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I-1
I. STUDY BACKGROUND AND METHODOLOGY

I.17 Introduction

In 1980, the industrial sector accounted for 20 percent of the U.S.
0il consumption and 42 percent of the U.S. gas consumption. Focusing only
on the industrial sector, more than 80 percent of the industrial sector
energy demand was met by oil and gas, with coal and electricity providinyg
the other 20 percent. This has meant that industrial firws are
increasing facing the need to evaluate alternative sources of fuel since
most of their energy demand is met with fuels that are increasingly
subject to uncertainties in both price and availability.

The need to seek alternative energy sources comes both from the need
to minimize costs, and the need to assure continuous energy supply to
keep plants on line. The seriousness of the situation is evidenced by
the fact that during the 1970s international oil prices increased in
sharp steps by 2000 percent, with gas prices moving in the same direction
at a slower rate. In addition in the winter of 1978 much of the
industrial northeast was without gas at any price.

Large increases in natural gas prices occurred during the second half
of the 1970s. Interstate prices of new gas at the wellhead increased
from $0.56/mcf in 1976 to about $3.0/mcf in 1981. Gas deregulation in
1985 (if not earlier) is expected to lead to additional price increases
during the 1980's and thereafter. Many industries experienced
substantial gas curtailments during 1976-1978, which made gas an
uncertain fuel for the industrial and utility sectors. While some
industries have not yet felt the impact of the higher gas prices because
of long-term contracts, these contracts will be ending during the 80s.

Even though during 1981-1982 the outlook for o0il prices improved
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somewhat, 0il prices are expected to increase in real terms over the next
two decades. Uncertainty in supply may play a major role in fuel choice
decisions in the decade ahead particularly given that the Middle East
remains politically the most unstable region in the world.

For non-premium uses of oil and gyas, especially in boilers, coal
frequently is an attractive alternative under current economic
conditions.* Today, the coal price is roughly 40 percent of the oil
price on a per Btu-basis. However, oil and gas still provide nearly 70
percent of fuel used in industrial steam raising (40 percent of the total
0oil and gas consumption in the manufacturing sector). Given current
economic conditions, much of this market could, in theory, be captured by
coal. However, the use of coal is not free of problems. While coal is
less expensive, the use of coal has a number of disadvantages. These
disadvantages include its combustion and handling characteristics, the
fact that use of coal does, in general, require more capital intensive
equiprnent, and that it has the highest Tlevels of pollutants of the three
fuels. For each individual location where coal use is technically
feasible, all these factors must be considered. In addition the regional
implications of increased coal combustion must also be taken into

consideration, specifically in transport system requirements, regional

economic impacts and reygional environmental impacts, (both air and water).

A major amount of effort has been invested over the past decade in

evaluating the regional impacts of energy prices and of eneryy

*An example of premium use of 0il and gas is in special process heat
applications which will not tolerate corrosive fuel elements and/or
require well-regulated temperature. Use of oil and gas in feedstocks is
another example. In 1976, approximately 20 percent of that total oil and
gas consumption of the manufacturing sector was used as feedstock.

y
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utilization and availability. The majority of this work has been
directed from the top, or the federal Tevel, down to the state and/or
regional level. In retrospect this approach has not been successful in
its ability to reflect actual behavior of regional energy economies.
Macro or aggregate analyses and predictions of industrial energy
behavior, for instance, have tended to overestimate the capital
investments which industrial organizations would make and to
underestimate the ability of industries to respond to prices through
relatively non structural, behavioral changes.

The purpose of the methodological research and case study reported
here has been the development and/or extension of a set of tools for use
in evaluation of industrial interfuel substitution. A new approach to
the evaluation of regional industrial fuels analysis has been developed
which builds upon detailed plant specific energy economic analyses, these
are then agyregated to the industry and finally to the regional level.
The tools and the basic theoretical structure are not new. Existing
tools are used in ways which allow decision makers both in industry and
government to evaluate better specific strategic fuels options. The
tools developed include plant analysis models of fuel use including steail
turbine cogeneration, economic/financial models at the plant level and
detailed data bases for combustion technologies. A framework for
industry aggreyation has been developed. Reyional impacts are evaluated
using an air quality model modified for this effort and regional economic
and transport impacts can be evaluated given knowledge of fuel demands.
Each of these components is discussed in greater detail in the sections
which follow.

The remainder of this section of the report will present the overall
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framework developed for regional industrial fuels analyses. Section two
will introduce each of the major tools and data bases developed. A full
description of the individual components is included in the six
appendices. The third section of the report presents the background for
and results of a case study of a laryge industrial consumer such as a
chemical or oil refinery. The final section presents a brief discussion
of the model/framework extensions required for further implementation of
the proposed methodology.

One caveat is required. The material discussed below offers a
framework for regional fuel switching and cogeneration analyses. It
builds upon work completed for individual industries by the MIT Eneryy
Laboratory and upon engineering economic studies done of a set of
comiercially available or emeryging energy technologies. The framework is
presented here as a point of departure. During any actual regional study
the framework will be modified and improved in Tight of the reality of

the industries and region under study.

1.2 Framework for Regional Analysis

Figure I-1 presents the overall regional analysis framework. As can
be seen the activities are divided into two major sections. The first is
a preliminary analysis and the second the main analysis which includes
detailed plant analyses, utility analyses and environmental impact and

trade-off analyses.

Preliminary Analysis
Figure I-2 summarizes the components of the preliminary analysis.

The first stage of which focuses on a general understanding of
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the regional energy environment. The preliminary analysis will involve a
relatively rapid paper/statistical study of the basic components of the
regional energy structure. The first components are the industrial base
of the region and the utility structure. In this component data will be
collected on the distribution of industries by type, by size, by dominant
fuel type and by level of energy consumed.

Other components of the preliminary analysis include the evaluation
of regional environmental quality, regional fuel availability and
regional transport capacity. Using published data it will be necessary
to do a preliminary evaluation of both air and water quality constraints
which are Tlikely to influence the acceptability of the different fuels
and technologies.

The output of these preliminary evaluations will be the structuring
of the main study around a set of regional targets. These targets will

be defined to reflect at least the followiny potential options:

Industrial Fuel Switching: Traditional boiler systems
- Industrial Fuel Switching: Steam turbine coyeneration
- Utility Fuel Switching
- Utility Coyeneration and/or Cooperation with Industry
- Regional Business Opportunities in Alternative Fuels
- Utility Involvement
- Other Energy Company Involvement
These targets define the options that are then evaluated in detail using

the modeling structures discussed in later portions of this report.

Study Structure

The main portion of the analysis shown in Figure I-3 is divided into
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the following modeling and analysis activities: scenario development,
detailed plant analyses, aggregation to the industrial/regional levels,
utility analysis, and trade-off analysis.

Scenario Development. Initially, the variables which are expected to

have a major impact on the system (called here input variables) will be
identified and divided into decision and exogenous variables and
contingencies. Decision variables are those variables whose value
depends on the decisions of the management of the firm; for example, the
use of natural gas in a boiler is a decision variable. Exogenous
variables are those variables whose value does not depend on the actions
of the management of the firm; for example, the price of 0il is an
exogenous variable. Contingencies are events of Tow probability of
occurrence but which could have an adverse impact on the firm; for
example, a drastic decrease in a firm's oil supplies is a contingency.
Subsequently, scenarios will be generated from rationale combinations
of input variables. For example, one scenario would be to introduce a
medium level of coal capacity (50 percent of potential demand, with no
cogeneration, and with high fuel prices). Scenarios will be developed in
such a way that they span the whole space of values of input variables.

Detailed Plant Analyses. The area most fully developed in Phase I of

the Interfuel Substitution Project has been that of industrial strategic
planning models. This has involved work in engineering, environmental,
and financial analysis. The engineering analyses evaluate alternative
energy conversion systems available for use within specific plants for
raising steam for process heat and cogeneration. The technology
alternatives available for raising of steam are well known and understood

yet not always well applied in evaluating potential fuel switches. MIT
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has adapted and expanded a pair of data bases for steam raising equipment
which include both the physical characteristics of the equipment and the
financial/cost data corresponding to each of the physical systems. The
new data base and its application to a set of case studies in fuel
switching is discussed in Section II.1 and Appendix A.

The second engineering area in which considerable effort has been
expended in Phase I has been that of engineering analysis tools of
cogeneration options. Prior work in evaluating cogeneration utilized
oversimplified screening curves for the individual options. Section II.2
and Appendix B discuss the approach used in the case study to analyze the
economic and environmental impacts of conceptually designed cogeneration
system. In particular it looks more closely at the steam/electric
trade-off and, for the case study example, at range of temperatures and
pressures and alternatives for supplying both thermal and electrical
energy.

The engineering analytic modeling efforts are complemented by a
corporate strategic analysis model and an environmental model. The
corporate strategic analysis model includes both debt and equity
financing and advanced handling of shared capital. The financial model
is described in Section II.3 and Appendix E. The environmental model
used in the case study is a 50 square kilometers Gaussian plume model
accepted by EPA and described in Section II.4 and Appendix F.

Aggregation to the Industrial/Regional Levels. The preliminary

analyses in the regional study will have identified a set of potential
industrial sector targets for fuel switching and introduction of
alternative technologies such as cogeneration. In general it is expected

that these targets will be defined in terms of both specific plants and
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in some instances generic industries (SIC for instance). Detailed plant
studies will be carried out at a limited number of representative sites
to identify the economic, physical and environmental response which might
be anticipated for these individual facilities given a set of scenarios.

The critical question at this point is "how will the individual
plants be aggregated to the industrial level?" There is no obvious
answer to this specific agyregate question. In general the aggregation
process could be comprised of at least two steps. The first step is for
the research group to satisfy itself that within reasonable bounds the
disagyregation at the industry level is sufficiently fine to idendify the
major energy consuming and financial characteristics of the individual
facilities and yet sufficiently gross so as not to require as a sample
the universe of plants in the region. This agyregation decision must be
based in large part on judgment. The second step is to utilize
individual plant data and the industrial groupings defined above to
develop of a set of technology adoption curves which reflect the Tikely
quantity of fuel switching as a function of the exogenous variables.
Figure I-4 gives an example of the type of technology adoption curves to
be developed. As can be seen these are hypothesized to be loygistic
curves which reflects the present state-of-the-art in analysis of new
technology diffusion (Choffray and Lillien, MIT, 1980).

If we use the example of willingness, possibility or ability to
switch to coal fired boilers it is possible by example to discuss one
aggregation method. Assume that from the preliminary analysis it is
apparent that a group of plants (such as kraft paper mills of x tons per
day capacity) is sufficiently homogenous to be grouped together and that

these facilities have characteristics which appear to make them
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attractive for fuel switching from oil to coal, i.e., they have been
defined as regional targets. Detailed analysis of a single facility has
demonstrated that the willingness to invest is highly dependent upon the
required return on investment and that in turn is dependent on the price
of the alternative fuel. In this example assume that a critical variable
is, in fact, the relationship between the price per mmBtu of coal and
oil. From the perspective of the regional study the question is how much
coal capacity will be installed and under what conditions within the
region and what will be the regional environmental and economical
impact. With Timited sampling of plants it will be possible to identify
the range of required return on investment for individual firms to make
the decision to invest. Given data on industrial fuel use capacity and
data on required return on investment, a two dimensional curve can be
used to estimate regional levels impacts of coal consumption. Figure I-4
shows one such a set of curves which relate MW of capacity to the
relative price of coal and oil. In general one would expect it to have a
logistic form with Tittle response if the prices were the same or nearly
the same, increased reponse (additional MW) with increased spread in the
prices and finally less relative additions as the industry approached
saturation. A curve such as this would then be used in conjunction with
regional fuel price scenaria and regional utility and environmental
models to identify levels of penetration anticipated as a function of
collapsed or surrogate industrial decision parameters. Such a
methodology could be extended to include three or possibly four
dimensional decision surfaces constructed in the same manner.

While these heuristic approaches to agygreation of plant Tevel to

industrial level data are less than perfect they offer a logical two step



I-14
process of detailed data analysis and then data reduction. The
industrial groupings can then be handled additively if (and only if) the
critical variables between industrial groupings in the analysis are
either identical or nearly identical. Without this condition holding it
is unlikely that the relative weighting of the industrial groups within
the aggregation structure could be justified.

Utility Analysis. The utility may play a key role in regional energy

studies, particularly those involved with cogeneration where the utility
and industry must interact in pricing of energy and in long term
planning. As a result, if required, the modeling structure will utilize
a utility capacity planning and operating system model such as the EGEAS
system developed at the MIT Enery Laboratory for EPRI and the utility
industry (MIT Utility Systems Program, 1982). The objective of use of
the EGEAS structure will be to evaluate two separate issues within the
region. The first will be the short run operating cost impacts of
significant penetration of cogeneration in the utility service
territory. Utilizing the EGEAS structure it will be possible to
calculate the avoided cost to the utility as a result of the power
cogenerated by the industrial facilities. Given this avoided cost
calculation it will be possible to iterate back to the detailed
industrial models to evalute the impact in the initial assumptions
concerning the value of energy sold to the utility by the firm and
thereby to close the Toop in the short time frame between the individual
firm and the regional entity, the utility. In the lonyger time frame of
capacity planning a similar type of analysis must be carried out to
calculate the capital implications of alternative scenarios from the

perspective of the utility, the plant and the region. Again the tool



most readily available is EGEAS.

Trade-off-Analyses. Each scenario will be evaluated by using

different criteria variables, such as costs, environmental impacts and
security of supplies. Very often these criteria variables may be
conflicting in the sense that all of them can not be optimized at the
same time. For example the introduction of coal to substitute for
natural gas in the industrial sector may lead to lower costs but also to
higher environmental impact. For this reason, trade-off curves will need
to be developed between the criteria variables in the case of conflict.
These trade-off curves will be useful for decision makers at the
plant and regional level to know how far one moves from a particular
objective by moviny closer to another objective. For example, how much
will the costs increase, if SO2 emissions decrease by 10 percent.
These trade-off curves can be developed at both the plant and regional

levels.

I.3 Summary

The material presented in this section has defined a framework for
evaluation of fuel switching and cogeneration decisions in the industrial
sector of a regional energy economy. The methodoloyy contains a set of
suggested heuristics for aggregation of detailed plant data to the
regional level. 1In addition, the framework suggests a structure which
may be heavily dependent on the interaction between the utility and the
industrial facility in terms of purchase and sale of energy and thereby
of the economics of each party with respect to decision to cogenerate.
The nature of the analytic system developed requires that the majority of

the analyses be run "open loop", i.e., in order to evaluate the trade-off
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frontiers that scenarios be developed with which allow for the criteria
variables to be evaluated in terms of alternative exogenous variables
such as fuel prices and technology availability. This method has been
seen to be functional for specific industrial analyses such as for the
MIT Consolidated Edison study and for the case study covered in Phase I
of this effort (MIT Energy Laboratory, 1981). A detailed regional case

study will have to be completed to validate this approach.

I.4 Report Structure

The remainder of this report has been divided into four major
sections. Section II presents in summary form the models and data
structure developed in Phase 1; these are also described in detail in
the appendices. Section III presents the background and the results of
the case study used to test the tools developed during Phase 1. The case
study was chosen because of our ability to evaluate a number of fuel and
cogeneration options across a single facility. Because of data
restriction and to test our work, a number of assumptions were made
concerning both the availability and age of the capital stock used in
steam raising. Section IV discusses the results of the case study in
terms of strict interfuel substitution and in a detailed analysis of
cogeneration. Section V presents the conclusions to Phase I. The final
section of the main report discusses the types of extensions anticipated
in a Phase 2 effort both in terms of the concrete examples required and
further model development required.

Each of the data structures and modeling systems developed are
described in greater detail in appendices to this report. These cover the

steam rising data base, a detailed discussion of cogeneration and
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interfuel substitution, a discusison of technology, coal gasification
evaluated during Phase 1, a discussion of both the econowic and
environmental models and finally a discussion of anticipated price paths

for each of the major fuel types. This last Appendix draws heavily upon
research work carried on outside of the present study but, as will be
seen, expectations concerning fuel prices plays a major role in the

relative economics of substitution of fuels in the industrial sector.
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II. MODELS AND DATA STRUCTURES

The section which follows covers the four principal model/data
structures developed under Phase 1 of the interfuel substitution
project. As was stated in the introduction, the tools themselves are not
unique thouygh the data bases associated with them represent information
collected from a variety of both public and corporate sources and as a
result offers a relatively unique source. The development of the tools
and their testing in the case study defined and discussed in Sections III
and IV was done to prepare for an actual regional analysis requiring
application of the models described here, the aggregation methodoloyy
discussed in Section I and the data reduction methodologies utilized
earlier MIT Energy Laboratory activities such as the Consolidated Edison
study. The data reduction methodologies are not applied in the case
study because they require coordinated data, and specifically regional

information such as transport, economic or environmental attributes.

II.1 Steam Raising: Equipment

The data base was developed from studies in the public domain,
principally government-sponsored work, as well as confidential industrial
data. Details of these data sources are discussed and references listed
in Appendices A, B and C. In some steam generation cases, discrepancies
between various sources were observed but the major ones were amenable to
adjustments or explanation. On analyzing the reliability of these
sources, as a rule more confidence was given to the industrial data than
to the government-sponsored study information.

The engineering information for the detailed plant models was based

on the following fuels:
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Substituted fuels: oil, natural gas and coke
Substituting fuels: coal and synthetic gases
Fuel use for: steam generation and cogeneration of
steam and electricity

For the following process units, capital and operating cost versus
capacity correlations were developed taking also into account pollutant
emission Tevels for various fuels. Fuel costs were excluded from
operating costs.

(a) Steam generation: coal fired boilers
oil fired boilers
(b) Cogeneration: steam turbine (oil or coal fired boilers)
gas turbine (natural gas)
(c) Gasification: Koppers-Totzek (MBG)
Texaco (MBG)
Atmospheric fixed bed (LBG)

Process heaters were not included because they are too specific for
particular technologies. Gas fired boilers were not considered a
separate category because their costs do not substantially differ from
their o0il fired or dual oil/gas fired counterparts and can easily be
handled by adjustment factors. Correlations were also not derived for
the other fuels and other uses since these are too special cases to
warrant the work required to obtain general correlations.

Figures II-1 through I1I1-4 present capital and operating cost versus
capacity for oil and coal-fired boilers, fuel oil desulfurization
equipment and three types of gasification plants. An example of emission
data are shown in Table II-1 which is based on the study "Industrial Fuel

Choice Analysis Model" (Energy and Environmental Analysis, Inc., June



Figure I1I-1: Recommended Steam Raising Correlation (includes
particulate control, 85% capacity factor)
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Figure I1-2:

Flue Gas Desulfurization Cost
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Figure I1-3: Gasification Capifa] Cost

A
900 1
Total
Capital
aPAT g0
$10
(1980)
700 4
600 J
500 - C
400
300 1 Texaco, 99% sulfur
removal
B - Texaco, 90% sulfur
200 4 removal
C - Koppers - Totzek
100 1 D - Atm, Fixed Bed
A} 1 § L] Y
50 100 150 200

Capacity, 109 BTU/dav



Figure T1-4: Gasification Operating Cost at 907 Capacity Factor
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Table II-1. SPECIFIC EMISSION FACTORS
Uncontrolled boilers over 30 10° Btu/hr. (Ref. II-1)
1bs/10%8tu Fuel

— =2 — —X

Gas

Natural gas 0.0006 0.01 0.279

MBG/LBG 20,000(S/B) (1-R)/E 0.01 0.279
0il

Residual (0.8%S) 0.8 0.08 0.37

Residual (3%S) 3.138 0.22 0.37

Distillate 0.2 0.014 0.209
Coal

Underfeed stoker 19,000 S/B 2500 A/B 0.349

Chaingrate stoker 19,000 S/B 2500 A/B 0.325

Spreader stoker 19,000 S/B 6500 A/B 0.616

Pulverized coal 19,000 S/B 8000 A/B 0.663
Symbols

A = % ash in coal

B = Btu/1b. of coal

E = fractional gasifier efficiency (coal inlet to gas outlet)

R = fractional sulfur removal of gasifier

S = % sulfur in coal
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Definition of Cost Items

To avoid misinterpretation of cost and economic data, definitions of
capital and production cost scope and terminology are extremely
important. The structure of these costs is shown in Tables II-2 and
II1-3. Other economic quantities such as revenue, cash flow and
profitability will be discussed later (see Section II.3 and Appendix E).

Most of the capital items have a material and a labor component, such
as purchased equipment cost versus setting labor cost. Another useful
distinction is between battery limits and offsite costs. The former
refers to equipment, commodities and buildings directly involved in the
process but may also include some utility and site development subitems
such as distribution and yard, respectively, adjacent to process
equipment. Anything outside battery limits is offsite.

Production costs have been traditionally divided into a fixed and a
variable component. The former is constant for a given plant while the
lTatter varies with production rate and typically includes process
materials and utilities. For plant scale-up, it is convenient to
introduce a semivariable component, approximately proportional to
depreciable capital cost, that includes operating supplies, maintenance,
property insurance and taxes, and depreciation. Within a Timited
capacity range, operating labor, supervision and service costs may be
considered fixed while G&A, being split between the semivariable and
fixed components, is best estimated as proportional to operating and

maintenance labor.
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TABLE II-2

Capital Cost Structure

Process equipment
+ Commodities (foundations, supports, piping, electricals,
instrumentation, insulation, painting, etc.)

+ Process buildings

+ Utilities (supply and distribution of electricity, water, etc.)

+ General facilities (maintenance shops, administrative
buildings, etc.)

+ Site development (grading, roads, etc.)

+ Other direct (spare parts, etc.)

Subtotal - direct cost

+ Indirects (field and home office)

Subtotal - construction cost

+ Contractors's fee

Subtotal - depreciable capital excluding contingency

+ Contingency

Subtotal - depreciable capital

+ Non-depreciables (land, etc.)

Subtotal - fixed capital
+ Working capital
+ Start-up cost*

+ Investment expense (royalties, etc.)

Total Capital

*May be depreciated in certain industries
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TABLE II-3

Operating and Production Cost Structure

Process materials (raw materials, chemicals, etc.)

+ Utilities (fuel, electricity, water, etc.)

+ Operating labor (wages and fringe benefits)

+ Operating supplies

+ Supervision (salaries and fringe benefits)

+ Services (indirect wages, salaries, fringe benefits and
materials, as well as outside services)

+ Maintenance (labor, supervision and supplies)

+ Property insurance and taxes

Subtotal - Plant production cost

+ General and administrative (G&A)

Subtotal ~ Cash production cost

+ Depreciation -

Total production cost

(Operating Cost) = (Production Cost) - (Major raw material or fuel)



I[I-11

I1.2 Steam Raising: Steam Turbine Cogeneration

The evaluation of industrial cogeneration is far more complex than
that of steam raising because of three factors. The first is the joint
production of electricity and thermal energy which requires consideration
of the real time pattern of supply and demand for both electricity and
heat as well as the distribution of the joint probabilities of each. The
second factor is the partial dependence of the economic valuation of
cogeneration on the price of available externally yenerated electricity.
This price (exogenous to a given facility, endogenous to the region) will
determine both the avoided cost to a facility of owner generated and
consumed inhouse and of the market value of any excess generation sold
back to the utility. Finally, the third factor parallels that associated
only with steam raising, i.e., the choice of boiler fuel.

Section IV.2 and Appendix B present in far greater detail the
approach taken to analysis of steam turbine cogeneration options. A
steam turbine cogeneration system has been conceptually designed on a
standard configuration. The same configuration has been considered for
various inlet turbine steam conditions and various process pressure
requirements, scaling costs with the usual economy of scale factors for
0il or coal fired power plants of that size (10-100 MWe), starting froum
the 1800 psig, 900°F system. The thermodynamic analysis, extensively
presented in Appendix B is used for technoloyy assessment purposes and
for overall fuel savings evaluation as a function of cogeneration systems
design parameters as well as to gain insight on the real behavior of the
steam turbine cogeneration systems, i.e. to individuate those significant
performance parameters of a conceputally designed system that are

characteristic of the technology and therefore useful to a regional
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assessment study. The behavior of those parameters has always been shown
to be consistent with the economic performance of the technology.

The economic analysis has been performed on a before-tax and
after-tax basis, both on the cogeneration power plant, i.e., as an
incremental investment with respect to traditional boilers, charging all
costs differential against cogenerated electricity in order to determine
a cogenerated power busbar generation cost and on a steam cost basis,
i.e. determining the process steam cost with and without cogenerated
electricity revenue (or income if on an after-tax basis). Also, a first
set of screening curves has been developed, using as a strateyic economic
parameter the minimum required difference in unit cost of coal (or
coal-derived) and 01l fuels needed in order to have oil-fired systems and
coal-fired systems break even. Value of cogenerated electricity has
always been considered either as a parameter or has been set as only
electric utilities avoided costs, assuming in this case identical fuel
costs for both the utility and the industrial facility.

The depth and consequent possibility of individuation of consistent
economic parameters for the steam turbine cogeneration systems analysis
will be particularly important to the further regional efforts in which
the research team is involved as they will be used as prescreens for

full-scale cogeneration analysis.

1I.3 Financial/Economic

The Financial Model computes and evaluates the economic effects of
alternative energy conversion processes such as cogeneration or
gasification. These effects are measured by an investment analysis

approach which is applicable to replacement and retrofitting as well as
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“green field" plants.

The basic structure of the Financial Model can be seen in
Figure II-5. Operating costs, fuel costs, revenues, and capital outlays
are the four main groups of financial data required for each option.
These items are defined in Appendix E. Based on this data and the
specific financial environment of the company (taxes, cost of capital,
etc.) the After Tax Cash Flow (ATCF) is computed within the Model to
evaluate profitability in terms of both Net Present Value (NPV) and
Internal Rate of Return (IRR).

For debt financing, profitability is adjusted by adding the present
value of the tax shields to the project's NPV. The payback period is
also derived from the After Tax Cash Flow. ATlternatively, Return on
Equity and, based on that, Overall Rate of Return, are determined
according to the Guidelines of the Engineering Societies' Committee on
Energy (ESCOE) (see Appendix E). Levelized product prices are also
computed using again the annual ATCF. Cost per unit output figures are
generated by analyzing the capital cost and adding them to the sum of
Revenues and Expenses.

