P
- = & TP y2 -
O, 20, + 0, = (e (e, - ¢

(4.21)
eNP -1

o)
The finite difference solution Eg. 4.20 is also substituted
for ¢i in Eq. 4.13.

(1+P)1-1P2

o
(+p)N - 1

20, + 9,

(¢N - Qo) (4.22)

i+l 1
Comparing Eq. 4.21 and Eq. 4.22 we can obtain the
effective Peclet number Pe of the finite difference solution

in terms of the real Peclet number P as follows.

1-1P2

(i-1)Pe
Eﬁﬁg'-—(epe“l)z - (1+P)N . (4.23)
e -1 (14P) -1
Therefore,
Pe = 2n (l1+P) (4.24)

It is also possible to go through the similar procedures
with a central differencing form of the convection term in
Eg. 4.25.

%41 " %o %ig 2K YO

2Ax - 2
Ax

1

(4.25)
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The effective Peclet number for the finite difference

solution of Eg. 4.25 can be derived as follows.

Pe = &n (-g-}g) (4.26)

where -2 < P < 2

The effective diffusion constant De can be readily obtained

from the following relation.

ulx

In general, the transient and source terms and the
mixed tjpe of boundary conditions will not affect the
numerical diffusion appreciably if they are not dominant
terms in determining the profile of ¢. Therefore, Eg. 4.24
and Eg. 4.26 may be a good indication of the truncation
error diffusion occurring in a general one dimensional

problem.

4.1.2 Another Approach For a One Dimensional Truncation
Error Diffusion

The truncation error diffusion in a one dimensional
problem can be evaluated in a different approach. Although
this approach is approximate and overpredicts the truncation
error diffusion, it helps understanding the origin of the
truncation error diffusion.

As in the previous section the velocity u is assumed

to be positive and constant. The convection terms in
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Eq. 4.4 and Eq. 4.5 may be approximated as follows.

i R e

7% —u sy (4.28)

!
(]
>
»
I
|
c

™ | (4.29)

The truncation error diffusion can be quantified by sub-

tracting Eq. 4.29 from Eg. 4.28.

2
udd o+ udy = ubx 3 ¢ (4.30)
oxX i ox i+ 2 ax2
i+f
where

0<f<k

Both Eq. 4.28 and Eg. 4.29 hold only when the Peclet number
is large, i.e, the convection is dominant over the diffusion.
If the Peclet number is small, i.e., the diffusion is
dominant over the convection, the profile of ¢ will be linear
and the truncation error will be reduced to zero. It can

be shown that as P goes to zero, Pe also goes to zero
resulting in no diffusion error in Eq. 4.24 and Eq. 4.26.
Therefore, the truncation error diffusion constant for a
convection dominant problem may be given approximately as

follows.

DND = > (4.31)



4.1.3 Truncation Error Diffusion in a Two Dimensional
Problem : .

There are two sources of numerical diffusion in a
two dimensional problem, one is the truncation error dif-
fusion and the other is the cross-flow diffusion. The
formulas for the truncation error and cross-flow diffusion
constants derived in this chapter reveal that they are
approximately of the same order of magnitude. It will be
shown that the truncation error diffusion in the direction
normal to the flow cancels out and there is only a flow
direction component left. Since the gradient of ¢ in the
flow direction is negligible in a convection dominant
problem, the total diffusion gquantity of ¢ due to the
truncation error is not significant in comparison with
that due to the cross-flow diffusion.

A steady-state, two dimensional, conservation equation

with no source term is given in the following.

2 2
0¢ 99 o ¢ 3 %
Ur— + vi— = o + =) (4.32)
ax ay ax2 3y
Equation 4.32 is finitely differenced using donor cell
scheme for the convection term.
i3 7 %-13 . %43 T %uge1 o Bieag 7205t %iay
u A + v A = (l( 2
X y Ax
, Sigey 205 Y %i5-a
2
Ay
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The approach in section 4.1.2 isapplied to Eq. 4.33,
then the truncation error of the convection term is given

as follows.

.. - o, .. .. - o.. Y. X,
ij i-19 ij ij-1 1 j+is i+k, o¢ ,
- - v + J (u-—-)dxdy
Ax by AxAdy yj-k X5 9x
Y. X,
1 j+s i+k 2d
AxAy Y41 X5 1 ay
S wdh  -vED sudh e
ij Y'ig i+, 4% Y i+, 3+
2 2, 2 2
_ Mx 370 by 279 Ax 37 ¢ Ay 3" ¢
= F ulE=) + Fulggy) + T Viggy Y3 VIS
9x oy
2 2 2
979 9”9 97 &
= I [udx + (uAy+VAX)s—s— + VAY ]
32 9%y 3y
2 2 2
UAx 37 ¢ . 3" % . 8 ¢
= _5.[c056;;7 + (cosé® tanel + s:.ne)axay + sinb tanel;;yl
(4.34)
where
U= /&§+v§
tan® = Ay/Ax
tanel = v/u

The coordinate (x,y) is transformed to the coordinate (§,n)

by rotation.

3

n

x cos® + y sin8

-X sin® + y cosb (4.35)
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where £ is the coqrdinate in the flow direction.

<+

> x
Then Eq. 4.32 is reduced to the following form.

2 2

U—g—g = a(a—-§3 + 3——;) (4.36)
: 13 an
where U =v/u2+v2

Now Eg. 4.34 will be transformed to the coordinate system

(£,n) given by Eg. 4.35.

a2 2

. d . . 37 ¢
(A%) ~ [(sin® tanel + cose)gzi + ( sxne4-co-6tanel)3zgﬁ
32¢ Ubx
+ (0);;;2 - (4.37)

Equation 4.37 shows that the diffusion component in
the n direction (normal to the flow direction) is zero and
the cross differential term also vanishes when 6 is equal to
61. Therefore, dominant truncation error diffusion occurs
only in the flow direction. When 6 is equal to 0 or n/2,

the problem is basically one dimensional and the truncation
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error diffusion occurs in the flow direction as in a one

dimensional problem.

4.2 Cross-flow Diffusion

Most of the éonfusion about the nature of numerical
diffusion comes from the fact that there exists an addi-
tional source of false diffusion, that will be named here
as the cross-flow diffusion. It is entirely different
from the truncation error diffusion. Recently this addi-
tional false diffusion was explained by Patankar [52]
and Stubley et al. [67,68) and it was clarified that this
is the dominant source of the error in most multi-dimensional
problems. In this section the origin of the cross-flow
diffusion will be illustrated and the corresponding dif-
fusion constant will be quantified so that they can be
used in the corrective scheme of section 4.3.4.

The cross-flow diffusion comes from the multi-dimen-
sionality of the problem, therefore it exists only in two
or three dimensional problems when the flow direction is
not aligned with the mesh configuration. The origin of the
cross-flow diffusion is illustrated in Fig. 4.1, which shows
a single mesh with pure convection. 1In Fig. 4.1(aA), the hot
and cold fluid enters the mesh from the left and bottom
surfaces at 45° angle. The hot fluid will come out of the
top surface and the cold fluid out of the right surface.

In the donor cell scheme Fig. 4.1(A) is transformed into
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Illustration of the cross-flow diffusion in a
single mesh with pure convection
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Fig. 4.1(B) where the velocity components normal to the
surface are considered. Then homogeneous mixing occurs

in the mesh, and intermediate temperature fluid will come
out of the top and right surfaces. The numerical results
in Fig. 4.1 (B) aré again interpreted as Fig. 4.1(C) by a
program user. Therefore, an appreciable amount of false
diffusion occurs in multidimensional donor cell differencing
of the convection term.

Another illustration of the cross-flow diffusion is
given in Fig. 4.2 which shows a row of meshes aligned in
the x-direction. The value of ¢ at the point A should
reappear at the point X because there is no physical
diffusion. In the donor cell scheme it is distributed all
along the points Al’ AZ' A3 . . . and the sum of the values
at those points is exactly egual to $. This distribution

of the value of ¢ causes the cross-flow diffusion.

(1-p) & [14+p+p2+ - . . ] = (l-p)¢-]_%§ = &
where u
_ AX
PEyw v
Ax by

The effective diffusion constant for the bross-flow
diffusion will be calculated in the two dimensional Cartesian
coordinate in Fig. 4.3. This is a pure convection problem
with no physical diffusion. Consider the fluid element

CAB which looks like a long one-dimensional rod. The fluid
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(1-p)¢ = X p(l-po 22 (1-p) & p2(1-p)®  pr(l-p)e
| A A, B, A, 2,
by
A 3 ' 2
hx po ' p2<l> . po vy, p¢d

%l
+ (%]
>|<

<

where p

|

Fig. 4.2. Illustration of the cross-flow diffusion in a

row of meshes aligned in the x-direction with
pure convection
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e 6,
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B_
Ax to tl

where tl—t0= At = 23/0
tanel= Ay /bx
tané = v/u
_ u/Ax
- v_

u
x T iy

Geometry for explanation of the cross-flow

diffusion in a two dimensional Cartesian
coordinate
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element was on the line CAB at time tO and is translated

in the velocity direction, v.

The value QA at the point A should reappear at the
Point A'. In the donor cell scheme it is divided into
two portions, p@A and (l--p)d)A and appears at the points
A1 and a,. The travel of the fluid element is analyzed
in Fig. 4.4, which shows that the value ¢A diffuses out
along the fluid element. The diffusion occurs both to the
right and left hand sides. The diffusion to the right hand

side is considered first in the following.

Gradient
Cot o ) = %/Y

(Current) = po 22 = po EEE
of ¢ A t1 - t0 A £3
Therefore,
(Diffusion) - (Cur;ent) - pUigfl
constant (Gradient) 23
where
ll = Ax/cosel
22 = AX sine/sin(el+8)
0 =

3 = AX s;nel/51n(el+8)

After substituting appropriate expression for each term,

the following right hand side diffusion constant results.

_ sin6 cos®
Drus ~ Ubx cosel sin(6+el)
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Fig. 4.4. Geometry for explanation of the cross-flow
diffusion in a rotated two dimensional
Cartesian coordinate
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Repeating the same procedure for the left hand side we
can find that the right and left hand side diffusion con-

stants are equal to the following.

D =D = Ubx sinb cosb

RHS LHS CosE, sin(6+6,) (4.38)

Equation 4.38 is the effective diffusion constant when
the diffusion is confined to the one dimensional fluid
element. There are two diffusion components in a two

dimensional problem as follows.

The current on the one dimensional fluid element can be
factored into the x and y components. The cross-flow
diffusion constants are the ratios of the current and

gradient of ¢ in the x and y directions.

sin® cos#8

= - TF .5 3 C
Dx Udx 51n(6+el) Osel
sinze
_ sinB cos#H 1
Dy = Ubx sin(e+el) cosel (4.39)

Equation 4.39 is identical to the following simple expres-

sions.

D

X udx (l-p)

D VAY P (4.40)
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where

2
Ax
p:
+

v

-
Ax Ay

Equation 4.38 should be differentiated with respect to
® in order to find out the velocity direction with maximum

cross-flow diffusion. It can be shown that,

RES - 0 when tan3e = tanf, . (4.41)
88 1
Equation 4.41 shows that Drus (ox DLHS) is maximum at an
angle of € between T and ei, that is to say, P L8 < el or

6, < 8 <% . De Vahl Davis and Mallinson [24] also derived
the effective cross-flow diffusion constant and their

result is given in Eg. 4.42.

- UAxAY sin2@ - Ux tand, sin2f
DM 3

4 (by sin3e + Ax cos”6) 4(tan9l sin3e + cosBG)

(4.42)

Equation 4.42 underestimates the cross-flow diffusion as
shown in Fig. 4.5. When both 6 and el are equal to Ly
Eg. 4.40 and Eg. 4.42 give the same result.

Now the analysis will be extended to a three dimensional
case in Fig. 4.6. In Fig. 4.6 the value at the point O is
¢ and that value should reappear at the point X where the
velocity vector meets the plane ABC. In the donor cell

scheme the value ¢ is divided into three portions px¢, pyé,
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pzé occurring at the points A, B, and C instead of at the
point X. This is the so-calléd cross-flow diffusion pheno-
menon. The currents due to the cross-flow diffusion are
along the directions iﬁ, i%, Xﬁ,and ﬁ;, ﬁ;, 62 denote

unit vectors along those directions. The coordinate of the

point X is given as follows.

X(24cpsu, 24cose, L ,cosy)

4
Any point on the plane ABC should satisfy the following

Eg. 4.43.

X L X4 2 .
Ax_+ By + 1 1 : plane ABC (4.43)

Since the point X is on the plane ABC, the following

relation holds.

cosa  cosf | cosy, _
22 Frx Y Thy t ) T (4.44)
Therefore,
= 1
Yy = Zoso cosB _ cosy (4.45)
ox by Az

The lengths of AX, BX, CX which are denoted as ll, 22, 3

can be obtained as follows.

L, = AX =‘/(Ax-l4cosa)2 + (24c058)2 + (£4cosy)2

/2;2 + 242 -2Ax24cosa
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o
N
n
to
>
[

/k24cosa)2 + (Ay-24cosB)2 + (£4cosy)2

/ay? + 242 -28y4 ,cosB

13 =CX = vﬁl4cosa)2 + (24cose)2 + (Az—£4cosy)2

/g22 + 242 -2Az£4cosY (4.46)

The unit vectors KA’ EB' KC can be obtained in terms of

their components in x, y, z directions.

> XA _ Oa - OX
n, = —5— = = (4.47)
| Xa | 1
etc.
Therefore,
-> _ -l_ _ _ _
n, = 21[(Ax 24cosa), i4coss, 24cosy]
+ _1__ _ _
ng = 22[ L,cosa, (by 24cosB), 24cosyl
> 1 _ _ _
ne = I;[ £4cosa, £4cosB, (Az £4cosy)] . (4.48)

The currents in the directions KA’ KB’ HC can simply be given
as the products of the transported guantities and velocities.
L

_ 1
l(Current)XAl = p,% 7%
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o

_ 2
‘(Current)XBI = py¢ it
23
‘(Current)XC =p,% 1%
where
At = lq/U

The gradients of ¢ in the x, y, 2z directions are

as follows.

(Grad)X = ¢/bx
d =
(Gra )y ¢/ Ay
(Grad) , = ®/bLz

(4.49)

given

(4.50)

Now the x direction cross-flow diffusion constant may be

given as the ratio of the current to the gradient of ¢

in the x direction.

Py ¢
(Current)x = —7?(Ax £4cosa) + —X—( 2 cosqp)
PZ¢
(Grad)x = §/AX
Therefore,
prx p. AX pzAx
Dx = —ZE—(AX-24cosa) + X3 (-24c05a) + X

(4.51)

(-z4c05a)
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sz
D = Px - &x L ,cosa(p . +p +p_)
X At At T4 Px py Py
2
p.Ax
=X A
= Tt it ‘4cosa (4.52)

Inserting the expression for At given by At = £4/U, we can

simplify the result as follows.

]
c
>
»
[

1

g

(4.53)

The cross-flow diffusion constants in the y and z direc-
tions can be obtained in the same way. The rotation of

indices will also give the same result.

D

Ay (1-
y vay ( py)

D

, = wbz(1-p,) ' (4.54)

4.3 Discussion of Skew Differencing and Corrective Schemes

The origins of the numerical diffusion and their effec-
tive diffusion constants have been given in the previous
sections. This section is a review of the schemes that
have been used to eliminate the numerical diffusion. The
most important ones may be the skew differencing, tensor
viscosity method, finite element method, etc. although none

of them has been successful enough to be accepted widely.
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Most of the schemes in Table 4.1 can be categorized
into two types, skew differeneing and corrective schemes.
S. Chang's method [16] and Raithby's scheme [53] are of a
skew differencing type while the tensor viscosity method
[25] and Huh's corrective scheme that will be introduced
in section 4.3.4 fall in the category of a corrective
scheme. In the skew differencing type schemes finite
differencing of the convection term is done not in terms
of the x and y directions, but directly along the velocity
direction. Since the upstream point in the velocity direc-
tion does not necessarily fall on the mesh point where the
gquantity under consideration is defined, the interpolation
should be done between neiéhboring points to obtain the
value at the upstream point. The donor cell treatment
of the convection term results in a 5-point relationship
in a two dimensional problem. In the skew differencing
scheme the 5-point relationship becomes a 9-point relation-
ship. Basically the inclusion of four additional corner
points contributes tomore accurate numerical modelling of
the convection. However, the interpolation between
neighboring points may still give some cross-flow diffusion.
The cross-flow diffusion is not eliminated entirely in the
skew differencing scheme, but just appreciably lower than
that of the donor cell scheme.

