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A METHOD FOR ESTIMATING
COMMON CAUSE FAILURE PROBABILITY AND MODEL PARAMETERS:
THE INVERSE STRESS-STRENGTH INTERFERENCE (ISSI) TECHNIQUE

by

CHING NING GUEY

ABSTRACT

In this study, an alternative for the analysis of common
cause failures (CCFs) 1is investigated. The method studied
consists of wusing the Licensee Event Report (LER) data to
get single component failure probability and using stress
and strength parameters to evaluate multiple component
failure probabilities. Since an inversion of stress-strength
interference (SSI) theory 1is involved, the approach is
called the 1inverse stress-strength interference (ISSI)
technique.

The ISSI approach 1is applied to standby systems in
commercial nuclear power plants. At a component level, major
pumps and valves are studied. Comparisons with other CCF
analysis methods indicate that the medians based on the ISSI
method are slightly higher because of the inclusion of
potential failure causes. Applications to multiple-train
systems show that the ISSI method agrees well with the beta
factor method. In all cases studied, it appears that
uncertainty intervals associated with the ISSI are smaller
than other methods.

This study suggests that the ISSI method is a promising
alternative to estimate CCF probabilities. The method will
be particularly valuable when:

(1) Component-specific and system spec1f1c values are

needed.

(2) Failure data are scarce.

(3) Level of redundancy is high.

(4) Uncertainty needs to be guantified.
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Executive Summary

The objectives of this thesis have been twofold: the
developmemt of a methodology for the evaluation of common
cause failure probabilities of multiple-train systems; and
the demonstration of the methodology through its application
to standby safety systems in commercial nuclear power

plants.

Methodology
One problem with the common cause failure analysis (CCFA)
of safety systems originates from, among other things,
the lack of an appropriate data base. This lack limits, in
particular, the usefulness of conventional statistical
methods to perform meaningful CCFA. Very few approaches have
been developed which explicitly incorporate engineering
considerations and quantify engineering judgment based on
laboratory experiments. .
Although the common load model provides a probabilistic
framework for computing the multiple failure probability, it
remains essentially a theoretical construction due to the
difficulty of implementation. The ISSI technigue proposed in
this thesis represents the first attempt to combine
engineering knowledge with operating experience to evaluate

multiple failure probabilities. The basic idea is to

decompose the failure occurrences into constituent causes.

-15-



For each cause, there are two ways to compute single failure
probability. One 1is to use the SSI formalism. The other is
to adopt statistical procedures in analyzing the LER data.
To evaluate the multiple failure probability, we may apply

the extension of the SSI formalism, the so-called common

load model. A conventional practice 1is, where possible,
to perform statistical analyses of data.

The key step in the ISSI techniqgue is to recognize that
the single failure probability estimates, obtained from
conventional statistical evaluation of the LER data, is
relatively more significant (by the virtue of a relatively
larger sample size) than the multiple failure probabilty
estihates. The 1SSI technique consists of inverting the LER
estimates of single failure probability to derive a
constraint on the wunknown stress and strength parameter.
The engineering knowledge about each failure cause is then
used to find the unknown parameter. One can then proceed to
calculate the multiple failure probabilities by using the
expressions derived via the common load model.

Four different models, encompassing common engineering-
interests, have been investigated. The normal model
represents an engineering situation in which both the stress
and the strength of a component are normally distributed.
This is a useful approximation for components that have a
good quality control. The lognormal model describes an
engineering situation in which both the stress and the

strength of a component are lognormally distributed. Two

-16-



types of mixed models have been studied. The first
represents the normally distributed stress and the
lognormally distributed strength, called the
normal-lognormal model. The other describes the lognormally
distributed stress and the normally distributed strength,
called the lognormal-normal model. Numerical studies
performed for typical engineering situations show that, for
a given single component failure probability, the normal
model gives the lowest multiple failure probabilities. The
lognormal model, on the other hand, yields the highest CCF
probabilities. The normal-lognormal model gives slightly
higher CCF probability than the normal model, but lower than
the lognormal-normal modgl. Thus, if an engineer is not
certain about the stress-strength models underlying a
particular situation, he can use the lognormal model as an
upper bound. Similarly, he can use the normal model as a
lower bound.

Three cases have been investigated:

Case 1: V, and Vg Known

Case 2: Vg and M Known

Case 3: Vi and M Known
Here V,, Vs represent the coefficient of variation of
strength and stress respectively. M is safety factor, i.e.

the ratio between the mean strength and the mean stress. The

sensitivity of the multiple failure probability to changes

in the stress-strength parameters has been explored. 1In

-17-



particular, case 1 has been studied to a greater depth than-
the other two. This 1is because that current engineering
practices usually provide information as required for case
1, 1i.e. the variability of both the stress and the strength
for each specific failure mode.

Numerical studies indicated that the multiple failure
probability, for a given single failure probability, depends
strongly on the ratio of Vg and Vg. The larger the loading
roughness (defined as Vg/Vy), the larger the multiple
failure probability. Furthermore, if the single failure
probability is greater, other conditions being the same, the
multiple failure probability increases. This agrées with
common practices in which active components have a higher
failure probability than passive ones. For example, it has
been a 'rule-of- thumb' to assume that the beta factor is
0.2 for active components (e.g. pumps), and 0.1 for passive
components (e.g. valves). The sensitivity studies also
suggested that the larger the values of the Vp and Vg, the
smaller the multiple failure probability.

The 1ISSI approach not only yields the multiple failure
probabilities directly, but it also provides an alternative
for estimating parameters in other advanced CCF models. In
particular, expressions for multiple dependent failure
fractions fk in the MDFF method and 3, v, and § 1in the

MGLM have been derived.

Demonstration of The Methodology

-t



An application of the ISSI technique to important
mechanical components in commercial nuclear power plants has
been performed. Major pumps and valves in the HPIS and the
AFWS have been studied from the perspective of the ISSI
approach.

Two failure modes stand out as major contributors to the
LER occurrences. It 1is not unexpected that tribological
causes have been identified as a category of special
concern. Design engineers tend to regard friction, wear and
lubrication as a major concern for operating and maintenace
crew. The fact that the ASME code does not have specific
requirements for the tribological aspects of pump and valve
designs has made engineers think that wear-related failures
are of secondary importance. It is unfortunate that after
most traditional aspects of the design have been addressed
in detail, the ‘'next' important failure cause, namely the
tribologically induced, has become the dominant failure
mode, because insufficient attention is devoted to it.

Another major failure contributor identified is foreign
material contamination. This is not associated with the pump
or valve per se, but with the related electrical parts that
support the adequate function of the pump or valve. Circuit
breakers, relays and switches are in this category.

The results of the application of the ISSI approach have
indicated that it yields smaller uncertainty compared with
other common statistical CCFA methods. Intuitively, this is

related to the efficient use of engineering knowledge. It is

-19-



generally true that the uncertainty in most engineering
studies of the material properties, for a particular
well-defined failure mode, is usually less than 20%. If we
decompose the field failure data into specific root causes
and bring to bear related engineering principles and laws,
we have a better grasp of the prediction than dealing with
the field data directly. By analyzing each failure mode with
higher confidence, and then synthesizing all pertinent
failure modes into the overall failure, one expects to have
a reduced uncertainty in the end results. This 'divide and
conquer' mechanism 1is, in essence, the approach adopted in
the ISSI technique.

The sensitivity of the final results to different
sources at a system level is also illustrated. The variation
in both the input data and the models is investigated.

An idealized AFWS 1is studied first. Results indicate
tﬂat order-of-magnitude underestimates exist if the CCFs are
not taken into account. Furthermore, the conventional beta
factor method yields higher estimates for the multiple
. failure probability.

The HPIS is next evaluated. Two configurations have been
addressed. For a typical Westinghouse three-loop plant, the
charging pumps are used for the purpose of high pressure
injection in addition to its normal function of chemical and
volume control. This configuration contains a combination of
doubly and gquadruply redundant trains. The other HPIS

design investigated typifies a Westinghouse four-locp plant.

-20-



In this design, two additional HPIS pumps are provided. This
configuration is in essence a l1-out-of-4 system as far as
four pumps are considered. Three cases are studied for this
configuration. First, we assume that the charging pump
trains and the HPIS trains are independent. This yields
such a small probability of failure.that the CCFs are not of
concern. Second, 1if the HPIS and the charging pump trains
are identical, the wunavailability 1is approximately a
thousand times larger. In actuality, the system
unavailability is in-between. 1If one considers only those
root causes that are common to the HPIS pumps and the
charging pumps (instead of all root causes as in redundant
case studied above), the pnavailbility is_approximately 2.9
x E-6. The results indicaie that when CCFs are present,
marginal improvements result from adopting a higher
redundancy. Cost-benefit analysis is required to decide the

choice of a proper configuration.

This study suggests that the ISSI method is a promising
alternative to estimate CCF probabilities. The method will
be particularly valuable when:

(1) Component-specific and system specific values are

needed.

(2) Failure data are scarce.

(3) Level of redundancy is high.

(4) Uncertainty needs to be quantified.
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Chapter 1

Introduction

1.1 Background

Since the draft Reactor Safety Study{l1.1} report was
published in 1974, there has been substantial discussion on
the use of probabilistic risk assessment (PRA) in the
nuclear regulatory process. One of the critical problems in
risk analysis study is the adequate evaluation of
dependent failures among important safety systems{l.2}. In
particular, a subclass of dependent failures called common
cause failure has been a controversial issue in PRA
studies. In essence, difficulties associated with common
cause failure analysis (CCFA) focus on :

(1). discrepancies in the definition of CCF,

(2). the modelling of CCF, and

(3) the estimate of parameters in CCFA models.

In order to have a meaningful PRA, the problems of CCFA
have to be addressed satisfactorily. Risk analysis results
are sometimes very sensitive to the way in which CCFs are
dealt with. Order-of-magnitude difference may exist between
various CCFA modeling methods. In addition, within each
modelling approach, the procedure for estimating
model parameters - also affects results significantly.
One of the reasons for this state of affairs stems from the
lack of an appropriate data base. This difficulty is even

more serious in the case of highly redundant systems.
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Prevailing CCFA methods are based mainly on
statistical analyses of historical data from operating
plants. Since failure-related data are extremely scarce, the
dncertainty of the results is thus often too large to make
inferences significant. Moreover, the applicability of
generic data to an individual plant is fairly difficult to
judge without a substantial physical understanding of the
component failures of interest. Under such a predicament, it
is important for the engineer to get insight into the
elements of CCF and to depend less on fuzzy statistical
methods.

CCFs are not merely hypothetical events in PRA studies.
For example, two incidents at the Salem 1 reactor ‘sey in
February, 1983 marked " notoriously : in the American nuclear
program that the automatic scram system failed to function
on an operating reactor. On both occasions, two Westinghouse
DB-50 circuit breakers simutaneously failed to operate on
signal because the UV trip attachments (relays) were dirty
and worn{i1.3,1.4}. This highlights the practical importance
of eliminating or reducing the probability of CCF
occurrences in commercial nuclear power plants. This paper
contends that only through understanding the failure
phenomena thoroughly and taking them into account during the
components' entire life-cycle can an engineer achieve a
reliable performance. The proposed approach sheds some light

on how an engineer, involved in either design or
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maintenance, can explicitly factor in some of the important

elements that affect the probability of common cause failures.

1.2 Objectives

Inherently, reliablility data are hard to come by. In
particular, the CCF data for multiple-train systems are even
more difficult to obtain because of the low probability of
such occurrences. The present study thus has the following
objectives:

(1) providing a convenient framework in which CCFs are

addressed(in particular, the approach used is aimed
at multiple-train systems);

(2) presenting a method in which data requirements are

relatively easy to satisfy; and |

(3) demonstrating a procedure by which engineering

considerations are quantified explicitly and the
uncertainty of results reduced.

To accomplish these goals, the following tasks had to be
performed:

(1). developing a method, called the inverse-stress-
strength interference (ISSI) technique, in
combination with common load models to evaluate
multiple component failure probabilities;

(2). identifying failure causes that lead to component
failures froq licensee event reports (LERs):;

(3). specifying and quantifying factors influencing

failure causes identified in task 2;
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(4).

(5).

It

these

synthesizing factors affecting each failure cause

to obtain parameters needed in the 1SSI method; and
combining mechanism-specific multiple component
failure probabilities to derive overall multiple
component failure probabilities.

is useful to understand the assumptions under which

tasks were performed. In order to make the analysis

compatible with the current available reliability data base

such as the LERs, the present investigation focuses on the
following:
(1) Internal events only

(2)

This limitation is intended for the purposes of
considering enviromental conditions that the redundant
components are normally subjected to. External events
such as earthquakes, flooding, missiles, tornadoes,
etc., important as they are, are not included. In the
context of this study, internal events refer to common
hardware failures due to the interaction of the
mechanical component with its environmental conditions
such as pressure, temperature, vibration, wear, etc.

'Normal' operating conditions

Although it is possible in principle to analyze
component failure under accident conditions using the
framework expounded in this thesis, the lack of data
imposes a strict'constraint to overcome. The 'normal’
conditions refer to the operating status of the plants

containing the components of interest. For the systems
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(3)

(4)

(5)

studied in this thesis, the conditons under which the
components are specified to operate remain essentially
the same as in normal operating conditions. This is
true in general for components not located in reactor
containment,

Standby systems

One of the concerns in the defense-in-depth philosophy
of the safety system design is the low availability
associated with engineered safety features. To limit
the present study, such systems are thus chosen to
illustrate the method proposed. However, the approach
can certainly be used in other systems as well.

Design, manufacture, installation, operation, and

maintenance errors

CCFs are the aggregation of all possible failure-
inducing conditions accumulated during entire life-
cycle of a set of redundant components. Separating
them into different stages may be useful for some
purposes, but it renders the quantification of CCFs an
incomplete endeavor. The common association between
redundant components mainly comes from an identical
design concept, from similar manufacturing
processes, or from similar installation procedures,
etc. The combination of all these commom elements
makes the assumption of statistical independence
invalid.

Coupled failure only {1.5}
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A useful idea of this CCF classification scheme is

to consider CCF as two typesi shown in Fig. 1.1.
Castade failures refer to multiple failures where
the failure of a component is caused by that of another
identical component. In a sense this kind of failure
can be visualized as an avalanche leading to the
propagation of component failures. In general, to
evaluate the multiple failure probability of cascade
failure requires more knovwledge of the system. The
present study thus focuses only on the coupled failure

as described in (4).

1.3 Organization

The organization of thig thesis is as follows.

Chapter 2 describes in a concise manner the general
aspects of CCF., First, definitions of CCF that have been
used are discussed to distill the essential elements and
place the issue in proper context. Then previously available
studies on the quantification of CCFs are briefly reviewed
with emphasis on the principle, the disadvantages, and the
advantages associated with different methods. The models
reviewed include the beta factor method, the binomial
failure rate model (BFR), and the coupling method. To
conclude this chapter, a rigorous probabilistic framework is
presented to provide a solid basis for the proposed

approach.
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1. CASCADE FAILURES: 2 COUPLED FAILURES:

ONE FAILURE CAUSES COMMON CONOITION CAUSES
ANOTHER FAILURE TWO FAILURES '
FAILURE
CAUSE FAILURE
‘ CAUSE

FAILURE
‘Neo. 1

FAILURE ® @
Neo. 2

Figure 1.1  Common Cause Failure Types ( Ref. 1.5)
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Chapter 3 discusses recent developments in the CCFA
of multiple-train systems. Two methods are briefly examined.
The multiple dependent failure fraction (MDFF) method is
first discussed. 1In particular, the generalization of this
model to 1-out-of-4 systems is studied in detail. The

multiple Greek 1letter method (MGLM) is next described.

Both methods require more data than the beta factor method
to statistically estimate model parameters. A simple

relationship between the MDFF method and the MGLM is

then derived to show that they are conceptually equivalent.
Chapter 3 ends with a brief discussion of the difference
between the beta factor method and the multiple-train
method.

Chapter 4 starts with a description of the general nature
of stress and strength. The different level of sophistica-
tion to model these two entities are outlined. Having set
the stage, we then present the stress-strength interference
(SSI) theory with useful expressions derived for some common
engineering distributions. Then the concept of the SSI is
generalized to systems with k redundant components to derive
the commom 1load model. Useful expressions based on this
model are then derived for both normal and 1lognormal
distributions.

Chapter 5 presents an innovative approach to model CCFs.
Recognizing the scarcity of multiple failure data, we
describe a method which makes use of only single component

failure data. Then, assuming an analyst can estimate any of
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the three parameters - Vi (the coefficient of variation of
strength), V¢ (the coefficient of variation of stress), and
M (the safety factor) - the 1I1SSI technigue is used to
compute multiple failure probability. Three cases are
studied:

Case 1. Vi, Vs given

Case 2. Vi, M given

Case 3. Vg, M given
Some qualitative results for each case are next presented to
give a feel for the general behavior of multiple failure
probability based on this ISSI method.

Chapter 6 presents an application of the method to
safety-related pumps and valves in commercial nuclear power
plants. General mechanical failure considerations are first
studied to provide a foundation for the specific analysis
of pumps and valves. Important categories of failure
mechanisms are then identified from the LERs. The role of
tribological failures and foreign material contamination is
then discussed. A comparison is then made among the results
obtained based on the different methods discussed in Chapter
2.

Chapter 7 demonstrates the application of the ISSI method
to evaluate CCF probabilities of standby systems in
pressurized water reactors (PWRs). An idealized auxiliary
feedwater system (AFWS) 1is first analyzed. Then, a high

pressure injection system is studied to demonstrate the
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sensitivity of final results to different CCF modelling
techniques.
Chapter 8 summarizes the overall study and makes

recommendations for further research.
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Chapter 2
Generalities Of Common Cause Failures

2.1 Introduction

Many factors make the analysis of potential dependent
failures, 1in particular CCFs, a rather difficult task. In
order to view the results of different CCFA approaches in
the proper 1light, it is important to keep such factors as
the following in mind:

(1) the controversial nature of the definition and

classification of common cause failures;

(2) the scarcity of reliable data sources for CCFs; and

(3) the serious limitations associated with existing

methods of quantifying CCF probabilities,

This chapter attempts to summarize previous developments
in dealing with different aspects of CCFs.

Section 2.2 discusses the definition dilemma and elements
of wvarious classification schemes. As more information is
exchanged between different researchers in the CCFA, a
consistent unified definition will emerge. Since a consensus
about a relevant definition of CCF is an important step in
dependent failure analysis, a special effort is made to
review currently available---- terminology.

Section 2.3 describes CCFA models that have been proposed
up to this time. The advantages and disadvantages of

various CCFA methods are discussed to provide insight into

the state-of-the-art of CCFA. Since only the quantitative

-32-



method is the focus of this thesis, qualitative methods are
not addressed.

Section 2.4 presents a probabilistic formulation of CCF.
This provides a general framework to account for CCF in a

more rigorous fashion.

2.2 Definition And Classification Of CCF

Common cause failures mean different things to different
people. Recent CCF discussions, evaluations, and
conclusions have led to ébnfusion. To clarify the issues so
that CCF questions can be analyzed from some
reasonably agreed -upon perspective ., it is necessary to
have a clear definition that is in common use. To facilitate
reliable communication, it is necessary to know the
definition the CCF analyst has in mind when discussing
specific examples, reviewing statistics, estimating the
frequency of CCF in a system, or evaluating preventive
measures.

Smith and Watson {2.1} defined a CCF as:

" Inability of multiple, first-line items to perform

as required in a defined critical period of time due
to a single underlying defect or physical phenomenon
such that the end effect is judged to be a loss of one
or more systems. "

A slightly revised version of the definition is:

" Inability of multiple (first-in-line) items to perform

as required in a defined critical period due to a
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common underlying defect or physical phenomenon such
that the end effect is critical. "
An examination of the definition reveals the following
elements:

a. Inability to perform as required

This is simply the definition of failure, irrespective
of CCF issue. The product or component specification
usually defines required performance and is thus the
basis for failure determination and its criticality.
Note that a failure while in the standby mode (e.g.
HPIS pumps) belongs to this category whether a cha-
llenge occurs or not.

b. Multiple

This appears to be a universally accepted reguirement
for CCF. However, redundancy per se is not an addi-
tional constraint. Indeed, redﬁndant component failure
is a special case of multiple component failure. It is
noted the loss of redundancy is often the uppermost
consideration when dealing with CCFs. Although multiple
component failure is used, it is of pratical interest
only to cope with multiple failures of redundant
components. For example, the simultaneous failure of a
valve and a pump in redundant trains is usually not
likely and is thus ignored.

c. First-in-line

In the early definition, this is explicitly assumed to

exclude those failures that cascade along one or more
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paths. This exclusion of cascade failures is a point of
controversy. It is better to include both first-in-line
and cascade failures as CCFs.

d. In a defined critical period of time

This is a more general term than 'simultaneous'. The
point-«is fundamental to the CCF issue. The critical
period strongly depends on the mission requirement.

It may vary from seconds to hours to days depending on
the demand on the system.

e. Due to a single underlying defect or physical

phenomonon

This is the heart of the CCF issue. This common thread
of failure potential separates the CCF into a class

by itself. There are two kinds of commonality of cause.
One is referred to as intrinsic (defects or errors
from within the system), the other is extrinsic
(external events such as earthquakes, floods, etc.)
This study focuses on intrinsic events only.

f. End effect -

If multiple failures occur, they must lead to the
disabling of some system or major elements of the
product. It follows from the definition that partial
failures (e.g. 2 failures in a 1-out-of-4 system) do
not constitute CCF.
Rasmuson et.al., {2.3} also discussed important concepts
involved in the CCF definition. In particular, - a

distinction between common mode failures and CCFs is made.
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in WASH-1400, "common mode failures" was used as an
all-inclusive term. Almost any multiple failures that are
not independent are included as common mode failures. More
recently, as detailed in Ref.2.3, analysts tend to set aside
the ambigquous term " common mode failures " and increasingly
adopt " common cause failures"™ to represent the general
study of dependencies between components. Since redundant
components by nature share many dependencies, an analyst
restricted to such components will garner most of the
significant dependencies. However, if thoroughness is
desired, the scope of analysis must be broadened to search
for common causes resulting in dependencies among all
components and not just similar components.

Since large differences exist in the scope of CCF
definition, Vaurio {2.5} suggested that each analyst select
those attributes essential for his definition and explain
under what titles other features are taken into account.
Other salient points worth noting include:

a. Foreseen versus unforeseen failures

It is sometimes considered an essential feature of CCFs
that they are unforeseen events. Adopting this viewpoint
would make the definition not only subjective but also
variable . in time. Since past events can be foreseen for
future plants and eliminated or analyzed explicitly,

it would become impossible by definition to have any
specific data for future CCFs. A more stable definition

is required, Nevertheless, it is useful to identify for
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each event vhether or not it had been foreseen before
its occurrence. This would facilitate demonstrating
that the frequencies of both foreseen and unforeseen
CCFs are diminishing.

b. Challenges

To estimate the unavailability of a standby system,

it is necessary to include all multiple failures while
in the standby mode, not only those few that were
accompanied with a challenge (i.e.a true demand or an
initiator). The failure experience data would be vir-
tually impossible to obtain due to the low probability
of both a challenge and the failure of component given
challenge, '

Hartung {2.6} defines CCFs as coexistent failures of two
or more systems or components due to a single cause. The
definition encompasses two types of CCFs as illustrated in
Figure 1-1, They are called "cascade failures" and "coupled
failures". Cascade failures can be visualized as a sequence
of two or more failures in which each failure results from
the preceding one. For example, the failure of an instrument
can be caused by steam released from a ruptured steam line.
Coupled failures occur when a common adverse condition
causes two or more SyYstemS or components to fail
concurrently. For example, failure of several components
can be caused by common design, manufacturing, maintenance,
or operational error or flaw. Table 2.1 from the PRA

procedure guide summarizes the different types of dependent
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Table 2.1 Dependent Failure Classification ( Ref. 2.7)

Type 1

Type 2

Type 2A

Type 28

Common Cause Initiators (external events) These include externmal
and internal events that have the potential for initiating a
plant transient and increase the probability of failure in
multiple plant systems. These events usually, but not always,
result fnsevere envirommental stresses on coamponents and
structures. Examples include fires, floods and earthquakes.

Intersystem Deperdencies These are events or failure causes that
create interdependencies among the probabilities of failure of
multiple systems. States another way, intersystem dependencies
cause the conditional probability of failure of a given system
along an accident sequence to be deperdent on the success or
failure of systems that precede it in the sequence. There are
several subtypes of interest in risk analysis.

Functional Dependencies These are dependencies among systems
that follow from'the plant design philosophy, system capabilities
and limitations, and design base. One example is a system that
is not used or needed unless other systems have failed. Another
is a system that is designed to fimction only in comjunction
with the successful operation of other system.

Shared Equipment Dependencies These are dependencies of multiple
systems on the same camponents, subsystems, or awxiliary
equipment. Example are: 1) a collection of pumps and valves that
provide a coolant injection and a'coolant recirculation function
when the functions appear as different events in the event tree,
and 2) components in different systems fed from the same
electrical bus.
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Table 2.1 ( Continued)

Type 2C

Type 20

Type 3

Physical Interactions These are failure mechanisms, similar to
those in common cause initiators, that do mot cause an initiating
event but nonetheless increase the probability of multiple system
failures occurring at the same time. Often they are associated
with extremeenvironmental stresses created by the failure of one
or more systems after an initiating event. For example, the

failure of a set of sensors in one system can be caused by the
excessive temperature resulting from the failure of a second system
intended to cool the heat source.

Human Interaction Dependencies These are dependcies introduced

by tuman actions, including errors of omission and commission.
The persons involved can be anyone associated with a plant life
cycle activity, including designers, mamufacturers, constructors,
inspectors, operators, and maintenance persommel. Such a failure
occurs, for example, when an operator turns off a system after
failing to correctly diagnose the plant condition.

Intercamponent Deperndencies These are events or failure causes
that result in a dependence among the probabilities of failure

of miltiple camponents or subsystems. The multiple failures of
interest in risk analysis are usually within the same system or

the same minimal cutset that has been identified for a system

or an entire accident sequence. Subtypes 3A, 3B, 3C and 3D are
defined to correspond with subtypes 2A, 2B, 2C and 2D, respectively,
except that the multiple failures occur at the subsystem and
component level instead of at the system level.
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failures identified. {2.7} The major type of CCF considered
in this research belongs to the type 3D dependent failure:.
The other type of CCF, i.e. cascade failure, corresponds to
type 3A and 3C.

More recently, a modified labelling scheme {2.8} of
component unavailability based on proximate cause has been
devised. A summary of this classification is shown in Table
2.2. As can be seen, six classes are defined in this scheme
as follows:

1. Independent failure

the failure of a single component due to a noncomponent
cause (i.e., not the unavailability of another compo-
nent)

2. Cascade failure

the failure of a single component due to the unavailabi-
lity of another component.

3. Functional unavailability

the inability of a single component to perform its
intended function because of the lack of proper input.
The proximate cause can be either the unavailability of
another support or noncomponent cause.

4, Conditionally independent failures

two or more component failures due to the same non-
component cause. Conditional independence indicates
that the multiple failures, while statistically
coupled, are not related to each other in any physical

or engineering sense. This is the same as the coupled
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failures defined earlier.

S. Multiple cascade failures

two or more component failures directly caused by
another single component.