Equipment replacement can be handled by considering the tax effects
of selling the old equipment below or above cash value in addition to the
differences in Operating Costs. All dollar variables within the model
structure can be escalated independently. This allows the user to
consider different escalation rates for various components such as
material or labor. The escalation rates can also be varied from year to
year.

The Financial Model uses the Interactive Financial Planning System

(IFPS) (see Appendix E References) which allows for interactive and
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STRUCTURE OF THE FINANCIAL MODEL
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flexible programming of corporate financial models. The main features of
this system are the possibility of asking "What if" questions, performing
different kinds of sensitivity analyses and breakeven analyses as well as
the option to run Monte Carlo simulations for various types of
probabilistic distributions. These features are each applied in the case

study discussed in Section IV,

11.4 Environmental

An important aspect of the interfuel substitution project methodology
is the relationship between industrial fuel use and regional air
quality. Each fuel/technology case considered in this report has an
associated air quality dimension. Air quality simulation models are used
to describe and analyze this dimension.

The air quality simulation model used in this project is the
Climatological Dispersion Model (CDM). CDIH is a computer supported
algorithm which translates stack emission and local meteorology into a
distribution of ground level concentrations across a specified area. The
individual components of CDM are described in detail in Appendix F.

CDM is one of a set of air quality models designated by the
Environmental Protection Agency as "Guideline Models." When used
appropriately, the EPA will recognize the results of such models in
determining compliance with federal air pollution laws and regulations.

CDM simulates the long-term (seasonal or annual) concentrations at
ground level receptors of one or several air pollution sources in a
region. As explained in Appendix F, CDM (as does all current guideline

models), assumes constant meteorology across the study area. This
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assumption imposes a lTimitation on the size of the area which can be
considered in any one CDM computer run. No area should be larger than
50 kmz. CDM uses average emission rates from sources and a joint
frequency function of wind direction, wind speed and atmospheric

stability, for the same averaging period, as inputs.
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III. CASE STUDY: Background

The methodologies developed under Phase I in the fuel substitution
project have been brought together for a demonstration of their
usefulness in a case study which will be discussed in this and Section IV
of the report. The objectives in developing the case study were to apply
the models modified and developed under Phase I by individual team
members to a specific and well-defined problem.

Because a considerable amount of the effort in Phase I had gone into
looking at methods for evaluating the potential for interfuel
substitution in meeting the energy demands of large energy consuminy
facilities such as refining and petro-chemicals, the case study chosen
was a large facility with a large, flat, Tow to medium pressure process
steam load, characteristic of both chemicals and refining. Thermal loads
and system configurations are described in detail in Section IV (e.y.,
Tables VI-1, IV-2). The case study involved an eva]uatidn of the
potential for steam raising by alternative fuels and steam raising with
cogeneration by alternative fuels. Our primary interest was in
evaluating alternatives that included "dirty" fuels such as coal and the
potential for coking. Though consideration was given to generation of
medium Btu gas from both coal and coke, the case study does not include
its use for direct fired process heat.

The following alternatives to generate the required process steam are
considered:

o coke-fired boiler

o0 coal-fired boiler
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COGENERATION (STEAM TURBINES, TOPPING PROCESS, NO EXTRACTIONWS)

steam turbine coal-fired confiyuration 1 (coal 1)
steam turbine coal-fired configuration 2 (coal 2)
steam turbine coal-fired configuration 3 (coal 3)
steam turbine oil-fired configuration 1 (oil 1)
stean turbine oijl-fired configuration 2 (o0il 2)
steam turbine oil-fired configuration 3 (o0il 3)
gas turbine natural gas-fired (gas turbine)

coal gasification (gasifier)

The case study elements can be characterized as follows (for detailed

description see IV.1, IV.2).

(0]

Boiler systems: Three identically sized boilers of 1/3 capacity
each. Backup is provided by the existing system.

Steam turbines: Topping cycle systems. Auxiliary power is mostly
provided by the electricity generated. Different
steam turbine inlet conditions lead to the
generation of different amounts of electricity
while providing the same process steam load.

Coal 1: small electricity generation per unit process steam

Coal 3: Tlarge electricity generation per unit process steam

0il1 1: same configuration as coal 1 but oil fired

0i1 3: same configuration as coal 3 but oil fired

Gasifier: One Texaco gasifier is providing MBG for the existinyg

boiler.

Three caveats concerning the structuring of case study follow.

First, three boilers were installed, each of which could handle roughly

one-third of the load. Backup is assumed to be provided by the
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existing system.

The second major point is that one high-technology option, a coal
gasifier, was kept in the analysis throughout the case study. As will be
seen later, the gasifier is not an economically attractive investment
under the scenarios presented here. This would be intuitive given that
the case study did not allow for the use of a coal or coal-derived eneryy
source in process heating. When gasifiers compete against unprocessed
coal, the unprocessed coal, and even 0il and natural gas are more
economic investments.

The final point is that the comparative economic evaluation is
incremental rather than an absolute, i.e. all investment and operating
costs have been calculated compared to an existing system. The decision
is whether or not to replace this existing system. It has been assumed
that the capital value of the current boiler in the facility is fully
depreciated on the books though maintains an operating life. For this
reason the base case is one in which the capital cost is entirely paid
off and the operating costs are for an existing oil-fired option. Any
changes, therefore, are viewed as net savings or ]osseé to the systenm
when compared with this base case. For this reason, the addition of a
new oil-fired boiler will add considerably to the capital costs and have
only minimal savings in fuel. By the same token, addition of coal
boilers will have a far more significant increase in capital cost but an
associated decrease in fuel cost. Finally, as will be seen, it is not
possible to pay off the capitalization of an investment such as a
gasifier given the characteristics of this case study. From the
perspective of the facility owner, then, the question is one of whether

it is cost-effective to invest in new plants and facilities or whether it
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is more worthwhile to stay with the existing plant. A positive net
present value indicates that, over the planning horizon, it is to the

advantaye of the manager to invest in the new plant. A negative net

present value means that it is disadvantageous to invest in the new plant.
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IV, CASE STUDY RESULTS

The section which follows presents the results of both a set of
background analyses on the thermodynamics of boiler and cogeneration
systems in general and the results when applied to the specific system
chosen for a case study. At the outset it should be emphasized that the
industrial load chosen for the case sudy was tightly defined and
therefore not characteristic of all industrial loads. The load is laryge,
relatively flat and has a high capacity factor. The experience of this
effort as well as the experience of others would lead one to conclude a
priori that such a system would favor any technoloyy able to capture any
economies of scale and would favor technologies with relatively higher
capital costs and relatively lower operating costs. In fact these were
the conclusions of the case study. It is important in this section to
note, however, the additional conclusions which are reached concerniny
the relatively thermodynamic/economic properties of cogeneration systems
relative to steam boilers and within cogeneration systems the relative
importance of capital, operating and electrical buyback values to the
overall economics of the decisions.

Because of the importance of the cogeneration analysis relative to
the conclusions drawn from the case study, this section begins with a
review of the main conclusions from Appendix B concerning cogeneration
and steam raising. The subsequent portions of the chapter evaluate in
detail the economic decisions surrounding cogeneration, the comparison of
all of the interfuel substitution options evaluated including the
gasifier, and a series of sensitivity studies on the results of the
incremental analyses. The final portion of this section discusses the

results of a trade-off between capital investment in emission controls
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and air qualiy which links together two of the modeling systems developed

in the length of the research effort.

IV.1 Interfuel Substitution: Overview

The material which follows presents a set of conclusions concerning
the thermodynamic/economic trade-offs between alternatives of the
technologies under consideration in the case study. These focus first on
the cogeneration technoloyies and then on the simple steam raisiny
technologies. These conclusions follow directly from the detailed
discussions presented in Appendix B.

In Appendix B it has been shown that any economic incremental
analysis of steam turbine cogeneration systems

- supplying a flat thermal load of 1,000 106

BTU/hr as saturated
steam at 200 psia with a load factor of 0.9
- on any typical industrial plant with any reasonable standard
boiler system
- for any reasonable cogeneration system configyuration
- on any realistic industrial financial environment
- with constant 1980 dollars typical fuel costs
will show that
1. Coal-fired systems are substantially more economical than
oil-fired systems.
2. Coal-fired cogeneration is more economical than coal-fired
boilers, if electricity is valued at current busbar generation
costs of coal-fired central power plants

3. 0il-fired cogeneration is more economical than oil-fired boilers

if electricity is valued at current busbar generation costs of
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oil-fired central power plants.

4, Coal cogeneration is more economical compared to coal-fired
boilers than is oil cogeneration is compared to oil-fired
boilers.

5. Coal-fired cogenerated electric power has a busbar generation
cost lower than oil-fired cogenerated electric power.

6. 0il-fired cogeneration economic advantages with respect to
oil-fired boilers is not sufficient to lower steam generation
cost to that of coal-fired boilers unless electricity is priced
at an unreasonably high value.

7. In any fuel scenario in which the cost of 0il increases, more

rapidly than the cost of coal. AIll previous conclusions still

hold.

IV.2 Interfuel Substitution: Steam Raising

The thermal load considered in the case study has a 200 psia
saturated steam requirement of 23.2 Tbm/CD with a constant load factor of
0.9. Low-pressure boiler data (boilers inlet/outlet, mass and heat
flows) is presented in Table IV-1; steam and gas turbine systems are

presented in Table IV-2.

Steam Turbine Cogeneration Systems

Three steam turbine systems are considered (system configuration 1, 2
and 3) each with a different turbine inlet condition, i.e., low, medium,
and high (utility type) pressure. Each of the systems has been
conceptually designed taking into consideration all standard requirements

of systems of that size and with those characteristics. The main design
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TABLE IV-1
LOW-PRESSURE BOILERS
(no cogeneration)
Boilers outlet: 200 psia, 500°F; enthalpy, 1,269 BTU/1bm
Boilers inlet: 200 psia, 250 °F ; enthalpy, 219 BTU/1bm

Mass Flow Rates:

Steam to process: 1.07 . 10° 1bm/hr
Heat Flow Rates: Load Factor: 0.9
[10% BTU/hr] [1012 BTu/yr]
Heat to process water: 1,127 8.89

Net heat delivered to
process: 981 7.74

Fuel requirement (Boiler
efficiency: 0.85): 1,326 10.40
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TABLE IV-2
HIGH-PRESSURE BOILERS

(steam turbines cogeneration)

Boilers outlet: varies with system design
Boilers inlet: same as low-pressure boiler
Steam turbine inlet: varies with system design

Steam turbine outlet: at process pressure, slightly superheated
depending on system design

Mass Flow Rates:

Vary with system design

Heat Flow Rates:
Vary with system design except

Net heat delivered to
process: 981 . 106 8TU/hr  7.74 . 1012 BTu/yr

GAS TURBINES

Net heat delivered to
process: 981 . 10° BTU/hr  7.74 x 1012 BTU/yr
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difference between systems 1, 2 and 3 is the steam enthalpy at turbine
inlet; thermodynamic differences are expressed through different
efficiencies of conversion and electric power installed while economic
differences are mainly due to larger boiler and steam turbine sizes and,
consequently, larger capital cost. The description of each of the
systems (on a per million BTU/hr saturated steam effectively delivered to
process) is presented in Table IV-3.

As discussed in Appendix B, system capital costs have been computed
for the medium-pressure steam turbine cogeneration system. They have
been grouped into thermal and electric generation costs and scaled up and
down to the high- and low-pressure systems using economy of scale factors
(typical for those plants) of 0.35 for steam turbine/electric generation
equipment, of 0.25 for coal-fired thermal generation equipment, and of
0.1 for oil-fired thermal generation equipment. An uncertainty factor of
approximately 20 percent should probably be applied whenever those
prespecified plant costs are used in a specific case without detailed
knowledge of the industrial plant characteristics.

Operation and maintenance costs have been taken into account in the
same way although with no economy of scale in 0 and M.

A breakdown of capital and 0 and M costs for the low-, medium- and
high-pressure steam turbine cogeneration systems defined in the previous

section is presented in Table IV-4.

System Economic Performance
Cogeneration may be considered a marginal investment compared with a
traditional boiler system fired with the same fuel. This defines the

‘electricity-as-a-byproduct' power plant capital, 0 and M and fuel costs
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TABLE IV-3

COGENERATION CYCLE THERMODYNAMICS

Heat delivered to process, Qp:

Fuel requirement per ép:

Electric power installed:

Electric power for in-house auxiliaries:

Net electric power:

Mass flow rate:

Turbine efficiency, ng

Boilers efficiency, np:

"Thermal" efficiency, ntp:

“Electric" efficiency, ne:

Cycle efficiency, et

Turbine inlet

We [Kile]
Waux [KWel

Wnet [KWel
Nth
Ne

nc
m [1bm/hr]

650 psia
800 F

35
13

22
0.67
0.08
0.75
1,060

Qp = 106 BTU/hr

;

Ve

ﬁaux

Qnet

m

ng = 0.90

np = 0.85

nth = ép/F:

ne = WelF

n = wnet Qp
1,200 psia 2,500psia
900 F 1,000 F
54 76

14 16

40 60
0.63 0.59
0.12 0.15
0.75 0.75
1,110 1,170



We [MWe]

Wpet [Mie]

Total

electricity )
generated [10° KWhre/yr ]
Net

electricity i
available [106 Kwhre/yr]
F [10% BTU/hr]

F [1012 BTU/yr]

1V-8
TABLE IV-3 (cont.)

CASE STUDY

34.3
21.6

271

171

1,461
11.60

53.0
39.2

418

313

1,548
12.22

74.6
58.9

588

471

1,054

13.05



IV-9

TABLE IV-4

COGENERATION SYSTEMS CAPITAL AND O AND M COSTS

Steam Turbine Inlet at

steam turbine/
electric generation
capital costs

Coal-fired
thermal generation
capital costs

O0il-fired
thermal generation
capital costs

Electric generation
0 and M costs

Coal-fired
thermal generation
0 and M costs

Qil-fired
thermal generation
0 and M costs

Coal-fired
cogeneration system
total capital cost

Oil-fired
cogeneration system
total capital cost

Coal-fired
cogeneration system
total 0 and M cost

0il-fired
cogeneration system
total 0 and M cost

1980 3

[S/EWe]
[10° 3]

[3/%06@Tu/hr]
[10° 8]

[$/g05BTU/hr]
[10° 2]
[mi1lls/KWhre]
[10° g/yr]

[8/106BTU steam]
[106 g/yr]

[$/1068Tu steam]
[106 g/yr]

[106 3]

[100 g]

[106 g/yr]

[106 3/yr]

650 psia
800 F

319
10.95

55,450
81.5

21,300
31.4

92.5

42

11

3.5

1,200 psia 2,500psia

900 F 1,000 F
274 243
14.5 18.1
54,700 53,800
84.8 89.1
21,200 21,100
32.9 34.9
4 4
1.7 2.35
1 1
10.4 11.0
.25 25
2.6 2.8
99 137
47 53
12 13
4.5 5



IV-10
which allow for standard power plant economic evaluation. If it is
worthwhile to install the cogeneration power plant, then cogeneration
steam raising will be viable.

Two factors are considered to evaluate electricity generation costs:
the busbar generation cost and the busbar generation cost structure.

Both will be computed for the cogeneration power plant, initially by
discounting cash flows at the real interest rate for equity (15 percent
in this case).
Finally, the case of excess of revenues, i.e., profits from
cogenerated electricity will be computed, under different fuel scenarios
using the analytical, closed-form relationship between operatiny cash
flow and return on debt and equity tax-sheltered capital described in
Appendix B, Section B.4.
A breakdown of coal-fired coyeneration system and coal-fired standard
boiler system costs as well as the busbar cogenerated electricity
incremental cost and cost structure is presented on Table IV-5. Unly net
electricity available will be considered as a cogeneration system
product; full installed power is considered for capital cost computation.
From Table IV-5 it may be seen that
1. The electricity as a byproduct, coal-fired cogeneration power
plant is very similar to a coal-fired central power plant in
terms of its fixed and variable incremental cost components of
cogenerated electricity (See Appendix B).

2. The capital cost per KWe of installed capacity of the coal-fired
cogeneration power plant as previously defined is close to
one-half of the correspondent cost for coal central power plants.

3. The fuel cost of the coal-fired cogeneration power plant is



Iv-11
TABLE IV-5
HIGH PRESSURE STEAM TURBINE COAL-FIRED COGENERATION SYSTEM
1980 3

Costs Breakdown

Cogeneration System Boiler System s Costs

Capital [$] 107 . 108 70 . 10° 37 . 10°
[8/yr] 5.55 . 10°

0 and M [8/yr] 13.4 . 10° 8.6 . 10° 4.8 . 10°

Fuel  [BTU/yr]  13.05 . 1012 10.5 . 102 2.6 . 1012

(2.50 $/106 BTU) :
[8/yr] 5.5 . 106

BUSBAR COGENERATED ELECTRICITY INCREMENTAL COST AWD COST STRUCTURE

Power installed 74.6 Mie

Net electricity 471 . 10° Kuhre/yr

Load factor J.9

Capital cost 11.5 mills/Kwhre 33 percent

0 and M cost 9.4 mills/KWhre 28 percent

Fuel cost 13.2 mil1s/KiWhre 39 percent

Total cost, egp 34.1 mills/Kuhre 100 percent

e?P - lg;i + 22.6 mills/KWhre

Installed electric power incremental capital cost 500 #/KWe
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approximately one half of the correspondent fuel cost on a
coal-fired central power plant.

The analysis of the behavior of the coal cogeneration system
economics with respect to the rate at which electricity is priced by the
market (either utility buyback rate or effective cost of in-house
generation by non-coyeneration technologies) follows.

The profits from cogenerated electricity, i.e., the net income (or
after-tax revenue) coming from pricing (or selling) cogenerated
electricity at a price greater than the busbar generation cost as
previously defined, can be readily computed as indicated in Section
1v.2.3.4. Tax credits are entirely taken the year of the capital
expenditure; capital expenditure is 20 percent of total capital
expenditure at the end of the first year of construction, 40 percent at
the end of the second year; 40 percent at the end of the third year, the
system is then put on line for the next seventeen years during which
period it is totally linearly depreciated and at the end of which period
it has a zero salvage value.

Fuel costs are assumed to be the same for the industry as for the
utility. Fuel availability, major transportation costs, etc. discussion
is performed in other sections of this study. The economic analysis of
the coal-fired, high-pressure coal cogeneration plant, always as an
incremental investment with respect to a similarly fired standard boiler
system follows, first on a constant (in 1980 dollars) fuel cost scenario
(Table IV-6) then on a fuel cost real increase scenario (Table IV-7), and

for various values assigned to the cogenerated electricity.
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TABLE IV-6
COAL-FIRED COGENERATION SYSTEM ECONOMIC PERFORMANCE

REAL CONSTANT FuctL COST AND ELECTRICITY VALUE SCENARIO

1980 3
Electricity Value
fuel cost 2.5 $/108 BTU
A capital, present worth 23.5 . 106 3
A (Fuel + 0 and M), present worth 78 . 1003
s SL Depreciation, present worth 15 . 106 8
82 . 10° g (25 mills/KWhre)
Electricity revenue, present worth 164 . 106 g (50 mi1ls/KWhre)
246 . 10° 3 (75 mills/KWhre)
-14 . 108 3 (25 mi11s/Kuhre)
NET PROFIT, PRESENT WORTH 27 . 106 3 (50 mi11s/KWhre)
68 . 10% 3 (75 mills/Kuhre)
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TABLE IV-7

COAL-FIRED COGENERATION
REAL INCREASING FUEL COST

SYSTEM ECONOMIC PERFORMANCE
ANV ELECTRICITY VALJUE SCENARIU

1980 2

Coal initial cost

Coal cost rate of increase
Electricity initial value
Electricity value rate of increase
Coal levelized cost

Electricity levelized value

A capital, present worth
s (Fuel *+ 0 and M), present worth

s SL Depreciation, present worth

Electricity revenue, present worth

NET PROFIT, PRESENT WORTH

2.50 $/10%8TU

2 percent/yr

25, 50, 75 mills/KWhre
3 percent/yr

3 $/10° BTU

34, 67, 101 mills/KWhre

Initial
Electricity Value

23.5 . 10° g

85 . 10° g

15 . 10° 3
113 . 10% ¢ (25 mills/Kuhre)
225 . 105 3 (50 mills/Kuhre)
337 . 10° 3 (75 mills/KWhre)
2 .1°¢ (25 mi11s/KWhre)
54 . 10° 3 (50 mills/Kwhre)

110 . 10% g (75 mi1ls/Kihre)
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TABLE IV-8

HIGH PRESSURE STEAM TURBINE OIL-FIRED COGENERATION SYSTEM

Costs Breakdown

Capital [$]

[3/yr]
0 and M [3/yr]
Fuel [BTU/yr]
(at 6.17 $/106 BTU) [8/yr]

1980 ¥

Cogeneration

System
53 . 106

5 . 106

13.05 x 1012

25 . 106

2.1 . 100

A Costs

28 . 106
4.2 . 106

2.9 . 10°
2.6 . 1012
16 . 10°

BUSBAR COGENERATED ELECTRICITY INCREMENTAL COST ANV COST STRUCTURE

Power Installed

Net Electricity

Load factor

Capital Cost

0 and M Cost

Fuel Cost

Total cost egp

74.6 MW
e

471 . 10°

0.9

9 mi]]s/KWhre

5.6 mills/Khr,
32.7 mills/Kuhr,
47.3 mills/KWhrg

eP = 8.1/L + 38.3 [mil1s/Kihre]

Installed electric power incremental capital cost

Total Cost, with standard boiler system

fully written off

Installed electric power incremental capital cost
with standard boiler system fully written off

55 mi11s/KWhre

710 $/KWg

19 percent
12 percent
69 percent

100 percent

370 3/Kidg
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0i1 Fired Cogeneration
A breakdown of oil-fired cogeneration system and oil-fired standard

boiler system costs as well as the busbar cogenerated electricity

incremental cost and cost structure is presented in Table IV-8. Again,
only net electricity available will be considered as a cogeneration
system product; full installed electric power is taken into consideration
for capital cost computation.

From Table IV-8 it may be seen that
1. The electricity as a by-product oil-fired cogeneration power plant is

similar to some medium load oil-fired central power plants in terms

of its fixed and variable incremental cost components relative weight
in the total

busbar generation cost.

2. The capital cost per Kwe of installed capacity of the coygeneration
power plant as previously defined is close to one half of the
correspondent cost for medium load central power plants.

3. The fuel cost of the oil-fired cogeneration power plant is
approximately one half of the correspondent fuel cost on an oil-fired
central power plant.

The analysis of the behavior of the 0il cogyeneration system economics
with respect to the rate at which electricity is priced by the market
(either utility buyback rate or effective cost of in-house yeneration by
non-cogeneration technologies) follows. However, it may be immediately
seen from equation 2 of Section IV.2.3.4 that the o0il coygeneration system
economics behavior with respect to electricity price is identical to the
one obtained for coal cogeneration system, the present worth of the

cogeneration system being, ceteris paribus, a linear function of the
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revenues from electricity.

Under the same conditions stated on the previous section on coal
cogeneration systems the economic analysis of the oil-fired,
high-pressure 0il cogeneration power plant, as an incremental investment
with respect to a similarly fired standard boiler system (both for a
newly installed and for a fully depreciated standard boiler system)
follows, first on a constant (1980 dollars) fuel cost scenario (Table
IV-9) then on a fuel cost real increase scenario (Table IV-10), and for

various values assigned to the cogenerated electricity.

Standard Boiler Systems

In the previous sub-section the cogeneration power plants have been
analyzed also by comparing them to similarly fired standard boiler
systems. In order to have a complete picture of steam raising by
cogeneration systems, all of the conclusions drawn on coal fired and oil
fired systems (cogeneration or not) should be evaluated one set relative
to another: this may be accomplished by perfoming an economic analysis
of the standard boiler system, coal-fired with a standard boiler system,
oil-fired. This economic analysis, whose results are presented in Table
IV-11 in the form of an incremental analysis will determine the relative
position of coal-fired and oil-fired systems and consequently will

complete the picture of steam raising alternatives furnished in this work.