The corrective scheme is to reduce the diffusion

constants in order to compensate for the additional false
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Standasd Best
Classicsion Contuibuior/meihod mesh? mesh

Cenzzzed finite Lillingion Yes 2) x 11

Cifference Orlandi - 40 x 40

Gale:kiin finite elements Cliffe - 65 x 33

Donei et al, - 4) x 21

Crandotto Yes 21 x1}

Hickmott et 2l. Yes 41 x 21

Firsiordes upwind finite Elbzhar ¢t sL/PATANKAR Pe=10' only 41x2)

Eifference Liliingion Yes 21 x 1)

Os1land; - 40 x 40

Priddin Yes 100 x SO

Wads etal. - 81 x 41

Wilkes - 100 x 80

Figher créer vpwing Elbzhar et al./QUICK Yes 4} x 2}

Talie ¢iffesence Eloahas et ). /LLUE Pe= 10" only 41x2]

* . Huime/QUICK - 3Ex1%

Wilkes/LUE - 80 x 40

Vertor vpwind Lillinon/SUD Yes 21 x 1}

Cifitrencs Lilingzion/VUD Yes 21x1)

Likirsion/VUDCC Yes’ 2 x 1

Upsing fizite elemem Narusawe ' Yes 21 x 11

Methol of chaecerisiics Esposito - 41 x 21

Glass end Rodi Yes 4 x 21

Ruffenus znd Khaliizky Yes 21x1}

Finjie anddyiic method Chen - 8] x4}

Tenso: viscosity method Rutletal - 28 x 14
Self-2dsptive meihod Schonaver - See Table 2

Mesr wandormaztion Svkes - 2x1

meihod
Lex-Wendroff Wade e1 21 - §0 x 40°
List of the schemes for numerical representation

of advection presented at the Third Meetiqg of
the International Association for Hydraulic

Research,

1981 [65]
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diffusion. The cgrrective scheme is valid only if the
effective numerical diffusion constant can be predicted
accurately. Since the cross-flow diffusion is dominant
over the truncation error diffusion and the effective
diffusion constants for the cross-flow diffusion can be
predicted theoretically, the corrective scheme can give a
numerical solution which is almost free from numerical
diffusion. The tensor viscosity method is one example of
the corrective scheme, although the validity of its
correction formula is not clear. The correction formula
used here is Eqg. 4.53 and Eg. 4.54. The diffusion con-
stants in x, y and z direc;ions will be reduced by the

amounts of Dx’ Dy and D, in Eq. 4.53 and Eq. 4.54.

4.3.1 Raithby's Scheme

Raithby's scheme [53] is an Eulerian type of approach,
where the balance equation is set up for a given control
volume by considering convection and diffusion at the con-
trol surface. It is therefore a conservative scheme.

The finite difference equation for Raithby's scheme is
derived on the assumption of a linear profile of ¢ normal
to the flow and a uniform profile in the flow direction.

)

= = vy
$=C, + C,yn = C1 + C2(yU X

g (4.55)

2,2

where n is the distance normal to the flow and U =\/u +v
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grid lines, control volume and notations in
Raithby's scheme
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The convection gquantity at the control surface is
calculated from tﬁe upstream Qalue in the flow direction
and the upstream value is obtained by interpolating two
neighboring points. This should be repeated for the four
control surfaces of every mesh in a two dimensional prob-
lem, which may be too complicated and time consuming for
a practical purpose. The inclusion of the four additional
points also complicates the structure of the coefficient

matrix in an implicit scheme.

4.3.2 Skew Differencing By Huh

Skew differencing scheme here treats the convection
term in a Lagrangian way. 'The convection term is differ-
enced in the velocity direction between mesh points,
not in terms of the convection that occurs at mesh
interfaces. Although this scheme is nonconservative, it is
much simpler than Raithby's scheme and becomes conservative

in a unidirectional flow.

¢ 3¢ _ 409

o 2 =yl 4.56
Usx T Vay Uag (4.56)
where £ is the coordinate in the velocity direction and
U =y/u2+v2.
o, . - ¢US
-,S-E= R (4.57)

where the upstream value ¢U may be calculated by

S
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interpolating two neighboring points. Some of the results

of this skew differencing scheme is given in section 5.3.2.

4.3.3 Tensor Viscosity Method

The tensor viscosity method treats the numerical dif-
fusion constant as a tensor quantity. The expression for

the tensor viscosity [25] is given in the following.

T = LAt uu
u? uv
= 1
fiAt( 2) | (4.58)
uv v

Eg. 4.58 for the numerical diffusion constant is apparently’

not consistent with the results in Eg. 4.53 and Eg. 4.54.

4.3.4 Corrective Scheme By Huh

The corrective scheme is to use the reduced diffusion
constants, D—Dx, D-Dy, D-—Dz in X, y, 2 directiqns to compen=
sate for the cross-flow diffusion effect. The validity of
this scheme is based on the fact that the cross-flow dif-
fusion can be predicted accurately. The expressions for
the cross-flow diffusion constants Dx' Dy‘ Dz are derived

in section 4.2.

w)
]

qu(l—px)

(o)
]

vAy(l-py)
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Dz = wAz(l—p?) (4.59)
where
n
_ Ax
P, = T, v, W etc.
Ax Ay Az

Two implementation strategies have been tested so far,
the mesh point implementation and mesh interface imple-
mentation.- These two become identical when the flow field
is uniform or a very fine mesh is used so that the flow
change over neighboring meshes is negligible. 1In a coarse
mesh or recirculating flow field the latter implementation

strategy is definitely preferred.

4.3.4.1 Mesh roint Implementation

The mesh point implementation is.to assign the cross-
flow diffusion constants Dy s Dy,Dz at the center of a mesh
where all guantities are defined except the flow field.
The velocities at two boundary faces are averaged to get
the representative velocity, which is used with the cell
dimensions to get the cross-flow diffusion constants.

After the cross-flow diffusion constants are assigned
to every mesh point, they should be averaged again between
neighboring mesh points to calculate the cross-flow dif-

fusion current at mesh interfaces.
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4.3.4.2 Mesh Interface Implementation

The mesh interface implementation is to assign the
cross-flow diffusion constants directly to the mesh inter-
faces where the cross-flow diffusion current should be
calculated. The mesh interface implementation is always
recommended although it has a more complex program iogic
than the mesh point implementation.

There are three possible cases that should be treated
independently in a two dimensional case, as shown in Fig.
4.8. Note that the cross-flow diffusion constant for the
interface with an inward velocity does not have to be
considered in that mesh because it will be considered in
the neighboring mesh. For the first two cases the cross-
flow diffusion constants are zero because the velocity
vector is aligned with the mesh configuration. For the
second case the two outward velocities, U and V, can be
directly used with cell dimensions in Eq. 4.59, and the
resulting Dx and Dy will be assigned to each interface.
The third case is expected to have a flow split as shown
in the figure. The velocity U is split into two components,
Ul and U2, so that they are proportional to V1 and V2.

The two velocity sets (Ul,Vl1) and (U2,V2) are used to give
(Dxl'Dyl) and(sz,Dyz). The right interface will have the
cross-flow diffusion constant (Dxl+Dx2) and the top and

bottom interfaces, Dyl and DyZ' The same logic can easily

be extended to a three dimensional case. Appendix C includes
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Three possible flow configurations for mesh
interface implementation of the corrective
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the fortran program for calculating cross-flow diffusion

constants in an arbitrary flow field.

4.4

Comparison of Explicit, Implicit and ADI Schemes

There are three typical solution schemes, Explicit,

Implicit and ADI (Alternate Direction Implicit), for the

general conservation equation, Eq.

4.60, which is a para-

bolic partial differential egquation. The pros and cons

of the three schemes will be compared in the following

four viewpoints.
1. conservation
2. physical constraint
3. accuracy

4. stability

2 2 2
%g + u%ﬁ + v& wag = p(2 g + 2 g + 2 ;) + S (4.60)
Y ox Yy 92
Explicit (1-D):
¢n+l _ ¢n
i i u,,.n n _ D n _oxN n
(4.61)
Implicit (1-D):
¢n+l L
i i u ,,n+l n+l D n+l n+l n+l
— % T % ®i-1) _sz“’iu m20, T+ 8y ))
+ 8 (4.62)
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ADI (2-D): (A&)

n+k n n+k n+k n n
.. - oL . R P .. = b, .
13 1j 173 i-13 19 ij-1
AE + u Ax + v By
2
n+ n+l n+k n n n
O, L -20. .0+ 0, 2. C 4 =200 . . -
= D 1413 i3 Ql-lj + D¢13+l 2¢134'¢13-1 + s
Ax2 Ay2
n+l n+ n+ n+% n+l n+l
.. - ¢, .. - 9, . o, .7 - .
i3 ij iy i-15 ij ij-1
53 + u X" + v By
2
n+k% n+l n+l n+l _ ,,n+l n+l
Sriely T 2%t %1y fige T %%y %o
sz Ay2
ADI (2-D): (B)
* n * * * * *
S T G R S N T b R PO C A C I T
+ u =D + 8
At Ax Ax2
n+l * n+l n+l n+l n+l n+l
S N S R I 1 U © S W € R S
+ v = + S
At Ay Ay2
(4.63)

4.4.1 Conservation

The conservation principle is that the total amount of
¢ should be conserved (S=0), or affected only by the source

term contribution (S#0), when the net inflow or outflow at
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the domain boundary is equal to zero. A scheme may be both
stable and nonconservative and also both unstable and
conservative because the conservative propérty is independent
of the stability. When we are concerned with a steady state
solution, the conservative property may not be crucial.

For a long time transient, however, the.conservative pro-
perty is as important as the stability because the error

from noncoﬁservation may accumulate over many time steps.

All the explicit, implicit and ADI schemes can be made
conservative by using appropriate differencing forms for the
convection term. In order to guarantee conservation, the
same exchange term should be used for neighboring meshes.
Although a conservative form is preferred to a nonconserva-
tive one, there are some nonconservative solution schemes
like ICE (Implicit Continuous Eulerian), where the convection

terms of momentum equations are linearized in a noncon-

servative way.

- A% + b9

- -

4.4.2 Physical Constraint

The physical constraint is closely related with the

stability in a practical sense. Although they usually give
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similar constraints on the time step size and mesh spacing,
they are from entirely differént origins. The laws of
physics impose some restrictions on the numerical scheme
to get physically reasonable solutions. The Courant
condition and Hirt's stability condition [36] that the
finite domain of influence should at least include the
continuum domain of influence are good examples of the

physical constraint condition.

4.4.2.1 Diffusion

There is a maximum net flow that can occur between

neighboring meshes by diffusion.

d>C €t Q)R by @R > ¢C
Ax Ax
o -

Exchanged gquantity of ¢ - C
(by diffusion for time pt) = Dpx by Bt

After the exchange of the diffusion current, new values

of ¢ are given as follows.

¢R - ¢C

¢é Axby = ¢chAy + D——TGF——Ay bt
%2 ~ %

¢éAxAy = ¢RAxAy - D i Ay At
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Since the relationship, ¢ > ¢, , should still hold,

we have the following physical constraint.

(0p-¢0)
AxAy(@R-¢C) > 2D———K§——AyAt

YAt <1 ' (4.64)

Eg. 4.64 may be extended to a d-dimensional case as follows.

a 2Bt <1 (4.65)

Ax
Equation 4.65 may be a too conservative criterion in a real
problem. When the physical constraint is ignored and the
time step size greater than that given by Eg. 4.64 or
4.65 is used, the solution will be unstable or stable with
damping oscillations. Both of the oscillation and insta-
bility should be avoided in a transient problem. The ADI
scheme given in Eg. 4.63 is unconditionally stable; however,
there will be a damping oscillation in the solution when the
time step size is greater than that given by Eq. 4.64 or
4.65. Therefore the physical constraint should be respected
in addition to the stability condition to get a meaningful

transient solution.
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4.4.2.2 Convection

covosw

c A B
u
QC ?A e QB by
o
:

The explicit and donor cell treatment of the convection
term gives the convection quantity at interface S as
u?AAtAy. It is based on the assumption that o is the repre-
sentative value of the qon£rol volume A. If At is greater
than the Courant limit, a portion of the control volume
C will cross the interface S. Then u@AatAy is no more an
appropriate expression for the convection quantity during

At. Therefore,

At < =— (4.66)

When a time step size greater than the Courant limit is
used, the damping oscillation or instability may occur

as in the case of diffusion.

4.4.3 Accuracy

Realistic interpretation of a finite difference equa-

tion comes from an integral form of the conservation
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where US(Upstream)
DS (Downstream)

Donor Cell

Fig. 4.9. Profile assumptions of ¢ in space and time for

various differencing schemes
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equation. The infinitesimal approximation of differential
terms is not appropriate in most problems of our considera-
tion. The accuracy expressed in terms of 0(At), O(sz) is
also not appropriate for finitely large At and Ax. The
accuracy depends on how well we can compute the convection
and diffusion guantities at control surfaces over the time
At. In other words, the accuracy depends on the profiles
assumed for ¢ in time and space because the exact profiles
are not known a priori.

Since the exact profile depends on the Peclet and
Strouhal numbers of the governing equation, appropriate
schemes ‘should be chosen according to those numbers or
weighting should be done between neighboring time steps
and mesh points to increase the accuracy of the solution.
However, the accuracy is usually the least important among

the given four considerations.

4.4.4 Stability

The stability is a mathematical problem, whether the
error introduced at a certain step will increase or decrease
as the calculation goes over to the following steps. It
depends on the maximum eigenvalue of the iteration matrix.
If its absolute magnitude is less than one, the error
propagation is suppressed and the largest error contribution
will be from the previous time step.

The stability can be checked by the theorems about

matrix eigenvalues or Von Neumann analysis. The Von Neumann
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analysis is to expand the solution of a finite‘difference
equation in Fourier series and check the decay of each

mode separately. The stability is not a sufficient con-
dition for an acceptable numerical scheme. In the fol-
lowing sections, étability criteria will be derived for

the explicit, implicit and ADI schemes using the Von Neumann

analysis.

4.4.4.1 Explicit Scheme

The Von Neumann stability analysis of a finite dif-
ference equation is simple in its idea, but its algebra

may get complicated.

4.4.4.1.1 One Dimensional Central Differencing of Convection
Term

The finite difference equation is given for a one

dimensional general conservation eguation with central

differencing of the convection term.

n n n n

-0 D°i+1 - 20y v 0y (4.67)
2A0x% - 2 :
Ax

. . &,
i i, i+l

The solution ¢2 is expanded in Fourier series as follows..

= rgPeld (4.68)

where I = V-1
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The absolute valug of ¢ should be less than one for every
mode to achieve stability. When Eg. 4.68 is substituted

in Eg. 4.67, the following expression for 7 results.

T = l-stinexI - de(l-cosex) (4.69)
where
_ ult
Cx T Ax
DAt
4d - =
x sz .
Therefore,
lC‘z = [1 - 2d_(l-cosé )12 + [C_sine 12 <1 (4.70)
X X X X - :

Equation 4.70 may be rewritten as follows by defining

cosf  as t.
X

[ - 28, (1-t))% + ¢ 2(1-t%) <1 (4.71)

where

t = cosex ’

-1 <t < 1
The function f(t) will be defined as follows.

f(t)

i
N2l

2

2 2,,2 2 2
(4dx -Cx Yoo+ (—8dx +4dx)t + Cx +4dx -4dx (4.72)

In order to get the stability of Eg. 4.67, the function
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f(t) should be less than or equal to zero for any t in
[-1,1].

f(t) <0 (4.73)
for any t in [-1,1]

Equation 4.73 can be solved by a graphical method using the
characteristics of a quadratic eguation. The parabola
£(t) always meets the t-axis because the discriminant is

always greater than or egual to zero.

2

D(Discriminant) = (c,” - de)z >0 (4.74)

One of the two meeting points with the t-axis is the point

t=1 because f(l) is equal to zero.