6. Multiple functional unavailabilities

the inability of two or more components to perform the
function because of the lack of proper input. The
proximate cause can be either the unavailability of

another component or a noncomponent cause.

2.3 Previous Studies

A number of CCFAs are reviewed in Ref. 2.3. A more
recent critical comparison is made by Hirshberg {2.9}.
Since our major focus is on the quantitative aspects of CCF,
only the beta factor method, the binomial failure rate (BFR)
model and the coupling method will be discussed. Another
method that is general but may become tedious as systems get
more complicated is the Markovian analysis. In addition,
the parameters required. in the Markovian models are often
difficult to obtain based solely on the analysis of
historical data. For more information, interested readers

can consult Ref. 2.10,2.11.

2.3.1 The Beta Factor Method

The beta factor method was introduced by Fleming in the

AIPA study {2.12}. It is a generally applicable model and
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easy to use.

In its simplest form, beta factor is defined to be

> | >
[\

(2.3.1)

vhere
A = x1+ kz
A1® independent failure rate
12* CCF rate

It then follows

M7 (180 (2.3.2)

Ap=  BA (2.3.3)

By substituting the failure rate in terms of the beta factor
into the Markov type of analysis, failure probability can
be obtained for different level of redundancy.

A limiting feature of this method is the assumption of a
complete coupling between redundant units. This means that
. the occurrence of a common cause will lead to total failure
of all redundant units in a given system. This point will be

discussed in more depth in section 3.4.

2.3.2 The Binomial Failure Rate Model

In an effort to obtain more detailed common cause asses-

sments, Vesely {2.13} developed a statistical approach

-43-



for quantifying CCFs. The underlying model is based on the
multivariate exponential distribution developed by Marshall
and Olkin {2.14}. It is not intended here to give full des-
cription of the theory and analysis used in their work.
Only a summary of key steps is discussed below.

For the gquantification of CCF, it is assumed that common
causes occur in accordance with a Poisson process. Thus the
number of occurrences N, of x components simultaneously
failing in a population of m components in time period T is
Poisson with parameter (:)AXT .

For the binomial failure rate case, the equation for Ay is
obtained by factoring the CCF rate into a total common cause
rate and a detailed effect probability.

Let A be the sum of all the CCF rates for x, or more

components simultaneously failing. Then,

where Ax is the CCF rate for x specific components failing
and all possible combinations are summed. A is the total
CCF rate for the population. Assuming that when a CCF
occurs, each component has a probability p of being affected

by the common cause, the failure rate Ay is given by :

A
A, = - p* (1-p)™
X C (2.3.5)
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where C is a normalization constant such that Eq. (2.3.4) is

satisfied and is given by

m

m
c= 1 Qe (-p™

x=X1 X (20306)

The CCF rate Aio for i simultaneous failures, which
are the failure rates used in reliability quantifications,

are given by
‘o= - P (2.3.7)

The BFR model has been applied to the CCFA of valve
leakages.{2.15} Other applications of the BFR to nuclear

power plant components are reported in Ref. 2.14

2.3.3 Coupling Method (5 .17}
It is assumed that the frequency of an event q is log-

normally distributed, i.e.
q =m exp ( az) (2.3.8)

where z is a standard normal variate and m is the median of
g. a {s lognrmal standard deviation.

For parallel configuration, each with failure frequency
q, one has the follwing expressions for system failure

probabilities:
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m2exp( 2az )

e
)
]

2-unit system

m3exp( 3az )

0
W
]

3-unit system

4-unit system q

méexp( 4az ) (2.3.9)

In most PRA studies, the failure freguency q is given in
terms of a 90% interval estimate. Let the 95th percentile of
qQ be ggs, and 5th percentile be gps It can be readily shown

that

a=(1lnggs - In gos ) / 3.29 (2.3.10)

To obtain the upper and lower bound for a multiple failure

case, the following expressions are useful:

2-unit system q9 m2 exp ( 3.2%9az )

5

= m? -3.29
qo5 m< exp ( az )

3-unit system q95 = m? exp ( 4.%%az )
q.. =m® exp ( -4.%%az )

4-unit system q = m* exp ( 6.58az )
95

q = miexp ( -6.58az )

05 (2.3.11)
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Notice that if there is no coupling of q, the following
expressions can be used instead:

2-unit system q§5 = m¢* exp ( 1.41az )

= m?2 exp ( -1.41laz
qOS P )

3-unit system q95 = m® exp ( 1.73az )

= 3 -1.7
qOS m3 exp ( -1.73az )

4-unit system q95 = m? exp ( 2.00az )

9ps = m¢ exp ( -2.00az ) (2.3.12)
Thus the interval €for the coupled case is wider than the
independent case. In chapter 6 multiple failure probability
estimates based on this method will be compared with the

I1SSI method and the BFR method.
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Table 2.3 Comparison of Quantitative Methods for CCF

Method Advantages Disadvantages
Beta Factor 1. Directness and 1. No allowance for
flexibility partial failures
2. Only one parameter 2. Simultaneous
necessary failures
3. Easy to estimate
Binomial 1. Much information 1. Complicated
Failure can be extracted estimation
Rate from scarce data procedure
2. Distinction made 2. CCF causes
between partial assumed to have
and total failures equal severity
Coupling 1. Simple to use 1. Lognormal not
always valid
2. Only individual 2. Considerable

component failure
data necessary

uncertainty

3. Low failure
probability for
systems with
high redundancy.
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2.4 Probabilistic Modelling of CCF

I1f a system is composed such that the occurrence of
either of two events A gr B will cause i - failure (often

called a series system) then

P, = P(A) + P(B) - P(AB) (2.4.1)

where P; represents failure probability of the system.
On the other hand, if a system is constructed such that
the occurrence of both events A and B is necessary to cause

the system failure (often called a parallel system) then

P, = P(AB) (2.4.2)

In most engineering systems, P(A)P(B) < P(AB) < P(A),
where A and B are assumed to be equally likely events. If
statistical independence is assumed, i.e., P(AB) = P(A)P(B),
it is easily seen that in the series case we overestimate
the system failure probability, while in the parallel system
we underestimate it. In order to have a rational basis of
taking into consideration the degree of dependence, the
probabilistic definition of independence will be pursued

next

2.4.1 Mathematical Definition Of Statistical Independence

In general,the following expression

P(AB) = P(A)P(B|A) = P(B)P(A|B) (2.4.3)

-49-



is valid. The events A and B are defined as statistically
independent if

P(B|A) = P(B)

P(A|B) = P(a)

P(AB) = P(A)P(B). (2.4.4)
In many applications of engineering analyses the assumption
of statistical independence is often made. But how does one
decide when two events are statistically independent? Eq.

(2.4.4) thus serves as a criterion to make such judgment.

2.4.2 Mathematical Definition Of Physical Independence

Suppose that events A and B are always accompanied by
some other events E,(i=1,2,...N) which we call an
environmental profile. Let these subsets E; be exhaustive,
mutually exclusive, and distinct. Subsets are mutually
exclusive if the occurrence of any one precludes the
occurrence of all the others. Subsets are exhaustive if it
is known that at least one of them must occur. The subsets
Ei are distinct if there 1is no E; and E, such that the

following is true:

P(A|E;) = P(A|Ey),
or P(B|E;) = P(B|Ek),
P(AB|E;) = P(AB|E,), (2.4.5)
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Then we can define A and B to be physically independent
under E, if and only if they are statistically independent

under E,

It is emphasized that physical independence differs from
statistical independence in that the former has the
environmental profile specified.

Consider two system components a and b. Let A represent
the failure of component a, B the failure of component b.
Suppose they are physically independent for all E; with N >
1. The proper formula to combine failure probability to
calculate P(AB) is

P(AB) = ; P(A]Ei)P(BIEi)P(Ei) (2.4.7)
It is shown {2.18} that for events with 1low failure
probabilities, it is impossible to have statistical
independence. The failure of a and b are physically
independent (i.e. the failure of one in no way causes the
failure of the other), but they are not statistically
independent. The 'dependence’ 1is caused by the severe
environmental profiles of low probability.

Easterling {2.21} discusses a more general framework in
which he <considers conditions under which the components
have to operate. In this fashion he shows that CCF comes

about naturally.
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Let CAl , CA2 , ... denote the conditions under which

component A may be asked to operate and let CBl' ... be

c .,
B2
similarly defined for component B. The term 'condition' is
used broadly to include such things as designer,
manufacturer, and environmemt. There may be a spectrum of
conditions and identifying them may be a difficult task.For
an engineering component such as a pump 6: a valve, this
relies largely on engineering knowledge and lessons learned
from failures. The constraint placed on each of the
conditions is that they be mutually exclusive and

exhaustive.
Let P(C C_ ) denote the joint probability of conditions

Ai Bj

CA‘ and C B'occuring. Then the unconditional probability of
1 J
A and B failing is given by

P(AB) = P(AB|C C p(C C (2.4.8
) izj | Ai Bj) Ai Bj) )

Consider now the unconditional probability of A failing.

With similar notation, this is given by

P(A) = ) P(A|C ) P(C ) (2.4.9)
i Ai Ai
assuming
P(A|C C ) = P(A|C ) (2.4.10)
Ai Bj Ai
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Similarly, the wunconditional probability of B failing is

given by
P(B) = P(B|C P(C 2.4.11
(B) § (B] Bj ) P( Bj) ( )
assuming
P(B|C . C = P(B|C 2.4.12
(B i CBj ) (B] Bj ) ( )

The dependent failure of concern in common PRA studies

is represented by
P(AB) > P(A) P(B) (2.4.13)

It is obvious that the common assumption of P(AB) = P(A)
P(B) is optimistic for redundant system as described
earlier.

To pursue further the conditions when Eg. (2.4.13)
holds, consider the following two properties D1 and D2:

D1. Failure of A and B are conditionally statistically

independent events. In other words, for all i and

s

P(AB[CA. C ) = P(A|C

) P(B|C . (2.4.14)
i BJ Ai | BJ )

D2. The occurrence of CA' and CB,are statistically
1 J
independent events, meaning
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P(C_.C_.) = P(C P(C , for all i and j. (2.4.15
A1 BJ) ( A1.) ( Bj) J )

If DT and D2 hold, it can be shown that
P(AB) = P(A) P(B) (2.4.16)

Suppose DI does not hold. Then this is the situation
where failure events are dependent and one does not obtain
Eg. (2.4.16). An example is the failure of A increases the
failure probability of B, which 1is exactly what we call
cascade failure earlier.

Suppose Df does not hold. Then, for at least one (i,j)

P(C C - P(C 2.4.17
(C 1€, # B(C ) ( )

J

It can be shown that again Eqg. (2.4.16) does not hold. This
is the so-called coupled failure described earlier.

A particular case of interest is' where A and B are
subject only to common causes. In terms of the probabilistic

definition, conditions CAi and ch are identical and
P(C | ) =0 if 1 # 3
Bj Ai
P(C |[C )
Bj Ai
For redundant components, such an assumption might apply if

1 if i= 3 (2.4.18)

they are situated so that they are subject to the same

environmemt.
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Suppose further that A and B are identical and
physically independent. In other words, they are

conditionally statistically independent
P(ABICi) = P(AICi) P(B|C, ) (2.4.19)

where C ; refers to the common conditions A and B are

subjected to. Then

P(AB)

! p(aBlC C P(C_.C
i3 (AB|C, . Bj’ (€ Bj’

P(AB|C_C_) P(C__|C_.) P(C
1.23.( €01 85" B{C51Ca¢" PGy

Y P(alc C P(B|C C P(C
¢ P ! Ai Bj ) P(B] A Bj) (€5

3 P(A|Caj) PAA|Cp{) P(Chj)
i

(2.4.20)

In most applications, we have only partial association
between components, i.e. not all the conditions are
identical for A and B. Suppose we have n common causes and m
independent causes. Then
2 2

m
P(Ajc ) PC ) + I [p(ajc ) P(c )] (2.4.21)
Ai AT =1 j Aj

n
P(AB) = ] A

i=1

The derivation given above can be readily extended to

k-component systems. If k components are identical, we have

k

' n m
k
P(AA ...A ) =)P(A |c)P(c ) +) [P(A |C )P(C 2.4.22

( 12 k 121 1' Ai) Ai) jzl 1l A} ( Ajﬂ ( )
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where A; i=1,2,...k, represents identical components. If
the k components are not identical, we have
mk

K
P(A.A ...A ) 1P(A |C )P(C ) + ZIP(A|C )P(C ) (2.4.23)
1% -k {1 1|A1 A 31 1A Aj

]
-t 3

where
k
1 1 Ai 1 Aj 2 Aij k Ai

It is also worth noting that in most applications, the
probability of conditions such as P(CAi) may be a random
variable. Then, p(CAi) is itself a probability distribution.

The above formulation provides a very general framework
for calculating the multiple failure probability and serves

as a basis for later applications.
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Chapter 3
Existing Methods for Multiple-Train Systems

3.1 Introduction

In the U.S. single failure criterion has served as one
of the design guidelines for safety systems in nuclear power
plants. Redundant subsystems have often been used to assure
the fulfillment of single failure requirement. This is
deemed necessary for another reason. The extremely small
failure probability required to maintain both the incidence
of accidents and the unavailability of safety systems at an
acceptably 1low level may not be realistically achieved if a
single component or subsystem failure can cause a failure of
the total system. In addition to satisfying the - single
failure criterion, redudancy may increase the reliability
by allowing testing and repair of redundant components while
the reactor is on-line.

In most European plants, a N-2 criterion is introduced.
The additional redundancy is to assure that during the test
even 1if a component fails the system can still function as
intended. For the N-2 criterion, redundancy higher than 2 is
inevitable., It 1is then important to recognize that common
causes may not lead to failure of all redundant components
within the period of interest. It is of interest to duantify
the probability associated with different multiplicity of
failures.

The presentation of the rest of this chapter is as

follows. Section 3.2 describes an approach to distinguish
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between multiple failures. This is the multiple dependent
failure fraction (MDFF) method. First, l-out-of-3 system is
reviewed. Then an extension of the derivation to l-out- of-4
system is described. Section 3.3 presents a similar approach
to analyze multiple-train system. This is the so- called
multiple greek letter method (MGLM). Section 3.4 compares
three different methods of dealing with CCFs. These are beta
factor method, MDFF method and MGLM. It is shown that MDFF
method and MGLM give identical results. In addition, the
relationship between them is presented.

3.2 The MDFF Method

In most CCFA models of redundant systems, no distinction
is made between different levels of failure due to a common
cause. Little effort has. been made to obtain estimates for
the probability of failing three, four, or more identical
trains. 1Instead, the failure contribution due to different
levels of component multiplicity is aggregated into a single
value (the beta factor). Reasons for this include:

1. previous studies have focused mostly on two-unit

redundant systems.

2. little experience data is available on CCFs so that
consideration of different levels of system is not
easily done.

However, to treat the partial failures, one needs to

factor in appropriate parameter describing them into the

Markovian analysis of the redundant system.
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It can be shown that for a l1-out-of-n system excluding

repair that:

dp. (t) h
= Py (1) + 5Eg 2P (3.2.1)

‘30
where Pi(t) is the probability at time t, the system has

exactly i failed components (i = 1,2,...N); zji is transi-
tion rate from initial state j to final state i assuming no
repair (i.e. j < i); and Zi is transition rate from state i

" to any other possible states.

3.2.1 1-out-of-3 system

The set of uncoupled differential eguations that result

from making use of Eq. (3.2.1) with i=1, 2, and 3 is: {3.1}

dP > (%)
——8 - t
ZyP, (3.2.2)
dp, )
__.. -Z;P(t) + ZgPylt (3.2.3)
ap,
- -zzpz(t) + ZozPo(t) + Z P (t) (3.2.4)
dpP
3 Togfol®) * iy (8) + 1pPplt) e
wvhere ,
2o * Iy * Zgp * Zp3 3:2.8)
2 %2, % 2 (3.2.7)
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These equations can be solved to obtain the following

expression for the system unavailability, Q:

z -
t Z]t

- Z,t
Q=]°e°(]+A1+A2)+e

(A)+A;5) + e 2 (Ay-A;)  (3.2.8)

where
E 4 - 3.2.9
Ay = T/ (5yeg,)s (3:2-%)
= (3.2.10)
Ay = (Zgy *+ 215A)/25-2,)s
=2 - (3.2.11)

Following the treatment of the beta factor method des-
cribed earlier, we can define the system failure rate as A
consisting of a random failure component, Ap s and a common
cause component Ai. . Then we can extend this definition for
the term A, making use of failure fractions fn such that:

A= xr MR Ao+ A ngz fn = At fa
(3.2.12)
where f  is fraction of n-tuple failures (n= 2,...N) and f
is fraction of common cause failures (analogous to the beta
factor defined before). If we assume the following:
Ig * 3(1-F)a = 3(1-8)x; Zgp * 05 Zgy = fad = 8a
Zy, = 2(1-F)a = 2(1-8)a; 213 = fd =835 2,5 = A (3.2.13)

then the unavailability expression reduces to that for the
beta factor method. Thus it 1is obvious that beta factor

method is a special case of the MDFF method.
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3.2.2 1-out-of-4 system

Similarly, for a 1-out-of-4 system, the Markov model

yields the following set of differential equations:

dP

S s

at = ~ZgPo(®) (3.2.14)
dP]

P2 (3.2.16)
—at = ~1Pa(t) + 5Py (%) + Z55Pq(t) e
dPa

Tt " -234P3(t) + 213P](t) + ZZ3PZ(t) * ZO3PO(t) (3.2.17)
dP4 . )

where the transition rates zij must satisfy the relations:

Lp=Zg * 49 * Zg3 * 20

hrhethatha

Iy = Iy3 * Iy

;= 234 (3.2.19)

Solving the above set of equations renders the following

unavailability expression:
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Q=1-e 0 (1+A +A +A) +e V(R + Ay + A
’Zzt ‘Z3t
+ e (AZ-A3-A6)-e (AS-A4-A6)
. (3.2.20)
where
A] g (201/(21 ZO),
-1
A, = -
2 ® (= 250 (Zgy * 11ohy)
A, = (2 -1
A, = _7y
5 (23 ZI) 1 (223A3 + 213A1)
R = (23 - 25) 7,345 -ay) (3.2.21)

As in the case of the 1-out-of-3 system, it can be shown

that the transition rates Zij for the beta factor method

reduce to the following:

e 4(1 - 3 Ty = 0: Zp3 = 05 Zgg = A

Zoy
y * (4 - 38)A3 245 ° 3(1 -8)A; Iy4 = 0 Zy, = B
Zy = (3 - 28)4;



23 = 21 = 3)a; Z,, =823 2y = (2 - 8)a; Zy = A (3.2.22)
Then, it can be  shown that the system unavailability Q is
given as:

Qs -de s ge(2-8)at _ 4=(3-28)ae | -(4-3e)at

(3.2.23)
3.3 The Multiple Greek Letter Method

The idea behind the multiple Greek letter method (MGLM)
{3.2} is essentially similar to that of the MDFF method.
This approach provides a systematic way of quantifying
failure probabilities of different system multiplicity by

introducing conditional probabilities. In addition, the

method is structured such that the work involved in the ori-

ginal beta factor method does not have to be redone.

3.3.1 Three-Unit System
The following definitions are used :
j = conditional probability of a CCF affecting at least two

units given failure of each unit.

3 = conditional probability of a three-unit CCF given that a

CCF involves at least two units. .

For a 1-out-of-3 systenm,
Qs = likelihood of failure on demand for all the units

due to a common cause.

Q = total failure on demand probability for each unit

It is then easily derived that

Qs = 34 Q

3.3.2 Four-Unit System




Similarly, the following definitions are made in the
so-called MGLM:
J = conditional probability of a CCF affecting at least two
units given failure of each unit,
3 = conditional probability of three or more failures given
a CCF involves at least two units.
¢ = conditional probability of four-unit failures given a
CCF involves at least three units.
Q = total failure probability
Q. = probability of failure on demand for all four units
due to a common cause,
It is then easily derived that
Qs = i34 Q
It is noted that in the derivation, failure étobability
on demand is wused. It is also possible to use the failure
rate per hour, multiplied by the period of time of interest,
in the formulation.
The above definition of a set of Greek letters has been
illustrated for various configurations involving different
cut sets. Table 3.1 summarizes expressions derived for the

application. For more detail, Ref. 3.2 may be consulted.

3.4 Comparison of the Beta Factor, MDFF and MGLM Methods

In this section the commonly used beta factor 1is
compared with MDFF first. Then the relationship between MDFF
and MGLM 1is established to show that they are essentially

the same. The gquestion of how to estimate the parameters in
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Table 3.1 Summary of Results Based on MGLM ( Ref. 3.2)

Approximate*
Model | Redundancy Level | Success Criteria Systegomgl:igggility
(second order in Q and 8)
N 2 3
I 3 x 50% 2/3 Qs = 3Q + 7 (1-¥)3Q + YgQ
I1 3 x 100% 1/3 QS = yB8Q
11 4 x 332 3/4 0s = 60° +80 [2 - ¥ (2 + 8)]
v 4 x 50% 2/4 0 = B (4-5)
Y 4 x 100% 1/4 Qs = §yB8Q

*Should only be used when Q < 10~1 and 8 < 10-1,
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these multiple-train models are then addressed to motivate

the approach used in the thesis.

3.4.1 Beta Factor vs MDFF Methods {3.3}

For a 1-out-of-n system, the failure probability for the

beta factor, QBF , and for the MDFF method, QMDFFM , are
given by (to first order approximation):
Qgg = BAL (3-4.1)
Quorem * £ At (3-4.2)

Since s>fn , the beta factor method yields higher system
unreliability estimates than does the MDFF method. For a

second order approximation,

Qg = BAt + n(1-8)atar ¢t 02 ' (3-4.3)
= 2,
Ouorem = Fadt * nfy A%+ o (1) Fat £

kxt (3-4.4)

It can be shown {3.3} that if

At< _n-2
5 n-2 -
(n-1)(s () #ns - (1-8)e]

(3-4.5)

the MDFF method yields lower estimates than does the beta
factor method. For typical situations, Eg. (3-4.5) is valid.
Thus we have shown that Beta factor method yields higher

failure probability than the MDFF method.

3.4.2 MDFF vs MGLM
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As described in 3.2, the MDFF approach is based on
defining the multiple failure rate as a fraction of the
single component failure rate. The MGLM, on the other hand,
defines the multiple failure probability conditioned on the
aggregate of various multiplicity of failure probabilities,
Table 3.2 provides a set of expression relating different

parameters in the two formulations of CCFA.

3.4.3 Estimating Parameters in the MDFF and MGLM Methods

It is an important task now to develop estimates of the
parameters £, in the MDFF and Greek letters g, ¥ and i in
the MGLM. The conventional approach based on historical data
proves frustrating based on the following observations:

1. Scarcity of Data

Since most of the systems and components of interest in.

the PRA studies are highly reliable, failure occurrences

are rare, It is even more so for multiple failure
occurrences.

2. Inadeguacy of Assumptions Underlying the Method

In the conventional statistical approach, many

assumptions are made mainly for the mathematical

conveniences. For example, in the BFR model, the common
cause is assumed to have egual impact on identical
components. Although this justifies ¢the binomial

distribution, it by no means represents realities.
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Table 3.2 Relationship Between MDFF and MGIM

MOFF
fx = fractign of time failure is due to k component failure,
k=2,3,4
Pt
f ’-F—
k%

pf = single component failure probability
MGLM

four-unit system

2 3 4
3Pf + 3? + Pf _ 3f2 + 3f3 + f4

2 3 4
Pf + 3Pf + 3Pf + Pf 1+ 3f

g =

2t ¥+ 1

3 4
PeePE ety

v 3pZ + 3p3 4+ p* 3F, + 3, + f
f £ ¢ 2 3t Ty

3
P . fy

203 4 o* U o+
3Pe + Pg i, + f,

S =

three-unit system

P2+P3
_Pe ¥ Pe
Br—p— = T2t Ty
3
Ps fy
v pZ + p3 " .o+ f
£t Pe 2t 13
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3. Relevance of Data Collected.

Since reliability data collected are usually difficult
to interpret, the analyst may fall into the trap of
misconceiving the data such that it bears no resemblance
to the true state of affairs. Engineering judgement
which is not explicit or scrutable can hide the
irrevelance of the data used in analysis.

For these reasons, it 1is desirable to have a method
which addresses the above concerns and provide a
rational basis for quantification of the parameters in
the CCF models described in this chapter.

The approach used in this study is based on
stress-strength interference theory and the common load
model. A special variation of this technique is developed,
called the inverse stress-strength interference (ISSI)
approach, furnishing a framework to take engineering
considerations into account and alleviate the difficulties
of wusing historical data alone for estimation purposes.
Chapter 4 discusses the fundamentals of SSI theory and the
common load model to set the stage for the introduction of

the ISSI techniqgue, discussed further in Chapter 5.
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Chapter 4

Stress-Strength Interference Theory and the Common Load Model

4,1 Introduction

To determine the reliability of electronic and
electrical components {4.1} the concept of the failure rate
is used. The failure rate is defined as the nuﬁber of
failures which occur per unit time at a specific age of the
component, and frequently it 1is expressed in terms of
failures per million hours of operation. The relationship
between this failure rate and the age of a component is
shown in Fig. 4.1 (the so-called bath-tub curve). For
electronic components 1in particular, there is a relatively
long period during which the failure rate is the lowest and
constant in magnitude. This 1is called the useful life
period. During this period the component's reliability R(T),

for an operating period T, is evaluated from
R(T) = exp( = AT ) (4-1.1)
where

A= constant,useful 1life period failure rate in

failures per hour
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Figure 4.1 Reliability Bath-tub Curves for Electrical and
Mechnical Components ( Ref. 4.1)
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T = operating period or mission time in hours

For mechanical components and structural members
subjected to quasistatic, dynamic, fatigue, wear and
corrosion environments, there 1is wusually no such long
constant failure period as also 1indicated in Fig. 4.1.
Consequently, Eg. (4-1.1) should be used discriminately to
evaluate the reliaility of such components.

In general, there are three approaches to determine the
reliability of mechanical components such as pumps and
valves. One approach is to establish a representative
failure rate. This could be the average failure rate ,X, for

the desired function period, obtained from

o .
T . 1 2 -
N o= J \ (T) AT (4-1.2)
T,-T
2 71 Tl
where
X = average failure rate in life period T to T

A(T) = time dependent failure rate in life period T to T
Ti= age of the component at the beginning of the
period
Té= component age at the end of the period
These quantities are identified in Fig. 4.2.
The component reliability can then be calculated from

R(T*T ) = EXP ( - X(Ty-T;) ) (4-1.3)

The values of % may be obtained from several sources

{4.2,4.3,4.4}. Ref.{4.4} reviewed 30 different data banks
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Figure 4.2 Average Failure Rate for Mechanical Components. ( Ref. 4.1)

«73-



to provide wupper and lower bounds as well as an assessment
median for most of mechanical and eletrical components used
in nuclear power plants. However, such estimates are based
on a wide range of conditions under which the components are
designed, manufactured, and operated. Deviations from these
conditions, as would be most often the case, would
invalidate such estimates if not corrected for or would not
give any indication as to where within the wide range the
failure rate of a specific application would lie.
Furthermore, the ratio of the maximum to the minimum
predicted component failure rate is usually in excess of 5
to 1. An engineer would 1like to to know his system
reliability more precisely than this so that he can optimize
the system design. This leads to the need of the second
approach. The goal is to design a specified reliability into
a component, the so-called probabilistic design
approach.{4.5,4.6} Other names have been used including
stress-strength overlap, mechanical reliability,
stress-strength interference theory (SSI), the probabilistic
design for reliability, and the design-by-reliability
approach. Section 4.3 describes this in more detail.