Conclusions on Steam Turbine Cogeneration
The system economic analysis performed substantially verifies all the
conclusions reported in Section IV-1 and the more general findings of

Appendix B given our case study load.
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Table IV-9

OIL-FIRED COGENERATION SYSTEM ECONOMIC PERFORMANCE

REAL CONSTANT FUEL COST AND ELECTRICITY VALUE SCENARID

1980 3
Fully
New Depreciated
Standard Standard Electricity
Boiler Boiler Value
Fuel cost: 6.17 $/106 BTU
A capital, present worth [$] 19 . 106 36 . 106
A (Fuel *+ 0 and M), present worth [$] 131 . 106 131 . 106
A S1 Depreciation, present worth [] 12 . 106 22 . 100
82 . 106 82 . 106 (25 mil1s/Kihrg)
Electricity Revenue, present worth [$] 164 . 106 164 . 106 (50 mills/KWhrg)
246 . 106 246 . 106 (75 mills/Kuhry)
-37 . 106 -49.5 . 106 (25 mills/Kuhre)
NET PROFIT, PRESENT WORTH 3.5 . 106 -8.5 . 106 (50 mills/Kihrg)
44.5 . 106 32.5 ., 106 (75 mills/Kuhrg)
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TABLE IV-10

OIL-FIRED COGENERATION SYSTEM ECONOMIC PERFORMANCE

REAL INCREASING FUEL COST AND ELECTRICITY VALUE SCENARIO

1980 §
0i1 initial cost 6.17 $/10° BTU
0i1 cost rate of increase 3 percent/yr

Electricity initial value
Electricity value rate of increase 3 percent/yr
011 levelized cost 8.3 $/106 BTuU

Electricity levelized value

25, 50, 75 mil1s/Kwhrg

34, 67, 101 mills/Kuhrg

Fully
New Depreciated
Standard Standard Initial
Boiler Boiler Electricity Value
A Capital, present worth [$] 19 . 106 36 . 106
s (Fuel *+ 0 and M), present worth [$] 157 . 106 157 . 106
A SL Depreciation, present worth [$] 12 . 106 22 . 100
113 . 106 113 . 106 (25 mills/Kihre)
Electricity revenue, present worth [§] 225 . 106 225 . 106 (50 mills/Kihrg)
337 . 106 337 . 106 (75 mil1s/Kuhre)
-35 . 106 -47 . 106 (25 mil1s/kwhrg)
NET PROFIT, PRESENT WORTH [$] 21 . 10 9 . 105 (50 mills/Kuhre)
77 . 106 65 . 106 (75 mills/Kihre)
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TABLE IV-11

OIL-FIRED AND COAL-FIRED STANDARD BOILER SYSTEMS ECONOMIC PERFORMAWCE

REAL CONSTANT FUEL COST SCENARIO

1980 2

Coal Boiler

Capital [8] 72 . 106
0 and M [3] 8.6
Fuel [Btu/yr] 10.5 . 1012

(2.50 $/106 BTU) [8/yr] 26.15 . 106
(6.17 $/106 BTU) [$/yr]

Uil Boiler

25 . 106
2.1
10.5 . 1012

64.5 . 100

Incremental Analysis: Coal With Respect To 0il

s Capital, present worth [8]

s (Fuel + 0 and M), present worth [3]
s SL Depreciation, present worth [3]
Revenue, present worth [$]

NET PROFIT, PRESENT WORTH

New
011

Boiler System

s Costs
45 . 106
6.5 . 10°

Zero

-38.4 . 106

Fully Depreciated

011
Boiler System

31 . 106
-224 . 106
19 . 106

zero

90.5 . 100

47.106
-224 ., 106
29 . 106
zero

79.5 . 100
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The thermodynamic performance of the steam turbine cogeneration
systems follows:
1. Cogeneration systems installed electric capacity may vary
anwhere from 30 to 70 KWe for 106 BTU/hr to process as 200
psia saturated steam, by varying mainly the inlet conditions to
the steam turbines.
2. The first Taw efficiency of the cycle is
- 0.75
- independent of system configuration
- dependent on the cogeneration system components efficiency,
except that of steam turbine efficiency
3. The (incremental) heat rate of cogenerated electricity is close
to one-half of the heat rate achieved in central power plants.
The incremental heat rate as computed here is not a thermodynamic
parameter of the cycle, in as much as it is dependent on the standard
boiler system on which the incremental analysis is performed. -
It should be emphasized that cogeneration systems generally are less
efficient (due to higher steam outlet pressure imposed by process
requirements and the correspondent decrease in thermodynamic cycle
efficiency) and consequently more expensive means of electricity
generation than central power plants. The only reason why they look so
appealing under the thermodynamic analysis presented here is that in an
"incremental" thermodynamic analysis it is assumed that the heat normally
delivered by the cycle to the low-temperature reservoir is instead f
delivered as useful heat to process. Only incremental fuel consumption
is charged against electricity cogeneration. This largely offsets the

theoretical steam rate increase in cogeneration systems due to higher
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steam turbines outlet pressure and allows steam turbine cogeneration
systems to transform into electricity up to 80 percent of the
(incremental) fuel rate. This also explains why the thermodynamic first
law efficiency as previously defined is independent of turbine efficiency
(generally, a particularly important parameter) and dependent on all
other components efficiency. Whatever steam energy is not converted into
shaft work by the turbine is delivered as (useful) heat to process. As
shown in Appendix B, using the second law of thermodynamics, this fact
may be properly taken into account and different system configurations
may be evaluated.

Thermodynamic performance influences therefore the system viability
more than any other factor. The cost structure and cost figure fully
characterize the economic behavior of the system and allow, for instance,
a proper evaluation of system response to changes in fuel scenarios.
Interestingly, most of the thermodynamic considerations here made do not
generally appear on cogeneration studies and the only figure generally
quoted as a technology characteristic of cogeneration systems, the

6

electric power installed per 10° BTU/hr of heat delivered to process,

is here shown to be a design parameter.

IV.3 Case Study Economic Evaluation

The economic evaution of this case study is also performed as an
incremental investment analysis following Appendix E criteria. The
existing steam generating equipment (o0il boiler) is compared with a set

of fuel substitution alternatives using coal, coke or natural gas or

introducing cogeneration.

From the decision maker's viewpoint the question is, if it is worth
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investing money in one of the suggested options or if he should go ahead
using the old system.

In a first step the profitability of all alternatives is computed in
form of the NPV after 20 years. A sensitivity analysis and a market
analysis for the key variables is performed for some of the most
promising alternatives. Then different fuel price scenarios are assumed
and the profitability of all options calculated for each of the scenarios.

The Financial Model calculates a set of evaluation criteria (see
Appendix E). The comparison used in the case study is based on net
present value (NPV) because the internal rate of return may be
misleading. The input data--mainly capital, operating costs, fuel
consumption and electricity generation--are listed in Table IV-11l. It is
assumed that the old steam raising equipment in this facility is already
written off for tax purposes. The model otherwise would consider the
differnce in depreciation between old and new equipment as well as tax
effects which eventually result in the selling of old equipment.

The assumptions made for the analysis are the following:

- A1l doltlar values are expressed in constant 1980 doltlars

- Project Tife: 20 years -- 3 years construction, 17 years
operation

- Tax 1ife: 16 years

- Depreciation: straight line method
- Salvage value: book value

- Investment tax credit: 10 percent
- Energy Tax Credit: 10 percent

- Rate of debt financing: 60 percent

- Maturity: 20 years
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le IV-11

CASE STUDY, INPUT DATA IN 81980
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- Grace period: 3 years
- Interest on debt: 8 percent
- Discount rate: 15 percent
- Buyback rate/electricity value: 5 cents/KWhre
- Capital spread over the three years of construction:
20 percent, 40 percent, 40 percent.
The fuel price scenarios are:
0 Fuel Price Scenario 1: (For 1985 in 1980 dollars)
Coal price: 2.50 3/MBTU
Coke price: 2.67 3/MBTU
Gas price: 5.60 $/MBTU
0i1 price: 6.17 g/MBTU
) Fuel Price Scenario 2:
Based on the prices in Scenario 1 starting in 1985 a real price
increase with the following annual rate is assumed.
Coal: 2 percent
Coke: 2 percent
Gas: 4 percent
0il: 3 percent

Buyback rate: 3 percent.

Financial Model Results

The results of the economic analysis with the base set of assumptions
are presented in Figure IV-1. In this incremental analysis the zero line
represents the decision not to change from the use of the existing, 0il
burning equipment currently used to serve the load. Any value greater

than the zero line represents an investment with a positive net present



IV-26
value (or an internal rate of return greater than 15 percent). Any value
below the line shows a negative net present value. The x axis on Figure
IV-1 represents the buyback rate for electrical power cogenerated by the
5 cogeneration options.

The results presented in Figure IV-1 need be seen in 1ight of the
discussions of IV.2 and in light of the description of the case study in
Section III. As was stated the case will generally favor high capital
low operating cost options . The one instance where this is not true is
in terms of the gasifier system. The case study is not an ideal
environment for the gasifier also because the systems called for boiler
fuel not for direct firing. Under these circumstances a gasifier (a
potential clean fuel supplier) is being competed against straight coal
combustion (a dirty fuel). Under these circumstances the straight
combustion will always appear more economic.

The other results from Figure IV-1 are also relatively intuitive.
Given increasing buyback rates for electricity the systems with the
greatest electrical to thermal output (e.y. steam turbine system 3) are
those with the greater NPV at higher buyback rates (the NPV is linear to
buyback rate in this incremental analysis--see section IV-1). This
especially favors gasturbine systems at high buyback rates.

The final point to note may be the most significant from the
perspective of the analysis and that is that for this case study the coal
system is always superior to the oil system. With a decrease in capacity

factor (or in size) this need no longer be the case.

Sensitivity Analyses

From the previous discussion it is possible to see, in terms of net
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present value, that the "best case" is the coal-fired cogeneration
system, option 3. To evaluate this option further and to test the
flexibility of the modeling tools we utilized three types of sensitivity
analysis. The first we have called parametric analysis. In this example
we have evaluated the change in the NPV given a fixed percentage change
in the independent or exogenous variables. This method offers a means of
quickly evaluating the relative impacts of variable changes not taking
into consideration the likelihood of the change, i.e., a change in fuel
prices of 50 percent is likely but this is highly unlikely for capital
costs.

The second type of sensitivity analysis used is referred to as
scenario analysis. In this instance we examined through trade-off
analyses the likely impact on the dependent variable of changes in a set
of exogenous variables based on the research team's estimate of likely
covariance. The third and final type of sensitivity analysis carried out
utilized Monte Carlo Simulation to evaluate the probability distribution
of likely outcomes as a function of the probability of specific variation
in individual of the exogenous variables.

Parametric Analysis

We have carried out a set of sensitivity analyses in which the base
case was systematically perturbed one variable at a time to measure its
impact on the expected NPV. Fiyure IV-2 presents the results of that
systematic analysis in a graphical form in which the variables have been
subjected to range variation equal to * or - 50 percent of their value in
the base case. The significance of this type of presentation is an
ability to see the slope of the variation of path for the individual

variables bearing in mind that the magnitude of the variation has been
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chosen arbitrarily (50 percent). For some of the variables investigated
this is a reasonable range over which to evaluate the uncertainty. An
example would be 0il prices which could exceed the 50 percent increase on
the postive side. Such variables as capital costs are unlikely to vary
by 50 percent, certainly not to the minus side.

Given these caveats, Figure IV-2 presents a picture on the actual
sensitivity of the decision variable, NPV to change in a set of exogenous
variables. It is not surprising that it is to both the oil price and
price paid for electrical energy that the NPV is the most sensitive. As
with all such analyses, significant variation in the discount rate has a
major influence on the profitability of the investment. This should,
however, be seen for what it is, an internally consistent financial
parmaeter which relates the importance of the trade-off between capital
and operating expenditures. The case study facility requires heavy front
end expenditures in capital with relatively lower operating costs. This
when compared to the existing system which is dominated by operating
costs, will assure you of increased NPV with decreasing discount rate.

Scenario Analysis

Figure IV-3 presents the results of evaluation of two of the fuel
price scenarios compared across the eight technology options. The fuel
scenarios were, in summary, first that prices will remain constant and
the second that prices will increase (2 percent for coal, 3 percent for
0il, 4 percent for gas and 3 percent overall for electricity). The
sensitivity of the results is again a confirmation of the intuition of
the research team. Those alternatives which move away from oil toward
coal appear to be the most improved by the change in scenario. As one

would expect, there is an increase in NPV for all of the options
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involving coal based on the relatively more rapid increase in the price
of electricity over the cost of coal. In the same way there is a less
dramatic increase in the NPV for oil fired cogeneration which reflects
the identical rate of increase in price but starting from a different
base. It is interesting that only the gas turbine technology shows a
decline in NPV with change in scenario. This again would be expected
given its relative fuel use characteristics.

The parametric and scenario sensitivity analyses carried out
confirmed to a large extent the expectations of the research team given
the case study chosen. The significance of the exercise was to test the
modeling structures, in this case both the physical models and the

financial stuctures and demonstrated that they were operating correctly.

Monte Carlo Analysis

The final type of sensitivity analysis run on the economic data was a
Monte Carlo simulation of the electric utility buyback rate on NPV for
the best case, coal cogeneration Case 3. In the Monte Carlo analysis one
or more variables are described as a probability distribution rather than
as either one deterministic value or set of scenario values. In the
analysis discussed below the buyback rate of electricity was assumed to
have a normal distribution with a mean of 5 cents and a variance of 1
cent per kWhre.

Figure IV-4 summarizes the results of the Monte Carlo analysis. The
normal approximation table indicates the probability of the NPV being
greater than any specific value using only the relationship of the normal
distribution. The frequency table indicates the distribution of the
results of 200 trials, i.e., 200 simulations in which the price of

buyback electricity was randomly chosen from a normally distributed
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selection of price quotes. Given that only one variable was analyzed in
the Monte Carlo analysis the normal and the frequency tables are
identical.

The results of the analysis in Figure IV-4 shows that there is a
probability of .9 that, given the distribution of prices chosen, the NPV
for the option chosen will exceed 61 million dollars. This value is
roughly equivalent to the NPV of the second best option, Coal 1 at the
expected value of the buyback rate, 5 cents. The conclusion to be drawn
is that the choice of the best alternative has a high probability of
exceeding all other alternatives across a wide range of values for
buyback electricity and thus given this variable only would appear to be
a sound investment strategyy. To complete the evaluation it would be
necessary to carry out the same type of analysis for each of the
exogenous variables for which a reasonable and defendable probability
distribution could be described. After the analysis had been handled
independently the variables then would be grouped to evaluate the joint
probabilities of individual sets of variables and the distribution of
results, NPV, brought about by specific sets of variables. The same type
of analysis can also be extended to the evaluation of sets of exoyenous
variables, the values of which are either interdependent or dependent

upon the same external factors.

IV.4. Environmental Analyses

The purpose of the environmental research was to evaluate a set of
canonical environmental models from which one could be chosen for
incorporation into the interfuel substitution modeling structure under

development at MIT. The model chosen, CDM, is described in Appendix F.
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It is a Gaussian plume model which follows n detail the additive
dispersion of multiple sources of particulates, sulfur and nitrogen
compounds. The discussion which follows summarizes the application of
the model to the case study technologies operating in a rectangular
region. Because the analysis is incremental, i.e., is not concerned with
absolute levels of specific pollutants, only resultant emissions from the

case study facility are considered in the analysis of the results.

IV.4 Environmental Analyses

The purpose of the environmental research was to evaluate a set of
canonical environmental models from which one could be chosen for
incorporation into the interfuel substitution modeling structure under
development at MIT. The model chosen, CDM, is described in Appendix F.
It is a Gaussian plume model which follows in detail the additive
dispersion of multiple sources of particulate sulfur and nitrogen
compounds. The discussion which follows summarizes the application of
the model to the case study technologies operating in a rectangular
region. Because the analysis is incremental, i.e. is not concerned with
absolute levels of specific pollutants, only resultant emissions from the
case study facility are considered in the analysis of the results.

Ten cases are considered in the case study energy use model of the

refinery:
Case 1 9.66x10® MMBTU/YR Coke Boiler
Case 2 9.66x106 MMBTU/YR Coal Boiler
Case 3 9.66x10% MMBTU/YR 0i1 Boiler
Case 4 11.60x106 MMBTU/YR Coal Boiler Co-generation
Case 5 11.60x106 MMBTU/YR 0il1 Boiler Co-generation

Case 6 13.05x106 MMBTU/YR Coal Boiler Co-generation
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Case 7 13.05x106 MMBTU/YR 0il1 Boiler Co-generation
Case 8 20.12x106 MMBTU/YR Natural Gas Turbine Co-generation
Case 9 Coal Gasifier and 12.88x106 MMBTU/YR MBG Boiler

The data input requirements for the Climatological Dispersion Model
include:
1. Emission Source

a) Location

b) emission rate (gin/sec)

c) stack gas exit temperature

d) stack height

e) stack diameter

f) stack gas exit velocity
2. Meteorology

a) Values for Joint Frequency Function (i.e. wind speed, direction

and atmospheric stability class)

b) Average Nocturnal and Afternoon Mixing Heights

c) Average Ambient Temperature
3. Receptor Grid ietwork

Figure IV-5 depicts a hypothetical 225 KM2 region. The point
source (refinery) is located at X=8.0 KM, Y=10.0 KM. There are 225
receptors, located at each unit kilometer node. The reason an area of
225 KM2 was chosen for this example was because it was large enouygh to
include for all cases the distance of maximum ground level concentration,
as well as an additional margin to show concentrations tapering off.

It is assumed that the plant operates continuously at the same rate
for 90 percent of the year. Emission rates and other emission source data

for the ten cases are given in Table IV-12. Emission rates are a
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function of fuel composition (e.g., sulfur and ash content), fuel
consumption rate, combustion technology and emission control equipment.
In all cases compliance with EPA's New Source Performance Standards
(NSPS) is assumed.

Stack height is assumed to be 65 meters in all cases.* The inside
stack diameter is assumed to be 4.0 meters. Stack gas exit velocity is
then determined for each case directly from the process flow rate. Stack
gas exit temperature is a function of combustion technology, emission
control equipment and heat exchange equipment. The latter two data items
were estimated for each case from published data.

Because this was a test run of the Interfuel Substitution Project
methodology, a simplified joint frequency meteoroloygy function was used.
Throughout the test year it was assumed that class 4 stability (neutral)
and class 4 wind speed (6.93 meters/sec) prevailed. The frequency
occurrance of wind direction was spread uniformly across all 16 sectors.
By virtue of its symmetry, this meteorological data base provides a
built-in check as to whether the computer simulation model is perforiing
properly; a symmetrical meteorology should generate a symmetrical
distribution of concentrations for the case of a single point source (see
Figures 1V-6 and IV-7).

The averaye nocturnal and afternoon mixing heights were assumed to be

550 meters and 1000 meters respectively. Annual average ambient

*See proposed rule Federal Reyister October 1981. The new
regulations set lTimitations of the stack height to be used in ambient air
quality modeling. The new rule would allow a credit of 65 meters for all
sources as a reasonable estimate of the height needed to insure that
emissions will not be affected by common ground-level meteorological
phenomena which may produce excessive pollutant concentrations ?e.g.
downwash) .



Case
Case
Case
Case
Case
Case
Case
Case

Case

502

1 30.87
2 41.68
3 15.44
4 50.05
5 18.54
6 56.31
7 20.85
8 --
g(*)

i) 98.56
ii) 59.68

*Item i) is due
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Table IV-12

Emission Source Input Data

eiission rates

(gm/sec) flow rate exit
PM NO, (m3/sec) Temp. C
1.54 101.89 163.83 79

12.35 101.8Y 163.83 79
2.16 30.88 166.63 149
14,83 122.35 201.56 79
2.59 37.08 226.70 149
16.68 137.65 200.06 79
2.92 41.71 225.06 149
-- 96.44 865.57 232
0.29 4.64 20.99 154
2.06 47.33 221.29 149

to the coal gasifier. Item ii) is due to the medium

BTU gas (MBG) boiler.
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temperature was assumed to be 10 degrees Centigrade.

The output of the CDit simulation is in effect a distribution of
pollutants across the receptor grid. There are three forms in which this
output can be presented: 1) predicted concentration frequencies i.e. the
number of times that a given concentration level was "measured" among the
receptors--see Tables IV-13 through IV-16; 2) contour plots or isopleths
as shown in Figures IV-6 and IV-7; or 3) the predicted concentrations by
individual receptor--see Table IV-17. HNote that for the latter two forms
of presentation only a single case, Case 6, was considered. In all nine
cases total suspended particulates (TSP) did not exceed 0.1 ug/m3.

The relationship between stack emission rates and ground level
concentrations is influenced by plume rise. As was explained in the
background section, plume rise is determined by the diameter of the stack
and the stack gas exit velocity and temperature (flow rate). These three
factors combined with ambient temperature give rise to the bouyancy and
momentum effect that sets the plume center-line above the top of the
stack. Case 8 is a graphic example of how plume rise can influence
ground Tevel concentrations. Note in Table F.4 that case 8 has a
relatively high NOX emission rate. However, the high emission flow
rate and stack gas exit temperature associated with this case set the
plume so high that simulated values fall below 0.25 ug/m3 throughout
the receptor grid.

Thus one can see that simply reducing emissions will not alone
guarantee an improvement (i.e. reduction) in ground level
concentrations. In fact as is discussed in reference [6], in some cases
reduced emission rates could result in greater ground level

concentrations. The reason for this is precisely that plume rise could
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Table IV-13
Predicted Annual Average Concentration

Frequencies at 256 Receptor Grid Points within

225 KM2 Area
(ug/m)
——— 502 _———
*

0.0 0.1 0.2 0.3 0.4 0.5
Case 1 9 22 128 87 0 0
Case 2 9 0 65 94 128 0
Case 3 21 235 0 0 0 0
Case 4 9 0 46 88 1i3 0
Case 5 29 227 0 0 0 0
Case 6 9 0 22 70 94 61
Case 7 25 231 0 0 0 0
Case 8 256 0 0 0 0 0
0.0‘1.0 1.1-105 106’200 201 202 203 204
Case 9 70 93 53 4 12 20 4

*Predicted concentrations of 0.0 will be the result of either:
1) actual zero levels of pollutant such as those that would occur in
c]osg proximity to the stack; or 2) negligable levels (less than 0.05
ug/m?) which would occur at receptors furthest away from the stack.
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Table IV-14

Predicted Annual Average Concentration

Frequencies at 256 Receptor Grid Points within

13

21

21
234

225 KMZ Area

(ug/m3)

--- NO, ---

.0.1.0.2.0.3.0.4.0.5:0.6:0.7:0.8:0.9.:1.0:1.1:1.2.

« 4. 0: 07 10! 28% 43. 49. 33! 52! 32.
!4l 0! 0! 10! 28! 43! 49! 33! 52! 32!
! 73i1780 0! 0! 0! o! o! o! o! o!
. 4. 0. 0. 4 19: 29. 41. 41: 41. 72.
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be reduced through the application of emission control technology. In
temms of simulated concentrations, the lower plume center-line could more
than offset the reduction in emissions in certain situations.*

Case 9, the coal gasifier, also stands out as an exceptional
example. The high simulated SJ, ground level concentrations are the
result of hiyh SOZ emission rates and low flow rate coming from the
gasifier unit. By its very nature coal yasification is more inefficient
than the coal boiler technologies considered. Hence more primary fuel
input is required to produce a unit of steam. Consequently there is more
sulfur flowing through the system. As described in Appendix C, the
gasifier technology used in this study is the Texaco entrained flow
process.

The Texaco process produces M8G that retains ten percent of the total
sulfur that was originally contained in the primary coal input. The
sulfur removed in the gasifier unit is received either as a solid

(elemental sulfur) or emitted from the plant in the form of SO, in the

2
tail gas stream. The total flow rate for the tail gas stream is the sum
of the flue gas from the ygasifier process boiler and the aforewmentioned

502 stream. As is peculiar to the Texaco process, this is a relatively

low value.

Compliance with Federal Environmental Standards

It has been mentioned that the technoloygies considered in the ten

cases all meet the New Source Performance Standards (NSPS) for emission

*It would not be fair to say with complete confidence that in these
cases the reduction in emissions would have a negative net environmental
impact. Indeed, one cannot deny the old adage "what goes up must come
down." Emissions which do not come down within the receptor grid will

come down further away, at another time, quite possibly in another form
such as acid rain.
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rates set be EPA. The basic federal standards concerned with the more
"downstream" aspects of air pollution will now be discussed. Of course
in an actual application of the Interfuel Substitution Project, all
relevent local, state and federal laws and regulations would be taken
into account.

Stated simply, there are two situations under which a new or modified
emission source falls: attainment or nonattainment. These termms are
defined by the National Ambient Air Quality Standards (NAAQS), see table
F.10 (Appendix F). If in an area any of the primary standards are
exceeded, the area is designated a nonattainment area. Consequently no
new or modified source may be constructed without applying "Lowest
Achievable Emissions Rate" (LAER) control technology and providing an
emission offset of at least as much as the new or modified source will
emit (pertaining to the offending pollutant).

If the area is an attainment area then a set of standards known as
Prevention of Significant Deterioration (PSD) applies, see Table F.11
(Appendix F). PSD standards are based on concentration increments. Most
of the 48 contiguous United States is designated Class II. Whether any
of the cases considered in this report would be in PSD compliance in a
Class II area would depend on how much of the increment had not already

been consumed.

Capital Environmental Trade-Off

A major issue in any evaluation of new fuel use technoloyies is the
trade-of f between increased profitability and environmental quality. In
the case analysis a set of evaluations of individual of the case analyses

were made comparing the NPV for specific technological options with
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their level of emissions. Figures IV-6 and IV-7 indicate the level of
emissions in S0, and NO, at ground Tevel with the use of 1.7 percent
sulfur oil and 1.7 percent sulfur coal. The differences are based
largely on fuel combustion rates and on fuel quality. Figure IV-8 shows
the results of a limited analysis of the impact of alternative coal
qualities on both environmental quality (SOZ) and on system NPU. The
results are interesting in that moving from 1.7 to 3 percent sulfur coal
increases the ground Tlevel pollutants by over 60 percent while the
increase in NPU is only 33 percent over this range. Further the shape of
the curve indicates diminishing returns to increasing sulfur content in
the coal.

The conclusions that can be reached from this type of analysis is the
trade-of f between capital and operating costs and environmental quality.
It is clear that the relation is non-linear and as a result reygions of
high sensitivity can be identified in which it is possible to gain the
most in environmental quality and in NPU. The next step in this type of
analysis would be to incorporate capital expenditures in abatement

technologies such as scrubbers into the trade-off costs.

IV.5 Conclusions

The objective of the case study was to test the tools and
combinations of tools developed in this effort for evaluation of
interfuel substitution potential in industry. The broader objective of
the research effort was to develop a set of regional aggregation methods
(described in Part I) and to test the reyional integration tools, in this
case regional air quality modeling capability (presented in this chapter

and in Appendix F).
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The initial sections of the chapter presented the results of our
evaluation of coyeneration and boiler fuel switching for the case study
and presented the general conclusions which can now be used as a
screening tool for our further interfue]vsubstitution analyses. This
effort identified the key parameters for both cogeneration and
traditional boiler analyses: size, fuels cost, discount rate, load
factor.

This chapter also tested the economic/financial model and, using this
model, tested a set of sensitivity analysis methods or techniques. These
were parametric analysis, scenario analysis and Monte Carlo analysis. In
each instance the methods performed successfully and the results were of
interest. These are presented in Figures IV-2, IV-3 and IV-4. Havinyg
carried out this set of analyses it is clear that they have relatively
divergent purposes in the analyses. The parametric analysis provided a
summary review of the direction and slope of impact of a large set of
exoygenous variables whose values were modified by fixed percentaye
steps. This analysis looked at one variable at a time. The choice of
step size was arbitrary, and therefore offers only a screen on the actual
impact of individual variables and offers little information on the
impact of sets of variables which move together.