£(1) =0 (4.75)

The parabola f(t) may have three distinct shapes according

to the sign of the coefficient of the second order term.

(1) 4dx2-Cx2 >0 : concave upward
2 2 _ L
(2) 4dx -CX = 0 : linear
2 2
(3) 4dx —Cx <0 : concave downwargd.

In case (1) f£(t) is a parabola concave upwafd and f(-1)
should be less than or egual to zero as shown in Fig.

4.10(1). Therefore,
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Fig. 4.10. Three distinct shapes of the parabola, f(t),
according to the sign of the coefficient of
second order term
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£(-1) = 84 (2d -1) < 0

0<d <% (4.76)

In case (2) f(t) is a straight line and f(-1) again
should be less than or equal to zero. In case (3) the
parabola f(t) is concave downward and the axis of symmetry
should be on the right hand side of the point, t=1 as
shown in Fig. 4.10(3).

1a.? - 24,
Axis of symmetry: t = X > 1
. ) > Z
44 - C
x x
a. > uc. 2 (4.77)
X = *Tx

Summing up the results in Eg. 4.76 and Eq. 4.77, we get

the following stability conditions.
2 2 . LA 2
48 “-c “ <0 : a. > &C,

The stable region in the coordinate system (Cx'dx) is shown

in Fig. 4.11.

4.4.4.1.2 One Dimensional Donor Cell Differencing of
Convection Term

The following Eg. 4.78 is a finite difference equation

with donor cell differencing of the convection term.
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Stability _ondition in the plane (Cy.,&_ ) for
an explicit scheme with central differéncing
of convection term in a one dimensional

problem
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- i i-
e T VT D 5 (4.78)

where the velocity u is positive.

The Von Neumann analysis of Eg. 4.78 gives the following

stability condition.

2 L (- - 2 . 2
lg]® = [1-(c +2d) (1-cose )1° + [C, sing, )" <1 (4.79)

It can be shown that the value13f|;|2 in Eq. 4.79 does not
change when the velocity u is less than zero, if the Courant
number, Cx' is defined such that it is always positive.

The function f£(t) is defined as follows to make it easier

to solve Eqg. 4.79.

£(8) = |g]% -1

2,,.2

_ 2_ _ 2
= [(Cx+2dx) Cx 1t° + [ 2(Cx+2dx) + 2(cx+2dx)]t

2 2
+ [(Cx+26x) +Cx -2(Cx+2dx)] | (4.80)

The function £(t) in Eg. 4.80 should be less than or

equal to zero for any t in [-1,1]) for the stability of
Eg. 4.78.

f(t) <0 for any t in [-1,1] (4.81)
The parabola f(t) meets the t-axis at the point, t=l.

£(1) = 0 ’ (4.82)
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Equation 4.81 can be sclved by the graphical method as in

the previous section.

2 2
(c,+2a )% - c.“ >0 : 0<cC +2a <1 (4.83)

2 2 2
(e, 428 )% - ¢c.” <0 2 > u(c,5-c) (4.84)

The resulfé, Eg. 4.83 and Eqg. 4.84, are shown graphically

in Fig. 4.12.

4.4.4.1.3 Two and Three Dimensional Donor Cell Differencing
of Convection Term

The two dimensional extension of Eg. 4.78 is given in

the following.

n+l n n n n n

L = Ol P S R S

4>13 ¢13 + ptd i-13 + V¢lj ij-1
At Ax by

n n n n n n
Jpting T 2%yt Yigy 0 %ige1 T 2055t 8454
- 2
Ax Ay

(4.85)

The Von Neumann analysis is applied to the finite difference

equation, Eg. 4.85, yielding the following result.

I6,

g - 1= -Cx(l—e ) - Cy(l-e ) - x(l—cosex)

- 2d_(l-cosé_) (4.86)
y Yy
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Fig. 4.12. Stability condition in the plane (C;,dy) for an
explicit scheme with donor cell differencing
of convection term in a one dimensional
problem
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where
. udt _ vt
Cx Ax ! Cy T by
a = DA;: ’ 4 = DA;
Ax Y by

The Courant numbers, cx and Cy, are defined so that
they are always positive, independent of the directions of
the velocities u and v. Egquation 4.86 can be simplified

by defining ay and a, as given in the following Eq. 4.87.

T =1+ ay + o, (4.87)
where
a; = -CX - 2dX + (cx+dx)e + dxe ,
= -C -24d + (C +d )e + 4. e Y
2 y y T (Cyrdy) y

The stability condition is that the absolute magnitude of g
should be less than or egual to one for any values of 6,
and ey. From Fig. 4.13 and Fig. 4.14 it can be seen that

¢y and a, should satisfy the following conditions inde-

pendently.
lag+| < % (4.88)
la+i] < % (2.89)
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Y

al+a2 - l4a.,+a

The region in the complex plane where (a,+a,)
should exist for the stability of an expliclt
scheme with donor cell differencing of con-
vection term in a general two dimensional problem
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Both al and a. should be in

2
the shaded circle to ensure
that lal+a2+1|< 1.

Fig. 4.14. The region in the complex plane where the
amplificatio~ factor, 7, should exist for
the stability of an explicit scheme with decnor
cell differencing of convection term in
a general two dimensional problem
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Both Eg. 4.88 and Eg. 4.89 can be solved by the
graphical method as in the previous sections. The results
are given in Fig. 4.15, where the points (Cx,dx) and
(Cy'dy) éhould be'in the shaded region for stability.

A three dimensional case can also be solved through the
same procedures and the results are given in Fig. 4.16.

The stable region shrinks on a linear scale with dimen-~

sionality.

4.4.4.1.4 Stability Condition in Texrms of Cell Reynolds
Number

The stability conditions in the previous three
sections are in terms og the dimensionless numbers, Cx and
dx' which depend on both the mesh spacing, Ax, and time
step, At. When Ax and At are already given, the stability
can be checked directly. However, our usual concern is
the stable time step size for a given mesh spacing.
Therefore, the stable range of CX should be determined
in terms of the cell Reynolds number Cx/dx’ which is
independent of the time step size, At. The stability
condition is again given by Eg. 4.88 and 4.89 and oy and

o, may be rewritten as follows.

_ 1 . 2 1l X 1 X
a, = Cx[ 1 = t (1+§—)e + g e ] (4.90)
X X X
~16 I8
e, = C [-1 - gﬁ + (1+§L)e Y 4 g; e ¥ (4.91)
Y x y y
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Stability ccudition in the planes (Cy,dx) and

(C ,dy) fcr an explicit scheme with donor cell
di¥ferencing of convection term in a general
two dimensional problem.
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for an explicit scheme with donor cell differ-
encing of convection term in a general three
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The following condition for C, and R can be derived from

Eg. 4.88 and Eg. 4.90.

[¥ - C (L+2) (1-cos8 ))? + [c siné )2 < % (4.92)
X

Equation 4.92 can be simplified as follows.

_ 2 5 .32 _ _ 2,.._.2
f(t) = Cx(1+K) (1-t) CXK(l t) + Cy (1-t°)

_ 2,2 2,2 2.2 2.2

= (CX X CX Y£© o+ (2Cx K +CXK)t + Cx K™ - CXK

+ C 2 <0 (4.93)
X - . :
where K=1+ éL , and
x
t = cosex

The stability condition is now that f£(t) should be less than

or equal to zero for any t in [-1,1]

£(1) =0 (4.94)

D(Discriminant) = cxz(x—zcx)2 > 0 (4.95)

The function f(t) satisfies Eg. 4.94 and Eg. 4.95, and has

distinct shapes for the following three cases.

(1) sz(Kz—l) > 0 : concave upward
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(2) cxz(xz-l) = 0 . linear
2, 2
(3) Cx (K°-1) < 0 : concave downward

For case (1) and k2), f(-1) should be less than or equal

to zero. For case (3) the axis of symmetry of the parabola
should be on the right hand side of the point, t=1. The
solution procedure is similar to those in the previous

sections and the results are given in the following as,

R >0 : 0<C <—=s— , and (4.96)
2(1+§—)
X
2
R, <-1: 0<C < 5 (1+g—) . (4.97)

X

The results in Eg. 4.96 and Eqg. 4.97 are shown in Fig. 4.17.
The same result will be obtained for the y-direction,
therefore the subscript x may be replaced with the subscript
y in Fig. 4.17. The stability condition in Fig. 4.17 is
applicable to all general 2-D problems, although it can

be relaxed if there is a constraint on the velocity direc-

tion and mesh spacings such that the following relation is

satisfied.

v
£ = -%?— <1 (4.98)
Ax
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Stability ccndition in the plane (Ry,Cx) and

(R ,Cy) for an explicit scheme with donor cell
di%ferencing of convection term in a general
two dimensional problem
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1+f' :Rx X l+']—'
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(l+f)(l+~§—)

C =(
X

L
o
AY)

-1~ 7

Fig. 4.18. Stability condition in the plane (Rx,Cx) for an

explicit scheme with donor cell differencing of
convection term in a two dimensional problem

with £ = v/by
. u/Ax
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Then the number % on the Cx—axis in Fig. 4.17 should be
replaced with T%f in Fig. 4.18. Table 4.2 shows the com-
parison between the analytical result in Fig. 4.17 and

numerical experiments.

4.4.4.2 Implicit Scheme

The following Eqg. 4.99 is a fully implicit finite
difference eguation for a general one dimensional problem
and the Von Neumann analysis will be applied in the same

way as in the explicit scheme.

n+l n n+l n+l n+l n+l n+l
S SRS S € WS ¥ Sl WS B
At Ax . sz :

The stability condition is shown in Fig. 4.19 and
Fig. 4.20, and it can be seen that the implicit scheme is
unconditionally stable if the diffusion constant is greater

than -LuAx.

a. > -%C

(4.100)
X

X

For a general two dimensional problem, the stability condi-

tion is found to be the following.

d, > -4C, (4.101)

dy > -’zzcy (4.102)
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Maximum Stable Cy

R Von Neumann Numerical
X Analysis Experiments
0.833 0.147 0.180
8.333 0.403 0.540
83.333 0.488 0.660
833.3 0.499 0.660
-8.333 0.380 0.780
-4.167 0.260 0.720
-2.629 0.120 0.120
-2.083 0.019 0.060
Table 4.2. Comparison of the stability conditions in

terms of the cell Reynolds number by Von

Neumann analysis and numerical experiments
in a two dimensional explicit scheme with
donor cell differencing of convection

term



-115-

Fig. 4.19. Stability c~ndition in the plane (Cx,¢x) for an

implicit scheme with donor cell differencing of
convection term in a one dimensional problem
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Fig. 4.20. Stability condition in the plane (Rx,Cx) for
an implicit scheme with donor cell differencing
of convection term in a one dimensional
problem
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4.4.4.3 ADI Scheme

There are two possible formulations of the Alternate
Direction Implicit (ADI) scheme given in Eg. 4.63.
One of the formulations has both the x and y direction
components in each step, treating them implicitly one by
one at each fractional step and the other formulation has

only the x or y direction component treated implicitly

in each step.

The Von Neumann analysis of the first formulation in

Eg. 4.63 gives the following stability condition.

12 =

|z

Cx 2 Cy 2 c 2
{I(1-cos8 ) (5+d ) 1" + [sins ] }{[(1-cosey)(7¥+dy)] }
C C C
{11+ (1-coss,) (+a,)) 2+ [Fsing 1) {11+ (1-coss ) (5h+a )17 +

C 2
[7¥siney] }

(4.103)
lg] <1

In order for |¢! to be less than or egual to one, the
following conditicn should be satisfied.

c
d, >~ = - % (4.104)
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The same condition should hold for the y-direction.

c
d, > - L - % (4.105)

The stability condition of the second formulation in Eqg. 4.63

can also be given by the Von Neumann analysis as follows.

c
X

dX i - T (4.106)
c

a, 2 - £ (4.107)

Therefore the second formulation of the ADI scheme in Eg.
4.63 has the same stability condition as the fully implicit

scheme.
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CHAPTER 5

RESULTS

Some calculations are performed to validate the physi-
cal models and numerical schemes in the previous chapters.
The physical models are tested in a natural convection
problem and the numerical schemes are tested in a simple
geometry to compare numerical solutions with exact solutions.
Finally, the ADI scheme is explored to use a time step size

larger than the Courant limit to save the overall computa-

tional time.

5.1 Naturzl Corvection Results

The containment is modelled as a two dimensional
rectangular compartment with an obstacle as a heat sink.
Natural convection occurs due to the heat transfer between
the obstacle and containment air. Updating of the reference
state, energy convection and heat transfer models are con-
sidered and the resulting flow fields are given in Fig. 5.1

and Fig. 5.2.

£.1.1 Updating of the Reference State

The state of air is determined by any two independent
properties. For example, density is determined by tempera-
ture and pressure. Since the natural convection of air

occurs as a result of the buoyancy force due to density
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—> 0.5 ft/sec

h = 1.8537x10 ‘Btu/ft*°F sec
— 4]
(cp)ob = 1.0 Btu/lbm °F

. , ’ , S %08.29 1bm
A=2ft
T. = 677.4 sec
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5.1. Natural convection flow field due to heat transfer
between the obstacle and air in the containment
at t = 10.8 sec
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Fig. 5.2. Natural convection flow field due to heat transfer
between the obstacle and air in the containment
at t = 62.5 sec
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gradients, temperature and pressure are equally important
parameters in determining the flow field. The density
change of liguid, however, depends primarily on the tempera-
ture, not on the pressure because of a high modulus of
elasticity.

The equation of state of an ideal gas is given in

the following.

P
_ “new

Phew - RT (5.1)

new

T 4 Qtotal
P = p old v Mf,total
new old Told
Q
cell

T =T +
new olad Cy Mf,cell

where

Polda’ Pnew’ Density of the fluid at old and new time

steps.

pold’ Prew' Pressure of the fluid at old and new time

steps.

T , T : Temperature of the fluid at 0ld and new
old new

time steps.

c : Specific heat of the fluid at constant

volume.
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Mf,cell’ vatotal : Mags of the fluid in one cell

and in the total domain.

chll' Qtotal : Heat input to the fluid in one

cell and in the total domain.

The VARR calculations [21] have shown that the magni-
tude of velocity can be affected by a factor two by updating

the reference pressure at every time step.

5.1.2 Energy Convection

Another difference between liquid and gas is the ratio
of the specific heats, k =Acp/cv. The value of k is 1.0
for liguid and 1.4 for air. Monatomic, diatomic and poly-
atomic gases have different values of k. Therefore, the
convection energy transfer should be in terms of enthalpy
instead of internal energy. The energy convection will be
underestimated by a factor of 1.4 when internal energy is

used for enthalpy in air flow.

5.1.3 Heat Transfer Modelling

The heat transfer to the obstacle is modelled as a
natural convection from a verfical surface. The Nussett
and Grashof numbers here are based on the axial length of
one computational mesh, but they may also be based on thé
vertical height of the obstacle. An experimental correlation

is given in Eg. 5.2 in terms of the dimensionless numbers.
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Nu = C(Gr-Pr)n (5.2)
3 2
Gr = gB‘ATéL P (5.3)
u
Pr = 0.708 (air)
Gr*Pr C n
10° - 10° 0.555 0.25
> 10° 0.021 0.4

The following data are used to calculate the heat

transfer coefficient at the obstacle wall.

L =2 ft
AT = 50°F
o = 0.0763 lbm/ft>
g = 32.2 ft/sec2
L= 1.2179 x 107> 1bm/ft-sec
B = 1.923 x 10°°
Therefore,
8

Gr = 9.7134 x 10

Nu = 89.876

The heat transfer coefficient is given as,

h = 1.8537 x 10~ 2 Btu/ft?.°F.sec

This may be a typical value for the natural convection heat

transfer in the containment without any phase change.
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The VARR input [21] reguires the time constant of

the heat transfer instead of the heat transfer coefficient.

1

CQ = cp,ob T(Tf—Tob) (5.4)

where -CQ is the source term in the energy equation of fluid.
The time constant, T, can be obtained from heat balance

between the obstacle and fluid as follows.