The third approach is based on life-testing procedures
assuming general three-parameter Weibull time-to-failure
distribution. Three parameters are then used to evaluate the
component reliability as follows.

R(T,»T,)= exp { —[(—EE%I—)B-(E%:I) Bl 1 (4-1.4)
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wvhere

Y = location parameter of the Weibull time-to-failure
distribution

N = scale parameter of the Weibull time-to-failure
distribution

B = shape parameter of the Weibull time-to-failure

distribution

More research still needs to be conducted to compile a
handbook of such Weibull <distribution parameters'.for
commonly useé mechanical components and structural members.
Then Eg. (4-1.4) can be used to compute reliability.

Section 4.2 presents a general discussion on the nature
of " stress " and " strength ". The interpretation of "
stress " and " strength " used in different disciplines is
briefly described.

Section 4.3 discusses the stress-strength interference
theory and derives useful expressions for the probability of
failure based on some commonly used engineering
distributions.

Section 4.4 describes the common 1load model as an
extension of the SSI and derives useful expressions of
multiple component failure probability in terms of stress
and strength distribution parameters. This can then be used
to evaluate the parameters in multiple failure models

éiscussed in Chapter 3.
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4.2 Definition of Stress and Strength

Before we embark on a definition of stress and strength,
it is wuseful to understand some concepts that arise in the
modelling of random phenomena. The most general description
of any uncertain physical quantity is in terms of random
fields, a collection of indexed random variables x(t). 1In
n-dimensional space, vector t = (tl,E , ...,tn) has elements
t

t ...tn, each representing either the coordinates or

1’ 2’
parameters.{4.7} In the special case where t is the time, a .

stochastic process (or random process) x(t) is defined.

The notion of a stochastic process x(t) provides a
generalizing concept for the modelling of stress and
strength. However, it usually regquires considerable
observations to completely characterize a stochastic
process. Analysis is simplified and data requirement reduced
if a stochastic process is stationary. A stationary process
is a special stochastic process whose across-the-ensemble
probability distributions are invariant during a shift in
time axis. This property implies that for a given process,
the probability density is universally independent of time.
For example, the distribution of static ultimate strength is
essentially independent of time. 'As a consequence, all
statistical parameters based on the probability distribution
underlying such a process (e.g. the mean and variance) are

independent of time. Under the assumption of stationarity,
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therefore, it 1is reasonable to describe a process in terms
of a random variable.

In physical situations, it is often more convenient to
characterize a process based on a sample function (i.e. a
single observation of one realization of the process). This
requires the following properties to hold:

(1) the process is a stationary process

(2) the ensemble statistics and the statistics of
all sample functions are identical in the limit
of very large observations,

As an example, consider a geometric feature, say the
dimension, of a typical mechanical product. Production
processes‘ that employ cutting tools (e.é. as in drilling,
miiling, turning) are subject to change over time. The same
is true of rolling and forging processes. Any dimension
such as distance between hole centers, distance between
parallel faces, thickness, and length modified by tool wear
results 1in a geometric random process that is nonstaionary.
1f corrections for tool wear are made periodically, the
dimensional values retain the properties of random
variables, but the time trend 1is minimized and it is
possible to consider the random process as approximately
ergodic.

Fig. 4.3 1illustrates the stochastic behavior of a
typical stress and strength, with the resulting
time-dependent reliability.{4.8} At each particular instant

of time, however, stress and strength can be regarded as a
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random variable. It is noted that, under  usual
circumstances, the strength distribution becomes broader as
time evolves. In addition, the reliability decreases due to
a reduction of mean strength as evidenced in the figure.

The concept of random process is useful in developing
the strength behavioral model of a specific material
produced by a number of different companies.{4.9} It is well
known that the statistical characteristics of a material
produced to the same specification will vary from company to
company. Therefore, if the sample of test results from each
company 1is treated as a discrete sample function S(x), the
samples from a number of sources will make up a finite
ensemble of finite length records. The sample distributions
will vary randomly, but the ensemble distributions at any
two x values will approach identity as the ensemble length
increases, that is, reflect a discrete stationary process.

It may be postulated that the strength is very likely
ergodic. Since for an ergodic process, a single sample
record is sufficient to define the process, the use of the
distributional statistics determined from a single sample of
strength of data is justified. There are, hovwever, several
significant exceptions to the adequacy of stationarity or
ergodicity of stress or strength. For example, fatigue
strength, 1is a continuous nonstationary random process. In
such situations, to model fatigue strength as a random
variable would necessiate picking up distribution at such a

time that conservatism is included. For example, fatigue
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strength at the very end of useful life may have to be used
for design considerations.

Table 4.1 summarizes the different possible levels of
modelling for stress and strength. 1In general, the more
sophiscated a model 1is, the higher the accuracy of the
result will be. On the other hand data requirement limits
possible models for practical use. Therefore, a tradeoff
between accuracy and practicality has to be made in most
engineering situations.

The full meaning of the concept of stress and strength
requires some elaboration. 1In most failure processes there
is some 'parameter' with a 1limiting value that defines
failure. The parameter may be a performance measure such as
an efficiency, describing a particular device with a
limiting value beyond which losses or temperature becomes
excessive. As an example, consider an elastomeric seal, such
as an "O" ring or chevron seal. A pertinent 'strength'
would be defined as the ability to withstand pressure
differentials across the seal with a certain probability of
dimensional variations in view of a probability of initial
compression. A corresponding stress would be the existing
pressure differentials across the seal. The failure would
occur whenever a preset leakage 1limit 1is exceeded.
Resiliency loss and/or permanent seal deformation would be
possible degration of strength factors.

In this study, because of limitation of information, the

stress and strength will be modelled as a random variable.
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Table 4.1 Levels of Stress and Strength Modeling

Data Requirement Assumptions
Models and and
Sophistication Ease
Stochastic High Low
Ergodic
Stationary
Random Variable
Second Moment
Characterization
v \L

Deterministic Low High
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Although this seems to be a strict assumption, it is the
only approach that strikes a balance between
oversimplification and overcomplication.

It is also useful to note that the stress and strength
concept used in the context of this report is not as
restricted as the name might appear. There are similar
applications of the idea in other areas of engineering. For
example, in the area of structural reliability, load and
resistance are the counterparts of stress and strength in
mechanical reliability.{4.10.4.11,4.12,4.13,4.14} In
general, even at a system level, performance requirement
represents a generalized stress, while performance
achievement can be thought of as a generalized strength. 1In
seismic risk analysis, seismicity and fragility correspond
to the stress and strength concepts. Here, however, instead
of a probability density function, seismicity is the
complementary cumulative distribution function of stress,
while fragility is the cumulative distribution function of
strength.

In the most general case, one can consider stress as any
failure-inducing demand on a component, while strength as
any corresponding failure-resisting capacity of the
component. Table 4.2 summarizes the stress and strength
concepts  used in different disciplines. With this

perspective on the concepts of stress and strength, we are

now in a position to discuss stress-strength interference

theory.
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Table 4.2 Comparison of Stress and Strength
Concepts in Various Applications

Stress

Load

Performance
Requirement

Failure-Inducing
Demand

Generalized Stress

Seismicity

Strength (Mechanical)

Resistance (Civil)

Performance
Achievement (Reliability)

Failure-Resisting
Strength

Generalized Strength

Fragility
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" 4.3 Stress-Strength Interference Theory

In its most elementary form a stress-strength mode of
relationship arises as a natural model for describing the
ability of a rope having a random breaking strength to
withstand a load of an uncertain magnitude. More generally,
a stress-strength model of reliability applies to the
situation where a piece of equipment or component
accomplishes 1its intended function provided it is strong
enough to overcome the opposing forces of the operating
environment which interfere with its performance. The
operating strength is essentially determined by such factors
of the manufaturing process as the quality of imputed
materials, the mechanics of the process and the precision of
assembly of parts, etc. The intrinsic variability in these
factors makes it necessary to model the strength of the
equipment in terms of a random variable rather than a
deterministic constant. By the same token, the interfering
torce or stress in the operating environment may also vary
in intensity on different occasions so that it shouléd be
described using probability distribution.

A promising techniqgue for predicting mechanical
reliability prior to the availability of the field data is
the concept of interfering stress-strength probability
density distribution {4.15}. Stress-Strength interference
(SSI) theory is concerned with the problem of determining
the probability of a part which is subjected to a stress S

and which has a strength R.

-84-



It is assumed that both S and R are random variables with
known  probability density functions fs (x) and fR (x)
respectively. One says failure occurs whenever stress
exceeds strength., Hence the probability that failure occurs
is equivalent to the probability that stress exceeds

strength. In symbols,
Pr( failure ) = Pr( S>R ) (4-3.1)

To determine the probability of failure one needs to
explore the probability that the stress exceeds the
strength. Suppose that the stress and the strength are
independent of each other. One can fix attention on some
particular value of the stress (S) and determine the
probability that the strength (R) does not exceed this fixed
value , say x, a particular stress level. The probability

that R does not exceed x is written as

Pr( R< x ) - (4-3.2)
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In terms of probability density function this is eguivalent

to
X
Fo(x) = L dy g (y) (4-3.3)

where the "-» " 1is symbolic only, representing the actual
lower limit for physical stress; and the ﬁz and fR represent
corresponding cumulative distribution function and
probability density function respectively. The probability

that R<S is given by
Pr( R<S ) = r" fo (x) dx Fp (x) (4-3.4)

An equivalent representation by the same kind of procedure

gives

Pr( R<S ) =J°° fr(x)[1-F (x)]dx : (4-3.5)

-00

where FR (x) is the cumulative distribution function of the
random variable S, i.e. stress.

As described in section 4.2, the 'stress-strength' have
other connotations in other engineering areas. However,
Eqs. (4-3.4) or (4-3.5) provides a point of departure for
the reliability investigations in all these areas. It is
mainly in the interpretation and assumption of underlying
stress and strenth distributions that vafious disciplines

differs.
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It is wuseful to consider some common distributions as
engineering approximations of stress and strength and derive

expressions for the probability of failure.

4.3.1 Normal Model

It is well known that if stress(S) and strength(R) are
normally distributed random variables, with mean values
and MR and variances 95 and °§ , then the random variable
defined by Z = R - S is also normally distributed. The mean
of 2z 1is HR7¥s , and the variance of 2 is CS*'USZ .
Consequently, the probability of failure, P , will be given

by the area under the normal probability curve whose mean

and variance are ¥zand 0; respectively.{4.15]}

_H
pspr(a<5)-J° 1 R
_1-15 -eo/Zﬂcz z

g
{ z _% %2
= pm— e dx
L/ 1r
Ua=U
P i T
Vo +0%
RS (4-3.6)

where ¢ represents cumulative distribution function of a
standardized normal variable. For high reliability
situations, it is usually not possible to look up a value in
normal table with only probability greater than, say,
0.99999 . It is then necessary to perform numerical

integration using the follwing expression,
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R (4-3.7)

® 1
P,=] dz——e [o(
f hdad 'Q?GS OR
It is sometimes more convenient to use coefficient of
variation than standard deviation. Eg. (4-3.6) can then be

recast into the following,

. = ¢ (- ——-———__"___) (4-3.8)
2,2
M VR+V§
UR .
where M= __ = safety factor
. ] b

R
Vﬁs i = coefficient of variation of strength

9%
Vg = i = coefficient of variation of stress (4-3.9)

It is seen that in this framework, only three parameters are
required to determine the failure probability of a component
or a structure. These are safety factor, the coefficient of
variation of stress and strength. The argument that appears
in Eq. (4-3.6), without minus sign, has a special meaning in
the SSI theory. It is called safety margin or reliability
index. The larger the safety margin, the less the failure
probability. It is noted that the safety margin as defined
here includes consideration of the uncertanties associated
with both stress and strength. This is more general than the
traditional 'safety margin' that takes into account only the
difference between the mean of strength and stress. The

conventional design methodology based on safety factors or
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safety margins has succeeded to date, because with the
safety factors used today most designs end up with very high
reliabilities. But this has been often achieved at the
expense of frequently unnecessary overdesign. It is apparent
that to achieve the same degree of reliability while not
incurring economic penalties, the SSI seems to be a very
useful tool.

There are several advantages of using the coefficient of
variation instead of the standard deviation. Among these are
1. It is dimensionless and thus allows easy addition of
the coefficient of variation of different qQuantities

with different units,

2. In cases of lognormal distribution, it comes about
in a naturual way mathematically, as can be seen in
later derivations.

3. It is less sensitive to the exact form different
variables exist in various physical models. For
example, consider u = x * x, v = x * y, The coeffi-
cients of variation of u and v are the same if x and
y have the same coefficient of variation.

4. It is in line with most expert judgment or statement
of accuracy in physical and engineering testing and
investigations.

It is of interest to observe that the result obtained by

probabilistic approach reduces to that of deterministic
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approach 1if Vg, and Vg are both zero. For example, from Egq.

(4-3.8),"

P, = 1, if M < 1.

Ps 0, if M> 1,

It is noted in the probabilistic framework, even if M > 1,
there is some failure probability as long as V, or Vg is not
equal to zero. In fact, the safety factor wused in
traditional engineering design is an attempt to account for
inherent wuncertainties associated with either the stress
(e.g., wunexpected or uncontrollable external forces) or
strength (e.g., material degradation). The above formulation
thus ‘provides a unique way to quantify 'how safe ' the

safety factor is.

4.3.2 Lognormal Model

In this case, it is convenient to consider that failure
occurs when the ratio between stress and strength is greater

than 1. In other words, failure probability is

R
P, = Pr (—g- <1) (4-3.10)

Since stress and strength are both lognormally distributed,
a random variable Z (defined such that ln Z = lIn R - 1n § )
is also lognormally distributed. The probability of failure

is then, {4.5}
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1 2

Pe= Jl —_—— exp [ - 1 (Inz - w) ] dz
0 v2er 0,2 202
e
=J 71 L2
. exp (- z2'“)dz!
y 2m 2
= of- 1z)
.o, (4.3.11)

Another derivation also gives the same result. Consider
a lognormally distributed random variable y. Its probability

density function is

1 1 2
£ = - exp [ - 5=z ( Iny - u)7] 4-3,12
(¥) V2moy | ° ( )

it follows from Eqg. (4-3.4) that

- R Tn y- ¥R
Py = / exp[ - %,(.lﬂ-.?'_i)zj o(——s—)dy
0 /Zz oy Og R

Now 1let y°= 1ln y. Then, we have the following expression

for failure probability,

P = |

SloyrcHs 2o yt-HR L (4-3.13)
o TP F P ey

S- S
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This is similar in form to Eg. (4-3.7), hence identical to

P = o (- RS

f — )
o=
where
Mgs ¥p = central parameters of stress and strength
distribution
S¢s O T dispersion parameters of stress and strength

distribution
Eq. (4-3.13) 1is identical to Eg. (4-3.11). 1t is
necessary to express these in terms of the median and
coefficient of variation of stress and strength
distribution. This can facilitate future applications,
because in engineering studies one usually know about the
mean (or median) and coefficient of variations. The

following relationships are useful:

_ 1 2
uy = exp (p+ Vi of ) (4-3.14)
o§ = exp ( 2u + 02 ) (4-3.15)

where

W, = mean of a lognormally distributed random variable y

o, = standard deviation of a lognormally distributed

random variable y
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t is then possible to find , and ; in terms of ¥, and 9y .

It can be shown
u= 1ln uy' (4-3.16a)
where

u. = median of y

2

o2 = 1n ( E% +1)
by
1

< N‘<QN

By taking the first term of the Taylor series expansion of

the above expression, we obtain

o= v, (4-3.16b)

Substituting Egs. (4-3.16) and (4-3.17) into Eq. (4-3.13)

gives
L ~
: n “R/“s)
Pz & (=g (4-3.17)
f 7.2
or
M ]
Pe =0 (- - ) (4-3.18)
IOV
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where

Mg = median of stress
ﬁR = median of strength
MR
M' = 1n (7))
s

In the case where numerical integration is required
(e.g., as mentioned before when the failure probability is
outside the range of normal table), the following expression

for failure probability is more convenient to use

Pe = |

1,x 29 x=M\ -k
exp[- »{7—)"] [o(y—)]" dx (4-3.19)

4.3.3 Rectangular Model

In order 'to obtain some physical insight 1into the
operation of the SSI theory, a simpler distribution for
stress -and strength 1is studied. As in the previous two
cases, it 1is assumed stress 1is invariant with time.
However, wunlike previous cases, the cyclic 1loading 1is
assumed to apply n times. The basic model assumes that both
the stress and strength could be represented by rectangular
distributions. Figure 4.4 compares the normal model with
rectangular model.{4.16}

With rectangular distributions the limiting stress s,,

S,, S3, S, will be given by
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s, = b5 - "3
s, = Mg - 3%
S3 = Hg + "3 %
s, = Mg + Y30 (4-3.20)
where
s, = lower limit of rectangular stress distribution
s, = lower limit of rectangular strength distribution
s; = upper limit of rectangular stress distribution
s, = upper limit of rectangular strength distribution
TR = mean values of stress and strength respectively
g o = standard deviation of stress and strength
SR respectively
The probability density function , S(s) and R(r), of

stress and strength will be given by

S(s) =0 s < sy

S(s) = f%f%§=}g S, < s < s34

S(s) =0 S > s, (4-3.21)

R(r) =0 r < s,

R(r) =—7é37a: hR S, < r < 84

R(r) = 0 r > S, (4-3.22)
Using Eqg. (4-3.4) with the above distribution, the failure

probability is

h n+l
MR 1 thes,oh s)™ )
Pf__ 1 [E:T— 51215 s”1 + hs(54‘53)] (4-3.23)

For large values of n,
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P, = r-hR( Sy - 53) =hR( 55 52) (4-3.24)

1t is immediately obvious that with very large values of n,
all items whose strength is less than the maximun stress
must fail.

It is then clear why the reliability in a smooth-loading
situation (i.e., Op/% >> 1) must ultimately always be
higher than that in a rough loading situation (i.e. was
<< 1) of the same safety factor. This can be understood
from the following considerations.

Failures can only occur in the overlap region of the two
@istributions, 1i.e., between s, and s;, and within this
region are in proportion to hz. For smooth loading hs is
high and hy is small. It follows that the number of failures
is low and the reliability high with this type of loading.

The reverse is true with rough loading.

4.3.4 Extended Rectangular Model

The basic model studied in 4.3.3 is unrepresentative
inasmuch as a very dramatic cutoff is postulated at both the
upper and lower 1limits of both the stress and strengfh
distributioen. In realities both distributions must have
some form of tail. A small rectangular tail is added to the
model in section 4.3.3 as shown in Fig. 4.6. Three subcases

are studied.,

4.3.4.1 Tail Associated With Stress
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It is shown, by applying Eg. (4-3.4), that the

probability of failure in gereral is given by

Pz 1 - [h (s3 - s, ){1-25%53[52)} + h (s - s )]

S 4 3
(4-3.25)
If n is large,
Pl . i}
f hR (53 52) (4'3-26)
vhere
€¢ = tail height of stress distribution

4,3.4.2 Tail Associated With Strength

The failure probability in this case can be obtained

from the expression

€ . n+l
PfgeR(53" 52) - pel b hs ] (4-3.27)
For large n,

where

ep = tail height associated with strength
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4.3.4.3 Tails Associated With Both Stress And Strength

In general this is most often the best representation of
engineering 'situations. The following expression gives the

failure probability.

ne_(s,-s,)
= €E_(S,4-S,)~ - - ) $'°3 2
Py s(5375p)-ep(s5-5,) — "] (4-3.29)
If n is large,
Pe= €g(5375,) (4-3.30)
vhere € and ep are tails associated with stress and

strength distribution respectively. In this case it is
important to note that the tail of the stress distribution
effectively dominates the situation as can be seen from Eq.

(4-3.30).
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From the study of above three cases one should keep in
mind that tails of distribution play an essential role in
determining the reliability or failure rate of a component.
The tail of the stress distribution is the most significant
parameter responsible for reliability.

Another important insight that can be obtained is with
regard to the general trend in results of assuming different
stress and strength distributions. Irrespective of a
particular distribution chosen, the behavior of failure
probability with respect to the stress-strength parameters
have similar characteristics. As the ratio between the
coefficient of wvariation of stress and that of strength
increases, the failure probability increases. On the other
hand, if this ratio decreases the failure probability
decreases. This provides a very convenient basis for
judgment if one is only interested in qualitative aspects of
failure. One can proceed with simple distribution to avoid
mathematical difficulties while the results so obtained are
still correct gualitatively.

However, if one is to obtain more accurate quantitative
results, some knowledqg of the genesis of distributions
often encountered in enginnering applications is required.
Table 4.3 provides a concise description of relationships
between mathematical models, process description, and
resultant statiscal distribution. This should be of
significant aid in the choice of a model when one does not

have a great amount of data but does have some insight from
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Resuitant

Mathematical Mathematical Process Staustical
Operation Model Description Example Distnbution
. € Enumeration or Inspection Binomual
Counting r=s CQlassification  ° sOmno
- bl Linear Addition or subtraction of - Normai
Addition o) = ‘Z(l-) Additive matenals: i.e, cutting,
weighing, ete,, also mechanical
assembly.
- - Rate-Dependent Simple chemical processes; i, Log-Normal
Multiplication J167] l‘l(x.) etching, cortosion, gaseous & s-N
Proportional diftusion.
* Response Simple biological processes;
i.e., growth rate.
Simple economic processes;
i.e., distnbution of income.
Simple Ny) = ax, + bx, + exi Algebraic Complex processes involving Extreme Valus
Exponentiation Polynomial the combined eflects of a
or or dumber of independent causes
each with a different opes-
Addition of L) mente +en Solutions of Linear | ational form; i.e., breaking
Transcendental Differential Equa- strengths, meteorological and
Terms tions with Constant | geophysical phenomena, elec-
Coefficienta. tronic aad chemical measure-
ments, financial data,
Counting of Time flxmi)= Waiting Time Time required for an event(s) Gamma
Duration to an A et ke to occur or to obtsin soms
Event ™ xisv ¢ service,
Addition of o) = i LAY Vector Sums Resultant value in a system of | Chi-Square
Squared Normalized T\ a~fold vector spaces from
Yectors . physics, space-time, ahd
probability applications.
Multiptication of J0) = ¢nann Solutions of Gen- Complex exponential processes | Log-Extreme Value
Transcendental eral Differential involving the interdependent
Terms Equations effects of independent causes;
i.e., breakage of particulate
SUy) = dovodisyed Panticle matenals, solid state diffusion,
Sizing chemical kinetics,
Sums, Products, and ﬁ)‘ Solutioas of Processes involving fimits and | Weibull
Powers of Exponents | fly) = ¢**"* Differential maxima-minuna; Le., life/
of Transcendental Equations with failure distnbutions, bounded
Terms Boundary particle size distnibutions,
Coaditions and general potential,
gradient, and field problems,
*Upper-Limit™ -
Distributions

Table 4.3. Genesis of Common Statistical lodels
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engineering considerations about the physical quantities of
interest.

The normal distribution, which forms the basic model for
the present study, has a very nice property of invariance
under  additive operations. Since many well controlled
laboratary experiments usually can be modelled in terms of
linear combinations of certain physical quantities,l it
appears  that this distribution provides a reasonable
approximation for the analysis of such data.

The lognomal distribution, which forms an alternate
model in the present study, possesses a very nice property
of invariance wunder multiplicative operations. Indeed, any
product or division of lognormally distributed variables is
still a lognormal variable. This 1is also useful when a
physical quantity is the product of several factors each of

which obeys lognormal distribution.

Other distributions 1listed in Table 4.3 may be useful for
different applications. Since we are most concerned with
stress and strength in this study no effort is made to

explore them due to their different nature.

4.3.5 Other Distributions

In the literature surveyed, the above-mentioned models
have been used to arrive at various expressions for
probability of failure. In simple cases closed form

solutions are available. In more complicated situations,
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numerical integrations or Monte-Carlo simulations have to be
used to come up with numbers. References
4,15,4.18,4.19,4.20,and 4.21 derive useful expressions based
on various combinations of stress and strength
distributions. These include common statistical models used
in engineering such as exponential, gamma, Weibull,
extreme-valued, Rayleigh,chi-squared etc. It is noted most
of the distributions that have been investigated are those
existing in diverse disciplines for different applications.
For example, in earthquake engineering, extreme value type I
distribution has often been used to model the nonexceedance
frequency of earthquake acceleration, the so-called
seismicity as mentioned in section 4-2. 1In the case of
fatigue investigations, Weibull distribution has often been
used as a model to fit the life-time to failure of ball
bearing. In statistical testing for validity of certain
model hypothesized, chi-squared distributions are often
used.

Some observations on .the studies made previously are
described as follows:

1. The results obtained from these analytical
investigations are mainly of academic interest at present
stage. No —concrete examples have been presented to
demonstrate the application. It remains merely as an
exercise of mathematical nature unless practical

implications can be illustrated.
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2. Statistical analyses or physical considerations
concerning the adequacy of presented models have not been
indicated. This 1is indeed an area that needs to be pursued
further if applications are to be meaningful.

3. There are more models than data warrant. It is
important to wuse physical and statistical technigues to
design and analyze data so that adegquate model is chosen
realistically. )

4. There is a strong need to come up with a method that
can relax data requirement and incorporate engineering
considerations explicitly. Indeed, this 1is the very
objective of this research.

It is of special importance to note that the data
required for SSI applications are different in nature from
those for common statistical life-time type of analysis
mentioned at the beginning of this chapter. 1In the latter,
one generally' needs failure time data so that statistical
procedures coupled with accompanying assumptions can be used
to estimate failure rate. The data reguired for SSI,
however, are stress and strength distributions. They can be
easily gleaned if effort 1is conscientiously made. This
difference in the nature of the data should be kept in mind
to view the stress-strength interference theory in a proper
light.

Before proceeding to discuss an extension of the SSI
theory, 1let's look at the problems associated with tails of

different distributions more closely. Since we have confined
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our attention to two-parameter characterization of
distributions, there are many possible distributions with a
given mean and coefficient of variation. It is mainly the
upper tails of the stress distributions and lower tails of
the strength distributions that are important in determining
the probability of failure. For high reliability situations
probabilities of failure are even more sensitive to the
tails. Considerations to cope with the tail-sensitivity are
outlined as follows.

1) Sensitivity studies may be performed to indicate the
range in which the failure probability is expected to lie.
Fig. 4.7 shows lower tail probabilities for commom
statistical models. {4.22,4.23} Looking at the Figure, when
uncertain and to be conservative, one should choose strength
distribuions with higher lower-tail probability. This means
it is more 1likely that the strength stays in lower range
than the stress distribution, yielding higher probability of
failure. Thus using a normal strength distribution is more
conservative than using a lognormal one, other conditions
being equal.