The second type of sensitivity analysis carried out was called
scenario analysis and involved definition of a set of variables and the
manner in which they would covary in a "snapshot" format. Here the
objective was to paint a set of likely futures--in our case associated
with future fuel prices--and evaluate as point solutions the relative

impact on the measured dependent variable, in this case net present value.
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The final method tested, Monte Carlo analysis, fulfills yet another
function in describing the dependent variable as a probability
distribution in terms of one or more input variables whose values can be
described probabilistically. This analysis is particularly useful in
evaluating the robustness of an investment decision, i.e., the ranyge of
variable values over which the decision still dominates or the range over
which the WPV will continue to meet some type of hurdlie condition.

The final analysis carried out was a trade-off analysis of capital
vapue (NPV) against environimental air quality. OUnce again the modeliny
structure performed as required and the results showed the relative
steepness of the trade-off curve and thereby the improvements in WPV with
increases in sulfur emissions. For a more interesting analysis of this
type of trade-off, it is necessary to work within an actual reyion and to
look at a set of capital investments in scrubbing technoloyies along with
alternatives in fuel consumption.

In summary, the case study demonstrated the modeliny and analytic
facility developed during the project. While there were no major
surprises in this effort the development of the screening criteria for
cogeneration and fuel burning has offered a major advantage in extension

of this work to a full-scale reygional evaluation.
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V. CONCLUSIONS TO PHASE I

The case study results reported in Section 4 of the report have

produced two major sets of conclusions. The first set of conclusions is
that the modeling structures developed and tested in the case study were
shown to work effectively for the case study analysis both individually
and when used in pairs. Thus the objectives of Phase I to develop a set
of planning models for use in regional interfuel substitution analysis
was completed successfully and the models are ready for testiny in a
specific area. This is discussed in greater detail in Section 6 which
follows.

There is a second set of conclusions which can be drawn frou the
results of the case studies. These are both specific to the analyses
done and discussed in Chapter 4 as well as yoing beyond those conclusions
from Chapter 4 and building on the combined experience of the research
team in carrying out the case study analysis and in doiny, as will be
seen, a set of side analyses that can be used to summarize our efforts.
The results are reported here in two groups. The first yroup contains
two results that Tead directly from the economic and engineering analyses
carried out in the study. Figures 5-1 and 5-2 show the cost trade-offs
between 0i1 and coal systems (both traditional boilers and cogeneration
systems). Primary issues associated with Figures 5-1 and 5-2: These are
that the coal versus oil decision, i.e., the screening curve decision
presented herein, shows high sensitivity to size, economic parameters,
end load factor, as it may be seen from the larger oil-coal fuel costs
differential needed to obtain an econoiwically feasible fuel switchiny.

Those figures summarize a major set of conclusions concerning the

relative significance of the size of an installation and the difference
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in absolute dollar terms between the cost of coal per million Btu
delivered and the cost of oil per million Btu delivered. It also shows
the impact of a change in the discount rate. The plot indicates the
breakeven point between an oil system and a coal system, i.e., economic
indifference between investment in one technology versus another. The
numbers presented in Figures 5-land 5-2 are derived froi the boiler data
information discussed in Chapter 4 and Appendices A and B. What is
significant about the figures is that the absolute size of the dollar
difference between the two fuels affects dramatically the size at which
coal becomes an economically attractive investment. As one would expect,
also, as the discount rate decreases, the size of unit at which coal
becomes cost-effective relative to oil decreases. Those figures offer an
extremely facile screening tool for evaluation of the cost-effectiveness
of decision between coal and oil capital stocks. As such, it will offer
one of the preliminary screening tools to be used in Phase II of this
effort.

The second set of conclusions that can be drawn from this project are
directly related to the coal-to-0il fuel switching decision. These may
be summarized under three specific headings, General Constraints, the
Coal Decision, the Cogeneration Decision, and the possibility of a
physically cleaned coal-derived fuel that can substitute for residual o0il
in boilers designed for oil.

The three general conclusions about the economic feasibility and
physical feasibility of coal combustion in industry: These are
environmental feasibility, availability of supply, and availability of

storage capacity within the facility.
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Environmental Feasibility

There are regions defined by the EPA in which coal combustion at the
industrial level, is highly constrained based on air quality constraints
in the region as a whole. This is a case for a significant number of the
major urban areas in the Hortheast and North Central regions of the
United States. In these areas, coal combustion at even a large
industrial scale, will be heavily constrained and thereby from a regional

perspective, not be a viable option for industrial fuels.

Availability of Supply

The supply lines for provision of coal were traditionally the
railroads. Within some regions, again notably the Northeast and North
Central portions of the United States, the rail lines which once supplied
coal to industrial customers are no longer available. Provision of both
reliable and adequate supplies for industrial customers therefore becomes
a major consideration in the fuel switching decision. Without guaranteed
adequate supplies, there is little if any possibility of an industry

switching to coal even if the economics look favorable on other grounds.

Storaye Capacity

It is significant to note that many of the possible industrial sites
for coal combustion do not have sufficient storage space for coal piles.
This either eliminates the possibility of coal as an option or forces
that option to be structured around the highly reliable centralized
storage facility from which a large number of industrial firms would be
able to receive coal on a nearly daily basis.

The above three criteria represent significant pre-screens to the
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coal conversion decision at a specific industrial location. They are
important because they may determine that coal is not a viable option for
an entire region, given the environmental characteristics of the region,
the supply availability characteristics of that region and the general
physical layout of a large number of industries within the region.

The discussion which follows characterizes the coal substitution
process for existing facilities, making a decision to switch from 0il to
coal. These are broad conclusions. For every conclusion there is the
exception. Despite this, however, these conclusions will, we feel, offer
a structure within which to consider the screening of the interfuel
substituion decision at the industrial level.

The first concern is the initial decision of the economic viability
of coal. Given the currently commercially available technologies for
fossil fuel combustion one can make the following two broad stateiients.

For any thermal Toad greater than 500 x 100 Btu/hr coal steam
raising will dominate oil steam raising frou an economic perspective.
This is the case for several reasons. A significant one is that any
industry in the 500,000,000 Btu/hr category has a reasonably high load
factor. The industries themselves are large, have a flat load, and can
take advantage of the scale economies associated with coal combustion.
Classical sectors in which such plant installations occur, would be
refining, chemicals, very large food processing, paper, and, again very
large, textiles, cement.

In the range between 100 and 500 million Btu/hr the following factors
will lead to a decision to switch to coal over o0il. These are:

Size--The larger the system, as was discussed above, the higher the

probability that coal will be an attractive option;
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Coal cost relative to oil cost--The greater the absolute difference

between the per million Btu delivered cost of coal and that of oil,

the more likely is the economics to favor coal.

Lower discount rate-~The discount rate or interest rate used in the

analysis will always influence positively a large investment decision

as the interest rate becomes lower.

Load factor--The greater the load factor, i.e., the relative evenness

of thermal demand throughout the year, the higyher the probability of

a decision to invest in coal over oil.

In this range between 100 and 500 million Btu/hr there is a wide
variety of options for coal conversion. It is in this range that most of
the decisions to nove to coal will have to be made. It is in this range
that much of the interest in screening and evaluation of potential for
coal conversion arises.

The next sequential decision and thereby conclusions drawn from this
project are in the area of cogeneration. Here, two major general
conclusions have emerged from this study. They will not be discussed in
detail in the set of conclusions, but rather the reader is encouraged to
return to Section 4.2 and to refer to Appendix B.

The first conclusion is that for industries with a large, flat
thermal Toad coal is a viable option for a boiler fuel within the
industry, and it will be cost-effective for that industry to cogenerate
and when it does so, its net present value to the investment in capital
stock will increase relative to only coal combustion. This is a
significant conclusion, obtained pricing ccogenerated electricity at coal
fired electric utilities fuel costs. Given PURPA regulations, i.e.,

buyback rate set equal to avoided cost, it will be possible for an
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industry either to save or to sell back to the utility at a favorable
price. In addition, the combined first and second law of thermodynaic
thermodynamic efficiencies when compared with the separate raising of
steam and generation of electricity favor cogeneration.

The second major conclusion which emerges from the steam turbine
cogeneration analysis is that if the decision has been made to
cogenerate, the dominant system configuration from an economic
perspective will be the one that, within the constraints of technology
availability for a specific-sized installation, raises steam at high
pressure and temperature. This again is discussed in greater detail both
earlier in this chapter and in Appendix B. It is sufficient to say that
the higher electrical output achievable from higher pressure and
temperature relative to the incremental cost and capital to achieve those
temperatures guarantees that from an economic perspective the decision
will be to generate steam at high temperature and pressure in order to
generate as much electricity as possible prior to using steam in
process. Other cogeneration technologies might be analyzed in the same
way. Most of these will generally have higher cogenerated electricity
incremental cost of cogeneration but also larger installed electric power
per unit heat rate delivered to process.

The final areas of conclusions for this study are summarized in
Figure 5-3. These relate to the possibility of a coal-based physically
derived liquid substitute for residual oil. The question is often asked
whether a fuel such as coal-water mixture can be a substitute for
residual oil. If it were, it would be usable in existing boilers
probably with acceptable retrofitting capital cost and with some decrease

in the boiler heat rate. The economic viability of such a technology
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comes from its ability to furnish process energy at a cost Tower than
oil. Thus, the absolute difference in price between 0il and coal slurry
determines the amount of money that can be spent on a combination of
capital (including boiler derating) and physical beneficiation of fuel
such that the total system cost does not exceed the one allowed by the
differential between coal slurry and oil costs. Figure 5-3 indicates the
region of acceptability for the price of beneficiated fuel.

In conclusion, then, the results of the case study and those specific
conclusions that can be drawn from it as well as the more general
conclusions in the paragraphs immediately above have indicated that the
evaluation, in particular the regional evaluation, of interfuel
substitution possibilities in the industrial sector depends significantly
on the relative prices of oil and coal, upon the availability of those
fuels upon the industry loads, and upon such other constraints as
environment and financing. The first project identified a set of tools,
modified and developed those tools and tested them in an effort to be
prepared to carry out a Phase II effort in a specific region. That Phase

IT effort is presented in Section 6 which follows.
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VI EXTENSIONS OF WORK: ‘Phase II

The efforts reported in this report represented the first phase in a
two-phase effort to evaluate industrial interfuel substitution
possibilities on a regional basis. The work was motivated by a desire to
develop a systematic method of evaluation which held the potential for
"bottom up" aggregation of individual decisions but in which the actual
nature of the individual investment decision was not lost. Phase II is
structured to take the methodology described in this document and apply
it to a specific region of interest to a set of sponsors, several of whom
participated in this phase of the work.

Several points have been learned in the length of this effort which
will influence dramatically the shape of Phase II. The first is positive
and that, as was discussed in the previous section, is that there may be
a relatively simple screening methodoloyy for evaluation of cogeneration
and fuel switching potential, i.e., the technologies for combustion allow
for a series of functional relations to hold for specific size ranyes
that make the decision relatively independent of many of the economic
parameters to date believed to be of major importance in the evaluation
of such decisions.

The efforts of Phase I emphasized what had been suspected concerning
regional analysis and that was that the method of aggregation of
information would be the most critical issue. Section I of this report
discusses a methodology for aggregation which, though heuristic in some
ways, appears to lead to correct conclusions concerning the potential for
interfuel substitution. This method will need to be modified as it is

applied in the first of the regional studies. Several issues are clear,

however. The first is that there is no simple functional means of



Vi-2
aggregation that has been used successfully in applications such as
this. The second is that the method finally used will require research
judgment and will result in a distribution of outcomes that are a
function both of traditional variable uncertainty in such areas as fuel
prices and capital costs as well as a function of the business
environment in which such decisions are made. Finally, the potential
will be a function of the availability of a critical mass for significant
savings in interfuel substitution, i.e., the availability of fuels at the
significantly Tower costs that occur with economy of scale in transport
and/or processing.

The second phase of the work is beginning at this time for Georgia
and the Southeast. It is being jointly undertaken by MIT and Georgia
Tech using the methodology and tools described in this report combined
with the experience and data developed through five years plus of energy
conservation efforts by Georgia Tech in the industrial sector of the
state. Using Georgia as the data base, the potential for interfuel
substitution within the region will follow. It is clear already that
some of our conclusions from Phase I will be modified as we implement
Phase II but the tools developed and the experience yained and data bases
developed form the required building blocks for much of the further work

in this area by MIT and other research groups.
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Appendix A: STEAM RAISING: TRADITIONAL BOILER SYSTEMS

This appendix presents the cost and environmental data needed to
model fuel choice decisions for industrial steam raising facilities. A
great number of factors affect the cost to produce steam including the
amount of steam required, the steam load duration curve, the fuels that

are being considered, the required system reliability, and the

environmental regulations. The approach taken in this analysis is to
present cost data described in terms of the key variables that determine
cost. Expressed in this manner, a comparison of steam raising costs for
alternative fuels can be easily obtained for the diverse range of
industrial conditions. The analysis is divided into two parts: Section
1 presents the necessary cost data for the economic analysis while

Section 2 describes the environmental factors that must be considered.

A.1 Boiler System Cost Analysis
1.1. Steam cost variables

In order to model fuel choice decisions for industrial steam
raising, it is necessary to capture the factors which most strongly
determine steam generation costs. In general, these factors can be
divided into three categories: general system specifications, economic
evaluation variables, and "site-specific" variables. In modeling fuel
choice decisions, the effects of system specifications and economic
variables are easily accounted for., The "site-specific" factors, those
which account for a firm's particular operating practices, design

philosophy, and site-related conditions, are not.



A-2
The yeneral system specifications and the economic variables include
the following factors:
o fuel type
o steam quality (pressure and temperature)
o peak and annual steam demand
o pollution control requirements
0 system re]iabi]ity and backup requirements
o fuel price
o discount rate
o life of facility

0 expected escalation rates

Once these factors are specified, a screening level estimate can be made
of the system's capital, operating, and fuel cost components.

Each of these factors has a strong impact on the cost of raising
steam. For example, a coal-fired boiler can require between 2 to 4 times
the capital of an oil- or gas-fired boiler for the same steam production
capacity. On top of this, pollution control can add up to 25 percent to
the capital cost. Similarly, system reliability requirements can add to
capital cost by requiring that several boilers be used to meet peak
demand. This, however, entails a higher capital cost since the economies
of scale are not captured. Related to this is the question of how to
provide "backup" capacity for the system. For a coal-fired system,
capital costs would be significantly lower if an oil-fired unit was used
for backup. Since the backup would only be used for limited times, the
penalty for using high price fuel oil might be offset by the savings in

capital cost.
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An illustration of the relation between several of these variables
and steam cost is presented in Figure A.1 using a simplified analysis
methodology (1). Shown here is the steam cost variation due to: type
and cost of fuel, size of boiler, discount rate, and load factor (2). As
shown in this figure, steam raising costs vary greatly, depending on the
specifications. In addition to the absolute cost, it is also important
to understand the sensitivities to each of the key variables.

The cost of steam produced in a coal-fired boiler is more sensitive
to discount rate, size, and capacity factor than for an oil-fired
boiler. This occurs since the coal-fired system is more capital
intensive and uses a low-cost fuel. Steam cost for an oil-fired boiler
is, however, much more sensitive to fuel price variations since fuel
makes up the largest portion of the annualized cost. One can conclude
that it is much more important to optimize an oil-fired boiler's
efficiency than minimize its capital cost. In addition, the accuracy of
the capital cost estimate for the oil-fired system is relatively
unimportant. This can be seen by the very small change in steam cost,
roughly 10 percent, when the discount rate was increased by a factor of 5.

The third set of factors, those that are "site-specific", are more
difficult to take into account. These factors include the variations
that occur between firms in their operating and maintenance practices,
desiygn philosophy, and the specific site constraints unique to each
facility. While these factors might, in some cases, ultimately determine
the decision, they are almost impossib]ehto capture without a detailed

knowledge of the case.
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Each firm has its own operating and maintenance practices which will
affect the estimate of annual operating costs. For example, the number
of operating and maintenance personnel varies widely from plant to plant
depending on state regulation, company policy, and plant management.
Variations in operating and maintenance practices affect the life of the
system, system availability, and the efficiency of the boiler. To some
degree, these variations are reflected in different assumptions used by
fims to estimate their operating and maintenance costs.

Variations in boiler system capital costs can occur due to desiyn
philosophy differences. One factor is the degree of reliability designed
into the system, for example, through redundancy of auxiliary equipment.
Another factor to consider is the quality of the material used in areas
operating under extreme conditions. While low quality materials might
significantly reduce the up-front capital cost, they might well result in
costly repair later. In addition, the sophistication and automation of
subsystems varies considerably. For coal-fired systems, this is
especially true for the fuel system including the coal receiving,
storage, internal distribution, and preparation subsystems (3). These
factors need to be considered when comparing capital cost estimates, but
requires a know]edgé of detailed assumptions behind the estimates.

The last "site-specific" factor to consider is cost variations due to
site constraints. In general, natural gas and oil-fired boilers are the
least sensitive to site constraints due to the relatively small size of
the system, the lack of fuel handling problems, and the easily controlled
combustion characteristics of the fuel. Coal, and other solid fuels, are
subject to numerous problems that can result in additional capital

expenditures beyond the requirements of the basic system.
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Coal delivery and internal plant distribution can pose a problem.
For example, if no rail spur to the site exists, then one would have to
be built. In addition, land for coal unloading, storage, and preparation
must be available near the boiler site. Space limitations may also exist
for the actual boiler, especially if the new boiler is to replace an
existing oil or gas unit, or if an existing plant is to be expanded.
Small package oil- or gas-fired boilers might be able to fit in where a
coal-fired unit might not. For small steam plants, this is especially
true since a coal-fired boiler requires three times more space than a
package oil-fired unit (4). Total space requirements for the coal-fired
system are even greater when all the auxiliary equipment space
requirements are considered. The only way to assess the cost impact of
site constraints for a particular case is to prepare an engineeriny

assessment.

Boiler Data Sources

Three boiler system data sets were compared over the range of boiler
sizes typically found in industrial plants. The sources of the data sets
are: a major industrial firm; Cameron Engineers, a private sector
engineering/marketing consulting firm (4); and a series of studies funded
by the Environmental Protection Agency including PEUCo's report on
boilers, Radian's report of sulfur control, and GCA's report on
particulate control (5). The primary details of each of the data sources
are presented in Tables A-1 and A-2.

The Industrial Data base was developed for use as a screening tool
for choosing between 0il and coal. It was developed from engineering

designs for a number of different steam capacities with intermediate
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TABLE A-1: DESIGN PARAMETERS FOR BOILER DATA BASES
Industrial Cameron
Fuels Coal, 0i1l Coal, 0Oil
(See 2.2-2)
Size Range 25 to 1,000 kpph 100 to 1,000,000
kpph
Steam 150 psig/500°F 250 psig sat. to

(press./temp.)

1

Boiler Type
Coal: 5.5 < 50 kpph
P.C > 150 kpph
0i1: P ¢ 150 kpph
FE > 300 kpph
No. of Trains 3 at 50% capacity
Drive steam
Pollution Contro]2 ESP
FGD (dual
alkali)

Pollution Control

Design Level

Utility NSPS

1500 psig/950°F

S.S/P {100 kpph
S.S/FE{200 kpph
PC/FE 200 kpph

P {100 kpph
FE> 100 kpph

electric

FF< 100 kpph
ESP>100 kpph
FGD (dual alkali)
with reheat

Utitity NSPS

ETMMmocC owm
—A—Hm I TmTOwm

- Spreader Stoker
- Pulverized Coal

.S. - Underfeed Stoker

Package
- Field Erected
- Fire Tube

. - Water Tube

EPA

Coal, 011,
Gas, Dual-fired

5 to 700 MMBtu/hr.

150 psig sat. to
900 psig/750°F

U.F.S./P{ 75 MMBtu/hr
S.S/FE200
PC/FE > 200 "

F.T/P £ 30 "
W.T/P {150 "
W.T/FE150 "

1

electric

ESP
FGD (dual
alkali)

varies

ESP - Electrostatic precipitator

FF - Fabric Filter

FGD - Flue Gas Desulfurization




TABLE A-2:  BOILER FUEL SPECIFICATION

Fuel Type

Industrial Data Source

Residual 0i1 (15° API)
Coal
Wyoming

S. West Virginia
N. West Virginia
I1Tinois

Cameron

Residual 0i1 (#6)
Coal
Powder River Basin

I17inois Bituminous
Texas Lignite

EPA

Natural Gas
Distillate 0Qil
Residual 01l

Coal

Eastern, high sulfur
Eastern, medium sulfur
Eastern, low sulfur
Western, low sulfur

Sulfur (%)

0.7

w — O O
w N NP

Trace
0.5
3.0

3.54
2.28
0.9
0.6

Ash (%) Btu/1b.
18,600

6 8,050
7.9 12,650
11.8 12,100
8.0 10,800
18,215

6 8,224
8.2 12,000
8.1 6,500
0 21,800
Trace 19,500
0.10 18,500
10.6 11,800
13.2 13,200
6.9 13,800
5.4 9,600
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sizes scaled from the original designs. Costs for residual oil-fired
boilers were developed by the internal engineering department while an
outside engineering/construction firm developed those for coal-fired
boilers.

The system is designed to include three 50 percent capacity trains of
equipment where each train includes a boiler, electrostatic precipitator
(ESP), and a flue gas desulfurization (FGD) unit. ATl drive power, such
as for the feedwater pumps, is obtained from auxiliary steam turbines.
This is an important design feature since roughly 15 percent of the steam
produced by the boilers is internally consumed for auxiliary power.
Possible advantages of steam drive are improvement in system reliability
and reduction of operating costs by making the system independent of
outside utility services. Two capital cost components were excluded fronm
the estimates: site grading and boiler feedwater system. These cost
items, however, make up only 1 percent of the total capital cost in
comparable estimates.

Detailed cost breakdowns are reported for each fuel type and size.
Capital costs are divided into material and installation labor
components. Operating costs are reported broken down by maintenance,
labor, taxes, feedwater, ash disposal, scrubber cost, and ESP electricity
demand. They do not seem to include overhead beyond the boiler system
level.

The Cameron Engineers data set was developed from estimates made by
Combustion Engineering for the boiler system and FMC for the FGD system.
Cameron estimated the balance of plant costs such as feedwater,
foundations, electrical, earthwork, site development, water treatment,

and fuel handling. The capital costs are divided into boiler and
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auxiliary equipment cost, boiler installation cost, and a detailed
listing of balance of plant costs. Operating costs are broken down into
raw materials, salaries and wages, utilities, maintenance, and taxes.

The EPA's study of boiler systems was performed by several different
consulting firms using a common set of assumptions. Estimates were
developed from vendor quotes that were obtained for detailed equipment
1ists for eight different boiler sizes. Pollution control costs for
502 and PM were developed for each fuel type, boiler type and size, and
as a function of pollution control level. Capital and operating cost

estimates are broken down by equipment unit and operating cost component.

Boiler Cost Comparison

The three data sources were compared for similar fuel types as a
function of size and capacity factor. All costs were normalized to
mid-1978 dollars and to the same definition of indirect costs for
contingency and engineering fee (6). The capital cost comparisons are
presented in Figures A-2 and A-3 while operating costs are shown in
Figures A-4 and A-5. In general, there is good agreement between the
three sources for capital costs of coal-fired boilers, but there is some
discrepancy in the capital cost estimates for oil-fired boilers and in
all operating costs.

The Industrial Data desiyned in three trains of 50 percent capacity,
was adjusted to correspond to a single boiler. Since a detailed
equipment cost list was not available, the Industrial Data was adjusted
by taking one-third of the system cost for a steam rate that was one-half
of the system's full load production rate. This methodoloyy tends to

underestimate the boiler cost since not all of the system components were
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Figure A-3:  Oil-Fired Boiler Capital Cost

-y

Depreciable
Capital
P 6 20 A
$10
(1978)
15
B
10 4
A Cameron
5 e - PEDCo
B - Industrial
A - Package
B - Field Erected
'y
T 14 T 1 L ) 1
100 200 200 400 500 600

Steam Capacity (Kpph)



Operating Cost
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Figure A-5:  0il-Fired Boiler Operating Cost
(at 85 capacity factor)

Operating Cost
$100/yr
(1978)
3 - ®
A - Cameron
2 ® - PEDCO
B - Industrial
1 -t
[ ] //
1‘[‘ ¥ T v v ¥ '
100 200 300 400 500 600

Steam Capacity (Kpph)

vi-Y



A-15
installed as three at 50 percent capacity.

Capital cost estimates for boilers firing medium to high sulfur
bituminous (Figure A-2) are well correlated. Note that the Industrial
and Cameron estimates include an ESP for particulate control while the
PEDCo data does not. When adjusted by including the GCA ESP estimate,
the PEDCo estimate is slightly higher than the others.

The capital cost estimates for boilers firing residual o0il (Figure
A-3) show good ayreement between the Industrial and Cameron estimates,
while the PEDCo package boiler estimates are roughly 30 to 50 percent
less and the field erected units are 70 percent yreater than the other
estimates. Several factors account for this discrepancy including
differences in installation costs and the design criteria of the
estimates.

PEDCo and Cameron installation cost estimates are quite different for
package vs. field erected systems. In comparing the package boiler
estimates, equipment costs for the Cameron and PEDCo are similar, but the
installation costs for the boiler portion of the system are quite
different. Specifically, PEUCo's installation cost for the boiler is only
3 percent of the equipment cost while Cameron's is 25 percent. For field
erected units, PEDCo's equipment cost estimates are much larger than
Cameron's, although the installation to equipment cost ratios are similar.

Several design differences also exist which account for the cost
differences. First, the design for the Industrial Data includes steam
drive which consumes 15 percent of the nominal output, thus increasiny
the relative capital cost. Secondly, differences in the amount of o0il
storage capacity result in Cameron's fuel 0il system (accounting for 7

percent of total capital cost) costing twice as much as the PEDCo
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estimate. Similarly, the Industrial system had a 30 day oil storage
capacity while PEDCo had only 7. The third major design difference is in
the water treatment system. Cameron's treatment system cost over 20
times PEDCo's and accounts for 20 percent of Cameron's total capital
cost. Unfortunately, the difference in cost cannot be explained due to
insufficient specification of the equipment design parameters.

The comparison of non-fuel operating costs, presented in Figures A-4
and A-5, shows general agreement between the Industrial and Cameron
estimates, while the PEDCo estimates are significantly higher. All
estimates were normalized to an 85 percent capacity factor. (For this
capacity factor, only utility services, such as electricity and water are
variable. The major operating cost component, labor, is held constant
since labor is employed in 8-hour shifts (7).)