~ (Mc )obpf
T = ———%XE——— (5.5)
ob
where
M : Mass of one computational mesh.
A : Heat transfer area between the obstacle and
fluid over one computational mesh.
Pe ¢ Fluid density.
pob Obstacle density.
cP : Specific heat at constant pressure.
h : Heat transfer coefficient between the fluid and
obstacle.
Therefore,

T = 677.4 sec.

5.1.4 Turbulence Modelling

Laminar flow is assumed in obtaining the results in

Fig. 5.1 and Fig. 5.2. If the flow is turbulent, the heat
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transfer to the obstacle will be enhanced and the diffusion
transport of momentum and energy will also be enhanced

in the containment air.

5.2 Numerical Diffusion

The truncation and cross-flow diffusion errors are
compared in a simple geometry where an analytical solution
can be obtained. The skew differencing and corrective
schemes are tested for various problems. Huh's formula
is compared with De Vahl Davis and Mallinson's in predicting
the magnitude of cross-flow diffusion. The corrective scheme

is tested in recirculating flow problems for mesh point and

mesh interface implementations.

5.2.1 Truncation Error and Cross-flow Diffusion

The truncation error diffusion is compared with the
cross-flow diffusion in a two dimensional, steady-state
problem in Fig. 5.3. The flow in Fig. 5.3(A) is parallel
with the mesh orientation so that no cross-flow diffusion
occurs. The results in Fig. 5.4 and Fig. 5.5 show that the
numerical solutions is close to the analytical solution and
the truncation error can be neglected. The flow in Fig.
5.3(B) is skewed at 45° to the mesh orientation and both
truncation error and cross-flow diffusions are included in
the solution error. Figure 5.6 and Fig. 5.7 show that

excessive numerical diffusion has occurred due to the
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Analytic solution

—eeee-- Numerical solution with Donor Cell

10

spatial D
coordinate

Fig. 5.4. Comparison of the analytic solution and numerical
solution with donor cell differencing of

convection term in 10x10 meshes along the line
CD in Fig. 5.3(a)
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Fig. 5.5. Comparison of the analytic solution and numerical
solution with donor cell differencing of
convection term in 6x6 meshes along the line
CD in Fig. 5.3(a)
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Analytic solution

Numerical solution with Donor Cell

———— Analytic solution with D+DCf
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5.6. Comparison of the analytic solution, analytic

solution with increased diffusion constant and
numerical solution with donor cell differencing

of convection term in 10x10 meshes along the
line CA in Fig. 5.3(B)
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Analytic solution

Numerical solution with Donor Cell
Analytic solution with D+Dcf
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Fig. 5.7. Comparison c.

the analytic solution, analytic
solution with increased diffusion constant and

numerical solution with donor cell differencing

of

convection term in 6x6 meshes along the
line CA in Fig.

5.3(B)
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cross-flow diffusion. Figure 5.4 and Fig. 5.6 are for

10 x 10 meshes and Fig. 5.5 and Fig. 5.7 are for 6 x 6
meshes. It is seen that a finer mesh gives a better
solution. Since the cross-flow diffusion constant is pro-
portional to the mesh spacing, more diffusion has occurred

in Fig. 5.7 than in Fig. 5.6.

5.2.2 Validation of Huh's Correction Formula

The cross-flow diffusion can be predicted by Huh's
formula, Eg. 4.53 and Eg. 4.54. Since the corrective scheme
is based on the validity of those correction formulas, it
is necessary to test them for various cases.

Figure 5.6 and Fig. 5.7 show that the numerical solu;
tion can be reproduced by the analytical solution with
increased diffusion constants by the amount given by Huh's
formula. De Vahl Davis and Mallinson's and Huh's formulas

give the same cross-flow diffusion constants for the case,

6 = 91 45°, The problem geometry in Fig. 5.8 has the
arbitrary angles of 6 and el such that 6 = 60° and 61 =
76.81°. Figure 5.9 is the result by Huh's formula and
Fig. 5.10 by De Vahl Davis and Mallinson's for the problem

in Fig. 5.8. It can be seen that the former result is much

better than the latter.

5.2.3 Skew Differencing Scheme

Two skew differencing schemes, Raithby's and Huh's,

are tested in Fig. 5.11 and Fig. 5.12 for a simple pure
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—_— Analytic solution with D+D ¢

————- Numerical solution with Donor Cell

10.

. D
spatial
coordinate

5.9.

Comparision of the numerical solution with donor
cell differencing of - convection term anad
analytic solution with increased diffusion con-
stant, (D+Dcf), by Huh's formula along the line

BD in Fig. 5.8
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— Analytic solution with D+DDN

- Numerical solution with Donor Cell

T
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5
O A-——
B . D
spatial
coordinate

Fig. 5.10. Comparisior of the numerical solution dcnor cell
differencing of convection term and analytic
solution with increased diffusion constant,

(D+D.,,) , by De Vahl Davis and Mallinson's formula
along the line BD in Fig. 5.8
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Donor cell Skew differencing
by Raithby
100 | 93.75 81.25| 65.63 50 100{ 100f 100{ 100 50
100 | 87.%68.75 - 50}34.38 100 100} 100 50 0
100 E 50} 31.25] 18.75 100f{ 100 50 0 0
100 5025 IZ5[ 6.2 10056 0] o 0
100 Y 0 0 50 0 0 0 0
/
Skew differencing
by Huh
(True solution)
100{ 100f 100| 100 50
100{ 100{ 100 50 0
100 100 o0 0 0
->
100 50 0 o o -y
' §4S°
50 0 0 o] 0
Fig. 5.11. Comparison of the true solution and solutions

by donor cell scheme, skew differencing scheme
by Raithby and skew differencing scheme by Huh
in a pure convection problem with 6 = 45°
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Donor cell ‘ Skew differencing
by Raithby
100 80.2% 53.91 31.96 17.33 100} 86.91} 71.43} 7.47}-23.15
100} 70.37 40.74 20.99 10.0} 100 | 90.74} 38.89+22.83] 6.50
100 55.5€4 25.93 11.11 4.5: 100 | 72.22{-9.25/-1.86| 2.2§
100f 33.33 11.1Y§ 3.70] 1.23 100 | 16.67]-5.56} 1.85|-0.62
50 0 0 0 50 -~ 0 0 0 0
Skew differencing True solution
by Huh
100{ 90.63 59.38 21.88] 3.13 100 100 50 0 0
100 81.25 37.50 6.25 0 100 100 25 4] 0
100| 62.3 12.5 0 0 100 50 0 0 0
¥
100 25 0 0 0 100 25 0 0 0
Yy 63.43°¢
50 0 0 0 0 50 0 0 0 0

Fig. 5.12. <Ccmparison of the true solution and soluticns
by doror cell scheme, skew differencing scheme
by Raithby and skew differencing scheme ty Huh
in a pure corvection problem with ¢ = 63.43°
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convection problem. The details of those schemes are

given in sections 4.3.1 and 4.3.2. Figure 5.11 has a flow
at a 45° angle with respect to the mesh orientation and
shows that the donor cell scheme introduces appreciable
cross-flow diffusion while Raithby's and Huh's skew dif-
ferencing schemes give the true solution. Fig. 5.12 has

a flow at a 63.43° angle and neither Raithby's nor Huh's
scheme can reproduce the true solution. It is indicated
that Raithby's scheme may give unphysical results in problems
with steep gradients of the guantity under consideration.
Some cross-flow diffusion has occurred in Huh's scheme, but
less than inthe donor cell schéme.

Figure 5.13 and Fig. 5.14 show that the analytical
solution can be reproduced by Huh's skew differencing scheme
for the case, 6 = 81 = 45°, Raithby's scheme is an Eulerian
method while Huh's scheme is Lagrangian. Therefore, the
former is conservative while the latter is not. However,

both of them are conservative in a uni-directional flow.

5.2.4 Corrective Scheme

The prediction formulas of the cross-flow diffusion
constants are validated by showing that the numerical solu-
tion can be reproduced by the analytical solution with the
appropriately increased diffusion constant. The purpose
of the corrective scheme is, however, to obtain the true

solution by subtracting the additional cross-flow diffusion
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Analytic solution
Numerical solution with Donor Cell

Skew differencing scheme by Huh

Fig. 5.13.

spatial A
coordinate

Comparison ¢:I the analytic solution and numerical
solutions by donor cell scheme and skew differ-
encing scheme by Huh for 10x10 meshes along the
line CA in Fig. 5.3(B)
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—_ Analytic solution
-;__-_ Numerical solution with Donor Cell

——— Skew differencing scheme by Huh

T
10
5
0b=<
C spatial A
' coordinate
Fig. 5.14.

Comparison of the analytic solution and numerical
solutions by donor cell scheme and skew dif-

ferencing scheme by Huh for 6x6 meshes along the
line CA in Fig. 5.3(B)
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constant from the total diffusion constant of the finite
difference eqguation.

In Fig. 5.15 numerical solutions are given for a simple
pure convection problem with various diffusion corrections.
The flow is at a 45° angle with respect to the mesh orienta-
tion. The full correction of the cross-flow diffusion gives
the true solution without any numerical diffusion error.
Fig. 5.16 has a flow with 8 = 63.43°. The corrective scheme
gives a physically reasonable solution, although not identi-
cal to the true solution.

The corrective scheme is also tested in the problem
geometry of Fig. 5.3(B). Figure. 5.17 and Fig. 5.18 show
that the cross-flow diffusion can be eliminated by the cor-
rective scheme and that a finer mesh spacing always gives a
better solution.

Two implementation strategies of the corrective scheme,
mesh point and mesh interface, are introduced in Chapter 4.
Both of them are tested in a recirculating flow problem
with pure convection. Figure 5.19 is a hypothetical 3 x 3
recirculating flow field where the inlet boundary values
are specified on the left and bottom surfaces. Fig. 5.20
shows the diffusion corrections of the mesh point and mesh
interface implementations at each interface. Figure 5.21
gives the true solution, donor cell solution and the solu-
tions by mesh point aund mesh interface implementations.

The mesh point implementation gives an unphysical solution
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D=0.0 =2
D=-3
10f 7.04 4.07° | 2.10 9.96 3.93 0.73
10 5.56 - | 2.59 1.11 6.91 0.82 [0.07
10 3.33 1.11 0.37 3.07 0.41 0.11
0 0 0
True Solution
10 2.5 0
5 0 0
-
v
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63.43°
u=l, v=2
x= y=1
=p =-2
DX—Dy— 3
Fig. 5.16. True solution and donor cell solutions with

and without diffusion correction for a pure
convection problem with € = 63.43°
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Analytic solution
Numerical éolution with donor cell

Solution by corrective scheme

10

Fig. 5.

17.

spatial A
coordinate

Comparison of the analytic solution, numerical
solution by donor cell scheme and numerical
solution by corrective scheme for 10x1l0 meshes
along the line CA in Fig. 5.3(B)
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Analytic solution
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Solution by corrective scheme
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Fig. 5.18.

Comparison c¢f the analytic solution, numerical
solution by donor cell scheme and numerical
solution by corrective scheme for 6x6 meshes
along the line CA in Fig. 5.3(B)
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Fig. 5.19. Simple recirculating flow field for test of the
implementation strategies of the corrective
scheme



Fig.

5.

20.

~-147-

0475 0t>5

0.75 1.25 0

1.1125 0].625

0.5 0.625

wesh point implementation

0.5 0.75
0.75% 1.2
-
0}. 75 4.2
0 0
0
0 0

mesh interface implementation

Diffusion ccustant corrections at each interface
for the mesh point and mesh interface implementa-
tions of the corrective for the recirculating
flow field given in Fig. 5.19
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True solution Donor cell
0 7.5 10 3.75 5.81 5.81
7.5 8 5 7.5 6.5 6.5
10 5 0 10 5 0
mesh point implementation mesh interface implementation
-5.18 7.21 7.21 -0.83 6.16 6.16
11.26 8.86 }12.94 9.82 8.10 8.10
8.75 6.08 |-9.51 10 5 0

Fig. 5.21. Comparison of the true solution, donor cell

solution and solutions by the mesh point and mesh
interface implementations of the corrective
scheme for the recirculating flow field given

in Fig. 5.19
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while the mesh interface implementation gives a physically
reasonable solution. The true solution cannot be reproduced
because some of the information about the flow field has
already been lost in Fig. 5.19.

Another tes£ calculation is done for a two dimensional,
rectangular containment with an arbitrary recirculating
flow field. There was initially air in the containment
and steam is introduced in the source mesh at the rate of
0.2 kg/sec. After a while a flow field is set up in the
containment by the input mass and momentum of steam. This
flow field is used here to test the mesh point and mesh
interface implementations of the corrective scheme. Since
the steam concentration distribution and flow field are
given at the start of the calculation, the steam concentra-
tion for the new time step can be calculated in an explicit
way. Figure 5.22 shows the flow field in the containment
and more detailed information about the flow field is given
in Pig. 5.23. The steam concentration distribution at the
beginning is given in Fig. 5.24 in which the source mesh has
the highest steam concentration. Figure 5.25 and Fig. 5.26
show the diffusion constant corrections of the mesh point
and mesh interface implementations and Fig. 5.27 and Fig.
5.28 show the steam concentration distributions after one
time step, 0.3 sec with the corrections in Fig. 5.25 and
Fig. 5.26, respectively. The result in Fig. 5.28 is not a
reasonable solution while the mesh interface implementation

result in Fig. 5.27 is physically reasonable and even better
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Fig. 5.22. Recirculating flow field for calculation of
the steam concentration distribution in the two
dimensional containment to test the mesh point
and mesh interface implementations of the con-
vective scheme
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Ax = 0.5m 3
by = 1m steam concentration in [kg/m~)]
Source: 0.2 kg/sec of steam
Fig. 5.24. 1Initial steam concentration distribution in

the two dimensional containment to test the
mesh point and mesh interface implementations
of the corrective scheme
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Fig. 5.25.

Diffusion co.stant corrections of the mesh point
implementation of the corrective scheme for cal-
culation of the steam concentration distribution
in the two dimensional containment
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5.26. Diffusion constant corrections of the mesh inter-
face implementation of the corrective scheme
for calculation of the steam concentration
distribution in the two dimensional containment
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Fig. 5.27. Steam concentration distribution after one time
step, 0.3 sec, with donor cell differencing

of convection term without any diffusion
correction
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Fig. 5.28. Steam concentration distribution after one
time step, 0.3 sec, with mesh point imple-
mentation of the corrective scheme
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Fig. 5.29. Steam concercration distribution after one time

step, 0.3 sec, with mesh interface implementation
of the corrective scheme
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than the donor cell solution.‘ In the meshes at the top of
the source mesh, the steam concentration should decrease
as the flow goes up to the ceiling because most of the
steam introduced in the source mesh goes upward and gets

distributed by convection and diffusion.

5.3 ADI Solution

The ADI scheme is tested to use a time step size
larger than the Courant limit. Although the Von Neumann
analysis shows that the ADI scheme is unconditionally
stable, it has the maximum time step size that can give
a physically reasonable so;ution. It is found that a wise
use of the ADI scheme can reduce the overall computation
time in comparison with the explicit and implicit schemes.

The results of the ADI and explicit schemes are com-
pared in the problem geometry of Fig. 5.30. In Fig. 5.30
there is an inflow from the bottom surface at the velocity
of v=1.0 and the inlet boundary value of ¢ is, ¢=10.0.

There is a source of ¢ on the right boundary over two compu-
tational meshes and the profile of ¢ along the dotted line

is affected by that source. Figure 5.31 shows the profiles
of ¢ along the dotted line for the time step size of 0.5 sec,
when the Courant limit is 1 sec. The ADI and explicit
schemes give almost identical results during all the traﬁsi-
ent. Figure 5.32 shows the profiles of ¢ at the same loca-

tion for the time step size of 1 sec, which is exactly the



-1 9-

1
1
!
1
l
|
!
!
]
1
1
1
1
]
!
f
!
]
!

..
% o

]
I
|
!
[
1A
1
4 .1\ TProfiles of ¢
® = 10.0 on this line
are compared.

<

i
-
o

a=1.0

Fig. 5.30. Problem geometry for comparison of the
explicit and ADI solution schemes



-160-

¢ ]
12.0¢ -
0.5 sec 12.0 2.0 sec
11.0r
'I’ ~‘s\\
10.0 i
A spatial B
o coordinate 0
12.0( 4.0 sec 12.0 - 6.0 sec
I", -~\\\‘~ o
11.0f / 11.0(
lO . 0 1 g 4 1 lo . 0 4 s A 3
A B A B
12 p 12.0 4
-0 8.0 sec : 10.0 sec
11.0
10.0 4 L L
A B
~——— Explicit
------=  ADI

Fig.