Fig. 4.8 gives wupper tail probabilities for the same
statistical models. It 1is immediately obvious that the
lognormal distribution has higher upper tail probabilities
than the normal one. To be conservative, it is necessary to
use the lognormal distribution for stress modelling when

insufficient information is available.
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2). I1f available data are not sufficient to perform
meaningful statistical analysis, physical considerations
play an even more important role in selecting a particular
model for stress and strength distributions.

3).1f only qualitative results are of interest, it
appears whichever common statistical models with given mean
and coefficient of wvariation will give the same trend, as

discussed before.

4.4 Common Load Model {4.26,4.27}

The common load model originated from an attempt to
justify the " square root " approach for evaluating
dependent failure' probabilities wused in WASH-1400. In
essence, it is an extension of the SSI theory for single
component to a system consisting of N identical components.
It is used in this research to provide a rational basis for
guantifying multiple dependent failure fractions and
parameters in MGLM discussed in Chapter 3.

The basic mathematical model developed is based on the
assumption that the loading of the components concerned is
described by a single parameter, for example, a particular
stress. In addition, the following assumptions are made :

1). N identical components, each has an identical
resistance to stress, which is treated as a random variable
with the probability density function f;(x) and with the

cumulative distribution function denoted by
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X
Fr(x) = J dy.fr(y) (4-4.1)

The physical interpretation of Fgp(x) is that if stress has a
single value x, Fp(x) 1is the corresponding failure

probability.

2). When N items are loaded in parallel, the multiple
failure due to a common cause dictates that the stress
distribution f,(x) be the same for each item. But different
values of Fg(i) may be at presence although the same
functional form of Fg(x) is assumed for each item. The
probability of precisely k components out of N failing is

given by
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(-]

Pu/n = J_mdx.fs(x) [FR(x)]k[l- Fo(x)] N-k(s) (4-4.2)

The probability of at least k components out of N failing is

given by

Pi/n (4-4.3)
k

Pou/n =
i

nt—1==

In particular, if we are interested in 1 out of k system,
i.e., all components have to fail, the probability of

failure is given by

(4-4.4)

- x

P = e £ (xIF01E =

-l

k
where Pf stands for k-component failure probability.

I1f k=1, the model reduces to the single component
stress-strength model assumed in the previous section,

Let's now generalize the above formulation to practical
engineering situatiéns where there are n common causes -
operating on 1identical k compeonents. Since in highly
redundant systems, independent failures are negligible
compared with CCF, we focus the present discussion on CCFs
only. As described in section 2.3, the probabilistic
modelling of CCF is in principle easier than it appears.
The key lies in identifying all the common conditions which
may impose common stresses for all the redundant components.

The probability of k-component failure due to CCF,P¥ , is
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obtained by summing over all the conditional failure

probabilities. Thus,

PE = PUAI Gy ) P ( Cpy) (4-4.5)
where

PE(A] Cpy) = P (A] Cpy)

P(A|CA1) = Failure probability of component A due to
condition C,,
P( cAi) = Probability of condition C,;
It follows, by putting in probabilistic formulations

used previously,

] f. (X)[F (x)]" dx (4-4.6)
. s, R,
=1 = 1 i

o
L]
n 13

Similarly, for a single component, the probability of

failure is given by -

n -
A izl I-_ fsi(x)[FRi(x)] dx (4-4.7)

It can be seen that the data requirement for computing
multiple failure probability' is identical to that for the
single component failure case.

1t is again wuseful to consider two special cases, the

normal and the lognormal models.
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4.4.1. Normal Model

The expression 1is essentially the same as EQ. (4-3.7),
except the strength term is raised to the kth power as

explained above. Thus,we have
Z-Ue s
S1
- 1 - %K °si 2 2-¥p4
e [

c
1 e T o R4

1 (4-4.8)

or
exp[ %-(%—1- 2] [e R )) dz (4-4.9)
where i designates a particular cause i.

4.4.2 Lognormal Model

The expression is essentially the same as Eq. (4-3.19),
except the strength term is raised to the kth power as in

the normal case.

. . 4
| == 1exp[ iﬁvgq [°(v-ﬂ1)] dz (4.4.10)

—h x
H
n ©o~13

i

It can be seen from Eq. (4-4.9) and (4-4.10) that once
numerical values regarding the paremeters of stress and
strength distributions are obtained by some means, the
calculation of multiple component failure probability is a
straightforward numerical integration. A small computer

program used for this purpose is described in Appendix A.
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It has been our goal 1in this research to study
coupled failures. However, it is worth noting that studies
on cascade failures have been performed for redundant
structures.{4.13,4.25} Traditional stress analysis is used
to assess additional stresses to be carried by residual
intact members when one or more structural members faii.
Then expressions similar to Eq. (4-4.2) are used to derive
failure probability of the whole structure. Future research
effort 1is needed 1if a similar approach is to be used for

redundant components in nuclear safety systems.
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Chapter 5

The Inverse Stress-Strength Interference Technique

5.1 An Alternative Approach to Estimating Multiple

Failure Parameters

In Chapter 4 the stress-strength interference theory was
explored in some depth for commonly used statistical models
in engineering situations. The basic data requirement
consists of two parameters characterizing the stress
distributions, and another two parameters describing the
strength distributions. The procedure for arriving at the
failure governing stress distribution of mechanical
components {5.1}, as illustrated in Fig. 5.1, is as follows:

1., Identify all significant failure modes.

2. 1f fracture is one of the significant failure modes,
perform stress probing to determine the locations
where the combination of stresses acting are most
likely to fail a component

3. Calculate the nominal stress components at these
locations.

4. Determine the maximum value of each stress component
with the use of proper stress modifying factors.

5. Combine these stresses into the failure governing
stress at each location in accordance with the
failure governing criterion involved in the failure
mode beiﬁg considered. The location with the

highest failure governing stress is the one where
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Figure 5.1 Determination of Failure-governing Stress and
Strength Distributions ( Ref. 5.1)

-117-



the component will have the highest probability of
failure.

6. Determine the distribution of each nominal stress,
and stress modifying factor and parameter, in the
equation for the failure governing stress.

The following factors may have to be included for
different situations:

a. stress concentration factors.

b. load factors such as static, quasistatic, dynamic,

impact, shock, and energy load factors.

c. temperature stress factors.

d. forming/manufacturing stress factors.

e. surface treatment stress factors.

f. heat treatment stress factors.

g. assembly stress factors.

h. corrosion stress factors.

i, direct surface environmemt stress factors.

j. notch sensitivity factors.

Unfortunately, relatively little statistical information

is available for these factors presently. Much research

needs to be conducted to determine this information.

7. Synthesize these distributions into the failure
governing stress distribution.

8. Repeat the previous steps for each one of the

significant failure modes.
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Some failure governing criteria are:
1. Maximum normal stress.

2. Maximum shear stress.

3. Maximum distortion energy.

. Maximum strain energy

. Maximum deflection.

-

4
5. Maximum strain.
6
7

. Combination of the mean and alternating stresses into
the maximum shear or distortion energy in case of
fatigue.

8. Maximum total strain gauge in case of fatigue.

9. Maximum allowable corrosion.

10. Maximum allowable vibration amplitude.

11. Maximum allowable creep.

12. Others depending on the nature of the significant

failure mode.

The failure governing stress is the stress at failure. The

procedure for determining the failure governing strength

distribution, as illustrated in Fig. 5.1, is as follows:

1. Establish the applicable failure governing strength
criterion. This criterion should be the same as that
used for the failure governing stress involved and
~failure mode being considered.

2. Determine the nominal strength.

3. Modify the nominal strength with appropriate

strength factors to convert the nominal strength
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determined under an idealized and standardized test

be exhibited by environmemt it is designed for.

4. Determine the distribution of the nominal strength,
and of each strength modifying factor and parameter
in the failure governing strength equation.

5. Synthesize these distributions into the failure
governing strength distribution.

There is also 1little data for the determination of the
failure governing strength. There have been increasing
efforts during the 1last ten years to generate such data;
nevertheless, the pace of such efforts must increase to give
the SSI theory the impetus it deserves.

As described above, the calculation of reliability in
general requires distributional strength data, including
static, yielding and ultimate strength data,
cycles-to-failure and stress-to-failure data in fatigue,
creep data, Young's modulus data, Poisson's ratio, thermal
conductivity, thermal coefficient of expansion etc., for
different operating environments. In addition, distributions
for dimensions, loads, temperatures, pressures, etc., are
needed to determine the failure governing stress
distributions. As alluded to above, there are relatively
few sources for the latter, and much effort needs to be
conducted to generate such distributional data. It is worth
pointing out that the kind of data required in the SSI

framework differs from life-testing situations. What one
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needs for the latter usually takes a long time to accumulate
and is usually more expensive to collect. To make use of the
1SSI, one requires the strength properties and stress acting
on the component. These are less expensive to obtain but
require some knowledge of statistical methods to extract
more useful information from laboratory measurements. The
experimental data statistically analyzed can thus be of
direct use for SSI applications. Furthermore, if the design
of experiments to measure certain material stress or
strength effects is aided by statistical considerations
beforehand, more powerful results can be gleaned within the
usual engineering constraints, either technically or
economically.

To alleiviate the problems just cited in applying the
common 1load model to analyze common cause failure, we make
use of available LER data to estimate single component
failure probability. Once we come up with an appropriate
value for single component failure probability, we make use
of this important piece of information relating the
stress-strength parameters. By inverting the expressions
obtained from SSI theory, a relationship between these
parameters can be established. At the same time,
engineering <considerations based on past operating
experience and laboratory tests can provide us with
numerical values on either the variations of stress or
strength, or safety factor, depending on circumstances.

These are then combined to come up with multiple failure
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probability by making wuse of common load model. Several
major advantages are worth noting.

First, this process not only allows an analyst to
quantify the parameters needed, but also provides a designer
an opportunity to recognize the area of improvement,
Secondly, the engineering judgment is made explicit by
quantifying various coefficient of variations and safety
factors for possible failure modes. Thirdly, LER data
provides a data base most relevant to nuclear power plant
conditions, and should be wused as much as possible. The
single component failure data to be wused 1is the most
statistically significant because of a 1larger number of
occurrences compared with multiple occurences reported in
the LER. The inverse stress-strength method thus capitalizes
on it. Fourthly, in the process of wusing only single
component failure data, the bias involved in the
interpretation of some vague CCF reporting statements in the
LER is avoided. Most other approaches based solely on
statistical analyses of LER data such as binomial failure
rate models are susceptible to the bias just mentioned. Last
but not 1least, current methods for estimating multiple
failure parameters rely heavily on statistical procedures.
The sparcity of multiple failure data introduces tremendous
variability in the results that few meaningful conclusions
can be drawn for engineering decision purposes.

Section 5.2 discusses the inverse stress-strength

interference (ISSI) method when the underlying stress and
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strength distributions are both normal. It can be seen in
this 'ftamework, flexibility 1is incorporated to accomodate
different availability of data.

Section 5.3 presents the ISSI method when the underlying
stress and strength distributions are 1lognormal. The
expressions derived in this case are identical in form to
the normal case, only interpretations of terms are slightly
different.

Section 5.4 describes some qualitative results obtained
in applying ISSI method. The discussion gives some salient
features of the significance of various parameters in stress

and strength distributions.

5.2 Normal Model

There are various reasons for the assumption of normal
distribution. Physically, most random phenomena, especailly
those carried out in laboratory under well-controlled
conditions,- are subject to a large number of factors which
exert more or less - influence microscopically. For
engineering interests, one is usually dealing with
macroscopic quantities which are manifestations of total
effect of those large number of influencing factors. If all
these factors play an equally important role, the
macroscopic quantity of interest can be reasonably

approximated Dby the virtue of central 1limit theorem.

~
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Mathematically, any 1linear combination of a normal random
variable is still normally distributed. In engineering
applications, the system or component behavior can usually
be approximated by a linear model. Thus, it is worthwhile to
discuss the inverse SSI method based on normal
distributions.

As derived in Sec. 4.3,

M-1 )

= ¢ (-
22
M vR+vzs

f
gives a simple formula for calculating P;. On the other
hand, we have a reasonable estimate of P, from LER data. The
inverse SSI method makes use of this estimate to get a
relationship between the three parameters that completely
specify multiple failure probability. By inverting the

expression obtained from the SSI theory,

SR (5-2.1)
where a is the safety margin or reliability index defined
previously. Three cases are possible, depending on the data

available on stress and strength distribution parameters.'

5.2.1 Vg, Vg Given

It is generally much easier in engineering situations to
estimate the variability of a random quantity' than

estimating the whole distribution. Actually, it is even
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easier to come up with the coefficient of variation from a
sample of experimental data. Any elementary statistical
description of data can give indication of the coefficient
of wvariation, Suppose we have obtained the coefficient of
variation for both stress and strength based on engineering
considerations. By taking the inverse of Eq. (4-3.8) and

solving M in terms of V; and V,,

-1 - 71 - (a®V3-1)(a?V3-1)
22
a VR - 1

M= (5-2.2)
where o is defined as above.
By directly substituting M, Vg, and Vg into the following

equation

k. 1 1,x-1,27 ra(X-My 1K
P = ——— exp[- »{y—)°] [¢(yp)]" d&x (5-2.3)

f I-- Zx VS ‘2( S R
one can compute multiple-component failure probability

readily.

5.2.2 Vg, M Given

In some cases, based on previous experignce, a design
based on safety factor M can be specified. The coefficient
of variation of material strength can again be estimated
from tests performed in laboratory. It is then
straightforward to solve for Vg, making use of Eg. (5-2.1)

to obtain
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) -VRM (5-2.¢)

Then substituting back into Eg. (5-2.3), it is easy to

obtain multiple-component failure probability.

In other cases, it may happen that the analyst is more
confident about values of Vg and M. Then by making use of

LER data one can solve for Vifrom Eg. (5-2.1) to obtain

S )2 (5-2.5)

Then substituting back into Eg. (5-2.3), one obtains
multiple-component failure probability readily. The
information flow for the ideal case where all distributional
data are available is shown in Fig. 5.2. In the same figure
three cases of the inverse stress-strength method just
described are also summarized. As an example, if one can
estimate the coefficient of variation of stress and strength
associated with the component of interest, the following
procedure provides a convenient way to compute multiple
failure probability:

1. Estimate Vg and V; based on pertinent laboratory
test data or other engineering considerations,

2., From LER data for components of interest, estimate

failure probability of single component, P,.
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Figure 5.2 Information Flow in Failure Analysis: Normal Model
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Figure 5.2 (Continued)
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3. Find the inverse of #(-a) = pe, vhere

a a.b-l(Pf) = _._._v:-l—-—-

2, uy2u2
/VS+VRM

4, Find safety factor M from the expression

-1 - /1 - (a®VE-1)(a?V2-1)

M=
a2V§ -1

-

5. Substitute Vg, Vg, and M into the expression

exp(- %(%};—1-)2] (oG e

The procedure is 1illustrated in Fig. 5.2, case 1, Similar
procedures apply to other situations where data availability
dictates different approaches.

In actual applications, to be discussed in next chapter,
one is often faced with a number of common causes operating
together, as indicated in section 4.4. To obtain reliability
index making use of LER data, i.e., Eg. (5-2.1), one has to
decompose data into distinct causes. Some of them are not
contributing much to multiple failure probability and hence
can be ignored. Others may be lethal in nature (i.e. leading
to complete failure of redundant components) and do not need
to utilize the method discussed in this work. Most
personnel errors are in this category. Cﬁapter 6

demonstrates the above procedure by applying the inverse
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stress-strength method to pumps and valves in commercial
nuclear power plants. Failure to recognize that most LER
data are aggregation of different causes, each with
different coupling capability, is one of the reasons why
CCFA has not reached consensus in both the structures and

the parameters used in different modeling effort.

5.3 Lognormal Model

In principle, the procedure adopted wunder this
assumption is identical to that of the normal case. One

starts off by inverting Eg. (4-3.18),

-1 T e
a= -? (Pf, -2 2

2,y2
/vs+vR

where o is the wusual safety margin or reliability index.

Again three cases can be identified.

By solving for M' from Eq. (5-3.1), one obtains

M'= a v VR + vs . (5'3.2)

Then substituting Vp, Vs and M' into the expression

Pk = J L_ expl- 3321 (3! 1* ax (5-3.3)
-» V7% VS S R
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the failure probability of multiple components can be
obtained. It is noted that Eg. (5-3.3) is identical in form
to Eq. (5-2.3). Thus the numerical calculation of the
integral can be performed by slightly modifying the program
used in the normal case. Appendix A discusses this in more

detail.

5.3.2 Vi And M' Given

Again, by solving for Vg from Eq. (5-3.1), the following

expression is obtained

-V (5-3.4)

Substituting V., Vg and M' into Eg. (5-3.1), the probability

for multiple component failure is obtained.

5.3.3 Vg And M' Given

Again, by solving for Vp from Eq. (5-3.1), one obtains
M' .

V= — -V (5-3.5)
a

By substituting Vg, M', and Vg into Eqg. (5-3.3), one can
compute multiple failure probability readily. Figure 5.3
summarizes the information flow for the lognormal model just
discussed. It is seen by cqmparing Fig. 5.2 and 5.3 that the
structure of the approach to compute multiple failure

probability is identical in both cases. Although different
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Figure 5.3 Information Flow in Failure Analysis:

Lognormal Model
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Figure 5.3 (Continued)
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parameters are involved in the information flow of two
models, the ISSI method is applicable equally well. This can
be said for other models not investigated in this work as
well. If one can have a way to invert the SSI result for
single component failure probability, it 1is then a
straightforward matter to use common load model to compute

multiple-component failure probability.

5.4 Mixed Models

It is of interest to study the in-between situations
where stress is normally distributed and strength lognomally
distributed or vice versa.

5.4.1 Normal-Lognormal Model

Suppose the stress is normally distributed and strength
is lognormally distributed. By following the procedure used
to derive normal model, one obtains the expression for

multiple failure probability

K ® 2 - M
Pe =/ exp[- ) ] [0( )] dx (5.4.1)
f __,2- . ’z( *-—*-—-———R
where
g
M' = 1n —

By iteraéing the following expression, with known

parameters and P, substituted in,

= 2 In %- M
Pf I..—Q:-—exp[ -z-( ][0(—LVE-——)] dx (5.4.2)
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one can find the unknown parameter. Then it is
straightforward to wuse Eg. (5.4.1) to compute multiple
failure probability. Since the steps are essentially the
same as those in the normal model, with the addition of
iteration, no further discussion is offered. A computer
program is written to facilitate the procedure. Appendix A

presents a listing of the program.

5.4.2 Lognormal-Normal Model

In this case, we assume that the stress is lognormally
distributed, while the strength is normally distributed. By
applying the procedure used to éﬁrive the normal model, one

obtains the expression for multiple failure probability

k S 1,1nx,2 x-M
P, = exp ) ¢ 11" dx (5.4.3)
f Ig /77'Vs (- }ﬁv- 1[ ( ]
where
M = Yp/¥s

By iterating the following expression, with known

parameters and P, substituted in,

1,1nx,2 x=-M
) [’(v;—)] dx (5.4.4)

= __-——-ex )
one can find the unknown parameter. Then it is

straightforward to use Eg. (5-4.3) to compute the multiple

failure probability.
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Since the steps are essentially the same as those in the
normal model, with the addition of iteration, no further
discussion is offered. A computer program is written to
facilitate the procedure. Appendix A presents a listing of

the program.

5.5 Some Qualitative Results

Since the expressions to compute multiple component
failure probability are similar for both the normal and
lognormal models, it 1is useful to discuss the results for
normal model in detail. The trend observed in the normal
model thus serves as a convenient framework for
understanding the gqualitative characteristics of other

models.

5.5.1 Normal Model

5.5.1.1 V., V¢ Given

A very interesting case arises when safety factor is
approximately egqual to one. This corresponds to a situation
where a great deal of experience has been accumulated for
similar designs of the the component so that large safety
factor 1is unnecessary. In fact, it is engineer's desire to
have as small safety factor as possible due to economic
penalty considerations. When safety factor is close to one

(e.g. say within 5 § or less), Eg. (4-3.8) reduces to

P = & (- —m——— : (5-5.1)
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Eq. (5-2.3) reduces to

exp[- %(vgl 1 [e(3= )] dx (5-5.2)

-0 TV

S

By taking the inverse of Eg. (5-4.1), the expression for

safety margin reduces to

M-1 .

a =
e (5-5.3)
2
/vswR
=
M= g4/ VR2+ VS2 +1 (5-5.4)

Numerical studies on Ed. (5-4.2) indicates that the multiple
failure probability, for a given single failure probability,
depends strongly‘ only on the ratio of Vp and Vg, not on
individual values of V; or V¢. This is shown in Table 5.1
and agrees with the results in Ref. 5.2,

As indicated in section 4.3, the 1larger the 1loading
roughness (defined as Vg/Vp), the larger the multiple
failure probability. Figures 5.4, 5.5, and 5.6 illustrate
probabilty for double failure, triple failure, and quadruple
failure respectively. If the single failure probability is
larger, other conditions being the same, the multiple
failure probability increases. This 1is consistent with
common practices where active components have higher failure
probability than passive ones. For example, it has been a

'rule-of- thumb' type usage to assume beta factor of 0.2 for
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Table 5.1 Multiple Failure Probability for

Safety Factor Close to 1

Single Failure Probability MDFF
c Vs k=2 k=3 k=4
Pe=1.0E-3 0.2 =30 6.4E-1 5.1E-1 4.4E-1
=0.1 6.4E-1 5.1E-1 4.4E-1
=0.01 6.4E-1 5.1E-1 4.4E-1
=0.001 6.4E-1 5.1E-1 4.4E-1
2.0 =1.0 6.9E-3 1.5E-4 7.0E-6
=0.1 6.9E-3 1.5E-4 7.0E-6
=0.01 6.9E-3 1.5E-4 7.0E-6
=0.001 6.9E-3 1.5E-4 7.0E-6
Pg=1.0E-4 1.0 =1.0 2.3E-2 2.5E-3 5.5E-4
=0.1 2.3E-2 2.5E-3 5.5E-4
=0.01 2.3E-2 2.5E-3 5.5E-4
=0.001 2.3E-2 2.6E-3 5.6E-4
0.1 =1.0 7.8E-1 6.9E-1 6.4E-1
=0.1 7.8E-1 6.9E-1 6.4E-1
=0.01 7.8E-1 6.9E-1 6.4E-1
=0.001 7.8E-1 6.9E-1 6.4E-1
Pe=1.0E-6 2.0  =1.0 6.2E-5 4.3E-8 1.4E-10
=0.1 6.2E-5 4.3E-8 1.4E-10
=0.01 6.2E-5 4,3E-8 1.4E-10
=0,001 6.2E-5 4.3E-8 1.4E-10
0.2 =1.0 4.98-1 3.5E-1 2.8E-1
=0.1 4.92-1 3.5E-1 2.8E-1
=0.01 4.9E-1 3.5E-1 2.8E-1
=0.001 4.9E-1 3.5E-1 2.85-1

MDFF= Multiple Dependent Failure Fraction
Pf : sincle component failure probability

Vg : coefficient of variation of stress
c VR/VS
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Figure 5.4 MDFF(k=2) Based on the ISSI Technique (Approximate)

for Various Single Failure Probabilities
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MDFF  (LOG)

Figure 5.5 MDFF(k=3) Based on the ISSI Technigue (Approximate)

for Various Single Failure Probabilities
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Figure 5.6 MDFF(k=4) Based on the ISSI Technique (Approximate)

for Various Single Failure Probabilities
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active components (e.g. pumps), and 0.1 for passive
components (e.g. valves). 1In the general case where safety
factor is not assumed to be close to one, the similar trend
for the ratio of Vp and Vg still holds. However, the larger
the values of the Vp and Vg, the smaller the muitiple
failure probability. Figures 5.7, 5.8 and 5.9 illustrate
multiple failure probability for the cases of K=2, 3, and 4
respectively. It is noted that Figures 5.4-5.9 are based on
the value of V, equal to 0.03, a typical engineering
situation. Studies for other values of V, indicate similar
trend. This shows that the above qualitative characteristics

are generally valid.

5.5.1.2 VR' MGiven

To get some insight into the behavior of multiple
failure probabilities, the qualitative trends outlined below
are useful to keep in mind:

1. For a given safety factor and single failure
probability, the larger the coefficient of variation of
strength, the smaller the coefficient of variation of
stress. This follows readily from Eg. (5-2.4). Since
multiple failure probabilities are smaller, when Vg/Vs is
larger, one gets smaller failure probabilities for this
case. For example, as shown in Table 5.2, the multiple
failure probabilities associated with Vp equal to 0.05 are

smaller than those associated with V; equal to 0.035.
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Figure 5.7 ISSI Results: Vg, Vg Given k equal to 2
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Figure 5.8 ISSI Results: VR, VS Given k equal to 3
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Figure 5.9 ISSI Results: Vr» Vg Given k equal to 4
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Table 5.2 ISSI Calculation, Vi And M Known

Parameter Values

Multiple Failure Probability

Pes M, Vp k=2 k=3 k=4
Pe = 1.0E-5
M=2.0 Vg=0.05 1.6E-6 6.3E-7 3.5E-7
M=2.0 Vg=0.035 | 3.3E-6 1.9E-6 1.4E-6
M=3.0 Vg=0.05 3.0E-6 1.6E-6 1.1E-6
M=3.0 Vg=0.035 | 4.4E-6 3.0E-6 2.3E-6
P, = 1.0E-3
M=2.0 Vg=0.05 4.SE-4 3.0E-4 2.3E-4
M=2.0 Vz=0.035 | 5.BE-4 4.4E-4 3.7E-4
M=3.0 Vg=0.05 5.1E-4 3.7E-4 3.0E-4
M=3.0 Vg=0.035 | 5.2E-4 4.1E-4 3.4E-4
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2. For a given Vi and single failure probability, the
larger the safety factor, the larger the multiple failure
probabilities. For example, in Table 5.2, for V, = 0.05,
multiple failure probabilities associated with safety factor
of 3 are larger than those for safety factor of 2.

3. For a given Vi and safety factor, the larger the
single failure probability, the larger the multiple failure
probabilities. In addition, the MDFFs are also larger
accordingly. 1In Table 5.2, £,=0.45 for P, =1.0E-3 is larger
than f£,=0.16 for P, =1,0E-5, with safety factor of 2 and Vi

= 0,05 in both cases.

5.5'103 VS' : M Given

The following general trends summarize the
calculation based on the ISSI method:

1. For a given safety factor and single failure
probability, the 1larger the coefficient of variation of
stress, the smaller the coefficient of variation of
strength. This follows readily from Eg. (5-2.5). When
is larger, the associated multiple failure probabilities are
larger. In all cases shown in Table 5.3 this trend is
evidenced.

2., For a given Vg and single failure probability, the
larger the safety factor the smaller the multiple failure
probabilities. This is just the opposite to the trend
observed in case 2. For example, in Table 5.5, for Vg =

0.05, multiple failure probabilities associated with safety
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Table 5.3 1SSI Calculation, V5 And M Known

Parameter Values

Multiple Failure Probability

Pes M, Vs k=2 k=3 k=4

P, = 1.0E-5

M=1.3 Vg=0.06 7.6E-7 2.0E-7 8.5E-8

M=1.3 Vg=0.05 1.0E-7 7.7E-9 1.3E-9

M=1.4 Vg=0.06 4.0E-8 1.3E-9 1.2E-10
M=1.4 Vg=0,05 9.2E-9 7.4E-6 2.0E-7

M=2.0 Vg=0.20 7.6E-7 2.0E-7 8.5E-8

M=2,0 Vg=0.15 4.0E-8 1.3E-9 1.2E-10
P, = 1.0E-6

M=2.0 V ¢=0.20 2.7E-17 1.4E-7 9.3E-8
M=2.0 Vg=0.15 5.0E-9 2.4E-10 3.0E-11
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factor of 1.4 are smaller than those for safety factor of
1.3.