The major factors accounting for the high PEDCo estimates are the
inclusion of overhead costs beyond the boiler system, and higher staffing
levels for operating and maintenance labor. The PEDCo estimate includes
30 percent of direct labor cost to cover payroll burden, and 25 percent
of labor and materials cost for overhead which apparently corresponds to
the fraction of the entire plant overhead allocated to the boiler
system. The other estimates do not and so are not total operating
costs. In addition, PEDCo's operating manpower levels are much higher
than the other estimates. For oil-fired boilers, PEUCo labor levels
range from one to five times as much as the Industrial source but are
comparable to the Cameron level. For coal-fired installations, the
manpower requirements are close for the small sizes, but PEDCo is over
twice as large for boilers over 200 kpph. This is a siynificant

difference since operating labor costs account for 10 percent of the
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Industrial, and up to 40 percent of the PEDCo operating cost estimates.

A comparison of the Industrial and Cameron operating costs show that
they are close for oil-fired systems, but differ for coal-fired systems.
The main difference for both fuels is that Cameron underestimates
maintenance costs by a factor of 10 compared to the Industrial and PEDCo
estimates. For coal, this difference becomes apparent since all other
operating cost components are the same as the Industrial Data. For o0il,
however, the difference is covered by the fact that the Cameron labor
cost is twice that of the Industrial estimates.

The last cost component to consider is the annual fuel cost (AFC).
Fuel cost can be expressed as a function of the size, capacity factor,

and efficiency of the boiler system. Specifically:

AFC - Size x C.F. x aH x F.C. x 8760 hrs/yr x 10-3
fa]

where
AFC = Annual fuel cost
Size = Steam capacity of boiler in kpph
C.F. = Capacity factor expressed as decimal (2)
aAH = Difference in enthalpy between feedwater and steam in
BTU/1b steam
F.C. = Fuel cost in 3/MMBTU
n = System conversion efficiency

The system conversion efficiency relates the BTU's of steam produced
per BTU of fuel consumed (not including the electricity used by the
system). The efficiency depends on the boiler design, typically varying
with type and size of boiler, how internal power requirements are met

(i.e., steam vs. electric drive), whether stack re-heating is required,



A-18
and whether the system is operating near full load or under partial load
conditions (efficiencies are generally lower at partial load). The
conversion efficiencies operating near full load for the systems reviewed

are presented in Table A-3.

Pollution Control Costs

To meet the requirements of local and federal air pollution
regulations, boiler systems will require some form of pollution control.
In most cases, boilers are controlled for SU, and PM emissions.

Nitrogen oxides (NOX) emission limitations, when required, are
generally met by combustion modification, which is not capital intensive
(but does alter fuel economy somewhat).

S0, is controlled with Flue Gas Vesulfurization (FGD) equipment.
There are many different process types and system configurations that are
used. For the purpose of this review, only costs for the dual alkali
systems are compared since this is the system used in the Industrial and
Cameron studies. (Costs for other systems, such as the sodium throwaway,
dry scrubbinyg, and regenerable processes can be found in the Radian
reports (5)).

Capital and operating costs for the FGD system are shown in Figures
A-6 and A-7. Operating costs have been normalized to an 85 percent
capacity factor by scaling costs for the raw materials, electricity, and
water used in the scrubber. The base case chosen to compare the data is
for a medium sulfur eastern coal with a 90 percent 302 removal level.
Radian capital and operating cost data is also presented for 30, 50 and

70 percent S0, removal levels.



TABLE A-3: BOILER SYSTEM CONVERSION EFFICIENCIES
" (Btu steam/Btu fuel)

Cameron (electric drive)

Nominal Size (Kpph) 100 200 650

01l .87 .87 .87

Coal with FGD*

without reheat .85S .86S/.87PC .87PC
with reheat .81S .815/.81PC .81PC

Industrial (steam drive)

Nominal Size (Kpph) 50 250 500
0il .69 .69 .69
Coal
without FGD .70 .72 .73
with FGD .69 .71 71

(no reheat)

*S - Stoker

PC - Pulverized Coal



Figure A-6:  FGD Capital Cost
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The comparison shows that the Radian and the Industrial capital cost
estimates are well correlated, while the Cameron estimate is roughly 30
percent higher. The higher estimate is explained by design differences
in terms of reliability and performance. The Cameron system is designed
to achieve high reliability levels by including spare equipment for
critical components. Items that are 100 percent spared include
recirculation, soda ash transfer, regeneration return, and thickener
underflow pumps. In addition, gas handling components were sized for 110
percent of expected flue gas flows in order to make sure removal
requirements are always achieved. Lastly, the Cameron estimate includes
flue gas reheat, which is not always included in industrial systems,
while the Radian and Industrial estimates do not (8).

The FGD operating cost comparison, Figure A-7, was made only between
Radian and the Industrial data since Cameron's costs were on an
inconsistent basis. The difference between the two estimates is that
Radian includes overhead cost components that are excluded in the
Industrial estimate.

Particulate control can be achieved through a number of different
processes including fabric filters, electrostatic precipitators, venturi
scrubbers, and mechanical collectors. To achieve removal rates yreater
than 90 percent, the most effective systems are the ESP and fabric
filters. In general, fabric filters are more cost effective for small
boilers while ESP are suited for large systems. The actual decision must
be made by comparing the capital and operating costs for both systems
under the required operating conditions.

To provide an idea of PM control costs, Figure A-8 presents the cost

for an ESP as a function of size for midwestern coal with 7.6 percent
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ash. (Only the GCA estimates are shown since the Cameron and Industrial
estimates for PM control are included in the boiler cost.) The capital
cost of the system is determined by the control process, the amount of
flue gas needed to be treated, the amount of ash entrained into the flue
gas, and the level of control required. Different control costs are
shown for stoker and pulverized coal boilers since they have difference

ash entrainment levels (see Section A.2).

A.2 Environmental Factors

Local and federal air pollution standards impose limitations on
boiler emissions. Industrial boilers that have a firing rate greater
than 250 MMBtu/hr. are required to meet the Federal New Source
Performance Standard (NSPS) of 1971. 1In contrast, utility boilers must
meet a more stringent NSPS as revised in 1979 (9). The NSPS specifies
the allowable emission rate for 502’ NOX, and PM per unit fuel
combusted for oil, natural gas, and coal (see Table A-4). The industrial
boiler NSPS is currently beiny reviewed and a new standard might soon be
promulgated.

Additional requirements are prescribed by the Prevention of
Significant Deterioration (PSD) and Nonattainment (NA) provisions of the
Clean Air Act for major emission sources (10). Boilers must also meet
the provisions of local standards specified in the State Implementation
Plan (SIP) which vary from location to location.

PSD, NA and sometimes SIP regulations require air quality modeling of
the emissions from the proposed source. In order to model the impact on
air quality, the boiler system's annual emissions must be known. Annual

emissons can be estimated from the specific emission factor for each



TABLE A-4: NEW SOURCE PERFORMANCE STANDARDS, (1b. pollutant/

MMBtu fuel)

Current Industrial Boiler Standard

Coal 1.2 0.1 0.7
0il 0.8 0.1 0.3
Natural Gas --- - 0.2

Revised Utility Standard (1979)

Coal 90% 0.03 0.6
011l 90% 0.03 0.3
Natural Gas 90% 0.03 0.2

*
Percentage reduction of potential emissions. 1.2 1b./MMBtu ceiling,
0.6 1b./MMBtu floor with 70% scrubbing required below that.
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pollutant (pound pollutant emitted per million Btu of fuel consumed) and
the boiler systéms's size and capacity factor. Typical emission factors
for uncontrolled boilers are presented in Table A-5, while emissions from
controlled boilers can be factored from the uncontrolled rate by applying
the percentage reduction achieved.

Specific emission factors vary for each fuel type and for the
particular combustion system's characteristics. For example, particulate
emissions from uncontrollied coal-fired boilers will vary with the amount
of ash in the coal and with the type of boiler. Thus, even for the same
coal, the three types of stoker boilers and the pulverized coal boiler
each have a different level of particulate emissions. This occurs since
the manner of fuel injection into the combustion chamber critically
affects the distribution of ash between that carried out with the flue
gas and that dropped out as bottom ash. Similarly, NOx emissions from
gas, oil, and coal-fired boilers vary with the combustion air level,
flame temperature, residence time within the particular combustion
chamber and with fuel characteristics.

To provide an idea of the range of annual emissions, Fiyure A-9
presents an example for three boiler sizes used at two different capacity
factors as a function of the specific emission factor. It is important
to note that any boiler emitting over 100 tons per year qualifies as a

major emission source, and thus must meet PSD and WA.



TABLE A-5: Specific emission factors for uncontrolled
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Natural gas
MBG/LBG
Resid (0.8%S)
Resid (3%S)

Distillate

Coal

Underfeed stoker
Chaingrate stoker
Spreader stoker

Pulverized coal

a) For boilers over 30 MBtu/hr., Reference. see note 11.

lov) w
n "

boilers (1bs./MMBtu fuel)?

19,0003
19,000%

19,0007

% sulfur in coal

Btu/1b. of coal

SO2

0.0006

s (1-SR)
B

0.8

20,0007 ——
n

3.138
0.2

3
19,000%

S
B

S
B
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Notes

1. A simplified cost analysis methodology is used to calculate steam
costs presented in Figure 1.1-1 based on the Industrial Data base. The
methodology is adopted from the Electric Power Resaerch Institute's
"Technical Assessment Guide", July 1979, not including the inflation and
tax considerations. (In EPRI's method, inclusion of taxes increase the
annual fixed charge rate. By considering a range of discount rates, the
analysis presented here includes the values that would be obtained if
taxes were considered.) Annualized steam costs were calculated by:

AFCR x Capital * Annual Operating and Fuel Costs

Steam Cost = Annual Steam Production

where AFCR is the annual fixed charge rate. In this case AFCR = Capital
Recovery Factor (CRF) and is calculated by:

. (]
CRF = i(1+i)
(1+i)" - 1
where i1 = interest rate
n = lifetime of boiler in years

The base case assumptions are: 60 percent capacity factor, 15 percent
real interest rate, 30 year lifetime of boiler, $1.50/MMBtu coal price,
35/MMBtu oil price.

2. Capacity factor is defined as the ratio of the actual annual amount
of steam produced to the maximum annual steam produced if full capacity
for 8760 hours per year could be maintained.

3. For an idea of the variations in coal handling systems, see: Babcock
and Wilcox Co., Steam: Its Generatjon and Use, 1975; and Midkiff, L.A.,
"Designing for Coal-Handling Flexibility, Power, wovember 1979.

4. Cameron Engineers, "Solid Fuels for U.S. Industry, Volume III,
Economics of Coal Utilization," March 1979.

5. The EPA series of reports include:

Energy and Environmental Analysis, “Industrial Fuel Choice
Model," June 1980.

GCA, "Technology Assessment Report for Industrial Boiler
Applications: Particulate Collection," December 1979.

PEDCo Environmental, "Capital and Operating Costs for Industrial
Boilers," June 1979.

PEDCo Environmental, "Cost Equations for Industrial Boilers,"
January 1980.
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PEDCo Environental, "The Population and Characteristics of Industrial/
Commercial Boilers," August 1979.

Radian, "Costs of Sulfur Dioxide and Particulate Matter Emission
Control for Coal- and 0il-Fired Industrial Boilers," August 1981.

Radian, "Technology Assessment Report for Industrial Applications:
Flue Gas Desulfurization," November 1979.

6. Capital costs were normalized using the Chemical Engineering Plant

Cost Index, operating costs using the GNP price deflator. A description
of the breakdown of capital and operating costs is presented in Chapter
III, Section 2, "Definition of Cost Items." Boiler estimates do not
include working or startup capital.

7. For boilers operated with less than 3 shifts/day, 7 days/week, the
labor component of operating cost should be adjusted by:

Capacity Factor Range Labor Cost Adjustment
75-100 percent 1
50-75 percent .75
30-50 percent .50
0-30 percent .30

8. Stack yas reheat requirements are determined by regulations that are
based on local air quality, in particular PSD, NA, SIP. Reheat is
employed to decrease pollution concentrations to the required ambient air
quality Tevels by increasing plume rise which results in ygreater
pollutant dispersion. Very few SIP standards specify flue gas dispersion
requirements for industrial boilers and, to date, not many industrial
boilers have needed to use reheat to meet PSD requirements.

9. Environmental Protection Agency, "New Source Performance Standards:
Electric Utility Steam Generating Units," Federal Register, June 11,
1979.

10. Major emission sources are now interpreted as any source that emits

over 100 tons Ber year of SOE, NOx, or PM after pollution control is
applied. See United States Court of Appeals for the District of Columbia

Circuit, "Alabama Power Company vs. Costle EPA," December 1979.

11. Energy and Environmental Analysis, "Industrial Fuel Choice Analysis
Model," June 1980, page 5-10.
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APPENDIX B
STEAM RAISING: STEAM TURBINE COGENERATION
B.1 INTRODUCTION
Any industrial plant may be seen as a complex energy conversion
system in which raw materials, fuels, and other inlet streams constitute
the front end and finished products and other outlet streams constitute
the back end of the system. If all inlet and outlet streams are
identified and properly quantified, at equilibrium the system behaves as
a steady-state system, and energy is "conserved," i.e., the sum of the
energy content of all inlet streams will equal the sum of the energy
content of all outlet streams. Consequently an energy balance of the
system as a whole will not give any clear idea of how energy flows within
the system. When back end streams are divided (always somehow
arbitrarily) into "useful products" and waste streams, the amount of
input energy not found into useful products may be quantified and a first
energy efficiency of the system may be defined as the ratio between the
enérgy content of the useful products and the total energy content of
inlet streams: this efficiency is generally known as first law
efficiency. Once every waste stream is associated to a source (i.e., a
system's component or components) proper action may be taken to minimize
the energy loss of that set of components, either by altering the
components characteristics (therefore at a component level, e.g., adding
insulation) or using the waste stream (generally) internally to the
system to perform some task that otherwise would be performed through an
amount of inlet stream energy (therefore at a system level, e.g.,
pre-heating combustion air). This practice, often known as first law

optimization, is generally well established in the industry; its purpose
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is to minimize primary energy requirements by minimizing the amounts of

energy in the waste streams.

However neither thermodynamics nor economics value a fixed amount of

energy based only on the quantity of energy considered, e.g.,

a certain amount of energy, say a million BTU furnished at
constant temperature as low-pressure saturated steam is
economically valued on the range of ten dollars. Its
thermodynamic value may be defined through the efficiency of a
Carnot cycle and equals the maximum amount of work that may be
obtained from the steam (as previously defined) through a heat
interaction with the atmosphere; in this case, assuming a 200
psia saturated steam condition (heat source at 380 degrees F)
and a 50 degrees F atmospheric temperature, approximately
390,000 BTU of work (or 115 kWh).

the same amount of energy, i.e., one million BTU (or 293 kWh) if
furnished as electric energy is economically valued at Teast 15
dollars and its thermodynamic value again may be set equal to
the maximum work that may be generated with that amount of
energy, in this case, one million BTU (or 293 kWh) since

electric energy may be considered as pure work.

It is clear that this distinction between identical amounts of energy

is not perceived by the previously defined first law optimization, while

it is clearly perceived by any economic or thermodynamic analysis of the

system, as it has been shown using the previous intuitive examples and a

semi-rigorous thermodynamic approach.

Very often energy flows within a system degrade their thermodynamic

(and economic) value without performing any useful task (and many times
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losing little if any energy): for instance this happens in any
combustion process (in which close to 30 percent of the capacity of
performing work is lost by the system while changing state from fuel and
combustion air to combustion gases) and in any heat exchanger (among
other things, the higher the difference in temperature between the hot
and the cold stream). In the latter case, and for most industrial
processes, the difference in temperature may be many hundreds of degrees
Rankine (corresponding to the difference in temperature between the
combustion gases--approximately 4,000 degrees Rankine and the working
fluid heated by the combustion gases at maximum temperatures set by
technology, materials or economic l1imitations (approximately 1,500
degrees Rankine) and the temperature at which the heat is delivered to
process (700-800 degrees Rankine in the majority of industrial
processes). This is where cogeneration plays its role (the better the
higher the working fluid temperature and the lower the process
temperature requirement) by making use of the change of state in which
the working fluid incurs while degrading its thermodynamic (and economic)
value from high to low temperatures; while that change of state occurs
electric energy (pure work) is generated, and only then, low-temperature
heat is delivered to process. The fuel requirement to supply only a
certain amount of heat to process may be (and generally is) higher in
cogeneration systems than in standard boilers; the fuel requirement to
generate only a certain amount of electricity is always higher in
cogeneration systems than in central power plants; but the fuel
requirement to supply a combined thermal and electric load with
cogeneration systems is less than the combined fuel requirement of a

standard boiler system supplying the thermal load and a central power
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plant supplying the electric load. In other terms the incremental fuel
consumption of cogeneration system with respect to traditional boilers is
less than the amount of fuel needed by a central power plant in order to
generate the same amount of electricity. Therefore cogeneration will
always be a primary energy saving technology; its economic viability will
be determined by whether or not the value of the cogenerated electricity
may offset the larger capital cost of the facility, the incremental fuel
consumption and the incremental 0 and M expenditure.

The purpose of this appendix is to analyze under what conditions
cogeneration systems will be viable, through a well-defined thermodynamic
analysis of conceptually designed systems in order to obtain a generally
valid methodology for the economic assessment of cogeneration systems at

a regional level aimed at interfuel switching analysis.

B.2 METHOD OF ANALYSIS

B.2.1 Thermodynamic Analysis

The cogeneration system is conceptually desiyned to supply a thermal
load at various temperatures. The thermodynamic cycle characteristics
are computed and the system characteristics are furnished on a per
million BTU/hr of heat delivered to process base for various process
temperatures. The thermodynamic definition of the cycle is obviously
independent of the size of the system and of the thermal load duration
curves and would be valid for any system, cogenerating or not, whose
working fluid changes state following that cycle. Some of the usual
cycle parameters have also been redefined and re-computed in order to
gain further insight on the thermodynamic performance of cogeneration

systems.
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It will be shown in the next subsection that a particularly useful
way of assessing cogeneration systems economics is obtained by comparing
the cogeneration systems' economics to the economics of their existing
alternatives, performing an increimental analysis (this approach follows
also from the analysis presented in the Introduction). Consequently, an
incremental thermodynamic analysis is also performed in which only the
incremental fraction of the working fluid changes of state (as described
by the thermodynamic cycle) with respect to the same working fluid
operating within an existing, standard boiler thermodynamic cycle are
assessed against the cogeneration system. If the working fluids and/or
cycles are different in the standard and cogeneration systems, a
thermodynamic comparative analysis may not be directly performed; then
merely incremental fuel consumption is assessed against the cogeneration
system. Since cogeneration is seen in this study as an a]ternat%ve
technology for steam raising, electricity is here considered a by-product
and all increments will be charged against it.

Although the same nomenclature is used in this incremental
thermodynamic analysis as in a classical thermodynamic analysis, none of
the cycle characteristics obtained through this approach has any physical
meaning; furthermore, all of the cycle characteristics will be dependent
upon the standard system taken into consideration and with respect to
which the incremental analysis is performed. In spite of those caveats,
the incremental thermodynamic analysis, when coupled to an incremental
economic analysis consistently performed allows making use of the usual
relationships between thermodynamic performance and economic evaluation

of central power plants.



B.2.2 Economic Analysis

The cogeneration system is conceptually designed and its costs
assessed. Then, the economic analysis of the cogeneration plant is
performed, also as an incremental investment with respect to a
traditional system, assessing all incremental capital, fuel and 0 and M
costs against the cogenerated electric power, here seen as a by-product.
This, and the incremental thermodynamic analysis mentioned in the
previous section are sufficient to characterize the cost and cost
structure of the cogenerated power. This cost is compared then to the
cost of electricity available to the industry in order to assess the
economic viability of the cogeneration plant. The thermodynamic and
economic incremental analysis allow therefore the performance of the
usual analysis of power plants for what concerns sensitivity to load
factors and cost of fuels and altogether perfectly defines and explains
the economic behavior of the plant.

It will be shown how the cost structure of the busbar generation cost
of cogenerated electricity is a particuiarly useful tool to assess
cogeneration systems viability and characteristics under a wide range of

economic scenarios.

B.3 STEAM TURBINE COGENERATION SYSTEMS

B.3.1 System Thermodynamic Analysis

The system's thermodynamic performance for different turbine inlet
conditions and process pressure and temperature requirements for an ideal
system in which heat is furnished at process as de-superheated saturated
steam, 100 percent return available as saturated water at process

pressure, no in-house auxiliaries power, no extractions, no re-heating,
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and with boiler, steam turbine system and electric generator efficiencies

of 0.9 is presented in Tables B.1, B.2 and B.3 for low, medium and high

process pressure steam requirements; the electric power installed is

furnished on a per million BTU/hr of heat delivered to process.

From the above mentioned tables it may be seen that:

the installed electric power increases as the process pressure

decreases and/or as the steam at turbine inlet increases

the thermal efficiency (as previously defined) decreases as the

installed electric power increases (and for the same reasons)

the electric efficiency (as previously defined) increases as the

installed electric power increases (and for the same reasons)

the cycle efficiency is:

- substantially constant (i.e., independent of process pressure
or steam turbine inlet conditions)

- set by the boiler and electric generator efficiency and by
all other components efficiency but

- independent from steam turbine efficiency (the latter will
influence, however, electric and thermal efficiencies) and

- higher the lower is the electric power installed (due to
electric generator losses)

The incremental heat rate (as previously defined) is independent

of process pressure and depends on cogeneration system

efficiency and on the standard boiler system used for comparison.

Quite evidently, the main energy losses of this ideal cogeneration

system are at the boiler and at the generator; both components have now
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Table B.1
THERMODYNAMIC PERFORMANCE OF AN IDEAL COGENERATIOW SYSTEM
PROCESS PRESSURE: 50 psia

Steam turbines 650 psia 1200 psia 1500 psia 2500 psia
inlet conditions 800 F 900 F 900 F 1000 F
Electric Power, Qe [kWe] 66 83 87 102
Thermal Efficiency, ngp 72 .68 .68 .65
Electric Efficiency, ne .16 .19 .20 .23
Cycle efficiency,* ntph*ne .89 .88 .88 .88

Incremental heat rate
[(BTU/hr)/kWel 4,200 4,200 4,200 4,200

*Eventual differences in values are due to reduced number of
significative figures ntp and neg.
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Table B.2
THERMODYNAMIC PERFORMANCE OF AN IDEAL COGENERATION SYSTEM

PROCESS PRESSURE: 200 psia

Steam turbines 650 psia 1200 psia 1500 psia 2500 psia
inlet conditions 800 F 900 F 900 F 100U °F
Electric Power, &e [kWel 34 53 58 76
Thermal Efficiency, ntp .80 .75 .74 .71
Electric Efficiency, ne .09 .14 .15 .18
Cycle efficiency,* nth*ne .89 .89 .89 .89

Incremental heat rate
[(BTU/hr)/kWe] 4,200 4,200 4,200 4,200

*Differences in values are due to reduced number of significative figures.
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Table B.3

THERMODYNAMIC PERFORMANCE OF AN IDEAL COGENERATION SYSTEM

PROCESS PRESSURE: 400 psia

Steam turbines 650 psia 1200 psia 1500 psia
inlet conditions 800 F 900 F 900 F
Electric Power, Qe [kWe] 15 35 38
Thermal Efficiency, ntp .85 .79 .79
Electric Efficiency, ne 04 .09 .10
Cycle efficiency,* ntp*ne .89 .89 .89

Incremental heat rate
[(BTU/hr)/kWe] 4,200 4,200 4,200

*Differences in values are due to reduced number of significative

2500 gsia

1000 F
59
.74
.15
.89

4,200

figures.
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reached a quite high efficiency (close to .9). The steam turbine
efficiency (also on the range of .9) acts mainly as a switch between
thermal and electric power output and has no major effect on the overall
eneryy conversion efficiency of the system, here defined as cycle
efficiency. Pumping power is practically totally recovered as enthalpy
of the working fluid at the pump outlet, pumps efficiency being also on
the range of .9. Various steam losses may be substantially recovered by
re-injection of steam at lower pressure stages and may be kept well below
2 percent. Pressure drops, highly dependent on system geometry are not
taken into account. The steam turbine cogeneration system appears
therefore to be a well established technology, with little space for
improvements both at a system and components level. The efficiency with
which the fuel energy is usefully employed is very high. Furthermore,
due to the use made of the heat that otherwise would be delivered to the
low temperature reservoir, the incremental heat rate of the coygenerated
electricity is on the range of one half of the heat rate of central power
plants.

A1l this, taking into consideration amounts of energy usefully
employed (thermal and electric), compared to amount of energy in fuel. A
further insight into cogeneration systems' thermodynamic performance is
given by the second approach presented in the introduction, concerning
the different economic and thermodynamic value of identical amounts of
energy.

The behavior of the system uhder this approach will depend upon both
steam turbine inlet conditions and process pressure as well as upon all
component efficiencies, including turbine efficiency (and reservoir

temperature). More specifically it will be a function of thermal and
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electric efficiencies (as previously defined), those two parameters
taking into consideration all functional dependencies with respect to
components efficiencies, steam turbine inlet conditions and process
pressure, and of process and atmospheric temperature.

The computation of the efficiency of conversion under this approach,
for each process pressure, shows how the systems thermodynamic
performance (say, at 200 psia process pressure) decreases ceteris
paribus, from 0.46 for steam turbine inlet at 2500 psia, 1,000° F to 0.40
for steam turbine inlet at 650 psia, 800° F (while it would increase
increasing the process pressure).

Approximately two thirds of this work generation comes from the ideal
heat engine: 1if we were to take into account that less than half of that
amount of work may be really generated, the efficiency here considered
would be, for most systems' configurations and process pressures, below
.3. It should be stressed, however, that the second law efficiency
computed strictly as indicated in the introduction is higher than the
correspondent efficiency of a traditional boiler and central power plant
(.30-.35) supplying the same thermal and electric load. Many other ways
of computing "significative" adimensional performance ratios (often
called "efficiencies") of the cogeneration system exist, but the one
presented here should be sufficient to make the point that cogeneration
systems are, under any condition, a substantially inefficient way of
generating electricity only, certainly less efficient than standard power
plants. The fact that cogeneration plants are also a less efficient way
of heat only supply is merely academic and may be seen immediately from
the previous tables simply comparing the thermal efficiency of the cycle

with the efficiency of a standard boiler, in this case assumed to be .9
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for both systems.