5.

31.

Comparison of the explicit and ADI solutions for

the profile of ¢ along the line AB in Fig. 5.30
for 4t=0.5 sec and the Courant limit of 1.0 sec



-161-

) 1l sec 4 sec
12.0¢ 12.0‘zz
\\\\
11.0p 11.0F \
/’, . \‘
[K \ \
! N
I \
[} \\
10.0 4 3 \T‘q 10.0 1 _z 1 P !
A spatial B ).\ B
® coordinate o
12.0 12.0 -
" 8 sec 12 sec
11. S
oL 11.0TF
10.0 ] 3 1 q{ 10 0 [l 3 ¢ [y
B B
$
12.0" 12.0—
16 sec 20 sec
1.00 11.0 p
10.0/ i x 10.0 L § - 1 1
A B A B
Explicit
------ ADI

Fig. 5.32. Comparison of the explicit and ADI solutions for
the profile of ¢ along the line AB in Fig. 5.30
for At=1.0 sec and the Courant limit of 1.0 sec



-162-

the Courant limit. Initially, there is some deviation
between the two results, but it damps out rapidly and the
ADI scheme gives almost identical results with the explicit
scheme. No cross-flow diffusion corrections are involved
in the results of Fig. 5.31, Fig. 5.32 and Fig. 5.33.

Fig. 5.33 shows that the ADI scheme can use a time step
size up to five times the Courant limit. The deviation

for the time step size of 5 sec is expected to damp out

as the calculation goes over to the next time steps because

of the unconditional stability.



-163-

)
12‘0 0 ™~
At =5 sec
S L g
o= \
Ve
o Vbt =0.5 sec
At =1-§ec \
/ ," Tk » S \
- T — " \
'f-— .——'f" \
,l ,t \
N/ ,' A
7 4 At =2 sec '
11.07 7 \
’ \
7 !/ \
/2 “
7 '
A \
v \
7
. \
,r/ \
! \
Il/ \
\
II \
(4
l’ \
'4
N ’
10 . 0 1 1 1 1 \
A spatial B
coordinate
Fig. 5.33.

Comparison of the ADI solutions for the

profile
of ¢ at t=10.0 sec along the line AB in Fig,
5.30 with different time step sizes



-164-

CHAPTER 6

CONCLUSION

6.1 Physical Models

(1) The solution scheme presented in Chapter 2 has
been adequate for modelling the slow mixing stage in the
containment after a loss-of-coolant accident. The con-
tinuity/momentum equations are decoupled from the scalar
transport equations and solved by the SMAC scheme to obtain
the flow field. The mass diffusion, energy, and turbulence
eguations are solved separately using that flow field.

The thermal eguilibrium is assumed and the phase change
occurs to maintain 100% relative humidity, or superheated
steam as may be appropriate.

(2) The models of laminar and turbulent diffusions in
Chapter 3 may be adequate for predicting the hydrogen
transport in the containment. The total diffusion con-

stant is the sum of the laminar and turbulent diffusion

constants.

6.2 Numerical Schemes

(1) There are two numerical diffusion sources,
truncation error and cross-flow diffusion, in the finite
difference donor cell treatment of convection. Cross-flow
diffusion occurs due to the donor cell treatment of the

convection term in a multi-dimensional problem. The
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effective diffusion constants of the truncation error

and cross-flow diffusion are of the same order of magni-
tude, ~ulAx. The truncation error diffusion occurs in the
flow direction while the cross-flow diffusion occurs in
the diagonal direétion of neighboring mesh points. The
gradient of the scalar gquantity under consideration is
usually small in the flow direction in comparison with
that in the direction normal to the flow. Therefore, most
of the numerical diffusion error in a multi-dimensional,
convection dominant, recirculating flow problem is due

to the cross-flow diffusion.

(2) Two types of approaches, skew differencing and
corrective schemes, have been tried in order to eliminate
the numerical diffusion. The skew differencing scheme
gives good results for some problems, but not always.

It gives unphysical results for most recirculating flow

and coarse mesh problems. The inclusion of corner points
complicates the matrix structure and a fully implicit scheme
should be used for maintenance of stability. The corrective
scheme. is based on the fact that the additional cross-flow
diffusion can be predicted thecoretically for every mesh

at every time step. It is conservative and an explicit
scheme can be used without affecting the simple solution
structure. Therefore, the corrective scheme is generally

preferred to the skew differencing scheme.
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(3} Two implementation strategies, mesh point and
mesh interface, are tried for the corrective scheme. They
are identical in a unidirectional flow. The mesh interface
implementation is always preferred to the mesh point imple-
mentation in a recirculating flow problem. The results of
various sample problems show that the mesh interface imple-
mentation of the corrective scheme always gives a physically
reasonable solution with negligible numerical diffusion
error.

(4) The Von Neumann stability analysis is applied to
various finite difference forms of a general conservation
egquation. The graphical method is used to obtain the
stability condition in terms of the Courant, diffusion and
cell Reynolds numbers, i.e., Cx' dx and Rx’ using the
characteristics of a guadratic eguation. The results of
numerical experiments are found to be consistent with the
Von Neumann analysis.

(5) The maximum time step size is limited by the Courant
condition in an explicit scheme. The Alternate Direction
Implicit (ADI) scheme can be used to increase the time step
size and decrease the overall computational effort.
Although the Von Neumann analysis shows that the ADI scheme
is unconditionally stable, it has its own limitations due

to the following factors.

First, the physical constraint in section 4.4.2 imposes

a maximum time step size that can give a physically
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reasonable solution.

Second, the ADI scheme is a fractional step method. The
asymmetry of the given problem may give different results
according to the sweeping seguence. For example, a steady-
state solution maf never be reached due to the fact that

one time step is composed of a few fractional steps.
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CHAPTER 7

RECOMMENDATIONS FOR FUTURE WORK

7.1 Physical Models

Since both the laminar and turbulent flow regimes
are possible in a complicated geometry and flow field, it
is necessary to predict the flow regime in order to use
appropriate physical models. A criterion for the flow
regime should be developed in such a form that it may be
implemented into a computer code. The important parameters
may be the velocity, geometry (e.g., distance from the wall),
velocity gradient, previous time step information, time step
size, etc.

The flow regime criterion may be replaced with a model
that covers all the turbulent, transitional and laminar flow
regimes. The model should show proper limiting behaviors
as the Reynolds number goes to infinity (turbulent) and
zero (laminar). The modified k-¢ model in a low Reynolds

number flow may be a guide in this approach.

7.2 Numerical Schemes

There have been two approaches, skew-differencing and
corrective schemes, to eliminate the cross-flow diffusion.
They may still be improved further to get an accurate

solution in a transient, multi-dimensional recirculating

flow problem.
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Corrective scheme

The corrective scheme has been successful by the mesh
interface implementation strategy in the scope of this work.
More tests and validation calculations are reguired in

recirculating flow problems.

Skew differencing scheme

1. The conservative form of the skew differencing
scheme is complicated and time consuming in comparison with
the corrective scheme. It may be possible to develop a
reasonably simple form that may or may not include the
corner points. The solution in Appendix A may be a useful
guide in this work.

2. The stability of the skew-differencing scheme is
open to gquestion in the explicit, ADI and implicit schemes

although only the implicit scheme has been used up to now.
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APPENDIX A

ANALYTICAL SOLUTION FOR THE PROBLEM IN FIGURE 5.3(B)

A steady state two dimensional energy conservation
equation without any source is given in the following

Eg. A.l.

oT 8 T 3T
DCPU§; = — + ——7) (a.1)

In Eq. A.l convection occurs in the x direction and
diffusion occurs in both x and y directions. The boundary
conditions are specified in Fig. 5.3(B) and the constants

can be grouped into one constant, c, as follows.

a=__.p’;
P

=2

¢ 20

Therefore, Eg. A.l is reduced to the following form.

2 2
8T _ o' T o T
2C—ax = ———-2 + ———2— (A.Z)
9xX oy

Equation A.2 is simplified further by substitution of ¢ for
T as follows.
3¢ . 3%0 _ 2

5+ S = c%0 (a.3)
ax EhY%
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where

(A.4)

The boundary conditions should also be expressed in terms of
¢ as given in Fig. A.1l.

Equation A.3 can be solved by thé method of separation
of variables. The variable ¢ is separated into two vari-
ables, X an Y, which are functions of x and y only respec-

tively.

d(x,y) = X(x)Y(y) (A.5)

Then Eg. A.3 is reduced to the following form.

2 2
1oy, 1ty 2 3.6)
dx dy

The two terms on the left hand side of Eg. A.6 should be

equal to some constants because they are functions of x and

y only respectively and the sum of them is equal to a con-

stant, c2
.2
éx
18y 2 2 2
? --—-2- = C - Q = -B (A.B)
dy

where o > ¢ > 0
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3% _ 4

Yo dy
= 0

Yo. 39

-2—- 1a—§+C¢—0
® = 0.0

0 30 _ o %o

3y

Fig. A.l. Boundary conditions in terms of ¢ for the

problem in Fig. 5.3(B) where ¢ is given by,

6 = e X1
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The solutions to Eg. A.7 and Eg. A.8 can be easily

obtained as follows.

X = Cc,e®® 4+ c e (A.9)

<
"

C3sin8y + C4cossy (A.10)

The boundary conditions in Fig. A.l may be given in terms
of the variables X and Y as follows. The boundary con-

dition at x=0 will be considered later.

(4 =0 (A.11)
dy y=0
(‘-c%) =0 (2.12)
y=y0
(S - ex) = 0 (A.13)
X=XO

In order to satisfy the boundary conditions given in
Eq. A.l11, Eg. A.12 and Eg. 13, the constants in Eg. A.S

and Eg. A.10 should satisfy the following relations.

Cy = 0 : (A.14)
Bnyo = nw (A.15)
C2 a_+c  2a XO

= = ! e (o # ©) (A.16)
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where

Therefore, the final solution can be expressed as follows.

-a_X @ a_X a_+Cc 20 X -a_X
o = nge Dy orsafe® + (2 e P0e Pcosgy
n a_-c n
n=1 n
(A.17)
T(x,y) = e“X0(x,y) (A.18)
where
= nm
Bn = Yg
_ 2. .2
o = J% +Bn

Since the boundary condition at x=0 should also be satisfied,

the constants Ai are determined as follows.

A = _T_h.
0 2.0
=27
_ h 1 . DT -
n 0
1+( )e
a_-C
n

(A.19)
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APPENDIX B

ADI SCHEME FOR MOMENTUM EQUATION

The ADI scheme can replace the explicit scheme in
the momentum equaﬁion in order to eliminate the Courant
condition for the time step size. When the tilde phase of
the SMAC scheme and other scalar transport eguations are
solved by the ADI scheme, the computational effort for one
time step is greater than that of the explicit scheme.
Therefore, the time step size in the ADI should be at
least two or three times the Courant limit in order to
have a gain in the overall éomputational efforts required
for a problem. The time step size limitation in the ADI
scheme comes from the semi-implicit treatment of the non-
linear convection term. Since there are two steps involved
in solving the momentum equation in each direction, there
are six sweeps in a three dimensional problem and four
sweeps in a two dimensional problem. The seguence of the
sweeps 1s arbitrary and depends on the problem under con-
sideration. The most important sweep should be given the
first priority and most updated information.

The ADI scheme is applied to a two dimernaional
momentum equation in the following Eqg. B.l-Eg. B.4. They
are formulated for a natural convection problem where the
gravity acts in the z-direction. Eguations B.l and B.3 are

the z and x direction sweeps of the x direction momentum
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equation. Equations B.2 and B.4 are the x and z direction
sweeps of the z-direction momentum equation. The z direction
sweep of the z direction momentum equation is treated as

the last one in order to be given the most updated informa-

tion.
* n n * *
i3~ Miang , ViengenTiend T Viens-ltienicl
At bz o
* 2 * *
Uil T fMiweny T %ianso1 o ep o on ot
122 L T T4 a4k itk
(B.1)
* n * * * *
Migen = Vigey | Ziwgeisey " Biougeic1je
At bAr ' o
* 2 * *
L i1y T Yigey T Vioagey L3P oo N
- Arl oz ULy iy id+k
(B.2)
n+l * * n+l * n+l
i+ T Yiely i413%5459 T YigYioag
+
At Axr
n+l _ un+l + un+l
_ iy ithy © di-%3 _ 8P _, T vy
=V .2 oy T ERXG Yty (B3
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wn+l _ w* w* wn+l _ w* wn+l
ij+k ij+% + i9+1 719+ ijij-%
At Az
wn+l _ n+l n+l 0-p
: ij+s i+ ij-% _ 8P 0 _ * n+1
v .2 5z T, o2 RZ4 55 54554y

(B.4)

Equations B.l, B.2, B.3, and B.4 have given almost
jdentical results with the explicit scheme for a time step

size below the Courant limit.
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APPENDIX C

COMPUTER PROGRAMS

The files, 'progl fortran', 'prog2 fortran' and
'prog3 fortran', are the computer programs for calculating
the numerical values of the analytical solution in the
problem geometries, Fig. 5.3(A), Fig. 5.3(B) and Fig.

5.8.

The file, 'difprg fortran', is the program for testing
the calculational logic of the mesh interface implementation
of the corrective scheme in section 4.3.4.2. There are
two different cases treated separately. When there are
inflow and outflow, or all inflows in x, y and 2z direction
mesh interfaces, the cross-flow diffusion constants can be
calculated in a simple way as in the first part of the pro-
gram. When there are two ocutflows in any of the x, y and 2
directions, a flow split occurs as shown in Fig. 4.8. In the
second part of the program the flow split is considered such
that every outflow velocity is partitioned into four compo-
nents in a three dimensional case in proportion to the velo-
cities of the four neighboring surfaces in contact with
the surface under consideration. All the inflow velocities
are assumed to be zero. The component velocities are used
to calculate the cross-flow diffusion constants for eight
subspaces in a three dimensional coordinate space. Then
four cross-flow diffusion constants at every interface are

summed up to give a total cross-flow diffusion constant
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because one axis direction, the positive x direction,
has four neighboring subspaces. The total cross-flow
diffusion constant can be calculated in the same way for
every mesh interface.

The subroutine 'tdm' solves tridiagonal matrix prob-
lems by forward and backward sweeps. It is used to solve
a one dimensional implicit finite difference eguation in
the ADI scheme.

A portion of the VARR program is introduced to show
how the ADI scheme is implemented in the energy and
momentum equations. The ADI scheme for the momentum equation

is given in Appendix B.