3. For a given Vg and safety factor, the larger the
single failure probability the larger the multiple failure
probabilities. However, unlike case 2, the MDFFs are smaller
due to increased value of V,/Vg. This comes about because in
Eq. (5-2.5), ¢ is smaller for larger P,. Consegqguently, Vi
is larger and MDFFs are smaller. In Table 5.3,

f, = 4,0E-3, for Py, = 1,0E-5
f, = 5,0E-3, for P, = 1,0E-6

with M = 2, V¢ = 0,15 in both cases.

5.5.2 Lognomal Models

As described previously in sections 5.3 and 4.3, the
equations to compute multiple failure probability is
essentially the same as those for the normal model. The
qgualitative behavior of the final results is thus expected
to be similar in both cases. However, one major difference
is worth noting. Other conditions being the same, the
lognomal model yields a slightly higher value of multiple
failure probability. The multiple failure probability for a
typical calculation for normal and lognormal models is showm
in Table 5.4. Although the scoping studies are by no means
exhaustive, they do indicate a consistent trend within the
ranges studied. The results suggests that the normal and
lognormal models differ within a factor of ten in the

multiple failure probability. For stronger dependence
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Table 5.4 Typical ISSI Results for Normal and

Lognormal Models

Stress Strength k=2 k=3 k=4
Normal Normal
Vp/Vg =1.0 1.2E-6 8.0E-8 1.1E-8
=0.8 2.8E-6 3.5E-7 8.5E-8
=0.6 6.7E-6 1.6E-6 6.3E-7
=0.4 1.6E-5 -7.2E-6 4,2E-6
=0.2 3.9E-5 2.4E-5 1.8E-5
Lognormal Lognormal
Vp/Vg =1.0 2,.3E-6 2,6E-7 6.3E-8
=0.8 5.3E-6 1.0E-6 3.5E-7
=0.6 1.2E-5 4,.1E-6 2.0E-6
=0.4 2,.8E-5 1.5E-5 9.9E-6
=0,2 5.8BE-5 4,.4E-5 3.7E-5
Vg = 0,03, P, = 1,0E-4
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between identical components, the difference is smaller. On
the other hand, if the redundancy is high, the results show

a larger difference.

5.5.3 Mixed Models

In the real world, it 1is also likely that the true
state-of-affairs lies in betwwen the normal and lognormal
models. It is thus of interest to study the mixed model to
see what the implications of different models.
5.5.3.1 Normal-Lognormal Model

This refers to a situation where the stress is normally
distributed while the strength is lognormally distributed.
There is no simple inversion formula for this case. This
stems from the fact that algebraic combination of normal and
lognormal random variables are not normal or lognormal. To
apply the ISSI technigue, an iteration is needed to find the
relatioship between stress-strength parameters. For typical
engineering situations, the sensitivity studies performed
indicate the multiple failure probability based on this
model is between that based on normal and lognormal models

described previously.

5.5.3.2 Lognormal-Normal Model

In this case the stress is lognomally distributed, while
the strength is normally distributed. As in the
normal-lognormal model, an iteration is required to invert

the single <component failure probability. Sensitivity
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studies performed show that this model gives lower values
for multiple failure probability than lognomal models but
higher wvalues than normal and normal-lognormal models.
Figures 5.10,5.11 and 5.12 compares the multiple failure
probability(for k=2, 3 and 4 respectively) based on
different combinations of normal and lognormal models as

stress and strength distributions.
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5.6 Estimating CCF Parameters with the ISSI Method

It has been illustrated the ISSI method provides a way
to estimate CCF probabilities within a mission time. In
addition, it also can be used to estimate parameters in the
other CCF modelling such as MDFF and MGLM.

It was pointed out in Chapter 3 that more study is

required to obtain the parameters in either MDFF model or

MGLM. Since three or more parameters are to be estimated, it
is hardly possible to collect sufficient data within the
useful life of the component for statistical analysis to be
significant. In addition, the new changes and improvements
in design tends to make historical data obsolete. Only the
1SSI method seems less susceptible to these difficulties. It
partially overcomes these barriers by providing a framework
such that explicit engineering considerations are embedded.
The relationship between the results of the 1ISSI
apbroach (i.e. common load model fortified with the
inversion of SSI formalism), the parameters in both MDFF
method and MGLM are shown in Table 5.5 By following the
procedure of the ISSI method, multiple failure probability
can be computed. It is then straightforward to use the
expressions derived in Table 5.% to evaluate £, for MDFF,
and g, ¥ and i for MGLM. The time-dependent multiple failure
probability can then be calculated based on Markov models as

derived in chapter 3.
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Table 5.5 Relationship Between ISSI Results, MDFF And
MGLM

a. ISSI Results

Ve, Vs, or M quantified by engineering considerations

RN PRASICNC

P¥ = simulaneous k-component failure probability, k=2,3,4
b. MOFF

fk = fr:cgign4of time fajlure is due to k component fajlure,
®ly Iy

P:
f ‘r
k  Fe

pf = single component failure probability
c. MGLM

four-unit system

2 3 4
= 3Pf + 3F + Pf i 3fz + 3f3 + f4

2 3 N
Pe+ 3P2+ 33 4P} 1 +3f, 4341,

P3+ P} ' ¥y 4 fy

P2+ 3p3 4P 3,43+ o,

3
Pe fs
¢ 3p3 + p* - .+ f
£ % 37 Tq

three-unit system

p2 4 p3
gt f . ¢ 4
Pf 2 3

3

2 3
Pet+Pe fotfy
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Chapter 6
Application of the ISSI Method to Pumps and Valves

in Nuclear Power Plants

6.1 Introduction

In this chapter, the quantification of multiple dependent
tailure fractions of common pumps and valves in nuclear
power plants is performed to illustrate an application of
the ISSI method discussed in Chapter 5. To avoid confusion,
the following set of definitions is adopted throughout the
following discussion.

Failure Mode

This is used to describe the manner in which a compo-
nent ceases to perform 1its intended function. The

term is also loosely used to describe certain failure
phenomenon. If more than one components fails in the

same mode, one might say common mode failures occur.

Failure Cause

This is used to describe an identified condition,
event, or cause that prevented the component from
performing its intended function. The term usually
covers a broad range of situations. Its definite
meaning depends on the perspectives of the analyst.

Failure Mechanism

This refers to any physical modelling of a failure
mode or a failure cause. In the framework of SSI

theory, the failure model says that if the "stress"
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associated with the failure exceeds the "strength"
failure will occur. For example, the failure mecha-
nism associated with tribological causes is the force
existing between surfaces in relative motion and the
corresponding resistance of the material to withstand

this surface stress.

In essence, the procedure to compute multiple failure

probability consists of the following steps:

1. Identification Of Failure Causes

LER is used to select applicable failure causes. The
failure causes thus selected are treated as the
potential common causes. This approach is different
from the usual statistical analysis of historical data
where only actual occurences of multiple failures are
considered. The potential failure causes are implicitly
ignored since LER does not record such occurences. This
is unrealistic and gives an incomplete analysis of CCF.
The ISSI method provides a handy vehicle to account for
potential failure causes.

Identification Of Failure Mode

Since the failure causes classified from LERs are not
in an appropriate form to apply ISSI method, a study
of LER one-line description of events is necessary to
identify failure modes for a particular failure cause.
In addition, the failure cause identified in LER in
steé 1 is sometimes too broad. it is useful under such

circumstances to resolve the broad classification into
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more specific causes to allow for physical analysis.

3. Aggregation Of Failure Modes

The failure modes identified in step 2 usually have
underlying failure phenomena associated with them. It
is important to aggregate those failure causes having
similar physical processes into a group.

For each aggregation, a set of "stress" and "strength"
parameter is identified from engineering knowledge.

4, Selection and Quantification of "Stress" and "Strength"

It is assumed that for each aggregation there is a set
of material property (i.e. "strength" and "stress") that
describes the behavior of failure mechanism as stated
in the previous step. The selection and quantification
of these parameters requires. knowledge from laboratory
testing of material performance to simulate field
behavior.

5. Computation of CCF Probabilities by the ISSI Method

The formalism discussed in Chapter 5 is then used to
calculate the failure probabilities of different
multiplicity.

Section 6.2 surveys general mechanical failure modes and
indicates sailient features of some of the important and
pertinent underlying mechanisms.

Section 6.3 describes the application to pumps in HPIS and

AFWS. The LER classification of failure is first discussed.
Then interpretation based on the study of one-line event

description is presented. The procedure described previously
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is illustrated in more detail.

Section 6.4 presents the application to motor-operated
valves in both HPIS and AFWS. In addition, check valves are
also analyzed in a similar fashion. It is found that the
failure behavior of pumps and valves are similar, except
that pumps have higher failure probability for all levels of
multiplicity. This is in agreement with the fact that pumps
have more moving parts than valves.

Section 6.5 compares the results of estiﬁates of CCF
probability based on different approaches. Both the point
values and the uncertainty bounds are presented. It seems
that the ISSI method generally yields slightly higher fail-
ure probability than BFR and coupling method. Also, the
uncertainty bounds are tightest for the results of ISSI
method. Possible explanations are discussed to shed insight
on the difference between the statistical approach and that

incorporating engineering knowledge.

6.2 General Discussion Of Mechanical Failures

Mechanical failures may be defined as any change in size,
shape or material properties of a machine, or machine part
that renders it incapable of satisfactorily performing its
intended function. With this definition, one might define
failure mode as the physical process or processes that take
place or combine their effects to produce failure.

A systematic classification has been devised by which all

possible failure modes. could be predicted {6.13}. Such a
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classification is based on defining three categories:
(1) Manifestations of failure
(2) Failure-inducing agent
(3) Locations of failure
Each specific failure mode is then identified as a combina-
tion of one or more manifestations of failure together with
one or more failure-inducing agents and a failure location.
The four manifestations of failure, some with subcate-
gories are:
1. Elastic deformation
2. Plastic deformation
3. Rupture or fracture
4. Material change
a. Metallugical
b. Chemical
c. Nuclear
The four failure-inducing agents, each with subcatogories,.
are:
1. Force
a. Steady
b. Transient
C. Cyclic
d. Random
2. Time
a. Very short
b. Short

c. Long
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3. Temperature
a. Low
b. Room
c. Elevated
d. Steady
e. Transient
f. Cyclic
g. Random
4. Reactive Environmemt
a. Chemical
b. Nuclear
The two failure locations are:
1. Body type
2. Surface type

To be precise in describing a specific mode of failure,
it is necessary to select appropriate categories for the
above list without omitting any of the three major
categories.

Table 6.1 lists some of the failure modes that have been
identified as most frequently observed in common mechanical
components. It serves as a guideline in the design, analysis
or prevention against potential failure modes in mechanical
components. Note that not all failure modes listed in Table
6.1 are mutually exclusive. Several failure modes are combi-
nations of two or more modes. {6.1}

A brief glossary {6.1,6.2,6.3} describing those failure

modes that are relevant for the present application is
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Table 6.1 Common Failure Modes for Mechanical Components ( Ref. 6.1)

l
2

3
4
5
6

. Elastic deformation

. Yielding

. Brinelling

. Ducule failure

. Brittle fracture

. Fatigue :
High-cycle fatigue
Low-cycle fatigue
Thermal fatigue
Surface fatigue
Impact fatigue
Corrosion fatigue
Fretting fatigue

orrosion
Direct chemical attack
Galvanic corrosion
Crevice corrosion
Pitting corrosion
Intergranular corrosion
Selective leaching
Erosion-corrosion
Cavitation
Hydrogen damage
Biological corrosion

. Stress corrosion

. Wear
a. Adhesive wear
b. Abrasive wear
c. Corrosive wear
d. Surface fatigue wear

Deformation wear

Impact wear

Fretting wear

e TR A RN TR AN AN TR

Q@S0

9.

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

Impact

a. Impact fracture
b. Impact deformation
c. Impact wear

d. Impact fretting

e. Impact fatigue
Fretting

a. Fretting fatigue

b. Fretting wear

¢. Fretting corrosion
Galling and seizure
Scoring

Creep

Stress rupture
Thermal shock
Thermal relaxation
Combined creep and fatigue
Buckling

Creep buckling
Oxidation

Radiation damage
Bonding failure
Delamination
Erosion
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presented below. For a more complete discussion on these

failure modes, Ref. 6.1 is a good source of information.

1.

3.

Elastic deformation

For a component or part subject to force and/or
temperature related loads, within the elastic range
of the material property, the elastic deformation
occurs. If the deformation becomes great enough to
interfere with the ability of the machine satisfac-
torily performing its intended function, failure
occurs.

Yielding

When the plastic (unrecoverable) deformation in a
ductile machine member, brought about by the imposed
operational loads or motions, becomes great enough to
interfere with the ability of the machine_to perform
its intended function, failure occﬁrs. Common design
based on the American Soceity of Mechanical Engineers
(ASME) codes takes both elastic deformation and
yielding into account.

Brinneling

This refers to the permanent surface discontinuity
of significant size produced by the static forces
between two curved surfaces in contact which result
in local yielding of one or both mating members. For
example, if a ball bearing is statically loaded so
that a ball is forced to permanently indent the race

through local plastic flow, the race is brinelled.
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Subsequent operation of the bearing might result in
intolerably increased vibration, noise and heating.
Fatigue

This is a general term given to the sudden and
catastrophic separation of a machine part into two or
more pieces as a result of the application of fluctu-
ating loads or deformation over a period of time.
Variables that are found to affect the fatigue life
{6.3} include the effects of stress or strain ampli-
tude, mean stress, combined stress, various stress
histories, the speed of testing, hardness, metal-
lurgical structure, level and distribution of impu-
rities, the surface condition, and environmental
variables such as temperature, humidity, or special
combination. It is noted that fatigue data obtained
with poorly controlled geometry and finishes on the
specimen can be very misleading. By the same token,
real applications, with their lack of laboratory
control, can exhibit very wide variations in life.
Many types of fatigue exist as shown in Table 6.1.
Corrosion

The term describes undesired deterioration of the
material as a result of chemical or electrochemical
interaction with the environment. Corrosion often
interacts with other failure modes such as wear or
fatigue. As in the case of fatigue, many forms of

corrosion exist as shown in Table 6.1.
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6. Wear
Surface interactions give rise to a number of
important macroscopic phenomena, the main ones being
friction and wear. Wear is the undesired cumulative
change in dimensions brought about by the gradual
removal of discrete particles from contacting
surfaces in motion predominantly as a result of mech-
anical action. Wear is not a single process, but a
number of different processes that can take place
independently or in combination, resulting in mate-
rial removal from contacting surfaces through a
complex combination of local shearing, plowing,
gouging, welding, tearing, and others. Wear rates are
proportional to the load, the distance slid, and
inversely proportional to the hardness.
From the standpoint of CCFA, the above failure modes rep-
resent common cause candidates to be screened from LER.
Evaluation of either failures or abnormal occurrences in
light water reactor (LWR) coglant systems indicate that valves
and pumps are significant contributors {6.4}. The next two
sections of chapter 6 presentvthe application of ISSI method
tc pumps and valves.

6.3 Application To Pumps
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Since the present study focuses on PRA applications,
safety systems are of major interest. The HPIS and AFWS are
examples of important safety systems and are analyzed in
this section.

6.3.1 HPIS pumps

In applying the ISSI technigque to evaluate CCF
probabilities, the first step is to estimate single
failure probability. The approach used is to take the
estimates from the LER based on the BFR model.
Median values are used. Doubtlessly, there is uncertainty
associated with median values. The robustness of medianswith
respect to outliers does not introduce large error in
ignoring the variation of median.
The next step involves identifying failure causes as
coded in one-line description of LERs. Table 6.2 lists a
classification scheme used in LER {6.6} for Westinghouse
designed plants. There are several weaknesses associated
with the coding used in Table 6.2. These include:
1. The decomposition is useful to get a feel for general
behavior for different parts, but tends to be vague.
It does not recognize the nature of failure.

2. Some of the failure causes are not mutually exclusive.
For example, it is obvious that bearing or seal fail-
ures belong to the category of failed internals too.

3. The classification is not in the appropriate form for
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Table 6.2 LER HPIS Pump Failure Classification

Failure Cause Number of Failures
Unknown 3
Personnel (Operation) 1
Personnel (Maintenance) 3
Personnel (Testing) 1
Design Error 1
Improper Clearances 1
Extreme Environment 3
Bearing 1
Mechanical Control Parts Failures 13
Failed Internals 4
Foreign Material Contamination 1
Loss Of Pressure Boundary 1
TOTAL 33
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the application of SSI theory.

Upon further investigations into one-line LER description

of each occurrence, it is possible to identify four major

categories of causes that underlie all failure

occurrences. This is shown in Table 6.3.

It can be seen that tribological causes contributes most

to the HPIS pump failures. Seal leakage, bearing failures,

failed internals, shaft breakage, improper clearances and

air leakages are included in this category. The rationale

behind this classification is the following :

1.

Tribology is the least attended and most uncertain area
of technology for design engineers. In the design of
mechanical components, engineers have so far focused

on the traditional stress analysis of components. The
ASME pressure vessel and boiler code addresses only the
structural integrity and does not take wear into
account. In a sense, wear is thus 'designed' into the
mechanical components or systems by this negligence.
Seals, bearing, shafts and otper pump internals are

the parts in constant rubbing motion. Their most likely
failure mode is thus wear. Improper clearance or lubri-
cation affects the wear behavior strongly. Thus they

are in the same group of tribology-related causes.

Foreign material contamination refers to undesirable dust

or sticky material on parts that are left in a place without

attention to cleanliness. Electrical and electronic parts
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Table 6.3 HPIS Pump Failure Reclassification

Failure Cause

Number of Failures

1. Tribological Failures
Seal
Bearing
Shaft
Failed Internals
Mechanical Binding
Improper Clearances

Air Leakage

10

T Y S L Y T I Ty =

I1. Foreign Material Contamination
Stuck Relays
Dirty Contacts

Dirty Breakers

I111. Personnel-Related

IV. Unknown And Miscellaneous

12

TOTAL

33
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are especially vulnerable to this failure cause. For
example, greasy relays, sticky breakers, and dirty contacts
are included in this category.

Some of personnel errors during operation, maintenance
and testing can fail redundant components simultaneously.
Other personnel errors are not likely to involve multiple
component failures and are treated as independent events.

Miscellaneous and unknown causes refer to those that are
either independent or without a specified failure cause due
to insufficient information. As a first approximation, the
unknown occurrences are treated as independent.

To calculate multiple failure probability, the following
conditional probability formulas described in section 2.4
are used.

Case 1. Two-component failure probability

4
P(ABlC , i=1,2,3,4) = 2 P(ABlC )

- z P2(AlC JP(Cy) + p(A|c3) + P(A|Ca)P(B|Cy)
for 1-out-of-2 system
. 121 P2(A|C{IP(C,) + PIA|C,)P(B|C,)

for 1-out-of-3 and 1-out-of-4 system

Case 2. Three-component gailure probability
P(ABC[C,,zsl 2,3,4) = le(Aaclc )
- 3(A|c IP(C,) + P(A|C3) + P(A|C,)P(B|C4)PLC|Cy)

for 1-out-of-3 system
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- % P3(A‘Ci)P(Ci) + P(A\c4)P(B\c4)P(c\c4)
§=1 .

for 1-out-of-4 system

Case 3, Four-component failure probability
4
P(ABCD|C ,i=1,2,3,4) -iz P(ABCD|C, )
2 =1
-izlp (AlCi) P(C,) + P(A|C,) + P(A|C,) P(B|C,) P(C|C,)

P(D|C4), for 1-out-of-4 system

where

P(AB]Ci,i=1,2,3,4) = failure of component A and B under
conditions 1, 2, 3 and ¢

P(ABCICi,i=1,2,3,4) = failure of component A, B and C
under conditions 1, 2, 3 and 4

P(ABCDICi,i=1,2,3,4) = failure of component A, B, C and

D under conditions 1, 2, 3 and 4

i = 1; refers to tribological failures

i = 2; refers to foreign material contamination

i = 3; refers to personnel error

4; refers to independent failures

e
"
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Because roughly equal research effort has been made in
different aspects of each failure cause, it is plausible to
assume that no single factor dominates the behavior of the
failure cause. Accordingly, the central limit theorem
suggests that the normal model for the stress and strength
parameters is reasonable.

To identify the parameters characterizing the 'stress'
and 'strength' for the two important failure causes, a basic
understanding of the physics of these causes are necessary.

1. Wear models {6.7}

In spite of the potential usefulness of wear models,
there are relatively few good wear models and there
are no universal models. However, for the purpose of
applying the ISSI technigue, one does not regqguire an
exact wear model for a particular service. Instead,
the uncertainty associated with the material wear
resistance and the stresses exisiting on wearing
surface provides sufficient data requirements. By
reviewing the expressions proposed by various authors
to model wear, one can identify {6.7} the material
hardness as a common variable that plays a decisive
role in all these models. Thus one can regard the
material hardness as a proper ' strength ' in all wear
related failures. Similarly, as discussed in Ref. 6.8,
one can identify the surface energy as the proper

' stress ' characterizing tribologically related

failure causes.
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2. Foreign material contamination

In the study of contacts for electrical control of any
component, one recognizes that junction sizes have a
dominant effect on the electrical resistance. Further
investigations into the distribution of junction size
{6.9} reveals that it is again related to the hardness
of the material used. If foreign material contamina-
tion is a prevailing failure cause for switching
devices, then an appropriate ' strength ' to use is
the junction size of the contact. If enough junctions
in the contact are contaminated by dirt or foreign
particles, failure is expected. It is thus appropriate
to regard the particle size existing in a particular
environment as the ' stress ' acting on the switching
devices such as relays, breakers etc.

With the above understanding of the failure mechanism, it
is now necessary to quantify the ' stress ' and ' strength '
parameters thus identified. Studies to model adhesive wear
{6.10} suggests that the coefficient of variation of stress
at rubbing surface is bwtween 0.2 and 0.5 for common engi-
neering situations. Fig. 6.1 {6.11} shows a typical result
obtained for hardness measurement. It appears that normal
distribution fits the data quite well. This is generally the
case for other measurements where individual phenomenon is
isolated and variables are relatively under better control.
The coefficient of variation for the ' strength ' of wear-

related failures used in the study is between 0.03 and 0.06.

-175-
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Figure 6.1 Sample Distribution of Brinnel Hardness ( Ref. 6.11)
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Similarly, the coefficient of variation for junction size
distribution used in the study is between 0.03 and 0.06. The
particle size distribution in common engineering situation
{6.12,6.13} has the coefficient of variation of between 0.2
and 0.5. It is noted although these values are the same as
for the tribological failures, they are analyzed separately
due to their different nature.

Table 6.4 presents the results by the ISSI technigue for
different configurations of interest. The results obtained
for BFR and coupling method are also shown for comparison.,
It is apparent that the uncertainty is smallest in the case
of the ISSI approach. The failure probabilties for different
multiplicity are also slightly higher with the ISSI method.
Other trends are similar to those described in chapter 5.

Table 6.5 shows the multiple dependent failure fraction
corresponding to the cases presented in Table 6.4.

6.3.2 AFWS Pumps

There are generally three kinds of pumps in AFWS. Motor-
driven pumps are largest in number, followed by turbine-
driven and then diesel-driven pumps. To illustrate the
1SSI procedure, only motor-driven pumps are considered.

By adopting the same procedure, identical failure causes
are identified for AFWS pumps as for HIPS pumps. The same
corresponding 'stress' and 'strength' parameters are also
used. The only difference lies in the single component
failure probability for each category. In addition, elect-

rical failures are identified in AFWS pumps. Examples in
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Table 6.4 CCF

Results for Various Methods: HPIS Pumps

Configuration I1SSI BFR COUPLING
2-unit system
k=2 upper lower upper lower upper lower
1.5E-4 6.7E-5 4,.0E-4 2.6E-6| 9.7E-7 8.7E-8
median median median
1.0E~-04 3.2E-05 2.9E-07
3-unit system
k=2 upper lower upper lower upper lower
1.1E-4 4.8E-5 3.6E-4 1,9E-6| 7.6E-7 6.4E-8
median median median
7.3E-05 2.6E-05 2,2E-07
k=3 upper lower upper lower upper lower
7.9E-5 2.2E-5 3.3E-4 6.5E-7| 6.4E-10 1,6E-11
median median median
4.2E-05 1,5E-05 1.0E-10
4-unit system
k=2 upper lower upper lower upper lower
9.6E-5 4.1E-5 3.6E-4 1.6E-6| 6.3E-7 5,2E-8
median median median
6.3E-05 2.4E-05 1.8E-07
k=3 upper lower upper lower upper lower
6.%9E-5 1.9E-5 3.3E-4 6.1E-7| 5.2E-10 1.2E-12
median median median
3.6E-05 1.4E-05 8.0E-11
k=4 upper lower upper lower upper lower
5.5E-5 1.1E-5 3.2E-4 4.3E-7| 4.1E-14 2.BE-16
median median median
2,.9E-05 1.2E-05 3.4E-15
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Table 6.5 MDFF for Various Methods: HPIS Pumps

Configuration I1SSI BFR COUPLING
2-unit system
k=2 upper lower upper lower upper lower
2.8E-1 1.2E-1 7.4E-1 4.8E-3| 1.8E-3 1.6E-4
median median median
1,.9E-01 5.9E-02 5.4E-04
3-unit system
k=2 upper lower upper lowver upper lower
2.3E-1 1,0E-1 7.7E-1 4.0E-3| 1,4E-3 1.4E-4
median median median
1.6E-01 5.5E-02 4.7E-04
k=3 upper lowver upper lowver upper lower
1.7E~-1 4.7E-2 7.0E-1 1.4E-3| 1.4E-06 3.4E-08
median median median
B8.9E-02 3.2E-02 2.1E-07
4-unit system
k=2 upper lowver upper lower upper lower
2,3e-1 9,5E-2| 8.4E-1 3.7E-3| 1.5E-3 1.2E-%
median median median
1.5e-01 5.6E-02 4.2E-04
k=3 upper lower upper lowver upper lowver
1.6E-1 4.4E-2 7.7E-1 1.4E-3| 1.2E-06 2.BE-09
median median median
8.4E-02 3.3E-02 1.9e-07
k=4 upper lower upper lower upper lower
1,3E-1 2.6E-2 7.4E-1 1.0E-3] 9.5E-11 6.5E-13
median median median
6.7E-02 2.8E-02 7.9E-12
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this category include 1loose wires, broken connectors etc.
To be conservative, they are considered as potential common
cause failures. It turns out that they are not significant
contributors to the overall multiple failure probability.

Table 6.6 shows the failure classification according to
the LER coding. As in the case of HPIS pumps, the scheme is
not of direct usefulness for applying the ISSI method.

Table 6.7 presents the appropriate failure mechanisms for
the application of the ISSI method. It is worth noting that
in AFWS, more failures associated with electrical parts are
identified. This may be due to more control functions
present in AFWS pumps.