The point here made is that no miracle may be expected from
cogeneration systems. They are substantially a power plant in which the
steam expansion is interrupted at process pressure (and consequently are
a less efficient way of generating electricity only) and heat is then
delivered to process. It has been shown how even if that heat source was
to be used to generate work, the total electricity generated would still
be less (for a fixed amount of fuel) than the electricity that might have
been generated, with the same amount of fuel, by a central power plant,
i.e. Rankine cycle is a more practical and efficient way to generate work
than heat engines. Or they are substantially a traditional boiler system
in which a better use of fuel availability is made, reducing the
irreversibilities generation by letting the working fluid cool down at
process temperature through an expansion on a turbine. However, it is
very important to notice that energy-wise (say, first law
efficiency-wise) cogeneration systems are less efficient than traditional
boilers; availability (or maximum work, say second law efficiency-wise)
cogeneration systems are less efficient than central power plants. A
better thermodynamic performance may be stated only if the cogeneration
system is compared simultaneously to both a central power plant (in which
heat at low temperature is delivered to reservoir) and to a boiler system
(in which the only use made of the high temperature heat available is at
Tow temperature). The surprising cycle efficiency presented in the
Tables B.1, B.2 and B.3 should be interpreted only in these terms, i.e.
effectively most of the energy of the fuel is usefully employed (but only
because a useful use of what could otherwise be a waste stream is found,

and even then with a lesser efficiency than a traditional boiler); also,
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a proper use of the fuel availability is achieved (and even then to a
lesser extent than in central power plants if the real work that might
have been extracted from the low-temperature heat source is taken into
consideration).

However, in order to furnish a fixed amount of process heat and
generate the correspondent amount of electricity cogeneration fuel
consumption will be inferior to the fuel consumption of a traditional
boiler system and a power plant furnishing respectively the same amount
of heat and electricity. This sort of “duality", clearly seen into any
economic evaluation of cogeneration systems derives therefore from the
thermodynamic analysis of the systems. The delta in fuel consumption (or
cogeneration system fuel savings) per unit of heat delivered to process

may be immediately shown to be:

b= Uny * (ng = nepp)/ng g (ng = ng)) (1)
= Inp * Ang = ngp = neppd/Ingpp ngp)
B = (g = nepp)/lng = mg)? (2)
= {n - ncpp)/”%h
Apercent = A/(l/nb + ne/((nC -ne) ncpp)) (3)

))

A/(l/nb+ (nc - nth)/(nthncpp

where:
np = traditional boiler system overall efficiency
epp = central power plant efficiency
Ne» Ngp? Ne 88 previously defined.

The delta in fuel consumption is therefore a monotonic increasing (or
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decreasing) function of e (or nth); the first derivative increases
(or decreases) approximately as ng (or precisely as n%h), with
an asymptote at n, = 0.89 (or ny, = 0).

For values of Ny ON the range of 0.885 (cogeneration cycle
efficiency including loss at electric generator) the fuel savings are
zero and the cogeneration system behave practically as a traditional
boiler system with an additional loss at electric generator. For a
realistic value of Ng» SAY .2 (and a cycle efficiency of .89), fuel
savings are approximately 27 percent (ideal cogeneration system with
respect to traditional boiler systems and central power plant).

Overall fuel savings depend therefore upon electric and thermal
efficiencies of conversion of cogeneration systems (and consequently
upon cogeneration system characteristics and process pressure) as well as
on the efficiency of conversion of traditional boiler systems and power
plants. It should be stressed that the incremental heat rate is, under
all realistic conditions, independent of process pressure and turbine
inlet conditions, and depends only on boiler and electric generator
efficiency as well as on the traditional boiler system with respect to

which the incremental analysis is performed.

B.3.2 System Economic Analysis

In order to gain some insight on how the thermodynamic performance of
the cogeneration system varies upon variation of some systems'
characteristics and components' efficiency, cogeneration systems
identical to the ones discussed in section 3.3.1, but with a boiler
efficiency of .85 (instead of .9) and some excess steam requirements will

be defined for the economic analysis.
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The decrease in boiler efficiency is here assumed to be the same for
the traditional boiler system than for the cogeneration system. The
excess steam requirement may be viewed in different ways, in as much as
it is equivalent to an incremental fuel consumption with respect to the
one considered in the previous section. For traditional boiler systems,
the increment in fuel consumption may provide some extra steam for
auxiliary power (low pressure steam turbine and/or jet pumps, etc.) or it
may be assessed against make up water heating up to condensate
temperature if electric drives are taken into consideration (in this
case, 50 percent recovery at condensate temperature is assumed), besides
accounting for some of the steam lines losses (headers, pressure drops,
etc.)

Same options for the cogeneration system, for what concerns make up
water requirements and/or auxiliary power low pressure turbines feed (the
Tatter will also supply low pressure steam for deaeration). Steam losses
in cogeneration system might be higher due to different steam conditions
and systems' complexity; however also recovery possibilities are more
important and therefore differences between the two systems may be
neglected. Any consistent set of options for incremental fuel usage for
both systems may be chosen, e.g. make up water heating requirements, or
drives, or drives and 1osses for the traditional boiler system and steam
for deaeration (with correspondent power generation and power from
previous expansion on high pressure turbine stages) for cogeneration.

In this analysis a fraction of 13 percent of the generated steam is
diverted from process (or 13 percent of fuel usagye is for make up water
heating up to process condensate temperature, etc.). For 200 psia

process steam, the Tow, medium and higher pressure cogeneration system
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thermodynamic performance table, under the previous assumptions, is
presented in Table B.4. Unless previously specified, all underlying
assumptions and definitions are the same used for Tables B.1, B.2, B.3.
Finally, it should be noticed that none of the conclusions drawn on the
previous section have been inferred.

Capital, 0 and M and fuel costs for the medium pressure cogeneration
system (0il or coal fired) and a traditional boiler system (oil or coal
fired) for 200 psia process steam requirement have been computed.
Discount rate is assumed to be 15 percent/yr, real; system life 20 years;
zero salvage; all costs are therefore in year zero dollars, i.e. 19803.
Differences in efficiency of combustion and conversion between 0il and
coal boilers are neglected. Cogeneration systems are as previously
defined. Three 1/3 size boilers, no back-up have been considered. Fuel
costs are 2.50 $/106BTU for coal and 6.17 3/106 BTU for oil (1980%)

i.e. high fuel cost scenario. The results for flat process steam loads
of 1,000, 250 and 125 106 BTU/hr, 100 percent of the time with costs
scaled up to the high pressure system are presented in Tables B.5, B.6
and B.7. Economy of scale for 0 and M costs has been neglected as well
as 0tM dependency on load factor (0*M costs correspond to a load factor
of approximately .85). The capital costs presented, if scaled down to
usual size references with usual scale factors correspond to
approximately 1,100 S/Kwe for lMNe; 85,000 and 25,000 $/106 BTU/hr

for 100 106 BTU (coal and oil boiler respectively). 0 and M costs have
been assumed to be 13 and .258 per 106 BTU/hr of steam (coal and oil
boiler respectively) and 4 mi]]s/KWhre.

The total cost per million BTU delivered to process may be

immediately derived (as a function of load factor) with simple algebraic
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Table B.4
THERMODYNAMIC PERFORMANCE OF COGENERATION SYSTEM
PROCESS PRESSURE: 200 psia

Steam turbines 650 psia 1200 psia 2500 psia
inlet conditions 800 F 900 F 1000 F
Electric Power, We [kie] 35 54 76
Thermal Efficiency, ntp .67 .63 .59
Electric Efficiency, ne .08 .12 .16

Cycle efficiency, nth*ne .75 .75 .75

Incremental heat rate
[(BTU/hr)/kWe] 4,400 4,400 4,400
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TABLE B.5

HIGH PRESURE COGWENERATION SYSTEM ANU TRADITIONAL BOILER SYSTEM

CAPITAL, O AND M AND FUEL COSTS (1980%)

200 psia process steam: 1000 10%8TU/hr, 100 percent of time

0il1 Boiler System

Coal Boiler System

Cogeneration 0i1 Fired

System (thermal gen.)

Cogeneration Coal Fired

System (thermal gen.)

Steam Turbine System

capital
0 and M
fuel

capital
0 and M
fuel

capital
0 and M

fuel

capital
0 and M
fuel

capital

0 and M

29 106 g

76 106 g

35 100 g

89 106 g

18 100 g

4.3
2.5
71.7

11.4
9.9
29.1

5.3
3.1
89.5

13.4
12.3
36.2

2.7
2.6

100 g/yr
106 g/yr
106 g/yr

106 g/yr
106 g/yr
106 g/yr

106 g/yr
106 ¥/yr
106 g/yr

106 g/yr
106 g/yr
106 g/yr

106 g/yr
106 g/yr
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TABLE B.6

HIGH PRESUR: COGENERATION SYSTEM AND TRADITIOWAL BOILER SYSTEM

CAPITAL, O AND M AND FUEL COSTS (1980%)

200 psia process steam: 250 IOGBTU/hr, 100 percent of time

0i1 Boiler System

Coal Boiler System

Cogeneration 0il Fired

System

Cogeneration Coal Fired

System (thermal gen.)

Steam Turbine System

System (thermal gen.)

capital
0 and M
fuel

capital
0 and M
fuel

capital
0 and M
fuel

capital
0 and M
fuel

capital

0 and M

8 106 g

27 106 g

10 106 8

32 106 g

7 106 3

1.2
.6
17.9

4.1
2.5
7.3

1.5

22.4

4.8
3.1
9.1

1.1

106 g/yr
106 g/yr
106 g/yr

106 g/yr
106 g/yr
106 g/yr

106 g/yr
100 4/yr
106 g/yr

106 g/yr
106 g/yr
106 3/yr

106 g/yr
106 g/yr
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TABLE B.7

HIGH PRESSURE COGENERATION SYSTEM TRADITIONAL BOILER SYSTEM

CAPITAL, O AND M AND FUEL COSTS (1980%)

200 psia process pressure: 125 1O6BTU/hr, 100 percent of

011 Boiler System

Coal Boiler System

Cogeneration 0il1 Fired

System (thermal gen.)

Cogeneration Coal Fired

System (thermal gen.)

Steam Turbine System

capital
0 and M

fuel

capital
0 and M
fuel

capital
0 and M

fuel

capital
0 and M
fuel

capital

0 and M

4 106 g

16 106 g

5 100 8

19 106 g

5106 g

.7
.3
9.0

2.4
1.2
3.6

.8
.4
11.2

2.9
1.5
4.5

time

106 g/yr
106 8/yr
106 g/yr

106 g/yr
106 8/yr
106 g/yr

106 3/yr
106 g/yr
106 g/yr

106 g/yr
106 g/yr
106 g/yr

106 g/yr
106 g/yr
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manipulation of the data presented in Tables B.4, B.5, B.6 and B.7. The
results are presented in Table B.8.

The minimum required revenue from cogenerated electricity has now to
be computed in order to be able to obtain the busbar generation cost of
cogenerated electricity. This will be done assessiny against cogenerated
electricity all deltas in capital, 0 and M and fuel of the cogeneration
system with respect to the alternative system used for comparison (in
this case a traditional boiler system). This conceptually simple
operation goes far beyond the implementation of a thorough and complete
financial analysis. Main issues are not only discount rates or further
tax sheltering due to debt financing, but the approach to and the
traditional system of comparison. If electricity is already in-house
generated through non-cogeneration power systems, the cash flow will be
different from the case in which electricity is orginally bought from
electric utilities. In the former case capital delta will be positive, U
and M delta need not necessarily to be positive, fuel costs delta will
generally be positive; in the later case capital, U and M and fuel costs
delta will practically always be positive. Furthermore traditional
in-house electricity generation may bring to a more or lesser expensive
cost per Kwhre than the electric utilities cost, depending on utilities
mix, age and type of in-house generation, etc. In this analysis, no
in-house traditional power generation option will be considered. Deltas
in capital O and M and fuel costs will therefore correspond only to
differences between cogeneration systems cost and traditional boilers
costs. A 20 percent investment credit and a straight line depreciation
correspondent to the delta capital cost will also be taken into

consideration and assessed in favour of cogenerated power, as well as tax
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TABLE B.8

6

COST* OF 10~ BTU OF SATURATED STEAM AT 200 PSIA (1980%)

FOR DIFFERENT STEAM PEAK LOADS, AS A FUNCTION OF LOAD FACTOR

Steam Cost Capital 0 and M Fuel
Peak Ther. Elec. Ther. Elec.
Load
[10%8TU/hr] [/10%Tu]
011 Boiler 1,000 c¢= .5/L +,29 +8.34 = .b/L +8.63
System 250 c¢c= .57/L +,29 +8.34 = .57/L*8.63
125 c¢= .61/L +,29 +8.34 = .61/L+8.63
Coal Boiler 1,000 «c= 1.32/L +1.15 +3.38 =1.32/L*4.53
System 250 c= 1.86/L +1.15 +3.38 =1.86/L+4,53
125 c= 2.21/L +1.15 +3,38 =2.21/L%4.53
Cogeneration 1,000 c¢c= .61/L +.32/L +.36 +.30 +10.40 = .92/L+11.06
0i1 Fired 250 = .70/L +.51/L +.36 +.30 +10.40 =1.21/L*11.06

System 125 = .75/L *+.65/L +.36 +.30 +10.40 1.4 /L*+11.06

Cogeneration 1,000 c= 1.55/L +.32/L +1.43 +.30 +4.22 =1.87/L+5.95
Coal Fired 250 = 2.20/L +.,51/L +1.43 +.30 +4.22 =2.71/L+5.95
System 125 = 2.61/L *+.65/L +1.43 +.30 +4.22 =3.26/L*5.95

*COGENERATION SYSTEMS STEAM COST DOES NOT INCLUDE VALUE OF COGENERATED
ELECTRICITY.
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sheltering of deltas in fuel and 0 and M expenditures assuming a combined
effective corporate tax rate of 50 percent. The final after-taxes steam
costs equations for cogeneration systems are presented in Table B.9, for
different steam peak loads, always as a function of load factor.

From Table B.9 it may be seen how the investment credit and
depreciation allowance tax sheltering effects are a minimal portion of
the steam cost, i.e., approximately 1 percent. By neglecting them in the
steam cost computation other than the incremental analysis performed on
Table B.9 in order to take properly into account the revenues from
cogenerated electricity, no major approximation is introduced and,
anyhow, the only effect would be to slightly shift down the steam cost
with no perceivable effect on the relative values of the cogeneration
schemes against the traditional boiler systems. The economy of scale
impact may also be seen, larger for coal than for oil, for cogeneration
than for traditional boiler system, as expected. Fuel and O and M costs
are assumed independent of system size and load factor (the latter,
however, have been computed for a .85 load factor).

The minimum reuired revenue from cogeneration electricity that would
allow steam cogeneration and generation at some costs may be immediately
derived from the cost equations in Tables B.8 and B.9, as a function of
steam peak load and load factor, for similarly fired alternatives,
traditional and cogenerative. This minimum required revenue is presented
in Table B.10. Coal fired sytems are more capital intensive than oil
fired systems (see Table B.9) and coal systems have larger scale factors,
i.e. the effect of the 1oad factor will increase following the second

diagonal of Table B.10.

Those values should be compared to electricity value for the firm.
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TABLE B.9

FOR DIFFERENT STEAM PEAK LOADS, AS A FUNCTION OF LOAD FACTOR

(9]
non

COGENERATION OIL FIRED

SYSTEM VS. OIL BOILER

SYSTEM

Steam peak load:

1,000x10% BTU/Nr
C = .92/L

c = .76/L
250x10% 8TU/hr
c = 1.21/L

c = .97/L
125¢10% BTU/hr

¢ = 1.48L

¢ =1.11/L

COGENERATION COAL FIRED SYSTEM

+11.06
+ 9'90

+11.06
+ 9.90

+11.06
+ 9.90

VS. COAL BOILER SYSTEM

1,000x10® BTU/hr

C =1.87/L
c =1.67/L
250x10% BTU/hr
¢ =2.71/L
(o =2.40/L
125x10% BTU/hr
¢ =3.26/L
c =2.87/L

+ 5.95
+ 5.25

+

5.95
+ 5.25

+ 5.95
5.25

+

After tax
income
from elec-
tricity

- [-5 76
- [.576

- [05 76
- [.576

= [05 76

= [05 76
- [.576

= [o5 76

- [.576

e

el

e]

e]

e]

e]

el

value of electricity [3/KWhrg]
200 psia saturated steam cost [$(106BTU)]

A

investment
tax credit
(discounted) shelter) shelter) shelter)

+0.09/L

+0.13/L

+0.16/L

+0.11/L

+0.17/L

+0.21/L

+.99

+.99

+.99

+0.40

+0.40

+0.40

s fuel A O*M
expend. expend.
(tax (tax

+0.17

+0.17

+0.17

+0.30

+0.30

+0.30

A depr.

allow.
(tax

*0.07/L]

+0.11/L]

+0.14/L] -

+0.09/L1]

+0.14/L1]

+0.18/L1
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TABLE B.10

MINIMUM REQUIRED REVEWNUE FROM COGENERATED ELECTRICITY
COAL FIRED COGENERATION AGAINST COAL FIRED BOILER
OIL FIRED COGENERATION AGAINST OIL FIRED BOILER

0il Fired Coal Fired
Systems Systems
Steam Peak Load* Load Factor** [mills/KWhre] [mi11s/KWhre]
1,000 1068TU/hr 1 40 28
1,000 100BTU/hr .5 47 37
125 106B8TU/hr 1 47 36
125 106BTU/hr .5 60 54

*Minimum reqired revenue is a non-linear function of steam peak load.
**Minimum required revenue is a linear function of load factor.
CORRESPONDENT COAL AND OIL FIRED TRADITIONAL BOILER SYSTEMS

STEAM COSTS*
1068TU of Steam (200 psia)

1,000 100BTU/hr 1 9.13 5.85
1,000 106BTU/hr .5 9.63 7.17
125 1068TU/hr 1 9.24 6.24
125 109BTU/hr .5 9.85 8.85

*Whenever electricity is valued as indicated on the upper portion of the
table, those are also the steam generation costs of coyeneration systems.
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This value need not be necessarily the so-called electric utility
buy-back rate. Many large industrial plants have straight in-house power
generation. In any event it is not the purpose of this paper to analyze,
at this stage, the various possible interactions with the electric
utility, highly dependent on many factors here not specified, and
obviously also on the different electric utilities.

Only a couple of observations: a fully depreciated standard oil
boiler, with an overall efficieny in the range of .7 (certainly not below
US average) would furnish lTow temperature thermal energy at an operation
cost not inferior to 8 $/ld6 BTU steam, i.e. aproximately 3 cents per
Kwhrth. Similarly, an oil-fired fully depreciated industrial power
generation station could not furnish electric energy at less than 6 cents

per KWhre.

B.4 CONCLUSIONS
An effort will be made to draw general conclusions from the previous
analysis for what concerns steam turbine cogeneration systems assessment

their interfuel switching potential and economic viability.

B.4.1 Thermodynamic Performance of Steam Turbines Cogeneration Systems

The system considered for the thermodynamic analysis is a steam
turbine system topping process (50, 200 or 400 psia process pressure), no
extractions, no reheating, de-superheated process steam delivered at
constant pressure, 100 percent return available as saturated water at
process pressure, no auxiliary power, steam losses fully recovered, no
deaeration steam requirements, main components efficiencies: .9; for the

economic analysis the constraints of no auxiliary power and no deaeration
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steam have been released and boiler efficiency set to .85.

Whenever applicable same assumptions have been made for the

traditional boiler system here assumed to furnish slightly super-heated

steam at process pressure.

Whenever needed, the U.S. average efficiency of conversion for

central power plants of .33 has been assumed; whenever ideal cogeneration

systems cycles have been compared against electric utilities cycles, the

fact that the former were ideal cycles and the latter were real-life

cycles has been taken into account.

1.

2.

Cogeneration systems make a less efficient use of fuel energy
than traditional boilers (e.g., losses at electric generator)
and a more efficient use of fuel energy than central power
plants (e.g., heat delivered to low temperature reservoir in the
latter is instead usefully employed in the former).

Cogeneration systems make a more efficient use of fuel
availability than traditional boiler systems (e.g., working
fluid at high temperature is used for electricity generation and
only afterwards low-temperature heat is delivered to process)
and a less efficient use of fuel availability than central power
plants (e.yg., steam expansion is interrupted at process pressure
requirement). This, computing the actual work extracted from
energy conversion system and comparing it to the fuel input
availability, i.e. actual work that might be obtained from
saturated steam at process pressure for standard boilers,
electric output for central power plants and both the actual
work that might be obtained from saturated process steam (via

heat interaction) and electric output for cogeneration systems.
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Should the maximum work that a system in a certain state might
generate while interacting with the atmosphere, i.e., the
availability be taken into consideration, then the second-law
efficiency would generally be higher for cogeneration than for
central power plants systems (see text).
Cogeneration systems make more efficient use of fuel energy and
availability, whily supplying a thermal and electric load, than
a traditional boiler system and a central power plant supplying
separately and simultaneously the same loads.
Corollary: First law wise or second law wise (if actual and not
maximum work is taken into consideration), cogeneration
thermodynamic performance is not the best, inasmuch as another
cycle with higher efficiency would exist in both cases (a boiler
system and a central power plant, respectively). It is only by
comparing the cogeneration system's thermodynamic performance to
both a traditional boiler and a central power plant

simultaneously that the cogeneration system appears to have a

superior thermodynamic performance. This characteristic of the
cogeneration system (closely reflected also in any economic
analysis) should convince the reader that no thermodynamic
breakthrough could be expected from cogeneration cycles per se
(see text).

The first law efficiency of the cogeneration system equals the
traditional boiler system efficiency minus the electric
generation losses and depends only upon the components
efficiency, all but the steam turbine efficiency. Thermal and

electric efficiency of conversion (defined respectively as the
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10.

B-30
ratio of thermal or electric energy to the fuel energy) do
depend upon the steam turbine efficiency also, although, as
previously stated, their sum (the cycle or first law efficiency)
does not.
The (incremental) heat rate of cogenerated electricity equals
approximately 5,000 B8TU/hr per KWe, is substantially independent
of process pressure, steam turbine inlet conditions and steam
turbine efficiency; consequently it substantially depends upon

boilers and electric generator efficiencies only.

The electric power installed per million BTU/hr delivered to
process is clearly a design parameter.

The electric efficiency of conversion increases with low process
steam pressure requirement, high pressure steam turbine inlet
conditions, and higher efficiencies of conversion of all
components.

The thermal efficiency of conversion increases with high process
steam pressure requirement, low pressure steam turbine inlet
conditions, higher efficiency of conversion of components but
with Tower steam turbine efficiency.

Fuel savings of the cogeneration system with respect to

traditional boiler system and central power plant:

are a function of thermal and electric efficiencies of
conversion of the cogeneration system, traditional boiler
efficiency and central power plant efficiency.

- obviously increase while traditional boiler system and/or
central power plant efficiencies decrease and

- increase with the electric efficiency of conversion of the
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cogenerator system (or decreases with the thermal
efficiency of conversion); also, the first derivative of

the fuel savings function increases as “2’

B.4.2 Steam Turbine Cogeneration Systems Economic Viability

The economic viability of a specific steam cogeneration system will

depend upon:

whether or not the incremental fuel consumption, and the
increment in capital and 0 and M expenditures may be offset by
the value of cogenerated electricity and

the cogeneration system having a life of at least 20 years, on
the sensitivity of the previous conclusion to fuel cost and
electricity value (if electricity is sold to electric utilities,
also on electric utilities pricing and therefore on electric
utilities units mix, etc.)

whatever value is given to total capital, strategic impact,
reliability and system versaility considerations.

reliability and underlying assumptions of cogeneration systems

design and economic evaluation.

For the ideal plant here considered, 1,000 106 BTU/hr process heat

requirement furnished as 200 psia saturated steam, relatively high fuel

costs scenario, a standard financial scenario (15 percent discount rate),

and comparing similarly fired alterntives:

1.

The (incremental) installed power capital cost is approximately
500-600 g/KWe for coal cogeneration and 400-500 3/kWe for oil
cogeneration. The former corresponds to approximately 50

percent of the correspondent cost for coal fired central power
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plants; the latter equals, for the less expensive or is 60
percent for the more expensive, o0il fired
central power plants. For smaller plants, coal fired
cogeneration capital cost will increase more rapidly than oil
fired cogeneration capital costs (see text).
The thermodynamic analysis has shown that fuel cost per KWhre
cogeneration plants is approximately 50 percent of central power
plant fuel cost (obviously assuming identical fuel costs for
both systems).
0 and M costs of cogeneration power plants are also in the ranye

of 50 percent of correspondent central power plants.

The previous three conclusions imply that the cogeneration power

plant analysis, to be performed in order to define the economic viability

of the system and the system configuration design (units mix, load

factors, etc.) will show similar dependencies and behavior than the ones

of central power plants. Coal fired cogeneration may be comparable to

base load central power plant and oil fired cogeneration to medium load

central power plants. This behavior will strongly attenuate diminishiny

the size of the system, all cogeneration power plants becoming then more

and more capital intensive, coal more rapidly than oil.

4.

The minimum required revenue from the cogenerated electricity,
on a tax-sheltered environment, is in the range of 35
mills/kWhre for coal fired and of 45 mills/kikhre for 0il fired
cogeneration systems. Again, the minimum required revenue will
increase more rapidly for coal fired than oil fired generation
power plants if the size of the system or the load factor are

reduced (see text).
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5. The extra capital expenditure for a cogeneration system with
respect to a similarly fired traditional boiler system will be
in the rahge of 40 percent or 80 percent of the cost of a
traditional coal fired boiler system or the cost of a
traditional oil fired boiler system respectively. Also those
percentages strongly increase decreasing the size of the systems.
6. For large systems, increasing fuel cost scenario will not
substantially change the previous conclusions (if any change,
probably for the better, due to slightly lower weight of fuel
costs into busbar generation cost of cogeneration power).