FILE:

55
a4

PROG 1 FORTRAN A

IMPLICIT REAL+B (A-+,0-2)
DIMENSION T(10)

READ( 10, 11) DX ,NX,NY, TH,U, ALP
FORMAT(F7.2,215,3F7.2)

Pl = 3.1415926%36

C = U/(2.0¢ALP)

CSQ » C*C

X0 = NX+DX

YO = NY*DX

YSO = PI+PI/(YO+YO)

CCOTF = 2.0+TI1/P1

HP1 = P1/2.0

D0 10 JJ= 1 NY
SuM = 0.0

00 20 1P=1,26

1r = 1P -9

ALN = DSQRT(CSQ+II+11+YSQ)
IF (11.€Q.0) GO 10 S5

ALNX = (ALNIC)sDEXP(2.0*ALN¢XO)/(ALN-C)

COr = CCOFF/11
AAN = ~COF*DSIN(LII*HPI)/(1.4ALNX)
ATOT = AAN*2.0+ALN'DEXP(ALN+X0)/(ALN-C)
GO T0 44

ATOT = THeDEXP(-ALN®*XO)/2.0

YY = JIePle(UJ-0.5)/NY

ADD = ATOT+DCOS(YY)

SUM = SUM + ADD

CONTINUE

T(JJ) = SUM s DEXP(C*X0)

CONT INUE

WRITE(G, 100) (T(1),1=1,NY)
FORMAT( 10X ,5F {1.3)

S10P
END

)

VM/SP CONVERSATIONAL MONITOR SYSTEM

PROOOO 10
PROO0OO20
PROOOO30O
PRQO00410
PROOOOS0
PROOOOGO
PROOOO70
PROOOOBO
PROOOOY0
IPROOO 100
PROOO 110
PROCO 120
PROOCO 130
PROOCO 140
PROOO 150
PROOO 16O
PROOO 170
PROOO 10O
PROOO 190
PR000200
PR0O00O210
PRO00220
PROO0O230
PROOO240
PROO0O250
PRO00260
PROOCO270
PROO020O
PROO0290
PRUOO300
fROO0OI 10
PROO0320
PROOOIIO
PROOOJI10
PROOO3ISO0
PROOO3GO
PROOCOJITO
PRO0COJBO
PROOOISO
PROCO400

PAGE OO

-981-



PAGE 001

FILE: PROG2 FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM
IMPLICIT REAL<O (A-11,0-2) PROOOO 10
DIMENSION TH(10), TL(10)., GH(10), GL(10), TC(10) . PROO0O020

c : PROOOOIO
READ( 10, 11) DX, NX, NY, THH, U, ALP PROO0OOA0O

11 FORMAT(F7.2,215,3F7.2) PROO00S50
Pl » 3.1415926536 PROOOOGO

C = U/(2.0ALP) PROOOOT0
€SO = CsC PROCOOBO
PROOOO90O

X0 = DX+NX

YO = DXNY PROOV 100
YSQ = PIsP1/(YO*YO) PROOO1 10
CCOrF = 2.0¢THI/P1 . PROOC 120 :
"Hp1 =2 P1/2.0 PROOO 1.30
NV2 = NY/2.0 PROOO 140 ‘
XXX = 2.0 PROOO 150
. 10 = OSORT{(XXX) PROOO 60
c PROOCO 170
DO 10 JJ=1,NY2 PROOO 180
SUMO = 0.0 rPROOO 90
SUMtI = 0.0 PRO00200
SuUM2 = 0.0 PRO0O2 10
SUM3X 0.0 PRO00220
SuM3” = 0.0 PRO0O230
SUMAX = 0.0 PROOO240
SUMAY = 0.0 PRO0O0250
X = (JU-0.5)+DX PROO0260 |
XN = X % X0/2.0 PRO0CO270 2;
YC = (JJr2-1)+DX PROCO260 9
Y = X + Y0/2.0 . PRO0O0O290 1
¥2 = Y0/2.0 - X PROO0OI00
Y3 = 1.5+Y0O - XN PROOO3 10
Y4 = XN - 0.5+Y0 PROOOI20
c PROO0O3I30
DO 20 IP=1, 21 PROO0O340
Iy = 1P - 1 PROOO3SO
ALN = DSQRT(CSQ + 11+11+YSQ) PROOOJIGO
EXALO = DEXP(ALN+X0+0.5) PROOO3TO
XALO = DEXP(-ALN#X0*t0.5) PROOOIBO
EXAL = DEXP{ALN'X) PROO0390
XAL = DEXP(-ALN¢X) PRO0D0O400
EXALN = DEXP(ALN®*XN) PROOO4 10
XALN = DEXP(-ALN¢XN) PRO00OA420
IF(11.F0.0) GO TO 55 PROOOA430
ALNX = (ALN*C)+*DEXP(2.0+¢ALNsX0)/(ALN-C) PROOO440
COF = CCOFF/I11 PROO0OA50
AAN = -COF+DSIN{IT+HPT)/(1.+ALNX) PRODOAGO
BEN = 11+P1/YO PROQOAT0
YOO = DCOS(BENs+YC) PROOOADO
Y1t = DCOS(BENsY 1) PROOOA90
Y22 = DCOS(BEN+Y2) PROQO500
Y3C = DCOS(BEN+Y3) PROOOS 10
Y3S = DSIN(BEN+Y3) PRO0O0S20
Y4C = DCOS(BEN+YA4) PROOVS30 °
YAS = DSIN(BENsYA4) PROOOSA0
PROO0OS50

ADDQ = AAN+(EXALO + ALNX+¢XALO)+YOQO



Y

FILE: PROG2 FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM PAGE 002
ADDY = AAN*(EXAL+ALNX*XAL)*Y 11 PROOO560
ADD2 = AANC(EXAL+ALNXSXAL)*Y22 PROOOS70
ADD3X = AAN*((C+ALN)*EXALN + ALNX*(C-ALN)*XALN)*Y3C PROCOSB0O
ADD3Y = BENSAAN® (EXALN 4+ ALNX¢XALN)+Y3S PRO0O0O590
ADDAX = AANs((C+ALN)*EXALN + ALNX+(C-ALN)*XALN)*YVAC PROCOG00
ADDAY = -BEN¢AAN*(EXALN + ALNX*XALN)e+YA4S PROOOG 10
GO 10 77 PROOOG20 :

55 AOD! = TIHIXAL10.5 PROOCVGIO
ADUDO = THIH*XALO+O.S PROOOG40
ADD2 = THH+XAL+0O.5 PROOOG50
ADD3X = 0.0 PROOOGEO
ADO3Y = 0,0 PROOOG70
ADO4X = 0.0 PROOOGBO
ADDAY = 0.0 PROCOGIO

77 SUM{i = SUMt + ADOY PRO0OO700
SUMO = SUMO + ADODO PROOCOT O
SUM2 = SUM2 + ADOZ PROOO720
SUM3IX = SUM3IX + ADD3JX PROCO730
SUM3Y = SUM3IY + ADD3JY PRUOO740
SUMAX = SUMAX + ADDAX PRUOO?50

. SUMAY = SUMAY + ADDAY PROOO7GO

20 CONTINUE PROOCOTTO

c PROOO780
YC(JJ) = SUMO+DEXP(C*X0+0.5) ' PROCOTI0
TH{JJ) = SUMI*DEXP(C*X) PROOCODOO
TL(UJ) = SUM2SDEXP({CeX) PROOCOB 10
GH{JJ) = (SUMIX+SUMIY)+*DEXP(C+XN)}/RTO PROOOKB20
GL(JJ) = (SUMAX+SUMAY ) +DEXP(C*XN)/RTOD PROOOBIO

10 CONYINUE PROOOBAO

c . PROOOBSO
WRITE(G, 100) (TC(1).1=1 ,NY2) PROOOBGO
WRITE(G,100) (TH(1),1=1,NY2) PROOOB70
WRITE(B,100) (TL(I),1=1,NY2) PROCOBBO
WRITE(G, 100) (GH(I),1=1 NY2) PROODBOO
WRITE(G, 100) (GL(T1),I=1 ,NY2) PROO0900

100 FORMAT( 10X ,5F11.3) PROOOY 10
PROO0920

s1or PRQO09]0
PROVOYA0

ENO
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FILE:

11

PROGI FORINRAN A

IMPLICIT REAL*B (A-H,0-2)

DIMENSION W111(10)., 1L{10), GII(10). GL(10), TC(10)

READ(10,11) DX, NX, NY, TYHII, U, ALP
FORMAT(F7.2,215,3F7.2)

PI = 3.1415926536

C = U/(2.0¢ALP)

€CSO = C*C

XO = DX*NX

YO = DX*NY

YSO = PI+PI/(YO+*YO)

CCOFF = 2.0¢«TiM{/P1

HPI = P1/2.0

NY2 = NY/2.0
RTO = SORT(2.0)
RT3 = SORT(3.0)

DO 10 JJ=1,NY2
SUmMO = 0.0
SuUM1 0.0

cooo

SUMAY =
XC=Y0/(2.0*RTI)+(JJ-0.5)+(XO-YO/RTI)/NY2
YC=(JJ-0.5)+*(YO/3.0'XO/RTI)/NY2
X12(JJ-0.5)+(X0-YO/(2.0*RT3)}/NY2
Y1=¥0/2.0+(JJ-0.5)¢«(X0O/RT3-YO/6.0)/NY2
X2=(JJ-0.5)+YO/(2.0*RTI*+NY2)
¥2=Y¥0/2.0-(JJ-0.5)+Y0/(2.0*NY2)
X3=Y0/(2.0'RT3)+(JJ-0.5)«(XO-YO/(2.0+*RTI))/NY2
¥Y3=(JJ-0.5)*(X0/RT3-Y0/6.0)/NY2
XA=X0-Y0/(2.0+RT2)+(JJ-0.5)+Y0/(2.0¢RTI*NY2)
Y4=Y0/3.0+XO/RT3-(JJ-0.5)+Y0/(2.0+NY2)

D0 20 IP=1,22
1= 1P -

ALN = OSORT(CSQ + [1¢11+VSQ)
If{(1I1.€0Q.0) GO 10 55

ALNX = (ALNIC)+DEXP(2.0¢ALN¢XO)/(ALN-C)
COF = CCOfFf/I1

AAN = -COF+DSIN(IT*HPI)/( 1. +ALNX)
BEN = [1+PL/YO

YOO = DCOS(GENsYC)

Y1t = DCOS(BENsY )

Y22 = DCOS(DLNvY2)

¥3C = DCOS(BEN+Y])

¥Y3S = DSIN(BFEN+Y3J)

YAC = OCOS(UBENsYA)

Y45 = DSIN(BENIYA)

ADDO=AAN® (DEXP (ALN*XC)+ALNX+DEXP( -ALN+XC))+Y0O0
ADD 1 =AANY (DEXP(ALNSX 1) +ALNX¢DEXP(-ALN*X1)) ey 1
ADD2=AAN (DEXP(ALN¢X2)+ALNX+DEXP( ~ALN®X2))*V22

ADDIX*=AANS ( (CH+ALN)*DEXP (ALN*XI )1 ALNX¢(C-ALN) *DEXP(-ALN+*X3))+Y3C

VM/SP CONVERSATICNAL MONTTOR SYSTEM

PROOOO 10
PROO0O0O20
PROOOOJO
PROOOO40
PROOOOS50
P1ROOOOGO
PIROOOOT0
PROOOOBO
PIOO0090
PROOO 100
PRIOOO 1T 10
PROOO 120
PROOO 130
PROOO 140
PROOO IS0
PROOO 1GO

- PROOO 170

PROOCO 180
PROOO 190
PROOO200
PROOO210
PROO0220
PRO00230
PROO0240
PRO00250
PRO0OO260O
PROOO270
PROO0280
PROOCO290
PROOOIOO
PROOCOI 10
PROOCOI20
PROOO3JO
PROOO340
PROOOJISO
PROOOIGO
PRO0O370
rrRooo3u80
PRAO0O390
rrROCO400
PROOO4 10
PROOCO420
PROOCO430
PRO00440
PROOOAS0
PROOO4GO
PROOCOAT0
"ROO00100
PROOCO490
PROOOHO0
PROOOS 10
PIO00S520
PIRO0COS30

" PAROOOS40

PRUOOSS50

[

PAGE 001
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FILE:
55
17
20

Cc
10

Cc
100

TN . /-\'\

PROGI FORTRAN A VM/SP CONVERSATIONAL MONITOR SYSTEM PAGE 002

ADDIY=BEN+*AAN® (DEXP(ALN+X3)IALNX*DEXP(-ALNX3))*Y3S PROOCOSGO

ADDAXSAAN® ( (CH+ALN) sDEXP(ALN*X4) +tALNX+ (C-ALN) sDEXP(-ALN*X4))sYAC PROOOS70

ADDAY=-BEN*AAN® (DEXP (ALN¢XA4 )4 ALNX*DEXP (~ALN¢XA4))*YAS PROCOS00

GO TO 717 PROOOS90

ADDO=TINI+DEXP (-ALNSXC)+0.5 PROOCOGOO

ADD V1 =THH*DEXP(-ALNe¢X1)+0.5 ..PROOOG 10

ADD2=TINIIDEXP(-ALN*X2)+0.5 PRO0O0620 :

ADD3X = 0.0 PROOOGIO

ADD3Y = 0.0 PROOOGAO

ADDAX = 0.0 PROOOGSO

ADDAY = 0.0 PROOOE6GO

SUM1 = SUM{| + ADD) PROOOG70

SUMO = SUMO + ADDO PROOOGBO

SUM2 = SUM2 + ADD2 PROOOG90

SUM3X = SUMIX + ADDIX PROOO700

SUM3Y = SUM3Y + ADDJY PROOO7 1O

SUMAX = SUMAX + ADDAX PROOO720

SUMAY = SUMAY + ADDAY PROOO730

CONTINUE PROOOT40 |
PROOO750 ’;

TC(JJ)=SUMO+DEXP(C*XC) PROOO76G0O o

TH(JJ) =SUMI¢OEXP(CeX 1) PROQOT70 |

TL(JJ)=SUM2+DEXP(C*X2) PROOO780
PROO0790

GL(JJ)=(SUM3X+0.54SUM3Y*0.5+RT3)+DEXP(C*X3)

GH(JJ) = (SUMAX+0O.5¢RTI+SUMAY+O.5)*DEXP(C*X4) PROOOLOO
CONT INUE PROOOB 10

PRO0OO0B20
WRITE(6,100) (TC(1),I=1,NY2) PRO0OBIO
WRITE(6.100) (TH(I).1=1,NY2) PROOOBAO
WRITE(G.100) (TL(1),1=1,NY2) PROOOBSO
WRITE(G, 100) (GH(T1),.1=1,NY2) PROOOBGO
WRITE(6,100) (GL(1),1=1,NY2) PROOOBT0
FORMAT (10X, 5F11.3) PROOCOBOO

PROOOBIO
sToP PROOOY00O

PROOO09 10

ENO
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DIFPNRG FONTRAN A VM/SP COHVERSATIONAL MONITOR SYSTEM PAGE 001
DIMENSION VELX(0),VELZ(0),VELT(O),DIFNA(D) DIFZA(0),DIFTA(D) DIFOOV 1D
DIF00020
READ(10.5) DELR,DELZ,DELTH,UM,UP, VM, VP WM WP 0100030
D1 FO0040
1St = O 0100050
1s2 = 0O D1FO00GO
1S3 = O D1FO0070
IS4 = O , DL 000N0
IS5 = O 017100090
156 = O 01Irootoo
DIFOO1 10
NFGRY = 0.0 DIFOO 120
RFGR = 0.0 NIFOO1J0
RFGTY = 0.0 . DIFOO 140
RFGT = 0.0 0Ir001Ss0
OMT1 = 0.0 DIFOOIGO
QMT = 0.0 DIFOO170
DIFOOI00
IF(UM.LT.0.0) 1St = 1 D1FOO 190
1F(UP.GT.0.0) 152 = 1§ DI1700200
1IF(VM.LY.0.0) 1SJ = DIFO0210
1IF(VP.GT.0.0) 1S4 = DI1F00220
IF(WM. LY.0.0) 1S5 = D1F00230
IF(WP.GT.0.0) 1SG = 1 DIF00240
DIF00250
ISA = ISt + [S2 01F00260
IS8 = 1S3 + [S54 D1F00270
ISC = 1S5 + [S6G D1F00200
DIF00290
Ut = «0.5¢( UM - AOS(UM) ) D1F00300
U2 = 0.5+( UP + ADBS(UP) ) DIFOQI 1O
Vi = -0.5+( VM - ABS(VM) ) LIF00I20
V2 = 0.5+«( VP + ABS(VP) ) DIFO03J0
Wi = -0.5¢( WM - AUS(WM) ) 01F00340
W2 = 0.5¢( WP + ADS(WP) ) D1F0O0I50
. DIFO03GO
IF( ISA.E0.2.0N.1SB.EQ.2.0R,1SC.€EQ.2) GO TO 60 DIFO0270
Uu = Ut + U2 D1F0O0IRO
VV = VI + V2 D1r00390
WW = Wi + W2 DIFO04A00
PPX = UU/DELR DIFO04 10
PPT = VV/OELZ D1F0O0420
PPT = WW/DELTHI DIFO0430
PSUM = PPX + PPT + PPT DIFO0440
1IF( PSUM.EQ.0.0 ) GO TO S008 O1F00450
D1F004AG0
DIFN = YU«DELR+*( PPZ + PPT )/PSUM DIFO0470
DIFZ = VV+DELZ+( PPX + PPT )}/PSUM DIFO0ARO
DIFT « WWeDELTII+( PPX + PPZ )/PSUM D1F00190
D1FO0500
NFGRY = DITR+ISI . , DIFOO05 10
NIGR = DIFN+1S2 ) DIF00520
NFGT = DIFZ+1S3J DIFO0530
D1F00540