Table 6.8 presents multiple failure probabilities for
different configurations based on various methods. One can
readily recognize that the 1ISSI approach gives slightly
higher values than other methods. Also, as in the case of
HPIS pumps, the uncertainty seems reduced relative to the
statistical approaches.

Table 6.9 presents MDFF based on the median values of

single component failure probability.

6.4 Application To Valves

Valves are major contributors to failures or abnormal
occurences in nuclear power plant systems. Two kinds of
valves are studied as an application of the ISSI technique.
Motor-operated valves (MOVs) provide important functions in

many of the standby systems to be discussed in chapter 7.
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Table 6.6 LER AFWS Pump Failure Classification

Failure Cause

Number of Failures

Unknown

Personnel (Operation)
Personnel (Maintenance)
Personnel (Testing)

Design Error

Procedural Discrepancies
Extreme Environment

Bearing

Mechanical Control Parts Failures
Failed Internals

Foreign Material Contamination
Normal Wear

Shaft/Coupling Failure

Drive Train Failure
Seal/Packing Failure

Misalignment

W VU U N9 N 9O

- >
N NS

[ T N ™

TOTAL

112
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Table 6.7 AFWS Pump Failure Reclassification

Failure Cause Number of Failures

I. Tribological Failures 13
Seal
Bearing
Shaft
Failed Internals

Mechanical Binding

[ S IR N N N I VS I

Linkage Misalignment

I1. Foreign Material Contamination 24

Stuck Relays 6

Dirty Contacts 3

Dirty Breakers 11

trainer Clogged 4
II1. Electrical Failures 18
IV. Personnel-Related 8
V. Unknown And Miscellaneous 58
TOTAL 112
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Table 6.8 CCF Results for Various Methods: AFWS Pumps

Configuration 1881 BFR COUPLING
2-unit system
k=2 upper lowver upper lower upper lower
3.5E-4 1.6E-4 8.6E-4 4.0E-5| 1,1E-5 1.5E-6
median median median
2.4E-04 1.9E-04 4.0E-06
3-unit system
k=2 upper lowver upper lowver upper lower
3.1E-4 1.3E-4 8.3E-4 2.7E-5| 9.0E-6 1.1E-6
median median median
2.0E-04 1.5E-04 3.2E-06
k=3 upper lower upper lower upper lower
2.4E-4 6.2E-5 6.8E-4¢ 6.1E-6| 2.7E-08 1.2E-08
median median median
1.2E-04 6.4E-05 5.8E-0%

-183-




Table 6.9 MDFF for Various Methods: AFWS Pumps

Configuration I1SS1I BFR COUPLING
2-unit system
k=2 upper lowver upper lower upper lower
1.8E-1 8.0E-2 4,.3E-1 2.0E-2| 5.5E-3 7.5E-¢
median median median
1.2E-01 9.5E-02 2.0E-03
3-unit system
k=2 upper lower upper lower upper lower
1.7E-1 7.0E-2 4.6E-1 1.5E-2| 5.0E-3 6.1E-¢
median median median
1.1E-01 8.3E-02 1.8E-03
k=3 upper lower upper lower upper lower
1.3E-1 3.0E-2 3.8BE-1 3,4E-3| 1.5E-05 6.7E-07
median median median
6.7E-02 3.6E-02 3.2E-06
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Check valves, on the other hand, are used to direct flow in
only one direction. The investigation in this thesis focuses
only on the reliability aspects of valves. No attention is
given to the hydraulic characteristics of these components.
In essence, we use the same procedure applied in the
analysis of pumps to evaluate the CCF probabilities of the
valves. To recapitulate, the following steps represent how
one proceeds to apply the ISSI technique:
1. Define failure causes as identified in the LER
2. Reclassify the failure causes into root causes
3. For each root cause, gquantify the pertinent 'stress'
and 'strength' parameters. In this study, we find it
easier to work with the coefficient of variations and
leave the safety factor an unknown parameter.
4. Invert the LER estimates of the single failure
probability to obtain the value of reliability index.
5. Find the unknown parameter (in this study, it is the
safety factor). Now, all the regquired stress-strength
parameters have been estimated.
6. Use the common load model to compute the multiple
failure probability.
7. Combine the multiple failure probability obtained for
each failure cause to get the final CCF probabilities

due to common causes.

After careful application of the above procedure, we

observe the following:
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1. Pumps generally involve more sophiscated moving

parts, yhich leads to a higher failure probability than
valves., According to the insight discussed in section
5.5, valves should have lower multiple failure
probabilities. This indeed agrees with the results.

2. In the AFWS MOVs, electrical failures represent a

significant fraction of the failure cause. However,
with regard to CCF probability, electrical-related
causes do not play an important role as tribological
causes.

Table 6.10 summarizes the LER coding scheme for HPIS
MOVs. As described previously, this scheme is useful for a
general discussion on reliability. To pursue further the CCF
issue, one needs to identify root causes. Table 6.11 shows
the reclassification of causes for HPIS MOVs. Table 6.12
compares the multiple failure probabilities calculated on
the basis of different methods. Specifically, this table
compares the ISSI, the BFR and the coupling method.

Table 6.13 1lists the LER coding scheme for AFWS MOV
failures. Table 6.14 represents the root causes identified
for AFWS MOVs. As indicated above, electrical failures
contripyte significantly in the failure statistics. The
loading rougness (an indication of the variability of the
stress to strength) 1is small due to a relatively better

control and advanced knoweldge in the area of electric
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Table 6.10 LER HPIS MOV Failure Classification

Failure Cause Number of Failures

Unknown

Peréonnel (Operation)

Personnel (Maintenance)

Mechanical Control Parts Failures
Packing Failures

Electrical Input Failures

Lack Of Lubrication

Electrical Motor Operator Failures

Torque Switch Failures

= RN g e, R W W

Limit Switch Failures

TOTAL 22
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Table 6.11 HPIS MOV Failure Reclassification

Failure Cause

Number of Failures

I. Tribological Failures
Packing
Valve Stem
Shaft

Screw Holding Le

ver

T

I1. Foreign Material Con
Stuck Contacts
Dirty Contacts
Dirty Breakers

Limit Switches

tamination

T T A

I1I. Personnel-Related

I1V. Unknown And Miscella

neous

TOTAL

22
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Table 6.12 CCF

Results for Various Methods: HPIS MOVs

Configuration 1SSI BFR COUPLING
2-unit system
k=2 upper lower upper lower upper lower
3.8E-4 1.8E-4 4.5E-4 1.7E-7| 2.7E-4 1.9E-8
median median median
2.6E-04 8.7E-06 2.3E-06
3-unit system
k=2 upper lower upper lowver upper lower
3.5E-4 1.6E-4 3.9E-4 4.1E-7| 2.0E-4 2.0E-8
median median median
2.4E-04 1.3E-05 2.0E-06
k=3 upper lower upper lower upper lower
2.7E-4 8.0E-5 2.9E-4 3,2E-7| 2.8E-06 2.8E-12
median median median
1.5E-04 9.6E-06 2.8E-09
4-unit system
k=2 upper lower upper lower | upper lower
3.5E-4 1.6E-4 3.6E-4 5.4E-7| 2.0E-4 2.0E-8
median median median
2.4E-04 1.4E-05 2.0E-06
k=3 upper lower upper lowver upper lower
2,7E-4 8,0E-5| 2.9E-4 3.2E-7| 2.8E-06 2.BE-12
median median median
1.5E-04 9.6E-06 2.8E-09
k=4 upper lowver upper lower upper lower
2.2E-4 5.0E-5 2.%E-4 3.0E-7| 3.8E-08 3.BE-16
median median median
1.0E-04 9.3E-06 3.8E-12
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Table 6.13 LER AFWS MOV Failure Classification

Failure Cause Number of Failures

Unknown

Personnel (Maintenance)
Fabrication/Construction/Q.C.
Mechanical Control Parts Failures
Excessive Vibration

Electrical Input Failures

Electrical Motor Operator Failures

. I T S S I

Torque Switch Failures

TOTAL 21
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Table 6.14 AFWS MOV Failure Reclassification

Failure Cause

Number of Failures

I. Tribological Failures 2
Worn Ring 1
Valve Seating 1
I1. Electrical Failures 10
Broken Wires 3
Loose Connections 3
Setpoint Drift 1
Relay Failures 1
Operator Failure 2
111, Personnel-Related 2
IV. Unknown And Miscellaneous 7
TOTAL 21
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parts. Table 6.15 presents the ISSI results with those based
on the BFR and the coupling method.

Table 6.16 summarizes the failure causes according to
the LER coding scheme for check valves. It is noted that no
distinction is made between 'failure to open' and 'failure
to close'. This 1is because of the 1lack of specific
information available to make the judgment. It is, however,
reasonable to assume that both failure modes have the same
root causes as identified in Table 6.17. Whether closing or
opening, the root causes potentially exist to fail the check
valves. On the other hand, opening check valves presents a
lower failure probability than closing them according to the
LER. Tables 6.18 and 6.18 summarize the results for these
two types of failures. The results based on the BFR and the

coupling methods are also compared in these tables.

6.5 Comparison with the BFR and the Coupling Method

As noted earlier, current methods to model CCFs are
primarily statistical approaches. 1In order to check the
adequacy of the proposed approach, the ISSI technique, one
has to compare the CCF estimates based on various modelling

methods. The BFR and the coupling methods are studied.

The BFR represents a possible statistical approach,
while the coupling method designates a practical heuristic
procedure to analyze CCFs.

The comparison made between the ISSI, the BFR and the

coupling method is based on the following assumptions:
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Table 6.15 CCF Results for Various Methods: AFWS MOVs

Configuration I1SSI BFR COUPLING
2-unit system
k=2 upper lower upper lowver upper lower
median median median
7.0E-05 8.7E-06 2,3E-06
3-unit system
k=2 upper lower upper lower | upper lower
7.8E-5 4,8E-5] 3.9E-4 4.1E-7| 2.0E-4 2.0E-8
median median median
6.1E-05 1.3E-05 2.0E-06
k=3 upper lower upper lower upper lower
3.86-5 1.7E-5| 2.9E-4 3,2E-7| 2.BE-06 2.8E-12
median median median
2.5E-05 9.6E-06 2,.8E-09
4-unit system
k=2 upper lower upper lowver upper lower
7.8E-5 4.8E-5| 3.6E-4 5.4E-7| 2.0E-4 2.0E-8
median median median
6.1E-05 1.4E-05 2.0E-06
k=3 upper lower upper lower upper lover
3.86-5 1.7E-5| 2.9E-4 3.2E-7| 2.8BE-06 2.BE-12
median median median
2.5E-05 S.6E-06 2.8E-09
k=4 upper lowver upper lowver upper lower
2.6E-5 9,8E-6| 2.9E-4 3.0E-7| 3.8E-08 3.8E-16
median median median
1.6E-05 9.3E-06 3.8E-12
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Table 6.16 LER Check Valve Failure Classification

Failure Cause Number of Failures

Unknown 23
Personnel (Operation) 1
Personnel (Maintenance)

Design Error

Mechanical Control Parts Failures
Fabrication/Construction/Q.C.
Procedural Discrepancies

Normal Wear

Excessive Wear

Corrosion

Foreign Material Contamination

[ B Ve B = = S R BN B S R N )

Seat/Disc Failure

TOTAL 60
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Table 6.17 Check Valve Failure Reclassification

Failure Cause

Number of Failures

I. Tribological Failures 10
Leakage 4
Disk 1
Seat Surface 3
Wear Of Internal 1
11. Foreign Material Contamination 9
Sand On Seat Surface 4
Dirt On Seat Surface 5
111, Personnel-Related 9
IV. Unknown And Miscellaneous 32
‘TOTAL 60
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Table 6.18 CCF Results for Various Methods: Check Valves

Failure to Remain Open

Configuration IsSI BFR COUPLING
2-unit system
k=2 upper lower upper lower upper lower
2.2E-5 7.6E-6 3.2E-4 2.5E-6| 2.7E-7 3.1E-9
median median median
1.3E-05 2.8E-05 2.9E-08
3-unit system
k=2 upper lower upper lower upper lower
1.8E-5 6.0E-6 3.2E-4 1.,7E-6| 2.5E-7 2.0E-9
median median median
1.0E-05 2.3E-05 2.0E-08
k=3 upper lower upper lower upper lower
1.3E-5 2.2E-6 3.0E-4 5.7E-7| 9.2E-11 B8.6E-14
median median median
5.3E-06 1.3E-05 2.8E-12
4-unit system
k=2 upper lower upper lower upper lower
1.7E-5 5.5E-6 3.1E-4 1,4E-6| 1.BE-7 1.6E-9
median median median
S.7E-06 2.1E-05 1.7E-08
k=3 upper lower upper lower upper lower
1.2E-5 2.1E-6 3.0E-4 5.3E-7| 7.8E-11 6.2E-14
median median median
5.0E-06 1,3E-05 2.2BE-12
k=4 upper lower upper lower upper lower
9.2E-6 1.1E-6 2.9E-4 3,8E-7| 3.3E-11 2.5E-18
median median median
302E-06 1008-05 9-1E-15
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Table 6.19 CCF Results for Various Methods: Check Valves

Failure to Close

Configuration 1881 BFR COUPLING
2-unit system
k=2 upper 1lower upper lower upper lower
7.1E-5 2,7E-5 3.3E-4 1.5E-6| 6.1E-6 9.4E-9
median median median
4 .4E-05 2.2E-05 2.4E-07
3-unit system
k=2 upper lower upper lower | upper lower
6.4E-5 2.5E-5| 3.2E-4 1.2E-6]| 6.2E-6 6.5E-9
median median median
4 .0E-05 2.0E-05 2.0E-07
k=3 upper lower upper lowver upper lover
4.6E-5 1.1E-5 3.0E-4 5.5E-7] 1,6E-08 5.3E-13
median median median
2.2E-05 1.3E-05 9.1E-11
4-unit system
k=2 upper lower upper lower upper lower
6.0E-5 2.3E-5| 3.2E-4 1.0E-6| 6.2E-6 5.1E-9
median median median
3.7E-05 1.8E-05 1.8E-07
k=3 upper lowver upper lower upper 1lower
4.3E-5 9,6E-6 3.0E-4 5.3E-7| 1.5E-08 3.5E-13
median median median
2.0E-05 1.3E-05 7.4E-11
k=4 upper lower upper lower upper lower
3.4E-5 5,.5E-6 3.0E-4 4.1E-7| 3.8E-11 2.5E-17
median median median
1.4E-05 1.1E-05 3.1E-14
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Single component failure probability is idenfical in
three methods investigated. It is based on the LER
estimates.

The failure probability over a certain test interval
is compared. The test interval is chosen to be

one month for pumps and three months for valves,
which is roughly the industry practice.

on-demand failure probability is not considered. This
is consistent with the previous assumption.

For the BFR method, the results are directly taken
from the LER estimates. (Ref. 6.5 and 6.14)

For the AFWS pumps, the failure rate used is that for
a 3-unit configuration. For the HPIS pumps, the
failiure rate used is the one applicable to a 2-unit
configuration.

The range used in the rest of discussion denotes a
90% interval of the estimated failure probability.
For each component, the 95th percentile, the median
and the 5th percentile indicate the magnitude of
uncertainty.

For the ISSI method, the 95th percentile is obtained
based on the stress coefficient of variation of 0.5
and strength coefficient of variation of 0.03. The
Sth percentile is obtained based on the stress
coefficient of variation of 0.2 and strength
coefficient of variation of 0.06. These are values

judged to be the bounds for stress and strength from
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engineering considerations as described in sections

6.3 and 6.4.

Figures 6.2, 6.3 and 6.4 present the range for the HPIS
pump, with k=2, 3 and 4 respectively. Here, as elsewhere, k
stands for the number of redundancy.

Figures 6.5 and 6.6 show the range for the AFWS pump,
with k=2 and 3.

Figures 6.7, 6.8 and 6.9 present the range for the HPIS
MOV, with k=2, 3 and 4 respectively.

Figures 6.10, 6.11 and 6.12 shovw the range for the AFWS
MOV, with k=2, 3 and 4 respectively.

Figures 6.13, 6.14 and 6.15 illustrate the range for the
check valves(fail to open), with k=2, 3 and 4 respectively.

Finally, Figures 6.16, 6.17 and 6.18 present the range
for the check valves (fail to close), with k=2, 3 and 4
respectively,

It is cautioned that the ordinates of these figures are
in logarithmic scale. In addition, the scale is different in
each case to account for the range for multiple failure
probabilities under different redundancies and various
single failure probabilities. Tables 6.4, 6.8, 6.12, 6.15,
and 6.19 provide specific numerical values for Figures 6.2
through 6.19.

By studying these figures closely, one finds the
following gualitative characteristics:

1. The 1SSI approach as illustrated in this study yields
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Probability of Failure
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3.

higher multiple failure probabilities than either the
BFR or the coupling methods. This is because that the
ISSI technique includes potential failure causes. The
BFR method takes into account only those multiple
failures that have been reported to exist. The
coupling method assumes that the failure probability

is independent. Only the knowledge on the failure
probability is coupled. This explains why the coupling
method yields wide uncertainty intervals and low
median values (same as the median values of the
independent case).

In general, any approach which is based on more

-.specific knowledge of the process yields a smaller

range than an approach with little basis. Since the
1SSI1 approach incorporates essential engineering
considerations in the identification of the CCF root
causes and the quantification-of the stress-strength
parameters, a smaller uncertainty is expected to be
associated with it. Indeed this is manifested in all
the cases studied as shown in Figs. 6.2 through 6.18,
The smaller the single failure probability, the
greater the uncertainty. This agrees with intuition.
Inherently, a rare event gives a very small sample
size for statistical inferences. CCF is a rare event.
It is thus expected the above trend is obeyed in the

results of CCFA models. This is evident in Figs. 6.2

through 6.18. For example, compare Fig. 6.2 with Fig.
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6.10. Both the BFR and the coupling methods show a
larger uncertainty range for valves than for pumps.
However, for the ISSI approach, this trend is less
obvious. The statistical nature is hidden one level
down in the quantification of the stress-strength
parameters. 1f more data are available, the range on
the variability of the stress and strength narrows.
This will reduce the range of the mutiple failure
probability.

The higher the redundancy, the larger the range of
the estimates. This follows from the same argument
presented above., For higher redundancy, multiple
failures are less likely. The sample size to draw
inference is then smaller than the case of lower
redundancy. Thus one can expect to obtain a wider
range of estimated failure probabilities, say, for
qguadruply than for triply or doubly redundant cases.
As an evidence, one can compare Figures 6.2, 6.3 and
6.4. Note the different logarithmic scale in these
figures tends to make the effect less apparent; it is

still notable, however.
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Chapter 7

Application To PWR Standby Safety Systems

7.1 Introduction

The ISSI technigue has been illustrated at the component
level through the application to pumps and valves in the
HPIS and AFWS in commercial nuclear power plants in the
previous chapter. This chapter will further demonstrate the
same technigque at a system level., The demonstration will
indicate the significance of various CCF models in affecting
the unavailability results.

The sensitivity studies include different 1levels of
complexity in system configuration. Two types of systems are
studied. First, a system with 'pure' redundancy is studied.
Next, we investigate a combination of various redundancy
levels in the system. The former is typified by an idealized

AFWS, while the latter is exemplified by a HPIS.

7.2 1dealized AFWS

The AFWS is designed to provide a supply of feedwater to
the steam generators during startup operations, during the
reactor system initial cooldown period for removal of decay
heat from the reactor core and during emergency decay heat
removal operations following 1loss of offsite power. For a
complete loss of offsite power, the AFWS performs the vital

function of providing flow to the steam generators to remove
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any decay heat generated by the core. Each auxiliary
feedwater pump is sized on the basis of meeting this

condition.

7.2.1 System Description

A typical scematic diagram for AFWS is shown on Fig.
7.1 {7.1}. The AFWS shown consists of two motor-driven,
full-capacity auxiliary feedwater pumps and one
full-capacity turbine-driven auxiliary feedwater pump, with
piping, valves, and associated instrumentation and controls.
For the purpose of this analysis, consider an idealized
three-train AFWS., A schematic diagram is shown on Fig. 7.2,
The icealized system has three identical trains. Each is
composed of a motor-operated valve at the suction and the
discharge ends of a motor-operated driven pump.
Studies were performed to check the sensitivity of the
system unavailability with respect to:
1. data base
2. CCFA models

7.2.2 Data Base

Although specific data for pumps and valves are not easy
to quantify precisely, for the purpose of this study three
typical sets of data are used. One other difficulty in the

study needs -to be noted. This is related to the basis of

definition and interpretation with a given set of failure
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data. One thus should make sure that the comparison of
different data is conducted on an approximately eqgual basis.

Table 7.1 presents the data used for the AFWS
unavailability study. The first set is modified from the
Reactor Safety Study (RSS) {7.2}. In the RSS, for standby
conditions, no values are given for the failure rates. The
approach used in the RSS attributes the failure to demand
related mechanisms. In the German Risk Study {7.3}, all the
failures are assumed to be due to standby failures
instead. The modified RSS data presented in Table 7.1
adopts the failure per demand from the RSS and uses the
failure to run for standby failure. The second set of data
is taken from a PLG study {7.4}. An additional data set
based solely on the failure rate is selected from the LER
{7.5,7.6}. It 1is noted that the main requirement for the
choice 1is that the data base is representative. The results
based on these sets of data are thus able to illustrate the
general behavior of the realistic system unavailability. For
a specific plant analysis, the data may have to be refined

to reflect particular features of the plant.

7.2.3 CCF Modelling Techniques Studied

Four CCF methods have been investigated in this study.
These are the BFR method, the coupling method, the ISSI
technique and the beta factor method. For the 1ISSI
technique, both the normal and the lognormal models are

included in the sensitivity analysis. For the beta factor
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Table 7.1 Data Base for AFWS Study

Component Data Type RSS PLG LER
Pump Failure per Demand
Upper 3.0E-3 5.1E-3 0.0
Lower 3.0E-4 5.8E-4 0.0
Median 1.0E-3 1.7E-3 0.0
Failure Rate (/hr)
Upper 3.0E-4 5.1E-5 8.5E-6
Lower 3.0E-6 1.1E-5 3.0E-6
Median 3.0E-5 2.3E-5 5.5E-6
MOV Failure per Demand
Upper 3.0E-3 5.8E-3 0.0
Lower 3.0E-4 6.6E-4 0.0
Median 1.0E-3 2.0E-3 0.0
Failure Rate (/hr)
Upper 1.0E-7 2.4E-7 1.3E-5
Lower 1.0E-9 8.1E-8 1.3E~-7
Median 1.0E-8 1.4E-7 3.6E-6
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method, two cases are considered. One is the conventional
practice which takes the beta factor as 0.2 for active
components and 0.1 for passive components. The other assumes
that the beta factor is obtained via the ISSI approach.
These methods are chosen because of their popular use in
current PRA studies. The MDFF method and the MGLM are not
pursued because there is not a satisfying way of quantifying
the parameters 1in these methods. In fact, it is one of the
objectives of this thesis is to obtain an estimate of these

parameters.

7.2.4 Uncertainty Analysis

The approach used to perform an uncertainty analysis is
identical to that adopted in chapter 6. In this framework,
the wuncertainty for the estimates of the multiple failure
probability of components stems from the uncertainty in the
stress and the strength., In particular, the coefficent of
variations for the stress and the strength represents a
major source of the wuncertainty. The uncertainty at the
component level then 'propagates' to yield the uncertainty
in the final system unavailability.

Two sets of data for the coefficient of the variations
of the stress and the strength are used. The upper bound is
0.3 and 0.03, while the lower bound is 0.2 and 0.06. It is
expected that as more experts take part in the failure

analysis, the range of these stress and strength parameters
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can be reduced. The uncertainty in the system unavailability
can then be reduced accordingly.

For other approaches, the uncertainty for the system
unavailability mainly results from the uncertainty for the
single component failure probability. Table 7.2 summarizes
the major sources of wuncertainty for the CCF modelling
techniques studied. Table 7.3 presents the data base used
for the uncertainty calculation according to the BFR method.
Table 7.4 summarizes the stress and the strength parameters
that yield the upper and 1lower bounds of the system
unavailability. It 1is noted the upper and lower bound is
only an indication of the 95th percentile and the 5th
percentile of the system unavailability. Since insufficient
data exists, it 1is beyond the scope of this thesis to
perform more rigorous uncertainty analysis based on advanced

statistical methods.

7.2.5 Results

By applying the expressions for multiple failure
probability derived in the preceding chapters and using the
combinatorial analysis, the system unavailability is readily
computed. It 1is noted that the idealized AFWS analyzed is
simple enough that no sophisticated fault tree analysis
computer programs are required. Instead, the combinatorial
analysis which identifies major combinations of pumps and

valves to cause failure is used.
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Table 7.2 Summary of Sources of Uncertainty

Method Source of Uncertainty Considered
Independent Variation of Single Failure Probability
BFR Variation Due to Sample Size
Coupling Variation of Single Failure Probability
I1SSI Uncertainty in Stress and Strength Model

(a) Form of the Distribution

(b) Parameter Values

Beta Factor
Conventional

Based on ISSI

Variation in Single Failure Probability

Same as ISSI
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Table 7.3 Data for Uncertainty Analysis: BFR Method

Multiplicity Pump (/hr) Valve (/hr)

(k) Upper Median Lower Upper Median Lower
k=1 8.5E-6 5.5E-6 3.0E-6| 1.3E-5 3.6E-6 1.3E-7
k=2 2.3E-6 8.9e-7 7.5E-8| 3.3E-7 8.8E-8 5.0E-10
k=3 1.98-6 6.4E-7 1.7E-8| 2.7E-7 7.2E-8 3.0E-10
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Table 7.4 Data for Uncertainty Analysis: ISSI Method

Parameter Upper Lower

Coefficient of Variation

(Stress) 0.3 0.2

Coefficient of Variation

(Strength) 0.03 0.06
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Figure 7.3 shows the time-dependent AFWS unavailability
based on three methods: the ISSI, the sguare root, and the
beta factor. The beta factor used in this case is based on
that derived from the ISSI technigue. It can be seen that
the beta factor method gives higher values than ISSI method.
Since the MDFF method and the MGLM yield the same system
unavailability as the ISSI technigue, the beta factor method
gives higher failure probability than these methods. This
illustrates the proposition discussed in chapter 3 that the
beta factor method results in higher failure probability
than the multiple-train approaches. The square root method,
indicated in the Figure as SRT, yields the lowest (probably
underestimates) system unavailability.

Figure 7.4 shows similar results as Figure 7.3, except
that the former is based on the lognormal model while the
latter on the normal model. As discussed before, the
lognormal model yields a higher failure probability than the
normal model.

Figure 7.5 presents the time-dependent beta factor for
the AFWS pumps and valves. The decomposition of the failure
data into a standby failure rate and a failure probability
per demand affects the magnitude of the beta factor. In the
case of valves, since the standby failure rate used is
small, on-demand failure probability dominates. This gives
rise to an essentially constant beta factor. For pumps,
since the standby failure rate used is relatively large, the

beta factor is time-dependent.
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Table 7.5 illustrates the effect of input data
variation on the AFWS wunavailability. The unavailability
based on the LER isAinitially smaller than that based on the
modified RSS data. This is because of the lower demand
failure probability associated with the LER. However, as
time evolves, the higher standby failure rate associated
with the LER data yields a higher system unavailability.