For smaller systems (even far smaller than the ones here
considered), increasing fuel cost sometimes will be highly
beneficial to the (relative) economic viability analysis of
cogeneration systems, due to increased weight, in smaller
systems, of capital cost into busbar generation cost of
cogenerated power. This is about the only advantage of smaller
systems, cogeneration wise.

Finally a general statement:

Large systems (range of 1,000 10° BTU/hr) generally loaded for most
of the time, gas, coal, and, better, coal-cogeneration. Advantages:
stability to fuel prices, good chances of selling electricity to electric
utilities (although avoided fuel costs only would probably not be enough;
will need some capital avoided cost or particular arrangements on demand
charges); extra capital cost approximately 40 percent of traditional
systems.

Small systems (mainly less than 150 10° BTU/hr), a probably less

constant thermal load duration curve, adverse economies of scale, higher
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incremental capital cost per installed unit power, will make coal
traditional, coal cogeneration, and, at the end, oil cogeneration less
and less attractive. Adverse fuel scenario (high fuel cost increase
scenario) will be beneficial to the economics of those systems.
Interaction with electric utilities more problematic than for large
systems, due to large variable cost component of busbar generation cost
of cogenerated power.

Once the analysis performed on this paper has been extended to otner
system sizes and process pressures, a family of curves of all the
parameters that define cogeneration system‘performance under different

constraints and at various levels of aggregation, may be constructed.

B.5 COST SCREENING OF COGENERATION SYSTEMS

A relationship between Operating Rvenues and Return on Tax-Sheltered
Debt and Equity Capital is formulated by stating that the investment
remaining at the end of year n equals the investment remaining at the
beginning of year n minus the repayment amount for year n. The general
expression obtained for year n will be a function of Operating Revenues,
Cash Operatinyg Costs, Depreciation Aloowance, Interest on ebt and on
Equity, Debt Ratio, Composite Tax Rate and Life of System (assuming a
zero salvage value. After straightforward algebraic manipulation and
upon definition of an interest rate on tax-sheltered composite capital,

i (the Tatter function of interest on debt and on equity, debt ratio

a’
and composite tax rate) the following is obtained:

AEX = (AER - AEF)(1 - t) - AEC *+ t AED (1)
where:
AEX = Annual equivalent net income
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AER = Annual equivalent revenue

AEF = Annual equivalent cash operating costs

AEC = Annual equivalent of capital expenditures

AED = Annual equivalent of depreciation

t = Combined effective income tax rate = 0.50

rq = debt ratio = 0.6

id = rate of return on debt capital = 0.08

ie = rate of return on equity capital = 0.15

i = rqig * (1 - rd)ie = rate of return on
composite capital = 0.1080

i, = i, - tryi, = rate of return required (or

discount rate) on tax-sheltered composite capital =
0.0840.

The present equivalent net income, PEX, or present worth, is
immediately obtained from the previous equation (PE being present
equivalent):

PEX = (PER - PEF)(1 - t) - PEC + t PED (2)

On both equations 1 and 2, all terms are discounted at the discount

rate on tax-sheltered composite capital, ia'

B.6 LEVELIZED COST OF FUEL

In order to be able to use the previous equations on varying fuel
costs and electricity values scenario, a levelized cost of fuel and a
levelized value of electricity have to be computed. Continuous rates of
increase both for fuel cost and electricity worth are assumed for
levelized costs computation purposes. The present worth is then computed

at a continuously compounded discount rate on composite tax-sheltered
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capital, ia’ and continuously discounted at the same discount rate as a
continuous uniform series of payments for the seventeen years of
effective operation under consideration; the levelized cost expression

obtained after straightforward integration is:

iN
a .
e 1

(t-1.)
a _ 1 a

Levelized cost, G = G €

where t is the rate of increase, N are the years of operation of the
plant and Go is the fuel cost (or electricity value) at the first year
of plant operation, i.e., the 1980 dollar cost increased at the
discretely compounded increase rate until the end of the construction

period of three years.
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APPENDIX C
COAL GASIFICATION

Coal derived low and medium Btu gases are two important options that
energy intensive industries are evaluating as alterntives to their use of
0il and natural gas in steam-raising, process heat and feedstock
applications. In order to compare coal-derived gases to other
alternatives, it is necessary to understand the system economics. This
covers the production of these fuels consistent with the environmental
and particular end-use requirements unique to each user. This Appendix
provides the necessary information to estimate capital and operating cost
to produce Tow and medium Btu gas for a range of typical industrial plant
sizes.
Gasification Data

Capital and operating costs as a function of capacity were developed

from published data for the following three gasification processes:

Process Product Reference
1. Koppers-Totzek Medium Btu gas 1, 2, 3
2. Texaco Medium Btu gas 6 through 12

3. Atmospheric Fixed

Bed Low Btu gas 1, 4, 3, 5

For the Koppers-Totzex and Atmospheric Fixed Bed processes,
consistent cost data in a sufficient wide ranye of capacities can be
found in the literature. For the Texaco process, however, while good
preliminary ehgineering information are reported, only a few realistic .

cost estimates are available. The best source is Bechtel's study for
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NIPSCO (6) that is based on a detailed engineering design for a plant
actually being built for Tennessee Eastman (13). The design has revealed
that the earlier capital costs were grossly underestimated. Another
feature of the Bechtel study is that it includes shift conversion and
methanation, and provides for a more efficient sulfur removal of 99%
while most of the other désigns remove around 90% sulfur.

To determine the effect on the Texaco process capital cost of plant
capacity and sulfur removal efficiency, a pair of sectionalized cost
estimates were first developed for a 99% or 90% sulfur removal
alternatives based on Bechtel's 115 billion Btu/day designs.(6,7) The
sections of each alternative plant were then scaled up and down to 170
and 30 billion Btus/day which are the approximate sizes of the Fluor
study (8) and Tennessee Eastman project (13), respectively.

Both alternative plants of our study assume the standard MBG design
without shift conversion and methanation. 1In eliminating these sections,
a change in equipment configuration and size was required in the acid yas
removal and sulfur recovery sections. Another configuration and size
change in these sections was called for by the adjustment to the 90%
sulfur recovery alternative. As only flowsheets but no individual
equipment specifications and cost were available, the functional unit
concept (14,15) was used to determine the effect of the changes on the
sectional estimates.

In scaling the individual plant sections of the two alternatives up
and down to the 170 and 30 billion Btu/day level, the standard

exponential relationship was used:

Cost = const. (Capacity)®
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For each section, a specific exponent was selected from literature data
(16,17) based on the mix of equipment types in that section. For some
sections, the number of trains was also changed and the exponent applied
to train capacity. Results are shown in Table C-1.

The sources of cost estimates for the Koppers-Totzek and Atmospheric
Fixed Bed processes are presented in Table C-2. Slight adjustments were
made in the quoted construction costs to match the definitions of Table
[I-1 in the main body of the report. Once construction costs were
normalized, the following factors were applied consistently to compute

total capital which was then escalated to 1980 dollars:

Item Factor Base
Contractor's fee 10% Construction cost
Contingency 15% Construction cost
Non-depreciables 0 --

Working capital 1% Depreciable capital
30 days Daily fuel cost

Start-up 20% Cash production cost

Other cost 1% Construction cost

Bechtel's Texaco process battery limits and offsite cost were available
at the level of depreciable capital excluding contingency. The above
percentages were used to calculate total capital, see last two lines in
Table C-T.

In the area of operating cost, the Bechtel study provides a cost
breakdown and a rough manning table. As pointed out in Section II of the

main body of this report, operating costs may be estimated based on



TABLE C-I. TEXACO PROCESS CAPITAL COSTS]

35 Billion Btu/Day 115 Billion Btu/Day 170 Billion Btu/Day
. No. of2 $106 for A]ternative3: No..of2 $106 for A]ternative3: No..of $106 for A]ternative3:
Section trains 87%S 99%S trains 87%S 9995 trains 87%S 995
Coal Handling 1+0 8 8 1+0 22 22 1+0 31 31
Oxygen Plant 2+0 42 42 4+0 119 119 5+0 166 166
Gasification 2+1 92 92 4+1 215 215 5+1 293 293
Acid Gas Removal 1+0 7 23 2+0 20 63 3+0 27 95
Sulfur Recovery 1+1 4 16 2+1 8 34 2+1 10 45
Battery Limits 153 181 389 453 527 630
Offsites 30 33 61 66 78 86
Depreciable 183 214 450 519 605 716
capital excl.
contingency
Contingency, working 38 44 96 111 131 155
capital, start-up o o L L
TOTAL CAPITAL 221 258 546 630 736 871

1. Cost in 1980 dollars.
2. Operating and standby.
3. Sulfur removal alternative.



TABLE C-II. SIZES AND COST SOURCES OF GASIFICATION PLANTS

Capacity, Costs Based

109 Btu/day on Year Reference

(a) Koppers-Totzek Process

12 1975 2
20 1980 3
36 1975 2
72 1975 2
100 1977 1
150 1977 1
180 1975 2

(b) Atmospheric Fixed Bed Process

0.7 1978 4
1.8 1978 4
2.5 1977 1
3.6 1978 4
4.8 1978 4
9.6 1978 4
10 1977 5
20 1980 3
50 1977 5
100 1977 5
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the variable, fixed and semivariable component as follows:

Component Items Included Proportional To
Variable Process materials, utilities Production
Fixed Operating labor, supervision,

services, part of G&A No. of operators
Semivariable Operating supplies, main-

tenance labor and supplies,
property insurance and taxes,

rest of G&A Depreciable Capital

G&A (general and administrative) costs are computed as proportional to
operating and maintenance labor.

The Bechtel study operators and maintenance people were distributed
among the plant sections based on the numbers of functional units
(14,15). The total number of men was then decreased in accordance with
the elimination of shift conversion and methanation, and the changes in
acid gas removal and sulfur recovery sections. The resulting manning
provided a basis for the fixed component and a check for maintenance cost.

Next, the scale-up and scale-down of sectional manniny was computed
using the following rules:

0o Operators:
Coal handling: No. of men = const. (Capacity)o’6
Gasification: 6 men/shift for 4 to 5 trains
5 men/shift for 2 to 3 trains
4 men/shift for 1 train

Other sections: No. of men independent of capacity
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0 Maintenance people

No. of men is proportional to depreciable capital

The estimate of the variable and remaining semivariable costs was
straightforward. The resulting operating costs of the Texaco process are
reported in Table C-3 for the three selected capacities.

Operating costs of the Koppers-Totzek and Atmospheric Fixed Bed
processes, published for various capacities, required only slight
adjustment and escalation to 1980 dollars. The references are also
covered in Table C-2.

The capital and operating cost of all processes investigated are
presented in Figures II-3 and II-4 in the main body of the report. No
attempt was made at this point to establish the effect on cost of the
level of sulfur removal for the Koppers-Totzek and Atmospheric Fixed Bed
processes. However, it is planned to do so in the next phase of the

project along the same lines as it has been done for the Texaco process.



TABLE C-III. TEXACO PROCESS OPERATING COSTS]

35 Billion Btu/Day 115 Billion Btu/Day 170 Billion Btu/Day
$106 for A1ternat1ve2: $106 for A1ternative2: $106 for A]ternativez:
90S 99%S 90S 99%S 90s 99%S
Catalyst . . .3 .3 .4 iy
Water .2 .2 .6 .6 .9 .9
Electricity .6 .6 2.1 2.1 3.2 3.2
Ash Disposal .3 .3 1.1 1.1 1.7 1.7
Wages 8.2 8.6 11.6 12.4 13.5 14.5
Contract Main-
tenance Labor 2.0 2.3 4.9 5.6 6.7 7.8
Maintenance
Materials 2.5 2.9 6.1 7.0 8.4 9.8
Operating Supplies 0.5 0.6 1.2 1.4 1.7 2.0
14.4 15.6 27.9 30.5 36.5 40.3

|
|
|
|
|

1. Cost in 1980 dollars.

2. Sulfur removal alternative.
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APPENDIX D: FUEL PRICES

The purpose of this appendix is to discuss future fuel price
developments. Initially oil price developments are discussed because o7l
is considered a benchmark fuel, subsequently natural gas price
developments are discussed because of the importance of natural gas for
the industrial sector, and finally coal price developments are discussed
since coal is considered the major alternative to 0il and natural gas in
the industrial sector. The major conclusions of this appendix follow
below.

Despite the recent softness in the international o0il market, oil
prices are expected to remain relatively constant in real terms over the
next ten to fifteen years. More specifically, oil prices are expected to
increase at an annual real rate of -1 to +5 percent over the next ten to
fifteen years. The following scenarios for oil prices were used in this
study: first, oil prices were assumed to remain constant in real terus;
and second, oil prices were assumed to increase at an annual real rate of
3 percent after 1985 (see Table D-1).

The fate of future natural gas prices will largely depend on the fate
of the Natural Gas Policy Act. As mentioned later in this appendix,
several amendments are being proposed for this act. The following
scenarios for natural gas prices were used in this study: first, natural
gas prices are decontrolled in 1985 according to the provisions of the
Act and they remain constant in real terms thereafter; second, natural
gas prices are not decontrolled in 1985, they increase in an annual rate
of 4 percent in real terms during 1985/95, and they remain constant in
real terms thereafter; and third, natural gas prices are decontrolled in

1985 according to the provisions of the Act and they increase in real



0i1
-Low Sulfur (0.3%)
-High Sulfur (2.0%)

Gas

Coal
-Low Sulfur (1%)
-High Sulfur (3%)

D-2
Table D-1

Scenarios of Fuel Prices

Scenario 1 Scenario 2 Scenario 3
Annual Real
Growth Rate Post 1985
1985  Post 1985 1985* 1985* Annual
(§/ Real Growth  ($/ post  (§/ Real Growth

MMBtu) Rate MMBtu) 1985/95 1995 MMBtu) _ Rate
6.17 0 6.17 0 0 6.17 3
5.10 0 5.10 0 0 5.10 3
5.60 0 3.77 4 0 5.60 4
2.50 0 2.50 0 0 2.50 2
2.00 0 2.00 0 0 2.00 2

*A11 prices in 1980 dollars.
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terms at 4 percent annually thereafter (see Table D-1).

Finally, coal prices are expected to remain relatively constant in
real terms. More specifically, coal prices are expected to increase at
annual real rate of 0 to 3 percent, depending on the transportation cost
involved, in other words on how far is the coal use located from the mine
mouth. The following scenarios for coal prices were used in this study:
first coal prices were assumed to remain constant in real terms; and
second, coal prices were assumed to increase at an annual rate of

2 percent in real terms after 1985 (see Table D-1).

D.1 Qi1

Delivered oil prices to the U.S. industrial sector will mainly depend
on international oil prices, which in turn will depend on the o0il prices
of the Organization of Petroleum Exporting Countries (OPEC). During the
last decade, OPEC was able to increase the price of its oil by 2000
percent in nominal terms.

The Libyan breakthrough in 1970/71, the quadrupling of 0il prices
following the 1973 oil embargo, and the tripling of oil prices following
the 1979 Iranian revolution were the three major events that led to the
2000 percent increase in OPEC oil prices during the last decade. 1In all
three cases, a sequence of political events took place beforehand which
created the economic environment for these oil price increases. Since
political events are difficult to predict several years in advance, the
aforementioned oil price increases surprised oil analysts. In the
future, political and economic considerations are expected to continue
being the two major factors determining the oil policy of the major OPEC

0il producers. Keeping in mind the pitfalls involved in making oil price
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predictions, an attempt will be made below to sketch the possible
developments in the oil market over the next two decades. Initially, a

range of the demand for OPEC 0il is developed for the next two decades.

Demand for OPEC 0il

During 1979/81, demand for OPEC oil decreased from 30.8 million
barrels a day (mmbd) in 1979 to 26.8 in 1980 and to 22.5 in 1981.
Although it was not the first time demand for OPEC 0il registered a
decline, it was the first time it did so for two consecutive years and,
more importantly, the size of the recent decline has been ruch yreater
than that of any previous ones. For example, the second largest decline
in demand for OPEC oil occurred during 1974/75, when demand for OPEC oil
declined from 30.7 mmbd in 1974 to 27.3 mmbd in 1975. These developments
have revived speculation about OPEC's ability to control the oil market
in the future. More specifially, some oil analysts have argued that OPEC
countries may price their oil out of the market, if they insist on the
currently prevailing prices.

Predicting the future demand for OPEC oil involves guessiny the
future world energy demand. The latter will depend on future economic
growth and energy utilization efficiency, both of which have become very
difficult to predict after the 1973 energy price increases, as explained
below.

Since 1973, the world economy has been growiny at a substantially
slower rate than before. For example, the Organization for Economic
Cooperation and Development (OECD) economies grew at an annual rate of
5.2 percent during 1963/68, at a 4.6 percent rate during 1968/73, but at

only a 2.2 percent rate during 1974/81. Similarly, the world energy
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income elasticity after 1973 has been substantially lower than before.
This decrease in energy income elasticity was more pronounced in the OECD
countries. For the OECD as a whole, during 1960/72 it took on the
average a 1.02 percent increase in energy consumption to increase the
level of economic activity by 1 percent. However, during 1973/81, it
took only a 0.4 percent increase in energy consumption to increase the
level of economic activity by 1 percent. What do these data imply for
the future?

Analysts disagree on the values of future economic growth rates and
energy income elasticities will prevail in the future, they disagree on
the magnitude of these variables. The problem becomes even more
complicated by the fact that an accurate enough prediction of the
economic growth rate and energy income elasticity is beyond the present
or prospective capability of the profession of econometrics. Indeed, the
annual economic growth rate over next ten to fifteen years cannot be
predicted within 0.5 percent. However, a difference of 0.5 percent in
the annual economic growth rate may result in a difference in the demand
for OPEC oil of up to 10 mmbd by 1990, which is equivalent to the
production capacity of Saudi Arabia. Similarly, the annual energy income
elasticity cannot be predicted within an accuracy of 0.1, but a change in
this income elasticity from 1.0 to 0.9 may result in a decrease of up to
10 mmbd in the demand for OPEC oil by 1990. With this caveat in mind, a
range of the demand for OPEC oil over the next two decades is developed
below.

In case the OECD economies grow at an annual rate of about 3 percent
and the OECD energy income ratio continues to decline at about the same

rate as during the 1970's, the demand for OPEC o0il is not expected to
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increase over the next two decades. In other words, the demand for OPEC
0i1 will remain at about 23 mmbd which is close to the level it reached
in 1981. However, if the industrial economies grow at an annual rate of
3.3 percent or if their energy income ratio delines at half the rate it
declined during the 1970s, then demand for OPEC oil will grow and could
reach a level of up to 34 mmbd over the next two decades. Let us now
examine how OPEC will react to different Tevels of demand within this

range.

OPEC 0i1 Prices during the 1980's and 1990's

The 0il1 policies of the various OPEC countries will differ, dependiny
on the economic development needs of each OPEC country, on its domestic
socio-political situation, and on its stake in preserving a healthy oil
market in the lony-term, which in turn will depend upon its existing and
potential oil reserves. Based upon their respective social, economic,
and political conditions, OPEC countries can be divided into the
following groups according to the oil policy they are expected to follow
in the future.*

The first group consists of Alyeria, Ecuador, Gabon, Indonesia,
Nigeria, and Venezuela. These countries have strong incentives to
produce close to their productive capacities and to seek Targe oil price
increases. This behavior is dictated by their large 0il revenue needs

for economic development and the fact that their oil exports are expected

to decline over the next two decades due to an anticipated decline in oil

*For a more detailed discussion, see Aperjis, D., "The 0il Market in
the 1980's: OPEC 0il Policy and Economic Development," Ballinger,

Cambridge, Massachusetts, February 1982.
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production and an increase in domestic oil consumption. The radical
Teaderships in Iran and Libya can be expected to support this group of
countries by advocating large oil price increases and producing only as
much oil as they need for their own economic development.

On the other hand, Saudi Arabia and United Arab Emirates (UAE) have
an incentive to block large 0il price increases for both economic and
political reasons. The economic reasons include their interest in
preserving a healthy market for their oil exports in the long-term and

their interest in preserving the value of their vast financial surpluses

in the West. The political reasons include their desire to solicit
support from the West (especially the U.S.) with regard to the
Arab/Israeli conflict and for the defense and survival of their own
conservative monarchies. Lastly, Irag, Kuwait, and Qatar can be expected
to float between these two positions.

OPEC's o0il policy will emerge as a compromise among the oil policies
of these three groups. The o0il supply curve of OPEC will lie within the
shaded region of Figure D-1. The position of the left boundary of this
region, DS, depends on the economic development needs of individual OPEC
countries. More rapid economic growth in Saudi Arabia, UAE, Kuwait,
Iraq, Iran, or Libya would shift curve DS to the right, while slower
economic growth in these countries would shift DS to the left. The
position of the right boundary of this region, DC, depends on the
productive capacities of Saudi Arabia and UAE and any production ceilings
introduced by the governments of Kuwait and Iragq.

In other words, to satisfy a medium level of economic development,
OPEC's production behavior will have to follow curve AD for oil prices

below $25 per barrel, and a curve between DS and DC for o0il prices above
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$25 per barrel. The exact position of OPEC's supply curve will depend on
the willingness of Saudi Arabia, UAE, Kuwait, Qatar, and Iraq to produce
at levels above that which is required for their short-term economic
development needs.

If a high level of demand for OPEC 0il were to occur over the next
two decades (about 34 mmbd), Saudi Arabia, UAE, Kuwait, Irag, and Qatar
would have to produce close to their productive capacities in an effort
to prevent any sharp price increases by the rest of OPEC. In this case,
0il prices can be expected to increase in real terms at a rate of about
3-5 percent annually. For a medium level of demand during the 1980's
(about 28 mmbd) the so-called price moderates, because of their surplus
productive capacities, will have sufficient bargaining power to impose
their pricing policies on the rest of OPEC. However, 0il prices would
not necessarily decrease from current levels, since it would be
politically very difficult for the price moderates to actually decrease
0oil prices. Rather, the moderates would use their large bargaining power
to keep prices relatively constant in real terms by cutting their own
production. The ability of the price moderates to absorb production cuts
without any major impact on their economic development plans makes OPEC
0il prices sticky downwards.

But there is a limit to the production cuts OPEC's moderates could
afford without affecting their economic development plans. This Timit is
represented by curve DS in Figure D-1. If the demand for OPEC oil shifts
to the left of curve DS, then OPEC countries would be forced to scale
down their economic development plans to avoid a collapse in 0il prices.
Note that in this case prices would not simply decrease by a few

percentage points. Indeed they would collapse because the demand curve
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for OPEC 01l and curve DS are negative sloping and almost parallel. 1In
the case of a price collapse, AD would become the new OPEC 0il supply
curve. The further to the left the demand curve shifts, the more the
OPEC countries will have to decrease their economic development plans to
avoid a drastic price deterioration. It is questionable whether OPEC

would be able to keep its members together and avoid a price collapse if

a low demand for OPEC o1l (about 23 mmbd) prevailed over the next two
decades.

To summarize, oil prices over the next two decades will most probably
not be Tower than today's levels because OPEC oil prices appear to be
sticky downwards. More specifically, OPEc prices are expected to remain
realtively constatn in real terms during the 1980s. Jacoby and Paddock*
reached a similar conclusion for future oil prices, using a combinion of
gualitative argumets ad a larye oil model at MIT Energy Laboratory. For
example, they predicted that oil prices will increast at a rate of -1 to

+5 during the 1980s.

D.2 Hatural Gas

In 1978 the NHatural Gas Policy Act (NGPA) became a law and it was
thought that Federal policy on natural gas prices had been settled for
good. However, changes in the international oil prices during 1979/80
have raised a lot of questions about the appropriateness of NGPA.
Several alternatives and amendments to NGPA have been proposed recently.

The NGPA, extending controls on natural gas prices beyond 1985, and

*Jacoby H.D. and Paddock J.1., "World 0il Prices and Economic Growth
in the 1980s," MIT Energy Lab, December 1981 (MIT-EL 81-060WP).
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ending controls of natural gas prices before 1985 are the regulatory
schemes discussed in this section, together with the impact of such

schemes on natural gas prices..

The NGPA
The NGPA extended price controls to the intrastate gas markets
creating more than 20 categories for natural gas, which, however, could
be grouped into the following general ygroupings:
"New" gas, in general, gas that came into production after
April 21, 1977. The prices of most of this gas will
increase at an annual rate of 3-4 percent in real terms

until 1985, when most "new" gas may be decontrolled.

“01d" gas, in general, gas that came into production
before April 21, 1977. The prices of interstate "old"
gas will remain controlled at 1978 real prices until
exhausted. The prices of part of the "old" intrastate
gas will be deregulated in 1985, with the remainder

receiving higher prices than "old" interstate gas.

High cost gas, in general, gas from wells below 15000

feet and unconventional gas other than tight sands. This
gas represented about 2 percent of 1981 gas supplies. The
prices of this gas are not regulated under the NGPA and

they are set at the free market.

Thus, pursuant to NGPA, about 40 percent of domestic yas supplies
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will not be decontrolled in 1985 and approximately 20 percent will remain
controlled in 1990 (See also Table D-2). Actually, the NGPA provides for
standby controls which would allow the Congress and the President to
extend price controls for another two years, if necessary. In this case,
the prices of most gas would be controlled until 1987.

The intention of the price structure of the NGPA was to adjust
wellhead prices to coincide with market clearing levels by 1985 in order
to produce a smooth transition toward decontrol. This intention can be
seen very clearly in Figure D-2. Intrastate gas prices were set at a
price equivalent to the price of No. 6 oil (low sulfur), and are to be
increased until 1985 at the rate the drafters of the Act expected o0il
prices to escalate. Average interstate gas prices were also expected to
move toward parity with No. 6 0il (Tow sulfur) as supplies of old yas
were phased out.

However, duriny 1979/80 o0il prices increased at a much faster rate
than the NGPA drafters had expected. Assuming that oil prices do not
decrease drastically by 1985, there will be a gap between the price of
0oil and the price of gas that is expected to be deregulated in 1985. 1If
gas competes with oil, the price of that portion of gas that is
deregulated in 1985 (i.e., new gas and a part of intrastate gas) will
have to increase drastically as well for the market to clear. This
potential "fly-up" of the prices of deregulated gas in 1985 is
illustrated in Figure 3. In other words, the hope that the NGPA will
smooth the transition to decontrolled natural gas prices may have been
eliminated by the 0il price increases during 1979/80.