RFGPT = DIF2°154

L Oy T Lk S
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FILE:
Cc
o0
Cc
C
Cc
Cc
600
38
C

DIFrRG FTORTRAN A VM/ P CUNVLHRSATIUNAL MUNITUR SY5TEM PAGE VUUZ

OMT = DIFT*1ISG6 D1F00560

GO TO0 999 . DIFUOS570
D1roosso0

PFX = 0.0 DI1FO0590

PFZ = 0.0 D1FO0G600

PFT = 0.0 D11 006G 10

If( (U1+U2).NE.O0.0 ) PFX = U1/(U11U2) DIF006G20

Ir( (VI*V2).NE.O.O ) PFZ = Vi/(Vi1v2) D1F006G30

1IF( (Wi+W2).NE.O.0 ) PFT = Wi/ (Wiew2) 01F00640
DIFO06GS0

VELX(1) = UtePFZ+PFT D17 00660

VELX(2) = Ute(1.0-PFZ)*PFT DIFOOG70

VELX(3) = Uts(1.0-PFZ)+(1.0-PFT) , DIrooe6ao

VELX(A) = UI*PFZ+(1.0-PFT) D1FOOG90 ’

VELX(S5) * U2+PFZ2<PFT DIroo7T00

VELX(6) = U2¢(1.0-PFZ)+PFT DIFOO7 10

VELX(7) = U2¢(1.0-PFZ)+(1.0-PFT) 0iroo720

VELX{0) = U2¢PFZ+(1.0-PFT) DIF00720
01r 00740

VELZ( 1) = V9IepPFXePFT DIFO0750

VELZ(2) = V2¢PFX*PFT DIFOO760

VELZ(D3) = V2+PFX*(1.0-PFT) VIFO0770

VELZ(A) = VI+PFX*(1.0-PFT) DIF00780

VELZ(S) = VIs(1.0-PFX)ePFT DI1FO0790

VELZ(6) = V2¢(1.0-PFX)*PFY D1 FO0N00

VELZ(7) = V2+(1.0-PFX)*+(1.0-PFT) DIFOOR 10 t

VELZ(B) = VIe(1.0-PFX)*(1.0-PFT) DI1F00820 :;
DIFOONJ0 NS

VELT(1) = WI¢PFXePFZ DIFOONA0 |

VELT(2) = WIePFX*(1.0-PFZ) 01rooaso

VELT(2) = W2+PFX+(1.0-PF2) D1roos6Go

VELT(A) = W2*PFX*PFZ DiFOOABT0

VELT(S) = Wie(1.0-PFX)sPFZ 01FO0B00

VELT(G) = Wie(1.0-PFX)+(1.0-PF2) D1FO0OB90

VELT{(7) = W2e¢(1 O-PFX)+(1.0-PFZ) 01F009%00

VELT(8) = wW2+s(1.0-PFX)+PFZ 01F00910
01F00920

DO 38 1=1.8 D1F00920

PPX » VELX(1)/DELR D1FO0D10

PP7 = VEL2(1)/DELZ 01r00950

PPT = VELT(1)/DELTH . D1r00960

PSUM = PPX + PPPZ + PPY 01F 00970

1F( PSUM.€EQ.0.0 ) GO T0 600 01F00980

DIFRA(I) = VELX(I)SDELR*( PPZ + PPT )/PSUM D1F00990

DIFZA(T) = VELZ(1)sDELZs( PPX # PPT )/PSUM 0D1r01000

DIFTA(IL) = VELT(I)*DELTHe( PPX + PPZ )/PSUM DIFO1010

GO TO 30 ) DIFO1020

OIFRA(1) = 0.0 DIFO1030

DIFZA(I) = 0.0 DI1FO1040

ODIFTA(I) = 0.0 DIFO 1050

CONT I NUE DI1FO 1060
DIF01070

RFGRY = DIFRAA(S) + DIFRA(G) + DIFRA(T) + DIFRA(R) DIFO1000

RFGR = DIFRA(1) + DIFRA(2) *+ OIFRA(3) + DIFRA(4) 01F0 1090

O1FO1100

RFGT1 = DIFZA(2) + DIFZA(3) + DIFZA(6) + DIFZA(7)



999

500

200

3 o

D1FPRG FORTRAN A

RFGY = DIFZA(Y) + DIFZA(A) » DIFZA(S) + DIFZIA(D)
OMT 1 = DIFTA(3) + OIFTA(A) » DIFTA(7) + OIFTA(D)
omr = DIFTA(1) + DIFTA(2) + DIFTA(S) *+ DIFTA(6)

WRITE(G,6) RFGNI,RFGR,RIGT 1, RFGT,QMT |, OMT
GO 10 200

WRITE(G,7)

FORMAT(9F5%.2)

FONMMAT( 11 ,2X.6F5.2)

FORMAT ( 114 , 20X, 51ISORNY)

sTor

CNO

VM/SP CONVERSATIONAL MONITOR SYSTEM

Dirot1fo
DIFO1120
DIFOV130
DIFO1140
DIFO1150
DIFO1160
NDIFO1170
DIFO1100
01rot 190
DIFO1200
DIro1210
01F01220
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SUGROUTINE TOM(A,B,.C,D,X,N)
IMPLICIT REAL*D (A-11,0-2)

DIMENSION A(N) . B(N),C(N),O(N).X(N),P(400).0(400)

xX(1) = D(1)
a(1) = B(1)
NMI =« N -
DO 2 I=1 NMH
= A(L+1)/0(1)

= 0Ct+1) - P(1+1)eC(1)
= D(I+1) - P(I+t)eX(1)

P(1+1)
Q(1+1)
X(1+1)

X(N) =

K = N
xX(K) =
RETURN
END

X(N)/Q(N)
DO 3 I=1,NMI

1
(x(1)

- X(K+1)eC(K))/0(K)

VAROD350
VAROYVIGO
VARO9370
VARQOIN0
VARO9190
VAROD100
VARQO91 10
VAROQ120
VARROD400
VARQON 40
VAROO1450
VAROD1GO
VARON170
VARQ9180
VAROD490
VARNYH00O
VARDDS 1O
VARQOYS20

-v6l-



(s NeNal

TUTAND W TILDE VELOCITY EQUATIONS SECTION

JF(1C4

iK3R =
11 =2
12 = 1
Kt = 2
Kz = K

L1.£0.%) GO 7O ¢o9c8

4D] SOLUTION FOR SI€E, JCONVs3 &

<ST SWEEP IN X-DIRECTION

IBR-KBR
EPS

EP1

C CROGS-FLOW DIFFUSTIOCN CONSTZNT C2LCULATION
00 <0000 )=, 18P2
DD 40000 K=1 KBP2

<CooN

<00%2

<00CS

<200

£O000

iIK =9
IKXX =
IKZZ =
IF(K.E
1F(K.E
LUG =
LWl =
GC 10
AUG =
LWG =
GD T0
tUG =
LWG =
L I |
1f(20LG.
DWFFEX()
DNFFZH(
6o 170
DrEFX(

ONEF2Z

« (j-1)*K2NC ¢ (K-1)-NwPC

i - KZNT .

JK - NVPC :

R =c.1) GD TO <ODO1

xs::. 1. ED.1EP2) GD TD 40002

£ES(0. <-(u(‘x)*u(‘xxx)))

2BS (0.8~ (W(1IK)+w({IK22)))

200C%

288 V(1K) )

L2S( w(3IK) )

20008

S U(IXXX) )
( w(1x22) )

170
PN LULND.LVG.LT.PM) GD TO 4001C

A
&

[aa BRI S

—l'lﬂ

) K) e LUG DX+ 2VG RDZ/{(LUGRDR=2WG R 2)-x%x
1.K) = &vwG-DIZI-LUG-ROA/(LUG*RDX+2WE RDZ) 2MX

40000
1.x) =

0.0
.K) = C.0

CONTINUE

" VAR 17980

VAR 17CE0
VAR 1B0OOO
VLR 1B010
VLR 18C20
V4R 1BO30
VARI8O%0O
VAR IBOBO
VLR I1ECED
VLR BOT0
VLR18080
VLR 18020
VAR18100
VLRIESID
VLR1E20
VLR IS 130
VLRI1B140
VLR 15150
VAR1B1860
VARSYENTO
VaRIEIE0
VLR1E 180
VLR 18200
VLR18210
VLR 18220!
VLR1E230
VLR18240
VLR 18250
VLR18280
VLR1E270
VARYE2ED
VLR1E2€ED
VLRIE200

VLRIEZNO
VLRYEZ200
VLR1E230}

+ e s
.



' RRDX = 0.S:8DX

RDXD = RDX-RDX
RD2D = RD2-RDZ

JF(IMOV . EO.1.0R.ICLLY.E0.2) GD YO ESces
JIKSR = JBR*(XER-1)

SIGMaA = NU

200Y = £LPOEXP( - TIMET/TADD )

IF(IWD™. E0.3) 6D 7O BO20S

DD £0:0D 1=2.12R

oC 200D K=2 KEPY

;i tO‘O? (1-1)*K2NC « (X-1)rNWPC
IKL = 9 « (3-9)'K2NCL + (K-1)*NwPCL
IPK = IK + X2NC
IKMS = I - NWPC
I1KS = 1K - K2NC
IXKP = 1K <« WWF(Q

.

Ut = uo(ik)

VL = UD(IMKS)

UR = UD(1iPK)

UT = UD(!KP)

US = UD(IKKS)

DCR = DIFFCO(iIKL)
DCT = SIFFCO(IML+1Y)
DCL = DIFFCO(IKL+2)
DCE = DIFFCO(1KL~3)
v

wo(iK) + wD(1PK) )-0.5
WO(IKME) = WD()PK-NWPC) )+0.%
UC(:k) = UD(i1PK) )=0.5
UD{IK) = UD(IMKS) )-0.5

.

N
AU
" oaonow

—~ o~ -~

cony = { UR=s (UC<UR) « 28S(URK)« (UC-UR) - ULH-{UuL+UC)

- = - - .- ——-

———— - ——- -

" VAR 18340!

vanaszsof
VLR 1E260;
V2K1EZTO;
VLR YEDEOD;
VAR1E2ED;
VAR1E4OD.
VLR1ESL 1D’
VAR 18220

MARSBL20 e

VLR18240,
VeR 18250,
VLR 16460]
VLRIB4TOI
VAR18480
VARIEL SO
VARIESOOD:
VAR1E8E1O
VLR1ES20
VER1ESHO
VLR1ES40
V2RI1ESED
VAR 18560
VAR 182370
VAR1ES80D
VARIES5E0D
V2R1EEDD
VAR 1EEID
VLR1EE20
VLRIEE2D.

v&RsESao!

VAR VBESO:

VLRIEEED.
VLRI1ESTD!

VLR IBESD

VARI1EEDD

VAR1EIOO0,

- e s e e S e o t—————
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N0dAMe {8 -H) + TINZH(L-1) + L =2 AIN{
IdMN (b =H) + DNZAs{ L) + + = AL
bo- oM e AAUL(Z-L) = 0

148U 22X 0008 04

¥g!°Z=1 OCAo18 Qd

INNTLNDD
86653 QL Q9

INNTILINGD

( NACNS + Z41Q + X413 + b

ZNOD - XNGD - Za¥+( (HI)g-{(adl)d )- )oLQ + (AD)OM = (A[)N
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81000

21100

£2000

£2100
C

1MKS = 1K - K2NC
IKMS = 1K - NWPC

DCT = DIFFCO(IKL+1)

DCE = DIFFCO(IKL+3J)

WRT = (w(lK) + wW(IPK))r0.S

WRE = (W(IKKS) ¢+ W(IPK-NWPC))*0.5

A1(J) = 0.5-RD2-( -WRE - ABS(WRB)) - SIGML*RD2D+*DCB

B1(J) = RDT + O0.5*RDZ*( WRT + LBS(WRT)

+ SIGMA*RDID-( OCY + DCE )

Ci(J) = 0.5°RD2+( WRT - &BS(WRT) )

D1(J) = U(IK)=RDT
CONTINUE

CALL TDM(Aa1,B1.C1,01,X,IKBR)

DO B1100 (=2, 1BR

DO 81100 K=2 KBP\4

IK = 1 ¢ (1-1)sK2NC ¢+ (K-1)eNwPC
IX = (1-2)*KBR + K - 1

V(1K) = x(Ix)

DD £2000 X=2 ,KER

DO 82000 1=2,18P1

Jor (K-2)s1BR + 1 - 1

IK = 1 + (1-1)+K2NC + (K-1)=NWPC

- SI1GMARDZD-OCT

- WRE + ABS(WRB) )

IKL =

IPK =
IKP =
1MKS =
IKKS =

DCR
oCL
URT
uLT

As(Y)
21(J)

c1(J)
Di1(J)

1+ (I-1)'K2NCL + (K-1)=NWPCL

IK + K2NC
IK + NWPC
1K ~ K2NC
1K - NWPC

DIFFCO(IKL)

DIFFCO(1IKL=2)

0.5«( V(1K) + u(IKP) )

0.5*( V(IrKS) « U(IMKSeNWPC) )

=t O.5*ROX~( -ULT - &4BS(ULT) )

= RDT + 0.5 RDX=( URT < ABS(URT) - ULT + &BS(ULT) )

- SIGMA*RDXD+DCL

+ SIGMAYRDXD*( DCL « DCR )

: 0.5 RDX-{ URT - AES(URT) ) -
s W(1K)*RDT

CONTINUE

CaLl 7T

DO g2+
DO 821
IK = 1
IX =
w(iK)

DM(&4 . B1,C1, D1, X, IKBR)

0D K=2 ,KBR

00 1=2,1EP1

+ (1-9)eKINC + (K-1)eNWPC
K-2)+J8R « 1 - 1

= X(1x)

DO 82000 K=2 KEP1

S1G6¥2+*RDXD+DCR

VAR 18260 -
VAR 19270 -

VAR12280

VLR18290 '
VAR 18300 .
VAR 19310

VAR 18320
VLR 19330
VLR183£0
VAR 18250
VAR 12360

VLR 1€370 .

VAR193BO

VAR 18390 -

VAR 19400

VLR 18410

VAR 19220
VLR18430
VLR 19440

VLR 19450 ,

VLR 12460
VLR 18470
VLR 19480
VAR 182490
VAR 12500
VAR 12510
VaR1€820
VLR 16530
VAR1E540
VAR 192550

VLR 19560

VAR 19570
VAR 19580

VAR 18590 !