Table 7.6 1illustrates a similar trend for the beta
factor associated with pumps. This 1is again due to the
nature of the standby and on-demand failure data as
discussed above. For valves, shown in Table 7.7, the beta
factor does not change with time for both the PLG and the
modified RSS data.

Table 7.8 summarizes the AFWS unavailability based on
different CCFA methods. As can be seen, a factor of 5000 may
result due to the different approach used. For the case
assuming independence, the results can be a factor of 10
different due to the variation of input data used. For the
cases including CCF, the.difference in results due to the
modelling technigques can be a factor of 50 or larger. 1In
addition, the difference between the upper and lower
estimates vary with the methods used. In the case of the BFR
method and the coupling method a factor of 100 and larger is
observed. In the case of the 1SSI approach, the uncertainty

range is only a factor of 10 or less.

-234-



Table 7.5 Time-dependent AFWS Unavailabilities

Time(Sec) PLG RSS LER
180.0 6.24E-3 |2.8BE-3 | 1.88E-3
360.0 7.09E-3 . |3.66E-3 | 4.05E-3
540.0 7.96E-3 |4.52E-3 | 6.35E-3
720.0 8.86E-3 |5.40E-3 | 8.72E-3

1440.0 1.26E-2 |9.15E-3 | 1.8BE-2
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Table 7.6 Time-dependent Beta Factor Via ISSI: AFWS Pumps

Time (Sec) PLG RSS
180.0 0.142 0.136
360.0 0.157 0.154
540.0 0.168 0.167
720.0 0.177 0.177
900.0 0.184 0.186

1080.0 0.191 0.193

1260.0 0.197 0.198

1440.0 0.202 0.205
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Table 7.7 Time-dependent Beta Factor Via ISSI: AFWS MOVs

Time (Sec) PLG RSS
180.0 0.123 0.098
360.0 0.124 0.098
540.0 0.124 0.098
720.0 0.125 0.099
800.0 0.125 0.09%

1080.0 0.126 0.100

1260.0 0.126 0.1200

1440.0 0.127 0.100
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Table 7.8 AFWS Unavailabilities Via Various Methods

Method Upper Median Lower Data Source

Independent 4.5E-5 3.1E-6 2.2E-7 PLG
3.0E-5 2.7E-7 2.5E-9 LER
BFR 3.4E-3 1.7E-4 8.8E-6 LER
Coupling 1.1E-3 1.7E-4 2.8E-5 PLG
1.3E-2 1.9E-4 2.8E-6 RSS
I1SSI(Normal) |8,.9E-3 4.6E-3 2.4E-3 PLG
5.4E-3 2.4E-3 1.1E-3 RSS
ISSI(Lognor) |1.2E-2 8.3E-3 5.8E-3 PLG
7.5E-3 5.2E-3 3.6E-3 RSS

Beta Factor
(0.2,0.1) 9.9E-3 3.9E-3 1.5E-3 PLG
2,6E-2 3.7E-3 5.2E-4 RSS
ISSI(Nor) 1.1E-2 7.2E-3 4.7E-3 PLG
6.8E-3 4.5E-3 3.0E-3 RSS
1SSI(Logn) 1.4E-2 1.1E-2 8.5E-3 PLG
8.5E-3 6.6E-3 5.2E-3 RSS
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The general characteristics of different CCF modelling
techniques as exemplified in the AFWS study is summarized as
follows:

1. In the case of assuming independence between
identical components, the variation in input data
affects the system unavailability significantly.
While for the cases accounting for CCFs, this
variation does not have as strong effect as the
difference in various CCFA models.

2. The BFR method yields lowest system unavailability
among all CCF modelling techniques studied.

3. The coupling method yields a largest range of system
unavailability.

4. The ISSI method results in smallest range of system
unavailability.

5. In the ISSI approach, the normal model yields a lower
system unavailability than the lognormal model.

6. The conventional beta factor method yields system
unavailability estimates within a factor of two
smaller than the ISSI method.

7. The beta factor derived from the ISSI method gives
greater system unavailability than the ISSI method.
This is expected because the beta factor does not

take into account partial failures.

7.3. Two-train High Pressure Injection System
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The AFWS analyzed in the previous section represents one
of the most important standby systems in a nuclear power
plant. Another important standby system is the HPIS which is
a part of the engineered safeguards. In this section, the
HPIS that typifies a three-loop plant designed by

Westinghouse is studied.

7.3.1 System Description

The two-train HPIS utilizes the pumps and a portion of
the piping of the makeup and purification system to provide
cooling water from borated water storage tank (BWST) to the
reactor coolant system. A simplified schematic diagram for
important components is shown in Figure 7.6.

The following assumptions are made in the analysis:

1. A minimum of two injection lines is assumed to be
sufficient to pass full flow for the analyzed state.

2. All the HPIS support systems are available and an
actuation signal is applied to both trains from the
emergency core cooling actuating system.

3. No credit is taken for operator to recover failed
equipment or to provide flow from alternate sources
over the period of this analysis.

4. The mission time for the HPIS is 24 hours and the
test interval is two months for pumps, 18 months for
valves.

5. Human errors during the maintenance and testing is

not considered.
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For the calculation of the HPIS unavailability, the

following expression is used:
s " Qg ¥ Apte * Ah'fo (7.3.1)
where

Qod = unavailability on demand of a subsystem or a component

Ty = test interval divided by two

Ty = system mission time

A, = subsystem or component standby failure rate
My = subsystem or component running failure rate

The component unavailability 1is then input into the
system eguivalent fault tree or a reliability expression to
obtain the total system unavailability. Figure 7.7 shows a
simplified reliability block diagram for the two-train HPIS.
By an application of combinatorial principle or fault tree

analysis, the total HPIS unavailability expression Q is:

O
"

(ST + PA) (S2 + PB) + (S] + PA) (C X D) + C(B1 + D1)

+

(O(A1 + C1) + (S2 + PB) (A x B) + A(B1 + D1) + B(Al + c1)

* 03+ 0, (7.3.2)

where

Q3=(A X C) (B1 +D1) + (B X D) (Al +C1) + (Al x Bl x C1)
+ (Al x Bl x D1) + (Al x C} x D1) + (Bl x C¥ x D1)
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and

Q =(A x C) (B1 x D) + (B x D) (Al x C1) + (A x Bx Cx D)
+ (A1 x Bl x C1 x DI).

The subsystems shown in Figure 7.7 can be decomposed into

several l-out-of-n confiqurations, shown in Figure 7.8.

7.3.2 Data Base

The failure data used for the two-train HPIS is shown in
Table 7.9. The RSS and PLG data do not distinguish
components in different systems. Thus the pump and the MOV
data are identical to those used in the AFWS study. The LER
data, however, recognizes the system and the configuration
to which the components belong. Thus, the data for pumps

and valves in the HPIS are differnt from those in the AFWS.

7.3.3 CCF Modelling Techniques Studied

Four different CCFA methods are applied. These are the

same methods used for the AFWS study.

7.3.4 Uncertainty Bounds

The same approach for computing the upper and lower
system unavailability used for the AFWS is adopted in this
study. The minor modifications stems from the
stress-strength parameters for the pumps. Since the LER
recognizes the difference in the system to in which the

pumps reside, a different fraction of the total failure
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Table 7.9 Data Base for 2-train HPIS Study

Component Data Type RSS PLG LER
Pump Failure per Demand
Upper 3.0E-3 5.1E-3 0.0
Lower 3.0E-4 5.8E-4 0.0
Median 1.0E-3 1.7E-3 0.0
Failure Rate (/hr)
Upper 3.0E-4 5.1E-5 8.5E-6
Lower 3.0E-6 1.1E-5 3.0E-6
Median 3.0E-5 2.3E-5 5.5E-6
MOV Failure per Demand
Upper 3.0E-3 5.8E-3 0.0
Lower 3.0E-4 6.6E-4 0.0
Median 1.0E-3 2.0E-3 0.0
Failure Rate (/hr)
Upper 1.0E-7 2.4E-7 1,3E-5
Lower 1.0E-9 8.1E-8 1.3E-7
Median 1.0E-8 1.4E-7 3.6E-6
CKV Failure per Demand
Upper 3.0E-4 7.2E-4 0.0
Lower . 3.0E-5 7.7E-5 0.0
Median 3.0E-3 2.4E-4 0.0
Failure Rate (/hr)
Upper 1.0E-7 2.4E-6 4,0E-7
Lower 1.0E-9 2.5E-8 3.7E-8
Median 1.0E-8 2.4E-7 1.2E-7
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probability is attributed to the various causes as discussed

in Chapter 6.

7.3.5 Results

Figure 7.9 presents time-dependent unavailability for
the HPIS based on three different CCF modelling technigques.
The beta factor used in this case is that derived on the
basis of the 1SSI approach. It is evident that the beta
factor yields a higher value for the system unavailability.
The SRT method gives a factor of ten or so lower estimate of
the unavailability.

Figure 7.10 presents results similar to Figure 7.9. The
former, however, is based on the lognormal model, while the
latter is based on the normal model. The results indicate
that the lognomal model yields a higher failure probability,
consistent with the obsevation made in Chapter 6.

Table 7.10 summarizes the HPIS unavailability based on
various methods. Several features can be noted:

1. The difference between the independent case and the

cases including CCFs is not as strong as for the AFWS
study. This is because the HPIS is essentially a
doubly redundant system, while the AFWS is a triply
redundant configuration.

2. The BFR method gives the highest uncertainty range.

This is an exemplification that the statistical
procedures give little information in the case of

small sample size.
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Table 7.10 2-train HPIS Unavailabilities Via Various Methods

Method Upper Median Lower Data Source

Independent 3.5E-4 6.2E-5 1.1E-5 PLG
2.2E-4 1.3E-5 7.2E-7 RSS
BFR 8.7E-2 2.0E-3 4.7E-5 LER
Coupling 1.7E-3 4,3E-4 1.1E-4 PLG
1.5E-3 1.9E-4 2.5E-5 RSS
I1SSI(Normal) [6.7E-3 5.2E-3 4 ,1E-3 PLG
2.4E-3 1.4E-3 7.6E-4 RSS
1SSi(Lognor) |9.1E-3 7.8E-3 6.7E-3 PLG
3.4E-3 2.5E-3 1.BE-3 RSS

Beta Factor
(0.2,0.1) 5.3-3 | 2.2E-3 | 8.8E-4 PLG
3,9E-3 9.5E-4 2.3E-4 RSS
ISSI(Nor) 7.9E-3 6.7E-3 5.7E-3 PLG
2.8E-3 1.6E-3 9.7E-4 RSS
1SSI(Logn) 1.0E-2 9.2E-3 8.5E-3 PLG
3.6E-3 2.7E-3 2.1E-3 RSS
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3. The coupling method seems to yield lower values than
other CCFA methods. For higher redundancies, to be
discussed in section 7.4, this effect is even
stronger,

4. The ISSI approach seems to give somewhat higher values
than the BFR. This may stem from the consideration of
all the failure causes and not just the events that
have actually occurred, as considered in the BFR.

In addition, the uncertainty interval associated with
the ISSI is the narrowest among all CCFA methods.
This is likely due to the engineering considerations
that have been incorporated as demonstrated in the

previous chapter.

5. The ISSI method can be used to estimate beta factors.
The factor so calculated are compared to normally
used values of the beta factor. It is interesting to
note that in this 2-train case the values from the

different methods are within a factor of 2.

7.4 Four-train High Pressure Safety Injection System

The major difference between the HPIS studied in section
7.3 and the 4-train HPSI system is the addition of two HPSI
pump trains. The design typifies a four-loop plant designed

by Westinghouse.

7.4.1 System Description
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The major components of the 4-train high pressure safety
injection (HPSI) system are the charging and HPSI pumps,
along with the associated piping, valves and control
circuitry.

Two of the three charging pumps are normally used for
the chemical and volume control system. These two pumps are
rotated on a monthly basis so that one pump is always
operating. When the safeguards actuation signal is received,
the injection mode of operation is automatically initiated.
The non-operating charging pump is started and both it and
the running pump are realigned to take suction from the
refueling water storage tank (RWST), discharging into the
reactor coolant system (RCS) cold legs (one in each of the
four RCS loops). As a simplification, the analysis only
models two of the three charging pumps.

During the normal operation, the two HPSI pumps are not
in operation but are prealigned to the RWST. When the
safeguards actuation signal is received, both pumps start,
taking suction from the RWST and discharging to the RCS cold
legs.

A simplified diagram of the HPSI system appears in
Figure 7.11. The results of the two-train HPIS studied in
the previous section indicate that the dominant contributors
to the system unavailability come from the pumps and valves
upstream of the injection header, not from the injection
trains. In this analysis, we analyze the system including

only the components upstream of the injection header. Since
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the MOVs in the HPSI pump trains are prealigned to the RWST
and are normally open, they are ignored in the
unavailabilitycalculation. The HPSI system thus essentially
reduces to a four-train system. Figure 7.12 shows the
reliability block diagram for this system.

Two cases are analyzed. The first assumes that the
charging pumps and the HPSI pumps are independent, denoted
as a diverse case. The other considers that the charging
pumps and the HPSI pumps are identical, denoted as redundant

case.

7.4.2 Data Base

Table 7.11 summarizes the failure data used for the
four-train HPSI system. The components S1 and S2 refer to
the suction valves upstream of the charging pumps. D1 and D2
refer to the discharge valves downstream of the charging
pumps. P1 and P2 refer to the charging pumps. P3 and P4
refer to the HPSI pumps. The results of the two-train HPIS
analysis suggest that these are the only significant
contributors. The data presented in Table 7.11 is thus

sufficient to calculate the system unavailability.

7.4.3 CCF Modelling Techniques Considered

For both the diverse and redundant cases, the four
methods studied in the previous sections are included. These
are the BFR, the coupling, the ISSI and the beta factor

methods.
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7.4.4 Uncertainty Analysis

The approach adopted in the uncertainty bound
calculation 1is identical to that used in previous sections.
For the I1SSI technigue, the same set of the stress-strength
parameters is used. For other approaches, the upper and
lower values of failure probability presented in Table 7.11

are used.

7.4.5 Results

Table 7.12 and Table 7.13 summarize the system
unavailability obtained by adopting various methods for the
diverse and the redundant case, respectively. It is of
interest to compare the 4-train and 2-train HPIS.

Results indicate that a drastic reduction, for the diverse
case, in the system unavailability for all the CCFA methods
except the coupling method. This suggests that the coupling
method seems to underestimate the unavailability by almost a
factor of 10,000,

The general trend observed previously still holds:

1. The I1SSI technigue yields a smallest uncertainty

interval estimates for the system unavailability.
2. The beta factor, given the same information as the
ISSI, gives most conservative estimates.

3. The BFR method consistently produces smaller system
unavailability than the ISSI approach and the beta
factor method. In addition, the uncertainty

associated with the BFR method is larger than the
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Table 7.11 Data Base for 4-train HPIS Study

Component Upper Median Lower

s1 7.0E-4 5.7E-4 4,.6E-4
S2 7.0E-4 5.7E-¢ 4.6E-4
D1 9.7E-3 1.1E-3 1.3E-4
D2 S.7eE-3 1.1E-3 1.3E-4
Pl 2,9E-3 1.3E-3 5.8E-4
P2 2.9E-3 1.3E-3 5.8E-4
P3 6.9E-3 2.1E-3 6.4E-4
P4 6.%E-3 2.1E-3 6.4E-4
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Table 7.12 4-train HPIS Unavailabilities

Via Various Methods: Diverse Case

Method Upper Median Lower Data Source
Independent 4.9E-9 1.1E-11 2.3E-14 | Table 7.11
BFR 5.1E-7 1.5E-9 4.3E-12 LER
Coupling 6.4E-7 1.6E-8 4.1E-10 Table 7.11
ISSI(Normal) |6.4E-7 2.2E-7 7.5E-8 Table 7.11
1SSI(Lognor) |1.1E-6 6.4E-7 3.7E-7 Table 7.11
Beta Factor

(0.2,0.1) 2.4E-6 4,9E-7 1.0E-7 Table 7.11
I1SSI(Nor) 6.4E-7 2.2E-7 7.5E-8 Table 7.11
1SSI(Lognor) |1.1E-6 6.4E-7 3.7E-7 Table 7.11
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Table 7.13 4-train HPIS Unavailabilities

Via Various Methods: Redundant Case

Method Upper Median Lowver Data Source
Independent |4.9E-9 1.1E-11 2.3E-14 | Table 7.11
BFR 3.2E-4 1.2E-6 4.3E-7 LER
Coupling 1.0E-6 9.1E-8 8.2E-9 Table 7.11
1SSI (Normal) |2.6E-4 9.4E-5 3.4E-5 Table 7.11
1SSI(Lognor) |4.4E-4 2.6E-4 1.5E-4 Table 7.11
Beta Factor

(0.2,0.1) 1.6E-3 5.4E-4 1.8E-4 Table 7.11
ISSI(Nor) 6.9E-4 4.2E-4 2.6E-4 Table 7.11
I1SSI(Logn) 8.9E-4 .5.38-4 3.1E-4 Table 7.11
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ISSI method or the beta factor method.
The coupling method yields the smallest system

unavailability and the largest uncertainty compared

with other methods.

The ISSI method can be used to estimate beta factors.
The factor so calculated are compared to conventional
values of the beta factor. It is interesting to

note that in this 4-train case the median for the

conventional method is even closer to those based

on the ISSI methods.
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Chapter 8

Conclusions And Recommendations

8.1 Conclusions

We have established that the difficulties associated
with the CCFA arise from i) discrepancies in the definition,
ii) the 1lack of an appropriate data base, and iii) the
choice of adequate modelling techniques. The scarcity of the
CCF occurrences due to the highly reliable performance of
the nuclear safety systems makes the statistical approaches
inefficient. The discrepancies of the CCF definition impede
the progress of the CCFA. The choice of adequate CCF
modelling techniques baffles reliability analysts since no
single technique can cover every aspect of the CCFs.
Furthermore, because of the sparseness of data, no useful
criterion can serve as a measure of the adequacy of a
particular model.

The conventional beta factor method does not take into
account partial failures. For multiple-train (i.e. three or
more trains) systems, the more realistic approach would be
either the MDFF method or MGLM. However, there is a serious
lack of adeguate data to determine the parameters in these
methods.

The 1SS!I technique proposed in this thesis represents a
step forward in modelling the failures due to association of

identical components during their entire 1life cycle, a
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special kind of CCF. The data requirement is inherently
different from that of statistical approaches. Instead of
making use of 1life-time data, the stress and the strength
corresponding to root causes are identified and quantified.
This approach thus combines the engineering knowledge and
statistical procedures to quantify the multiple failure
probabilities. The parameters in the MDFF method and the
MGLM can then be evaluated by converting the multiple
failure probability based on the ISSI method.

Based on the LER coding scheme for failure occurrences,
we have 1identified tribological mechanisms and foreign
material contamination as two major failure contributors.
The coefficient of variation used for the calculation of CCF
probabilities were obtained from wear-related literature.
The engineering considerations indicate that the value of
the coefficient of variation for the stress is 0.2 - 0.5,
while that for the strength is 0.03 -0.06.

Applications to the pumps and valves in nuclear power
plants also indicate that the uncertainty in the
unavailability estimates of the components seems greatly
reduced. This in turn leads to the narrowing of the range of
the unavailability estimates for systems that are composed
of redundant pumps and valves,

For multiple-train systems, this study showed that CCFs
reduce drastically the system availability that is based on
the assumption of independent failures. The coupling method

yields an unresonably low value of multiple failure

-262-



probability. The BFR method takes into account partial
failures, but possesses large uncertainty. The ISSI approach
gives results with least uncertainty, although the median
values for multiple failure probability so obtained are

slightly higher,

This study suggests that the ISSI method is a promising
alternative to estimate QCF probabilities. The method will
be particularly valuable when:

(1) Component-specific and system specific values are

needed.

(2) Failure data are scarce.

(3) Level of redundancy is high.

(4) Uncertainty needs to be quantified.
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8.2 Recommendations

The recommendations based on the present investigation
pertain to three areas:

1. CCF Modelling

- ©Use the ISSI techniques more widely

The results of this study suggest that the 1ISSI
technigque captures the essence of the coupled failures. In
addition, by incorporating the engineering knowledge, one
not only reduces the uncertainty but also obtains
substantial insights into the significant factors that
control the failures. It is thus recommended that the ISSI
techniques be more widely used to evaluate CCFs for highly
reliable systems.

2. Engineering Practices

- Devote more attention to tribology and cleanliness

We have identified tribological and foreign material
contamination as two major contributors for CCFs. It is
recommended that more research effort be dedicated to the
consideration of these failure causes to reduce the
probability of failures. The CCF probability will then be
reduced accordingly.

- Include uncertainty statements in engineering studies

By its very nature, every engineering process exhibits
statistical fluctuations. This variation with respect to
space and time is mainly due to hidden conditions or causes

beyond our control. In order to get a feel for the degree of

confidence for a given experiment or analysis, it is useful
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to state the uncertainty associated with the endeavor. This
uncertainty statement can then be used in the ISSI framework
to facilitate the CCFA. Additionally, by conscientiously
quantifying the uncertainty, one can identify where to spend
the time and effort most effectively.

- Develop more cooperation between engineers and

statisticians

Based on the 1illustration described in Chapter 6, one
recognizes that engineers play an important role in
interpreting, identifying and quantifying the failure
causes. On the other hand, statisticians provide efficient
tools to determine the single component failure probability.
It is thus important to coordinate the perspectives of the
engineers and those of statisticians to obtain realistic
results efficiently. It appears that the prevailing practice
is that once the LER have been codified, the engineer seems
not to participate in the data analysis.

3. Future Work

- Extend the ISSI approach to cascade failures

Throughout this study, we have focused attention only on
the coupled failures. The cascade failures have been
neglected due to the limitation of information. To model
cascade failures, as indicated previously, require a
substantial advancement in our understanding about the
stresses imposed on the intact by the failed components. Few
studies have addressed this subject.

- Extend the ISSI approach to accident conditions

-265-



An example of accident condition is the loss of service
water. This would give rise to a severe environmental
condition for the HPIS pumps and the charging pumps, because
of the loss of lube o0il cooling. Additional research in this
area would be useful for the equipment qualification under
severe conditions,

- Extend the ISSI approach to human errors

It has been recognized that human errors play a crucial
role in the performance of the standby safety systems. If
managerial procedures would not eliminate human error at
all, it would be of interest to understand and evaluate the
factors that influence the performance of operators in
various tasks. The CCF probability could then be assessed
by adopting the 1SSI approach. A great deal of knowledge

needs to be improved before this can be achieved, however.
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Appendix A

Compuatational Aspects of the ISSI Method

A.l1 Introduction

The approach wused in this thesis is based on the ISSI
method. The method includes two important steps in which
numerical calculations are involved. The first is concerned
with the inversion of a single failure probability for the
component, The other 1is related to the evaluation of
integrals for the multiple failure probability.

The components in commercial nuclear power plants
usually are designed to have lower failure rate. Typically,
the failure rate is on the order of 1,0E-6/hr or less. The
common normal table generally only gives values as small as
1.0E-4, leaving somthing to be desired. Several computer
programs have been developed to facilitate the nemerical
computation.

A.2 The Normal Distribution

As discussed previously, the expressions for both simple
and multiple failure probabilities have been derived for
different underlying stress and strength models. However,
for the models studied, the expressions are similar in form.
It suffices to discuss the normal models. For all other
models, the same procedure applies.

Use is made of the error function
ly

erf(y) = & n32j . exp(-t2)dt (A-1)
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to  compute the cumulative distribution function of
standardized normal random variables. In the expressions for
failure probabilities on the basis of the SSI, the follwing

is involved:

1 rx
o(x)= (21)2 | dt exp(-5t7) (A-2)

A simple algebraic manipulation gives

o(x)= [1+sign(x)erf(|x|/v2)]1/2 (A-3)

To numerically integrate any functions, the well-known
Simpson's rule was used. The follwing formula represents

this numerical scheme:

X
h
J J+2 dx f(X) = 3[ fj+4f:)+1+fj+2] (A‘4)

X

A-3 The Inversion of Single Failure Probability
One of the key steps in the ISSI method is to find the
inverse of a single failure probability. The following
discussion indicates the approach used in this study.
To solve the eguation P = ¢ (x) for x when P is given,
0 <p<1, let f(x) = &(x) - P and compute by

Newton-Ralphson iteration {2}.

Xy o= ox, - E(x) /£ (%), (is1,...m) (A-5)
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where

1
£r(x) = (2 TT)zexp ( - 0.5 yz)
and

%Xy is some suitably chosen starting approximation.

1f m=2, x5 is given by the rational approximation

a+bt+ct?
= ¢t - 5 3—, t =Vlﬂ(1/Q2 ’ 0<Q=1~p<0.5 (A-G)
l+dt+et™+ft

X

S

1f Pb< P < 1-P and PO=10- , then as a rule of thumb the

error is smaller than 16411'5)

for 1 < s < 9. This degree
of accuracy should be adequate for our purposes. The

constants used above are:{3}

a = 2,515517, b = 0.802853, ¢ = 0.010328
d = 1.432788, e = 0.,189269, £ = 0.001308 (A-7)

Seven computer programs have been developed to
facilitate the numerical evaluations of multiple failure

probabilities. These are:

1. For Normal Model
a. COM1: when safety factor is approximately one

b. COM2: when VS and M are known

c. COM3: when VR and VS are known

d. COM4: when VR and M are known
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2. For Lognomal Model

a. COM3L: when VR and VS are known
3. For Normal-Lognormal Model

a. COM3Al: when VR and Vs are known
4, For Lognormal-Normal Model

a. COM3A2: when VR and Vé are known

The listings of these programs are presented in the

follwing pages.
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* File coml fortran
301 READ(5,100)B,P,S,N
100 FORMAT(3E13.5,15)

15
16

K=1

AKA=-CDFNI (P)

R=B*S

P=CDFN(~AKA)

WRITE(6,3)AKA

FORMAT (10X, 'AKA=',E13.6)
UR=AKA*SQRT(B*B+1.)*S+1,0
WRITE(6,4)R,P
FORMAT(10X,'R=',E12.5,'P=',E12.5)

IF (R.LE.0)STOP

WRITE(6,7)UR,S

FORMAT (10X, 'UR=",E12.5,'S="',E12.5)

1F (UR.LT.0.OR.S.LT.0.)STOP

US=1.0

A1=0.398942280/S

TOT=0.