VAR 192600
VLR12S€10
VAR 19620
VAR1S630
VAR 19640
VAR 12G50
VAR 12660
VAR 19670
VAR 19680

VAR12690 .
VLR1870D |

VAR 19710
VAR 16720
VAR 18720
VAR 18740
V&R 18750
VLR 1876C
V4AR18770
VER18780
VLR 16780
VAR 1SE00

VS LI
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0720Z37A
‘0ezozuva
0z20Z37A
Q120ZuvA
Q0zZoZy7A
0610Z47A
Q0310Z37A
QL10Zy7A
0910ZyvA
QS10ZavA
Qy10ZavA
.OEIOCHVA
:0C1QZuvA
‘0L10Z3vA
001 0Z37A
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84100

-3-1-3-1-1

33333

CALL TOM(41,B%,CY,01,X,IKBR)

DO E<£100 1:=2,18P1

DO 84100 K=2 K87

IK = § + (I-31)*K2NC + (K-1)*NWPC
IX = (1-2)+(KER-1) + K -

W(IK) = X{1X)

CONT INUE
JF(ICONV.LE.2.0R.ICAL]I.EQ.1) GO TO 2040

1SE0 = ISEQ + 1
IF(ISEQ.EO.NSEQO) ISEQ = O
CONT INUE

DO 60000 K=K1 K2

DO 60000 1=11,12

J = IBR*(K-2) + 1 « 1

IK = 1 « [1=1)rK2NC + (K-1)sNWPC
IKL = 1 + (J1-1)=K2NCL ¢+ (K-1)=NWPCL
RC = FLOAT(I-1)=DX - HDX

RRC = 1.0/RC

CR = CYL*0.25*RRC

CYRX = CYL*0.5+*RRC*RDX

CFC = CF(IK)

IF (CFC.NE.1) GO TD 55000
DCR = DIFFCC(IKL)

DCT = DIFFCO(1IKL+1)

OCL = DIFFCO(IKL+2)

DCB = DIFFCO(IKL+3)

IPK = 1K + K2NC

IKP = JK ¢ NWPC

IMKS = 1K - K2NC

IKMS = JK - NWPC

CFR = CF(1PK)
CFL = CF{IMK3)
uc = UllIk)

wC = W(IK)

UL = U(IMKs)

WE = W([IKMS)

aUC = DaBS(UC)
LUL = DaBS(UL)
LWC = DAES(WC)
AWS = DABS(W2)
SIEC= SIE(IK)
SIER = SIE{IPK)
S3EL = SIE(1IMKS)
SIET = SIE(IKP)
SIEB = SIE(IKMS)
SIECO = SIEO(IXK)

TSRE =

.S (TS(IK)+TS(IPK))
TSLaA &+ (

0
0. TS(IK)+TS(1MKS))

VLR2036GO
VAR20370
VAR20380
VAR20390

VAR20200

VAR20410
VAR20420
VAR20430
VAR20440
VAR20450
VAR204G0D
VAR20470
VAR20480
VaR20490
VAR20500
VAR20510

V&R20520 °

VAR20530
VAR20540
VAR205S50
VLR205G0
VaR20570
VaR20580
VAR20580
V4AR20600
VAR20610
VAR20620
VAR20€30
VAR20640

VAR20650

VAR20660
VAR20670
VAR20680
VAR20690
VAR20700
VAR20710
VAR20720

VAR20730 -

VAR20740
VAR20750
VAR20760
VAR20770
VAR207E0
VAR20780
VAR20800
VAR20E10
VAR20820
VLR20830
VLR20B40D
VLR20850
VAR20860
VAR20870
VaR208E0
VAR20880
VAR20%00
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€3500

€S000

70000

1F ( CFC.NE.1) GO TO 65000

DCR = DIFFCO(IKL)

OCT = DIFFCO(IKL+1)
DCL = DIFFCO(IKL#+2)
DCE « DIFFCO(IKL43)

I1PK = 1K ¢+ K2NC
IKP = IK + NWPC
1MKS = 1K - K2NC
IKMS = 1K - NWPC

CFT = CF(IKP)

CFB = CF(IKNMS)

WE = W(IKMS)

wC = w(1K)

AWB = DLBS(WB)

AWC = DABS(WC)

TSTA = 0.5 (TS(IK)+TS(IKP))
TSEL = 0.5+ (TS(IK)+TS(IKNMS))

GAMT = TGAM .
IF(TIS(IK).LE.NU) GAMT = RPRaN

DIFFT = GAMT-TSTA - 0.5-(DNFF2(1,K)+DNFFZ(I . K+1))eXMX
DIFFEB = GaMTST3BL - O.S~(DNFFZ(I.K)+DNFFZ(1.K-1))~XMX

Di1(J) = RDT«SJE(IK) - CO(IK)=0.5 .

£2(J) = -0.5%(we+2tWB)*RD2 - DIFFE-DCB*RDZD

B2{J) = RDT + (DIFFT+DCT+DIFFE-DCEB)*RD2D
+ 0.5 (WC+AWC-WE+AWB)*RD2

€2(J) = 0.5=(WC-4WC)*RDZ - DIFFT=DCT~RD2D

IF(CFR.EC. 1) GO TO €2950

DI1(J) = DI(J) - R2(J)~SIE(IKMS)

22(v) = 0.0

IF(CFT.£0.1) 6O TO 70000

1F(CFT.EQ.11.AND.NNOPT.E0.1) GO TO 65500

Di(J) = Di1(u) - C2(JU)*SIE(IKP)

c2(v) = 0.0

6o 10 70000

£2(v) = £2(J) - DIFFT-DCT-RD2D

€2(J) = 0.0

Di1(¢) = Di(J) + DIFFT-DCT*RD2

GO TO 720000

Di(u) = SIE(IK)

£2(J) = 0.0

E2(v) = 1.0

c2(v) = 0.0

CONTINUE

CaLL TDM(a2,B2.C2,D1,X,1KBR)
DO 71000 1=114.,12

DO 71000 K=K 1 ,K2
1X = KEBR+(1-2) + K - 1

VAR21460
VAR21470
VER21480
VAR21480
VAR21500
VaR2151¢C
VER21520
VAR21830
VLR21540
VAR2155%0
VAR21560
VAR21570
VAR21580
VAR21580
VAR21600
VAR21610
VER21620
V4R21630
VAR21640
VAR21650
VAR216060
VAR21670
VAR21680
VAR21680
VAR21700
VAR21710
VAR21720
VAR21730
VAR21740
VAR21750
VAR21760
VAR2177C
VAR21780
VAR21790
VaR21800
VAR21810
VAR21E20
VAR21830
VAR21840
VLAR21850
VAR21860
VLR21870
V&AR21880
VAR21E890
VAR21900
VARZ21810
V4R21820
VaRk21930
V4R21940
VAR21950
VAR21960
VAR21870
V&R21880
VAR21980
V4R22000



71000

33335 SIE(IK) = SI1EOQ(1IK)
KIRK = 1
GO TO 33334
23337 CONTINUE
DO 33338 1=11,12
33238 K=K1,K2
?2 t 1 4 (1-1)*K2NC + (K-1)*NWPC
33338 SIE(iK) = O0.5*( S1E(IK) + STOR(I1.K) )
KIRK = O
3332¢ CONTINUE
c -
C NOTE.
2040 Kir=

2108

1K = 1 4+ (1-1)*K2NC + (K-1)*NWPC
SIELIK) = X(1X)

IF(KIRK.ED. 1) GO TD 323333
IF(ISEN.NE.O) GO TO 33339

00 33235 1=11.12

DO 33335 K=K1,K2

IK = 1 4 (1-1)+K2NC + (K-1)*NWPC
STOR(1.K) = SIE(IK)

K2=KBP2

LWPC=1 - NWPC

DO 2409 K=K1,K2
LWPC=LWFPFC+NWPC
IK=LWPC

IKS=]12K2 + JK
SIE(IKS)=SIE(1IK)
U(1KkS)I=U(1IK)
W{1KS)=W(IK)
TO(IKS)=TO(IK)
TS{IKS)=TS (1K)
CONTINUE

11=2

12=)1EP 1

K1=2

K2=KBP2

K¥.=Q

KKL = O

DD 2919 111,12
KK=KK+KINC

KKL = KKL + K2NCL
LwPCL = ¢

LWPC=1

IKMS=IDOK2 + 9
SIE(1)=SIC(IKMS)
U 1)=U(IKMS)
W(1)=wW(IKMS)
TO(1)=T0(1KMS)
TS(1)=TS(1KMS)
SIE(IKMS)=SIE (KK+1)
U(IKRMS)=U(KK+ 1)
W{IKES ) =W (KK+1)
TO(IXRMS )= TO(KK+1)

TRANSFERS VELOCITIES 70 STORAGE ARRAY( AT TIME=N )

VAR22010
VAR22020
VAr22030
VLR22040
VAR22050

V&R22060 |

VAR22070 |

VAR220E0

VAR?2090;
VAR22100

VARZ2110
VAR22120
VAR22130
VLR22 140
VAR22150

VLR22160 .

VAR22170
VAR22180
VaR22190

V4R22200 :
VER22210

VAR22220
VaRrR22230
VLR22240

VAR22250

VaR22260
VLR22270
VAR22280
VAaR22220
VAR22300

VAR22310

VAR22320

VLR22330

VLR22340
VaR22350
VLR22360
VaAR22370
VAR22380
VAR22380
VAR22400
VAR22410
VAR22420
VAR22430

VLRZ2440 .

VaR22450
VAR22460
VARZ2470
VERZ22480
VAR22480
VLR22500
VAR22%510
VAR22520
VAR22530
VaR22540
VAR22550



L ke AND WA L dddds D

The file, 'input mom', is the input to test the
stability of the ADI scheme for momentum equation. The
file, 'inputn dat', is for calculating the natural convection
flow field in a Cartesian closed compartment. The output
results are in Fig. 5.1 and Fig. 5.2. The files, 'inputd
3' and 'inputd 7', are for calculating the numerical solution
by donor cell scheme in the problem geometry, Fig. 4.3(B).
The output results are in Fig. 5.6 and Fig. 5.7. The files,
'inputd HUH' and 'inputd DM', are for comparing Huh's and
De Vahl Davis and Mallinson's correction formulas in the

problem geometry, Fig. 5.8.
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FILE: INPUTN DAY A VM/SP CONVERSATIONAL MONITOR SYSTEM ‘PAGE 001
S 10 0 | 0.0 o 0
NATURAL COUNVECTION IN A CARTESIAN CLOSED COMPARTMENT
1.0 10.0 1.4+20 1.+420 60.08 2 3t 3 3 '
. 0 .
0
1.67 2.0 0.0 -32.2 1.0 1.0 0.0 1.7 1.-5 1.0
LI I B V1.0 0.015 1.5 1.0 0.751.2179-5 1.-20 1.-20
2.44 4.90 0.01 0.01%
0.0 0.0 1.0
1.0 60.0 68.0 0.5 5 1 42
1.0 1.0 0.0
1.0
' ! | o o 0 !
1.0 0.0
1.0 0.0
t.0 0.0
677.4
o
o
0
0
o
o
0
2 G 2 1
0.0 1.-20 1.-20 0.0 0.0
6 6 2 830
58.0 1.-20 1.-20 0.0 0.0

-902-
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~

10 o) ’ 1

1,120 1.420

.
\

vM/SP CONVERSATIONAL MONITOR SYSTEM

0.0

2.08 2 120

0.014 0.063 0.204 0.497 0.948
0.014 -0.063 -0.2019 -0.497 -0.948

0.0 0.0 1.0
0.045 LN '
0.01 .0

.0

=R Ne]

.0

G0.05.000024
GO0.0 1.0
60.0 0.0
.51
.219
.009
.026
. 009
. 003
.001
. 000
000
. 000

CQ0QC0o0000OO0 -

.189
.15
.91t
.974
.99
.997
.999
. 000
. 000
. 000

COQwvwovwLvwwwe

A |

1.0 7.07107 7.07107
13
1.0 0.0 7.07107
1113
1.0 7.07107 0.0
1211
1.0 0.0 7.07107
111

FILE: INPUTD 3
10
NUMFERRICAL DIFTUSION - CASE 3
0.02 2.0
I 0.000 0.002
f 0.000 -0.002 -
0.707tt 0.70711
2.4 2 4 1.0
2.44 1.9
0.0 0.0
1.0 5.0
0.0 1.0
0.0 0.0
2 2
0.05.000024
0.0 1.0
0.0 0.0
! 1.0
2 1.0
3 1.0
4 1.0
5 1.0
G 1.0
7 1.0
a t.0
9 1.0
10 1.0
0
0
0
! 1.0
2 1.0
J 1.0
1 1.0
S 1.0
6 1.0
7 1.0
8 .0
9 1.0
10 1.0
(o]
0
0
0
2 " 2
0.0 1.0
2 " 1
5.0 1.0
1 ' 2
5.0 1.0
2 i 12
5.0 1.0
12 12 2
5.0 1.0

1.0 7.07107 0.0

1.0

7

1.
-1,
0.
!,

oo

CO0Q0axaw

S5
5

7
7

0.
.0

0

1.861
-1.861
1.5
09375
0.0

(o]

2.207

-2.207
1.-47.07107

0.013

. r
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FILE: INPUTD 7

6

NUMERICAL DIFFUSION - CASE 7

1
|
\
2

0.01! 2.4
0.001 0.014
-0.001 -0.014
17051 1,.17851¢

4 2 4 t.0
2.44 1.9
0.0 0.0
1.0 5.0
0.0 1.0
0.0 0.0
2
0.08.333327
0.0 1.0
0.0 0.0
1 1.0
2 1.0
3 1.0
A 1.0
S 1.0
6 1.0
0
o
0o .
1 1.0
2 1.0
3 1.0
1 1.0
S 1.0
6 1.0
o
0
o
o
2 7 2
5.0 1.0
2 7 !
5.0 1.0
1 1 2
5.0 .0
2 7 8
5.0 1.0
8 8 2
5.0 1.0

A
G o} 1
t.420 1.+420 2.
0.143 0.633 1.457
-0.143 -0.633 -1.457 -
0.0 0.0 V.
0.045 1.5 1.
0.01 0.01 0
0.0 -3.167 I -
5.0 0.0 4 | 36
-1.0 0.0 -1.0
0.0 0.0 0.0
2 2
60.00.333327
60.0 1.0
G0.0 0.0
0.626
0.009
0.013
0.002
0.000
0.000
9.374
9.911
9.9087
9.998
10.000
10.000
T 1 ’

1.0 7.07107 7.07107
113

1.0 0.0 7.07107
713

1.0 7.07107 0.0
LR

1.0 0.0 7.07107
711

1.0 7.07107 0.0

Camn S
’ .

VM/SP CONVERSATIONAL MONITOR SYSTEM

oo
)

(o] 1
2
o) 1.5 1.-47.07107
0 0.09375 0.013
0.0 0.0 - 0.0
0.0

PAGE 001t
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FILE: INPUTOD

25

o 0o
Q

]

2 25

[5G

o o o o

26 26

3]

HUH

2
.-20

.-20
.-20
.-20

.-20

91
1.-20
113
V.-20
913
1.-20
1011
1.-20
gt
1.-20

5.0 0.6603
0.0 0.6603
5.0 0.0
0.0 8.6603

5.0 0.0

I

VM/SP CONVERSATIONAL MONITOR SYSTEM
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riLe: INPUTO 0

24

NUMERICAL DIFFY

0.02 2.0

1 -0.002 -0.026

{ 0.0J4 0.06!
0.496  0.56G6
0.903 0.966

0.2406  1.0267

2.4 24 1.0
2.44 1.9
0.0 0.0
{.0 5.0
0.0 1.0
0.0 0.0
2
0.02.003660
0.0 1.0
0.0 0.0
r V1.0
2 1.0
J 1.0
4 1.0
) 1.0
6 1.0
7 1.0
i 1.0
3 1.0
10 i.0
(R 1.0
12 1.0
13 1.0
14 1.0
15 1.0
16 1.0
17 1.0
1o 1.0
19 1.0
20 1.0
21t 1.0
22 1.0
23 1.0
24 1.0
0o
0
o
I 2.4636041
.. 2.460604
J 2.463G04
4 2.463G01
5 2.463604
G 2.4G3704

M A

U 0
SION - DM
1.120 t.120

-0.099 -0.260 -0.522

0.000 O0.11i5
0.636 ©0.705 O.
0.949 0.932

0.0
0.045
0.01

-Q

(=2 N5 Nel

Q
PN o -
CC a2 - Q

cocoo
coo-:

2 2
60.02.00836G0
G0.0 1.0
G0.0 0.0
. 606

.223

.04

.460

.J36

. 242

174

. 133

.093

.072

.05

.030

. 029

.021

.00

.0

. 009

.007

. 005

.003

. 0013

. 003

. 002

.002

V00000000V 00V00000000CO ~ —

.461
.526
. 044
9.3G65
9.567
9.700

Qo

i

2002130
-0.040
0.156 0.197

K

VM/SP COMVERSATIONAL MONITOR SYSTEIM

0.0

-1.144

)

6

-1.309
0.246 0.302 0.3G0 0.420

767 0.030 0.876 0.920 O0.951 0.969

1.0
1.0
Q 0]
1.-3

A4 1 36
-1.0
0.0

.0

oo

1.5 1.-4
.0 0.09375 0.013
0.0 - 0.0

1.0 0.0

10.0

PAGE 001
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FILE: (NPUTD

0]
o
2 25
0.0
2 2%
5.0
1 |
5.0
2 25
5.0
26 26
5.0
o

OM

.-20
.-20

.-20

10

. =20

.=20

1.-20
113
1.-20
913
1.-20
o1t
1.-20
911
1.-20

5.0 8.6603

0.0 D0.660D

5.0 0.0
0.0 0.6607
5.0 0.0

™

VM/SP CONVERSATIONAL MONITOR SYSTEM

PAGE 002

=Zlc~