XL=US-8.*S

XU=UR+8.*S

CON=0.000001 ,

IF (P.LT.CON)XL=US-12.*S

IF (P.LT.CON)XU=UR+12.*S

H= (XU-XL) /N

DO 10 I=1,N,2

X1=XL+(I-1)*H

X2=X1+H

X3=X2+H

XX=(X1-US)/S

XX1=-.5*XX*XX

IF(XX1.LT.-20.) GO TO 15
EXX1=A1*EXP(XX1)

YY=(X1-UR) /R
IF(K.EQ.1)F1=EXX1*CDFN (YY)
IF(K.EQ.2)F1=EXX1*CDFN(YY)*CDFN(YY)
IF(K.EQ.3)F1=EXX1*CDFN(YY)*CDFN(YY)*CDFN(YY)
IF(K.EQ.4)F1=EXX1*CDFN(YY)*CDFN(YY)*CDFN(YY)*CDFN(YY)
GO TO 16

F1=0.0

AXX=(X2-US)/S

AXX1=-.5*AXX*AXX

AEXX1=A1*EXP (AXX1)

AYY=(X2-UR)/R

BXX=(X3-US) /S

1F (K.EQ.1)F2=AEXX1*CDFN(AYY)

IF (K.EQ.2)}F2=AEXX1*CDFN(AYY)*CDFN(AYY)
IF (K.EQ.3)F2=AEXX1*CDFN(AYY)*CDFN(AYY)*CDFN(AYY)
1F(K.EQ.4)F2=AEXX1*CDFN(AYY)*CDFN(AYY)*CDFN(AYY)*CDFN(AYY)
BXX1=-.5*BXX*BXX

BEXX1=A1*EXP (BXX1)

BYY=(X3-UR) /R
IF(K.EQ.1)F3=BEXX1*CDFN(BYY)

1F (K.EQ.2)F3=BEXX1*CDFN(BYY)*CDFN(BYY)
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10

311
C 312
101

IF(K.EQ.3)F3=BEXX1*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)
IF(K.EQ.4)F3=BEXX1*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)
GO TO 10

TOT=TOT+H* (F1+4.*F2+F3) /3.0
WRITE(6,74)TOT,H

FORMAT (10X, 'TOT=',F12.8,'H=",F12.8)
WRITE(6,311)TOT

FORMAT(5X,T10, 'FAILURE PROBABILITY',1PG12.5)
WRITE(6,312)

FORMAT (10X, ' INPUT DATA KK I5 =0 MEANS STOP')
READ(5,101)KK

FORMAT(15)

K=KK

IF(KK.EQ.0)GO TO 9

IF(KK.EQ.6)GO TO 301

GO TO 5

STOP

END
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* File com2 fortran
301 READ(5,100)SM™M,S,P,N,US
100 FORMAT(3E10.5,15,E10.5)

15
16

17
28

K=1

AKA=-CDFNI (P)

RR=( (SM-1.)/(AKA*SM) ) **2-(S/SM)**2
IF(RR.LT.0.)STOP

R=SQRT (RR)

P=CDFN (-AKA)

WRITE(6,3)ARA

FORMAT (10X, 'AKA=",E13.6)
WRITE(6,4)R,P

UR=SM .
FORMAT(10X,'R=',E12.5,'P=",E12.5)
IF(R.LE.0)STOP

WRITE(6,7)UR,S
FORMAT(10X,'UR=',E12.5,'S=",E12.5)
IF(UR,LT.0.0R.S.LT.0.)STOP
A1=0.398942280/S

TOT=0.

XL=1,-8.*%S

XU=UR+8.*R

CON=0.000001

IF(P.LT.CON)XL=1.-12,*S
IF(P.LT.CON)XU=UR+12.*R

H=(XU-XL) /N

DO 10 I=1,N,2

X1=XL+(I-1)*H

X2=X1+H

X3=X2+H

XX=(X1-1.)/S

XX1=-,5*XX*XX

IF(XX1.LT.-20.) GO TO 15
EXX1=A1*EXP(XX1)

YY=(X1-UR)/(SM*R)
IF(K.EQ.1)F1=EXX1*CDFN(YY)
IF(K.EQ.2)F1=EXX1*CDFN(YY)*CDFN (YY)
IF(K.EQ.3)F1=EXX1*CDFN(YY)*CDFN(YY)*CDFN (YY)
IF(K.EQ.4)F1=EXX1*CDFN(YY)*CDFN(YY)*CDFN(YY)*CDFN (YY)
GO TO 16

F1=0,0

AXX=(X2-1.)/S

AXX1=-,5*AXX*AXX

IF(AXX1.LT.-20.) GO TO 17
AEXX1=A1*EXP (AXX1)

AYY=(X2-UR)/(SM*R)

BXX=(X3-1.)/S
IF(K.EQ.1)F2=AEXX1*CDFN (AYY)
IF(K.EQ.2)F2=AEXX1*CDFN (AYY)*CDFN(AYY)
IF(K.EQ.3)F2=AEXX1*CDFN(AYY)*CDFN(AYY)*CDFN(AYY)
IF(K.EQ.4)F2=AEXX1*CDFN (AYY)*CDFN(AYY)*CDFN (AYY)*CDFN (AYY)
GO TO 28

F2=0.0

BXX1=-,5*BXX*BXX
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18
10

C 74
311
C 312
101

IF(BXX1.LT.-20.) GO TO 18

BEXX1=A1*EXP(BXX1)

BYY=(X3-UR)/(SM*R)

IF (K.EQ.1)F3=BEXX1*CDFN (BYY)

IF (K.EQ.2)F3=BEXX1*CDFN (BYY)*CDFN (BYY)
IF(K.EQ.3)F3=BEXX1*CDFN(BYY)*CDFN (BYY)*CDFN(BYY)
IF(K.EQ.4)F3=BEXX1*CDFN (BYY)*CDFN (BYY)*CDFN(BYY)*CDFN(BYY)
GO TO 10

F3=0.0

TOT=TOT+H* (F1+4 .*F2+F3) /3.0
WRITE(6,74)TOT,H

FORMAT (10X, 'TOT=',F12,.8,'H=',F12.8)
WRITE(6,311)TOT

FORMAT(5X,T10,'FAILURE PROBABILITY',1PG12.5)
WRITE(6,312)

FORMAT (10X, ' INPUT DATA KK I5 =0 MEANS STOP')
READ(5,101)KK

FORMAT(15)

K=KK

IF(KK.EQ.0)GO TO 9

IF(KK.EQ.6)GO TO 301

GO TO 5

STOP

END
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* file com3 fortran
301 READ(5,100)R,S,P,N
100 FORMAT(3E10.5,15)

15
16

17
18

K=1

AKA=-CDFNI (P)

P=CDFN(-AKA)

WRITE(6,3)AKA
FORMAT(10X,'AKA=',E13.6)
WRITE(6,4)R,P

DD1=AKA**2*S*%2-1
DD2=AKA**2*R**2-1,
UR=(-1.-SQRT(1.-DD1*DD2))/DD2
FORMAT(10X,'R=',E12.5,'P="',E12.5)
IF(R.LE.0)STOP

WRITE(6,7)UR,S
FORMAT(10X,'UR=',E12.5,'S=",E12.5)
IF (UR.LT.0.OR.S.LT.0.)STOP

SM=UR

US=1.0

A1=0,398942280/S

TOT=0.

XL=US-12.*S

XU=UR+12,*S

H=(XU-XL) /N

DO 10 I=1,N,2

X1=XL+(I-1)*H

X2=X1+H

X3=X2+H

XX=(X1-US) /S

XX1=-.5*XX*XX

IF (XX1.LT.-20.) GO TO 15
EXX1=A1*EXP(XX1)

Y¥=(X1-SM) /(R*SM)
IF(K.EQ.1)F1=EXX1*CDFN (YY)
IF(K.EQ.2)F1=EXX1*CDFN(YY)*CDFN(YY)
IF(K.EQ.3)F1=EXX1*CDFN(YY)*CDFN(YY)*CDFN (YY)
IF(K.EQ.4)F1=EXX1*CDFN(YY)*CDFN(YY)*CDFN(YY)*CDFN(YY)
GO TO 16

F1=0.0

AXX=(X2-US)/S

AXX1=-,5*AXX*AXX

IF (AXX1.LT.-20.) GO TO 17
AEXX1=A1*EXP (AXX1)
AYY=(X2-SM)/(SM*R)

BXX=(X3-US)/S
IF(K.EQ.1)F2=AEXX1*CDFN(AYY)
IF(K.EQ.2)F2=AEXX1*CDFN(AYY)*CDFN(AYY)
IF(K.EQ.3)F2=AEXX1*CDFN(AYY)*CDFN(AYY)*CDFN (AYY)
IF(K.EQ.4)F2=AEXX1*CDFN(AYY)*CDFN(AYY)*CDFN(AYY)*CDFN(AYY)
GO TO 18

F2=0.0

BXX1=-,5*BXX*BXX

IF (BXX1.LT.-20.) GO TO 19
BEXX1=A1*EXP (BXX1)
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19

74

311
312
101

@ o0 Ui W N

10
11

12

BYY=(X3-SM)/(SM*R)
IF(K.EQ.1)F3=BEXX1*CDFN(BYY)
IF(K.EQ.2)F3=BEXX1*CDFN(BYY)*CDFN(BYY)
IF(K.EQ.3)F3=BEXX1*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)
IF(K.EQ.4)F3=BEXX1*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)
GO TO 10

F3=0.0

TOT=TOT+H* (F1+4 . *F2+F3) /3.0

TOTL=ALOG (TOT)

WRITE(6,74)TOT,H

FORMAT (10X, 'TOT=',F12.8,'H="',F12.8)
WRITE(6,311)TOT, TOTL |

FORMAT(5X,T10, 'FAILURE PROB.',1PG12.5,5X,E13.6)
WRITE(6,312)

FORMAT (10X, 'INPUT DATA KK I5 =0 MEANS STOP')
READ(5,101)KK

FORMAT(15)

K=KK

IF(KK.EQ.0)GO TO 9

1F(KK.EQ.6)GO TO 301

GO TO 5

STOP

END

FUNCTION CDFNI (P)

DOUBLE PRECISION Q,A,X,R,T,DCON,P,CDFN

R=P

NN=1

Q=1.-P

IF(R)1,3,4

PRINT 2,P

FORMAT(30H ILLEGAL ARGUMENT IN CDFNI P=,E20.10)
STOP

CDFNI=-7,

RETURN

IF(1.-R)1,5,6

CDFNI=7.

RETURN

IF(R-.5)9,7,8

CDFNI=0.

RETURN

R=1.-R

NN=2

Q=P

IF(R-1.E-10)10,11,11

x=6.41

GO TO 14

T=SQRT(DLOG(1./(R*R)))
X=T-((.010328*T+.802853)*T+2,515517)/(((.001308*T+,189269)*T
1 +1.432788)*T+1.)

LL=1

DO 13 1=1,2

LL=LL+1

DCON=,3989422804*DEXP(-.5*X*X)

X=X~ ( (CDFN(X)~-Q)/DCON)
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A=CDFN(X)-0Q
500 FORMAT(10X,'X=',E17.11,'A=',E17.11)
13 CONTINUE
14 GO TO (15,16),NN
15 CDFNI=-X
RETURN
16 CDFNI=X
WRITE(6,17)
17 FORMAT('LEAVE CDFNI')
RETURN
END
FUNCTION CDFN(X)
DOUBLE PRECISION Y,X,CDFN
Y=X*0.70710678119
SGNY=1.
1F(Y)2,1,3
1 CDFN=.5
RETURN
2 SGNY=-1,
Y=-Y
3 CDFN=.5+SGNY*0.5*DERF (Y)
RETURN
END
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* File comé4 fortran

100

15
16

READ(5,100)SM,R,P,N

FORMAT(3E10.5,15)

K=1

AKA=-CDFNI (P)
SS=((SM-1,)/(AKA))**2-R¥x*2*%GMk*2
IF(SS.LT.0.)STOP

S=SQRT(SS)

P=CDFN({-AKA)

WRITE(6,3)AKA

FORMAT (10X, 'AKA=',E13.6)
WRITE(6,4)R,P

UR=SM
FORMAT(10X,'R=',E12,.5,'P=',E12,5)
IF(R.LE.O0)STOP

WRITE(6,7)UR,S

FORMAT (10X, 'UR=',E12.5,'S=',E12.,5)
I1F(UR.LT.0.0OR.S.LT.0.)STOP

US=1.0

A1=0.398942280/S

TOT=0.

XL=US-8.*S

XU=UR+8.*R

CON=0,000001

IF(P.LT.CON)XL=US-12.*S
IF(P.LT.CON)XU=UR+12.*R

H=(XU-XL) /N

DO 10 I=1,N,2

X1=XL+(I-1)*H

X2=X1+H

X3=X2+H

XX=(X1-US)/S

XX1=-, 5*XX*XX

IF(XX1.LT.-20.) GO TO 15
EXX1=A1*EXP(XX1)

Y¥=(X1-UR)/(SM*R)
IF(K.EQ.1)F1=EXX1*CDFN(YY)
IF(K.EQ.2)F1=EXX1*CDFN(YY)*CDFN(YY)
IF(K.EQ.3)F1=EXX1*CDFN(YY)*CDFN (YY) *CDFN(YY)
IF(K.EQ.4)F1=EXX1*CDFN(YY)*CDFN(YY)*CDFN(YY)*CDFN(YY)
GO TO 16

F1=0.0

AXX=(X2-US)/S

AXX1=-,5*AXX*AXX

AEXX1=A1*EXP(AXX1)

AYY=(X2-UR)/(SM*R)

BXX=(X3-US) /S
IF(K.EQ.1)F2=AEXX1*CDFN(AYY)
IF(K.EQ.2)F2=AEXX1*CDFN (AYY)*CDFN(AYY)
IF(K.EQ.3)F2=AEXX1*CDFN(AYY)*CDFN(AYY)*CDFN(AYY)
IF(K.EQ.4)F2=AEXX1*CDFN (AYY)*CDFN(AYY)*CDFN(AYY)*CDFN (AYY)
BXX1=-.5*BXX*BXX ~
BEXX1=A1*EXP(BXX1)

BYY=(X3-UR)/(SM*R)
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10

311
C 312
101

IF(K.EQ.1)F3=BEXX1*CDFN(BYY)

IF(K.EQ.2)F3=BEXX1*CDFN (BYY)*CDFN(BYY)
IF(K.EQ.3)F3=BEXX1*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)
IF(K.EQ64)F3=BEXXl*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)
GO TO 1

TOT=TOT+H* (F1+4.*F2+F3) /3.0
WRITE(6,74)TOT,H

FORMAT (10X, 'TOT=',F12.8, 'H=",F12.8)
WRITE(6,311)TOT

FORMAT(5X,T10,'FAILURE PROBABILITY',1PG12.5)
WRITE(6,312)

FORMAT(10X,'INPUT DATA KK 15 =0 MEANS STOP')
READ(5,101)KK

FORMAT(I5)

K=KK

IF(KK.EQ.0)GO TO 9

GO TO §

STOP

END
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* com31l fortran
301 READ(5,100)R,S,P,N
100 FORMAT(3E10.5,15)

15
16

17
18

K=1

AKA=-CDFNI(P)

P=CDFN(-AKA)

WRITE(6,3)AKA,P

FORMAT(10X, 'AKA="',E13,6,'P=',E13,6)
WRITE(6,7)R,S
FORMAT(10X,'R="',E12,5,'S="',E12.5)
DD1=S**2

DD2=R**2

UR=AKA*SQRT(DD1+DD2)

SM=UR

IF(R.LE.O)STOP
IF(UR.LT.0.0R.S.LT.0.)STOP
A1=0.398942280/S

TOT=0.

XL=US~-12.*S

XU=UR+12.*S

IF (URQLTQUS)XL=UR-12 .*S
IF(UR.LT.US)XU=US+12,*S

H= (XU-XL) /N

IF(H.LT.0.0)STOP

DO 10 I=1,N,2

X1=XL+(I-1)*H

X2=X1+H

X3=X2+H

XX=X1/S

XX1=-,5*XX*XX

IF(XX1.LT.-20.) GO TO 15
EXX1=A1*EXP(XX1)

Y¥=(X1-UR) /R
IF(K.EQ.1)F1=EXX1*CDFN(YY)
IF(K.EQ.2)F1=EXX1*CDFN(YY)*CDFN(YY)
IF(K.EQ.3)F1=EXX1*CDFN(YY)*CDFN(YY)*CDFN(YY)
IF(K.EQ. 4)Fl‘EXXl*CDFN(YY)*CDFN(YY)*CDFN(YY)*CDFN(YY)
GO TO 16

F1=0.0

AXX=X2/S

AXX1=-,5*AXX*AXX

IF(AXX1.LT.-20.) GO TO 17
AEXX1=A1*EXP(AXX1)

AYY=(X2-UR) /R

BXX=X3/S

IF(K.EQ.1)F2=AEXX1*CDFN(AYY)
IF(K.EQ.2)F2=AEXX1*CDFN(AYY)*CDFN(AYY)
IF(K.EQ.3)F2=AEXX1*CDFN(AYY)*CDFN(AYY)*CDFN(AYY)
IF(K.EQ.4)F2=AEXX1*CDFN(AYY)*CDFN(AYY)*CDFN(AYY)*CDFN(AYY)
GO TO 18

BXX1=-,5*BXX*BXX

IF(BXX1.LT.-20.) GO TO 19
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18
10

C 74
311

C 312
101

BEXX1=A1*EXP (BXX1)

BYY=(X3-UR)/R

IF(K.EQ.1)F3=BEXX1*CDFN(BYY)
IF(K.EQ.2)F3=BEXX1*CDFN(BYY)*CDFN(BYY)
IF(K.EQ.3)F3=BEXX1*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)
IF(K.EQ.4)F3=BEXX1*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)
GO TO 10

F3=0.0

TOT=TOT+H* (F1+4 ,*F2+F3) /3.0

IF(TOT.LE.O.)STOP

TOTL=ALOG ( TOT)

WRITE(6,74)TOT,H

FORMAT(10X,'TOT=',;F12.8, 'H=",F12.8)
WRITE(6,311)TOT, TOTL

FORMAT(5X,T10, 'FAILURE PROB.',1PG12.5,5X,E13.6)
WRITE(6,312)

FORMAT (10X, ' INPUT DATA KK I5 =0 MEANS STOP')
READ(5,101)KK

FORMAT(15)

K=KK

IF(KK.EQ.0)GO TO 9

IF (KK.EQ.6)GO TO 301

GO TO 5

STOP

END
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* File com3al fortran
301 READ(5,100)R,S,P,N,US
100 FORMAT(3E10.5,15,E10.5)
K=1
ITER=0
AKA=-CDFNI (P)
P=CDFN(~-AKA)
WRITE(6,3)AKA
3 FORMAT(10X, 'AKA="',E13.6)
WRITE(6,4)R,P
DD1=AKA**2*S**2-]1
DD2=AKA**2%R**2-1
UR=(-1.-SQRT(1.-DD1*DD2))/DD2 -
CCl=8**2
CC2=R**2
URP=AKA*SQRT(CC1+CC2)
4 FORMAT(10X,'R=',E12.5,'P="',E12.5)
IF(R.LE.O)STOP
20 WRITE(6,7)UR,S,URP
7 FORMAT(10X,'UR=',E12.5,'S=',E12.5,'URP="',E12,5)
IF(UR.LT.0.0R.S.LT.0.)STOP
IF(URP.LT.0)STOP
SM=UR
A1=0,.398942280/S
5 TOT=0.
XL=US-12.*S
XU=UR+12.*S
IF(UR.LT.US)XL=UR-12.*S
IF(UR.LT.US)XU=US+12,*S
H=(XU-XL) /N
IF(H.LT.0.0)STOP
IF(XL.LT.0.0)XL=H
DO 10 I=1,N,2
X1=XL+(I-1)*H
X2=X1+H
X3=X2+H
XX=(X1-1,)/S
XX1=-,5%*XX*XX
IF(XX1.LT.-20.) GO TO 15
EXX1=A1*EXP(XX1)
IF(X1.LE.O.)STOP
YY=(ALOG(X1)-SM) /R
IF(K.EQ.1)F1=EXX1*CDFN(YY)
IF(K.EQ.2)F1=EXX1*CDFN(YY)*CDFN(YY)
IF(K.EQ.3)F1=EXX1*CDFN(YY)*CDFN(YY)*CDFN(YY)
IF(K.EQ.4)F1=EXX1*CDFN(YY)*CDFN(YY)*CDFN(YY)*CDFN(YY)
GO TO 16
15 F1=0.0
16 AXX=(X2-1.)/S
AXX1=-,5*AXX*AXX
IF(AXX1.LE.-20.)GO TO 17
AEXX1=A1*EXP(AXX1)
IF(X2.LE.0.0)STOP
AYY=(ALOG(X2)-SM)/R
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17
18

29
10

310

70

311
101

AYY=(X2-SM-ALOG(US))/R

IF(AYY.LE.-7.0)GO TO 17

BXX=(X3-1.)/S

IF(K.EQ.1)F2=AEXX1*CDFN(AYY)
IF(K.EQ.2)F2=AEXX1*CDFN(AYY)*CDFN(AYY)
IF(K.EQ.3)F2=AEXX1*CDFN(AYY)*CDFN(AYY)*CDFN(AYY)
IF(K.EQ.4)F2=AEXX1*CDFN(AYY)*CDFN(AYY)*CDFN(AYY)*CDFN (AYY)
GO TO 18

F2=0.0

BXX1=-.5*BXX*BXX

IF(BXX1.LE.-20.)GO TO 29

BEXX1=A1*EXP(BXX1)

IF(X3.LE.0.0)STOP

BYY=(ALOG(X3)-SM) /R

BYY=(X3-SM-ALOG(US)) /R

IF(BYY.LE.-7.0)GO TO 29
IF(K.EQ.1)F3=BEXX1*CDFN(BYY)
IF(K.EQ.2)F3=BEXX1*CDFN(BYY)*CDFN(BYY)
IF(K.EQ.3)F3=BEXX1*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)
IF(K.EQ.4)F3=BEXX1*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)
GO TO 10

F3=0.0

TOT=TOT+H* (F1+4.*F2+F3) /3.0

WRITE(6,310)TOT

FORMAT(5X,T10, 'FAILURE PROB.',1PG12.5)
IF(TOT.LT.0.0R.TOT.GT.1,)STOP
IF(KK.GE.2.AND.KK.NE.6)GO TO 70

ESP=TOT-P

CRI=0.05%P

IF (ABS(ESP).LE.CRI)GO TO 70

IF(ESP.LT.0.)LL=1

IF(ESP.GT.0.)LL=2

ERR=ESP*SM/TOT

IF(LL.EQ.1)SM=SM+ERR*0.08
IF(LL.EQ.2)SM=SM+ERR*0.08

ITER=ITER+1

IF(ITER.GT.10.)STOP

GO TO 5

IF(TOT.LT.0.)STOP

TOTL=ALOG (TOT)

WRITE(6,311)TOT, TOTL

FORMAT(5X,T10, 'FAILURE PROB.',1PG12.5,5%X,1PG12.5)
READ(5,101)KK

FORMAT(15)

K=KK

IF(KK.EQ.0)GO TO 9

IF(KK.EQ.6)GO TO 301

GO TO 5

STOP

END
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* File com3a2 fortran

301 READ(5,100)R,S,P,N,US

100 FORMAT(3E10.5,15,E10.5)
K=1
ITER=0
AKA=-CDFNI (P)
P=CDFN(-AKA)
WRITE(6,3)AKA

3 FORMAT(10X, 'AKA="',E13.6)
WRITE(6,4)R,P
DD1=AKA**2*G**2-1
DD2=AKA**2*R*%*2-1
UR=(-1.-SQRT(1.-DD1*DD2))/DD2
CCl1=S**2
CC2=R**2
URP=AKA*SQRT(CC1+CC2) :
4 FORMAT(10X,'R=',E12.5,'P="',E12.5)

IF(R.LE.O)STOP

20 WRITE(6,7)UR,S,URP

7 FORMAT(10X,'UR=',6E12.5,'S=',E12.5,'URP=',E12.5)
IF(UR.LT.0.0OR.S.LT.0.)STOP
IF(URP.LT.0)STOP
SM=UR
A1=0,398942280/S

5 TOT=0.

XL=US-12.*S
XU=UR+12.*S
IF(UR.LT.US)XL=UR-12.*S
IF(UR.LT.US)XU=US+12.*S
IF(XL.LT.0.)XL=0.10
H=(XU-XL) /N
IF(H.LT.0.0)STOP
DO 10 I=1,N,2
X1=XL+(I-1)*H
X2=X1+H
X3=X2+H
XX=ALOG(X1) /S
XX1=-,5%XX*XX
IF(XX1.LT.-20.) GO TO 15
EXX1=A1*EXP(XX1)
IF(X1.LE.O.)STOP
YY=(X1-SM)/(SM*R)
IF(K.EQ.1)F1=EXX1*CDFN(YY)
IF(K.EQ.2)F1=EXX1*CDFN(YY)*CDFN(YY)
IF(K.EQ.3)F1=EXX1*CDFN(YY)*CDFN(YY)*CDFN(YY)
IF(K.EQ.4)F1=EXX1*CDFN(YY)*CDFN(YY)*CDFN(YY)*CDFN(YY)
GO TO 16

15 F1=0.0

16 AXX=ALOG(X2)/S
AXX1=-,5*AXX*AXX
IF(AXX1.LE.-20.)GO TO 17
AEXX1=A1*EXP(AXX1)
IF(X2.LE.0.0)STOP
AYY=(X2-SM)/(SM*R)
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17
18

29

310

70
311
101

BXX=ALOG (X3) /S

IF(K.EQ.1)F2=AEXX1*CDFN(AYY)
IF(K.EQ.2)F2=AEXX1*CDFN(AYY)*CDFN (AYY)
IF(K.EQ.3)F2=AEXX1*CDFN(AYY)*CDFN (AYY) *CDFN (AYY)
IF(K.EQ.4)F2=AEXX1*CDFN(AYY)*CDFN(AYY)*CDFN(AYY) *CDFN (AYY)
GO TO 18

F2=0.0

BXX1=-,5*BXX*BXX

IF(BXX1.LE.-20,)GO TO 29

BEXX1=A1*EXP (BXX1)

IF(X3.LE.0.0)STOP

BYY=(X3-SM) /(SM*R)

IF(K.EQ.1)F3=BEXX1*CDFN(BYY)
IF(K.EQ.2)F3=BEXX1*CDFN(BYY)*CDFN (BYY)
IF(K.EQ.3)F3=BEXX1*CDFN(BYY)*CDFN(BYY)*CDFN(BYY)
IF(K.EQ.4)F3=BEXX1*CDFN(BYY)*CDFN(BYY)*CDFN (BYY)*CDFN (BYY)
GO TO 10 :
F3=0.0

TOT=TOT+H* (F1+4 . *F2+F3) /3,0

WRITE(6,310)TOT

FORMAT(5X,T10,'FAILURE PROB.',1PG12.5)
IF(TOT.LE.0.OR.TOT.GE.1.)STOP
IF(KK.GE.2.AND.KK.NE.6)GO TO 70

ESP=TOT-P

CRI=0.005*P

IF (ABS(ESP).LE.CRI)GO TO 70

1IF(ESP.LT.0.)LL=1

IF(ESP.GT.0.)LL=2

ERR=ESP*SM/TOT

IF(LL.EQ.1)SM=SM+ERR*0,01
IF(LL.EQ.2)SM=SM+ERR*0,01

ITER=ITER+1

IF (ITER.GT.50.)STOP

GO TO 5

TOTL=ALOG (TOT)

WRITE(6,311)TOT,TOTL,SM

FORMAT(5X,T10, 'FAILURE PROB.',1PG12.5,5%X,1PG12.5,5%,1PG12.5)
READ(5,101)KK

FORMAT(I5)

K=KK

IF(KK.EQ.0)GO TO 9

IF(KK.EQ.6)GO TO 301

GO TO 5

STOP

END
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