This potential "fly-up" of natural gas prices has initiated a lively

debate about the usefulness of the NGPA. Several alternatives to the



TableD-é:NGPA Natural Gas Categorization

. e 1980 Production Avg. Price 3/81 Date of NGPA
Section Description _Estimate (TCF)* ($ Per HCF) Deregulation Comments
102 New Natural Gas 2.2 $2.73 1/1/85 Includes 0CS
103 New Onshore 2.5 $2.41 1/1/85,1/1/87 1/1/85 For lells
Production Wells Deeper Than
5000 Ft.
104 '01d Interstate 7.8 $.25 - $1.99 Not Deregulated Price Escalates
Gas (Avg. = $1.25) at Monthly Infla-
tion Adjustment
105 01d Intrastate 5.3 $.50 - ? 1/1/85
Gas (Avg. = $2.00)
106 Sales Under "Rol1- 0.9
Over" Contracts
o Interstate $ .75 Not Deregulated
e Intrastate $1.37 1/1/85
107 High Cost Gas 0.4 Market 11/1/79 107(c), "Tight
(= $7.00) Sands" Gas Is
Not Derequlated
108 Stripper Well 0.4 $2.92 Not Deregulated < 60 mcf Per Day
Gas
109 Prudhoe Bay and Negligible $1.99 Not Deregulated
Other Gas
Total = 18 TCF
*Estimates
Source: Jacoby, H.D. and Wright, A.W., "Obvious and Not-so-Obvious Issues in Natural Gas Derequlation,"

A s

M.1.T. Energy Laboratory Horking Paner.

[ L]

March 1962 (MIT-EL 82-087uP)



Figure D-2

Natural Gas Pohcy Act As Passed
5~

Price 3
$1977
Per
MM BTU




. Figure D-3

Natural Gas Policy Act Current Situation

6 .-d"”“.
.—’“
- .
P Potential -
5 - ’/ nFly.Upn ‘ ."-”-a
-

po

Price.
$1977 4
Per
MM BTU

-
-
o”’

-

Avg. Ihterstate (Wellhead)

S109

1977



D-15
NGPA have been proposed ranging from immediate decontrol of all gas
prices to extending price controls to 1995, In addition to the "fly-up"
problem, proponents of a policy change on natural gas see the following

instability problems created by the NGPA.

If gas competes with o0il in the industrial and electric utility
markets, the market may clear when the average price of yas reaches the
price of oil. Pipelines companies will be tempted to bid up the price of
deregulated gas until the average gas price at retail reaches the price
of 0i1 or clears the market. Thus, prices of deregulated gas may go well
above the price of oil or the market clearing price of gas. The
rolled-in pricing of natural gas facilitates this whole process.
Supporters of this argument cite as an example the fact that prices of
deep gas (from wells below 1500 feet) reached a level of about $10 per
mcf in 1981, which was twice the price of 0il in 1981.

The aforementioned instability is also enhanced by the unequal
treatment of "old" gas in the interstate and intrastate markets by HGPA.
More specifically, "old" gas will not be dereyulated in the interstate
market while part of "old" gas will be deregulated in the intrastate
market. Consequently, more price-controlled gas is expected to exist
after 1985 in the interstate market than in the intrastate market. Thus,
interstate pipelines will be in a position to bid higher prices for
deregulated gas, which may result in a shift of deregulated gas supplies
from the intrastate to the interstate market. Needless to say, the
‘uneven endowment of price-controlled gas among interstate pipelines may
result in unequal access to deregulated gas supplies among interstate
pipelines and their respective service regions. The U.S. Department of

Energy estimates that 0.9 (Tcf) will shift from the intrastate to the
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interstate market between 1984 and 1985.*

The U.S. Department of Energy estimates of natural gas prices under
NGPA are depicted in Table D-3. Note the "fly-up" of the new gas price
from $3.28 per million cubic feet (mcf) in 1984 to $6.76 per mcf in
1985. In other words, at the time of decontrol, wellhead prices of new
gas will reach a level of about 110 percent of crude 0il prices, because
of rolled-in pricing by pipelines and gas distributors. However, as the
controlled supplies of "old" gas decrease, the marginal wellhead price of
gas will decrease from $6.76 in 1985 to $6.21 in 1990, the latter being

equal to 85 percent of crude oil price.

Extension of Price Controls

Price controls could be extended for a certain period of time.
Actually, as mentioned earlier, the NGPA has a provision that authorizes
the extension of price controls until 1987. Table D-4 depicts DOE's
estimated impact on natural gas prices if price controls similar to the
ones dictated by NGPA are extended to 1990. Note that in this case
natural gas prices for the industrial sector remain well below the o0il
price. At the same time, uncontrolled gas prices are almost double the
average price of gas at the wellhead. This results from the ability of
pipelines to bid up the prices of uncontrolled gas, because the pipelines
have Targer quantities of controlled gas than in the case in which gas

prices are decontrolled in 1985.

*"A Study of Alternatives to the Natural Gas Policy Act of 1978,"
U.S. Department of Energy, November 1981,



TABLE D-3:IMPACT OF NGPA ON NATURAL GAS PRICES

GAS PRICES 1982 1984 1985 1990
(1980%/mcf) — —_— —_— _
Wellhead'
Average Domestic 2.27 2.61 4.45 5.35
New Gas? 3.03 3.28 - -
Marginal’ 6.56 6.93 6.76 6.2]
Delivered
Residential 4.3 4.83 6.59 7.36
Industrial 3.15 3.50 5.60 6.37
0IL PRICESY
Crude 0i1 (1980$/mcf) 5.74 6.08 6.27 7.27
"on o (1980$/bb1.) 32.73 34.72 35.76 41.46

Residual Fuel 0il
Low Sulfur (.3%) 5.68 6.00 6.17 7.08
High Sulfur (2.0%) 4.65 4.95 5.10 5.95

1. Includes 7% severance and other taxes.

2. The new gas price equals the Section 102 price, plus severance and
other taxes.

3. The marginal wellhead price equals the Section 107 deregulated price
to 1985 and the deregulated gas price after 1985.

4. Crude o0il prices are average refiner acquisition costs.

Source: "A Study of Alternatives to the Natural Gas Policy Act", U.S.
Department of Energy, November 1981.



TABLE D-4:IMPACT OF EXTENDING CONTROLS ON NATURAL GAS PRICES

1982 1984 1985 1990
GAS PRICES
(1980$/mcf)
Wellhead'
Average Domestic 2.27 2.61 2.91 4.35
New Gas? 3.03 3.28 3.4 4.45
Marginal® 6.56 6.93 7.13 8.19
Delivered
Residential 4. 31 4,83 5.17 6.79
Industrial 3.15 3.50 3.77 5.06
4
QIL PRICES
Crude 0i1 (1980%/
mcf) 5.74 6.08 6.27 7.27
Crude 011 (1980%/
bb1.) 32.73 34.72 35.76 41.46
Residual Fuel 0il
Low Sulfur (.3%) 5.68 6.00 6.17 7.08
High Sulfur (2.0%) 4.65 4.95 5.10 5.95

1. Includes 7% severance and other taxes.

2. The new gas price equals the Section 102 price, plus severance and
other taxes.

3. The marginal wellhead price equals the Section 107 deregulated price
to 1985 and the deregulated gas price after 1985.

4. Crude o0il prices are average refiner acquisition costs.

Source: "A Study on Alternatives to the Natural Gas Policy Act,"
U.S. Department of Energy, November 1981.



Ending Price Controls before 1985

The most drastic decontrol scenario is the one in which natural gas
prices of all categories are decontrolled in 1982. The Department of
Energy estimated impact of such a scenario on natural gas prices is
dep%cted in Table D-5. The figures of Table D-5 were derived under the
assumption that any existing contract clauses would not inhibit natural
gas prices from attaining the free market level. This is a crucial
assumption because the majority of contracts for "old" natural gas
contain clauses which could escalate natural gas prices to Tevels well
above the free market level. Note that, since all gas prices are
deregulated in 1982, the average gas price is equal to the marginal gas
price (Table D-5).

Decontrolling of all natural gas prices in 1982 solves some of the
potential problems of NGPA -- such as the unequal treatment of interstate
and intrastate markets -- but it does not solve the problem of a sudden
jump in natural gas prices. Actually, it magnifies the jump while at the
same time advances it from 1985 to 1982. The problem of a sudden
increase in natural gas prices could be alleviated by considering a
phased-in decontrol option in which case the different categories of
natural gas are decontrolled during 1982/85, instead of all at once in
1982. A phased-in decontrol scenario would most Tikely result in
different natural gas prices during 1982/85 than the scenario of
immediate decontrol in 1982. However, these two scenarios are expected
to result in approximately similar natural gas prices after 1985. In
other words, as far as the M.I.T. case study is concerned, these
scenarios would have the same impact because only the fuel prices in 1985

and thereafter are important for the M.I.T. case study.



TABLE D-5: IMPACT OF IMMEDIATE DECONTROL ON NATURAL GAS PRICES

GAS PRICES
(1980%/mcf)

Wellhead!

Average Domestic

New Gas2

Margina]3

Delivered

Residential
Industrial

0IL PRICESY

Crude 0i1 (1980$/mcf)
" " (1980%/bbl.)

Residual Fuel 0il

Low Sulfur (.3%)
High Sulfur (2.0%)

1982

4.19

4.18

6.13
5.02

5.74
32.73

5.68
4.65

1984

4.44

4.43

6.39
5.27

6.08
34.72

6.00
4.95

1985

4.65

4.65

6.62
5.47

6.27
35.76

6.17
5.10

1. Includes 7% severance and other taxes.

2. The new gas price equals the Section 102 price, plus severance and

other taxes.

1990

5.50

5.49

7.51
6.33

7.27
41.46

7.08
5.95

3. The marginal wellhead price equals the Section 107 deregulated price
to 1985 and the deregulated gas price after 1985.

4. Crude oil prices are average refiner acquisition costs.

Source: "A Study of Alternatives to the Natural Gas Policy Act", U.S.

Department of Energy, November 1981.
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Proponents and Opponents of the NGPA

During the 1980 presidential campaiyn, President Reagan made
statements favoring gas deregulation. During 1981, some Republican
Congressional leaders advised the President that a gas dereyulation bill
could not pass, unless it was coupled with a "windfall profits" tax on
decontrolled gas. Some administration officials are in favor of a
"windfall profits" tax, because it would decrease the federal deficit.
But the President himself promised to veto "with pleasure" a windfall tax
on decontrolled gas in a letter to Congressman English from Oklahoma.*
Needless to say that Congress is divided on the issue of amending the
NGPA. It should be added, that if Congress does not ammend the NGPA,
there exist a series of actions which the Federal Energy Regulatory
Commission (FERC) can take administratively to increase prices on certain
categories of gas in the short-term. These kinds of price increases have
been happening lately.

Similarly, the natural gas industry is divided on this issue.
Companies with a good competitive position in deep gas are in favor of
the NGPA, because this way they can sell their deep gas at double the
prices of oil. These companies argue that there is no need to deregulate
gas found in shallow formations, because it would merely raise prices
without adding any new reserves. However, companies richly endowed with
"ol1d" gas reserves are in favor of immediate deregulation on all gas
prices. These companies argue that the NGPA distorts the gas market and
thereby causing vast amounts of capital to be allocated for the discovery

of high-cost and high-risk gas at depths below 15000 feet, while there is

*See p. 2066, National Journal, November 21, 1981.
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still a Tot of gas to be found in more shallow depths if the appropriate
incentives existed.

The pipelines are also divided on the issue. Interstate pipelines
oppose immediate decontrol of "old" gas, because controlling the price of
"o01d" gas provides them with a cushion and enables them to overbid
intrastate pipelines on deregulated gas reserves. Of course, intrastate
pipelines are opposed to price controls favoring interstate pipelines.
Another problem pipelines face is that most of the gas to be decontrolled
in 1985 under the NGPA is under contracts that could send gas prices
above the price of crude oil because of escalation clauses.

The latter provide for increases in contract prices if the price of
competing fuels increases. Pipelines argue that many of the contracts
between pipelines and producers tie prices of decontrolled gas to the
price of No. 2 fuel oil and not to that of No. 6 fuel 0il which is the
alternative fuel to gas for nmost industrial users. In other words,
pipelines are afraid that these escalation clauses may price gas out of
the industrial market. For this reason, they propose a cap on the
wellhead price of deregulated gas equivalent to 70 percent of the average
acquisition cost of crude oil by U.S. refiners.

The bottom 1ine of this debate is that there is at stake tens of
billions of dollars annually to be distributed among the different
participants. For this reason, consumer groups oppose decontrol on
natural gas prices, because they will be net losers, at least in the
short term.

In addition to politics, the fate of the NGPA will Targely depend on
the availability of natural gas in the U.S. market, which in turn

depends, to a large extent, on the discovery of new reserves. During
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1977/81, annual average U.S. reserves additions amounted to approximately
15 Tcf, which is almost double the annual average during 1972/76. As of
January 1, 1982, U.S. proven reserves were 198 Tcf and the reserves to
production ratio was approximately 10:1. This increase in reserves
additions was mainly caused by the surge in exploratory activity during
the last five years, which in turn was caused by the higher gas prices.
For example, wellhead prices in the interstate market increased from
$0.69 per mcf in 1976 to almost $3 for new gas in late 1981.

This improvement in gas reserves additions has made predictions of
future domestic production more optimistic as compared to those made in
the mid-1970's which predicted that domestic production would decline
sharply in the 1980's, and thereafter. Today, estimates of domestic
production over the next twenty years are more optimistic, with the
majority predicting a small decline in domestic production, but an
increase in imports offsetting this decline. For example, during the
1980's, the U.S. Department of Energy expects a decline between 0.5-1.5
tcf in domestic production but an increase of 0.7 Tcf in gas imports.
Other estimates are even more optimistic, predicting an actual increase
of several Tcf in available gas supplies over the next twenty years.

To summarize, availability of gas over the next twenty years is
expected to remain relatively stable or even increase by a small anount.
The exact Tlevel of gas supplies in the U.S. will depend mainly on federal
policy toward natural gas and to a lesser extent on the gas export

policies of Canada, Mexico, and Algeria.

D.3 Coal

The United States proven reserves of coal amount to about one-fourth
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of the world's proven reserves, and the reserves-to-production ratio is
about two to three hundred years. This fact has induced some people to
refer to coal as "America's ace in the hole." 1In addition to playing a
major role in the electric utility market, coal is expected to play a
substantial role in the industrial sector.

U.S. coal is normally categorized as either eastern or western coal,
depending on whether it lies east or west of the Mississippi River.
Western coal reserves represent about 54 percent by weight and 30 percent
by heat content of the total U.S. reserves. MWestern coal is generally
Tower in heat and sulfur content by weight than eastern coal, which gives
western coal a major advantage in an area where sulfur dioxide emissions
are a problem. However, current EPA regulations may diminish most of
this advantage. Most of the western coal could be strip-mined because
the seams lie within two hundred feet from the surface. Eastern coal is
generally extracted by underground mining. Strip mining recovers about
90 percent of the coal in place, while underground mining recovers only
about 50 percent. The coal per worker-day recovered with strip mininy is
about three times higher than with underground mining.

In other words, although eastern coal has a higher heat content than
western coal, the latter has a lower cost of recovery and is less
polluting in its end uses than the former. If coal becomes a major
factor in the future energy mix of the United States, most of the
additional coal supplies are expected to be western coal because of its
low sulfur content and the facility of production. However, western coal
will have to be transported significant distances to where it will
ultimately be used.

Coal is shipped by rail (65 percent), and the rest is used by power
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plants close to the point of extraction. Most of the additional western
coal supplies will have to be shipped by rail, unless legislation is
introduced soon that will authorize the construction of slurry pipelines.

Slurry pipelines provide an alternative to railroad transportation,
especially when large amounts of coal have to be transported long
distances. Of course the railroad companies are not willing to lose a
large part of their future market to slurry pipeline companies, and they
have persistently fought any legislation which would aid in the
implementation of the slurry pipeline alternative. In addition to
opposition from the railroads, the slurry pipeline companies are facing
opposition from users of the West's scarce water resources. A slurry
pipeline needs substantial amounts of water to mix with the pulverized
coal and then to pump the mixture through the pipeline. 1In 1978 a slurry
pipeline bill was effectively blocked by a coalition made up of the
railroad companies, the environmentalists, and the western farmers.

Given the large size of proven coal reserves, no major increase in
coal production costs is expected over the next several decades. 1In
other words, no major "cost-push" increase in coal prices is expected
over the next two decades. However, there may be an increase in coal
prices because of a gap between coal prices and the prices of coal
substitutes, as explained below.

Currently, coal prices are about 40 percent of the oil price. In the
event that natural gas prices increase and reach the oil price, there
will be a lot of economic rent to be captured by the coal suppliers.
Given that the coal market is relatively competitive at the minemouth,
coal prices at the minemouth are not expected to increase because mine

owners cannot take advantage of the gap between the coal prices and the
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prices of coal substitutes (oil and natural gas). Rather coal prices at
the minemouth are expected to remain relatively stable in real terms.
However, the same may not hold true with coal prices at the retail level,
because the transportation of coal is controlled by the railroads. 1In
other words, the railroads may very well exercise their monopoly power in
order to capture some of the available economic rent. They would do this
by increasing the transportation rates.

To summarize, delivered coal prices to the industrial user are not
expected to decline in real terms. If the industrial user is located
relatively close to the mine, coal prices are expected to remain constant
in real terms because of the small transportation cost involved.

However, if coal has to be transported over long distances, delivered
coal prices are expected to increase in real terms by several percentage
points annually, because of the monopoly power of the railroads.

The estimates of Data Resource Incorporate& (DRI) for future coal
prices are depicted in Table D-6. Note that these estimates are in
current dollars, which implies that coal prices in the mine mouth will be

relatively constant in real terms if the inflation rate ranges at about

7-9 percent annually.
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Table D-6

DRI's Estimates of

(current dollars per ton)

Sulfur type 1980 1981 1982 1985 1990 1995 2000
North Appalachia

Tow sulfur 31.84 35.29 39.71 57.64 98.19 142.2 206.6

medium sulfur 29.13 31.96 35.32 51.89 84.62 121.8 178.1

high sulfur 22.72 24.88 27.26 39.90 64.76 93.80 129.3
South Appalachia

Tow sulfur 31.63 34.99 39.40 59.23 103.4 145.7 211.4

medium sulfur 30.07 32.90 36.39 54.43 95.37 135.9 198.4

high sulfur 23.28 25.76 28.31 41.19 69.10 101.7 176.9
Midwest

Tow sulfur 30.52 33.31 39.47 63.13 106.0 151.7 226.8

medijum sulfur 28.88 31.92 36.04 50.71 80.95 118.7 174.7

high sulfur 25.69 27.62 30.83 42.66 66.78 93.22 129.9
Montana-Wyoming

Tow sulfur 9.58 10.26 11.23 15.37 24.07 33.16 45.60

medium sulfur 9,52 10.20 11.24 15.13 23.17 31.59 42.93

high sulfur 9.52 10.20 11.24 15.07 23.01 31.09 42.15
Colorado-Utah

low sulfur 20.49 21.37 23.86 34.36 58.58 86.33 129.8

medium sulfur 19.27 20.56 23.11 33.73 55.35 79.06 115.8

high sulfur 19.27 19.91 21.90 32.51 53.69 75.95 117.0
Arizon-New Mexico

Tow sulfur 19.35 20.55 22.97 33.35 60.24 87.74 152.6

medium sulfur 18.11 19.03 20.95 40,37 56.41 74.71 104.7

high sulfur 18.11 19.03 20.95 74.67 115.7 161.3 223.2

Note: Low sulfur is coal with up to 1.04% sulfur.

with from 1.06% to 2.24% sulfur.
more sulfur.

Source: Coal Outlook, Feburary 1, 1982, page 5.

Medium sulfur is coal
High sulfur is coal with 2.25% or
Percent change is the compound annual rate of change.



E-1
APPERDIX E
FINARCIAL MODLL

£.1 Introduction

The chivice of fuels and technolujies for encryy supply 0l & Corporaic
level has to Le seen in the fraumework of the cuupany's objectives as well
as in its sociel, institutional, political, anu le,el environuent.

Within private industry it can be assurmed thaet the major objective is
soie type of “profit waxiuizativn". The differences betuecii Cumpunics
are in their definition of profitability and in their tining. The
setting of priorities either to high income (dividends, etc.) today or 1o
a high future value to be oltained by investment.

Whatever the structure and cefinition of the individual firn's youls
inay be, their economic criteria are one of the nost important factors i1
evaluating different energ, suuply strategies.

The Financial lodel of tiie Interfuel Suustitution rProject evaluates
tiie econuric effects of the alternate technolo,y aid/oi fuel clicices sucu
as Loilers our cogencration. The niodel looks at alternative investuents
and perforis profitability cepital vudgetin, calculetions which can then
be evaluated (traded off) against cother factors such as air pollution
effects.

The wodel is wuilu up in a matrix foru, where thic tiuic sector s @
nuitber of periods (actually 12 years). Each of the metrix's vaiues can
te changed separatcely and can we taken for further computation
separately. This miakes it possible, for example, to increase prices
differently. For this purpose all variables vith values which arc
related to the market (1ike labor costs, fuel costs, or pricc of the

equipnient) can be escalatecd indepundently &t a rate uhich differs frow




year to year.

The Financial flodel has been implenented on the {[.I.T. SToan 5cnocl
of Managerient's Priue Computer using the IFPS (Interactive Financial
Planning Systeu) software franework and its simgle and transferalle

projramming language.

E.2 llodel Use

The financial wouel, because it has Leen developed on IFPS allows Tur
both hi,h flexiLility in type of analyses run (IiPV vs. IRR, etc.) ond in
chanyes in basic input data.

As an uvxample, after a first, it is possiuvle tu cliange vy citner
cltering soue of the input data, building up a ¢ifferent input duta file
or b, using the "Jhat if.." approacii.

B3y using the "goal seexking" approach, it is possivle to work trrou,.
tic progran from tiie botton to the top. An oulpul variaclc s acfined
anu thie Lreak even puint is calculated The user defines, for exeiplc,
soals such as an Iad of 20% in the 1C2th yeor anu asiks how wijh the fucl
costs (o0il price) or capital costs may rise to obtain an IRR of ZU%.

In adaition, it is possible to evaluate tie dupact tiat one o wwre
variables lias on an output variable. By chanying the value of the input
variailes, thc user can see which of the input veriallcs has the Targeot
impact on the specific output variable. This process is equivalent to
estimating the partial derivates of the output variavle yiven the
different input variables.

Systenatic sensitivity analysis offers the siiiglest means of
evaluating uncertainty when there is liwmited inforiation concerning the

probability of individual events. An input veriavle whici is uhcertain



L-3
and has a considerable iupact on the profitability can be changed
stepwise in percentages.

The Hunte Carlo Simulation consiuers an input varialle as &
probabilistic distribution. This way be of intercst if a variuile cannot
easily be defined as a given point (e.j., because of niscoric
probabilistic distribution) or if the risk that is involved can be
sjiiulated by giving a certain probavilistic distribution to & critical
variable. The niodel then generates & nuiiber of cases given the
probavilistic distribution and sets or statistical date oun desircd output
variables.

The financial model consiuers thie following probaLilisvic
distributions:

Uniform Distribution
dorual Distribution .
Trianyular Jistribution
Generalized Vistrivution to ue specivied L,
coordinates of & piecewise lincar appruxiietion
The nunber of Honte Carlo sinulations to Le run can be chosen as well ac
the cesirec output (histograii, frequency teble, or noriul apgroxivietion

table of percentile values).

E.3 Structure of the Pruyran
Computation of Net present value

The overall structure of tie program that besically calculates tie
NPV, IRR, and the Payback period can be seen in Figure [-1.

For the Expenses, the following definition is used:
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Figure E-1. .
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Expenscs = Variable Costs + Senivariable Costs
+ Fixed Costs (1
The terwis of Lquation (1) are explained in Section II of the main body of
the report. As wwst of the operating costs are variaule, this tern is
broken down to:
Variable Custs = Fuel + Process material + Electricity
+ Other Utilities + Labor + liscellaneous (2)
with the exception of "lliscellaneous", each of thes¢ cost itenis is
structured as:
Fuel = Reqguirement of Fuel

at Tull capacity x Capacity Factor x Unit Cost Fuel (3

(@8]
N

where the Capacity Factor is defined as:

CF = Actual annual eneryy procuctiun
{{iaxauni annual capaCity)x c/ou nr,

——~
s
-

The "Reveiiues" are the sull of the revenues frou the different products.
Eacli revenue i defined as follows:
9
REVENLES =z: (Sales VO]WM%l X pricq“) (o)
ni=1
The Investument txpense is tie non=capital expenditures tinat occured
mostly during the construction period, whereas later the c¢xpense
primarily consist of Operating Costs.
Total Capital = Depreciable Capital + Working Capital (6
+ ilondeprec.Capital + Investment Expense
Depreciable Capital = Depreciable Capital without
Contingencies + Contingencies i7)
where the Depreciable Capital without Contingencies is, mainly for

depreciation purposes, broken down into different iteus:



E-G
Depreciable Capital without Contingencies =
|

2 Depreciable Capitaly | ()
n=1
with

Depreciable Capita]n = Equipmentn + Constructionn
Hateria]n+ Construction Lavor,

W
~-

+ Indirect Costs (
Capital can be broken down into itews that can be depreciated
independently considering different Tax Life (e.y., shorter writeoff for
environuental equipment) and different depreciation methods.

These nethods can Le Straight Line Depreciatiun, Sun of tie Years
Digits, or Declining Balance ilethod, where the Salvaye, the Accelerction
Constant for the decling balance and the choice of switching over to
either Straightline or Declininy Balance are further options. Before Tax
Cash Flow (3TCF)is defined as:

BTCF = Revenues - Expenses -Depreciable Capital
-iiorging Capital - Hondeprec.Ceapital + Salva,c (1u)
Where Salvage is the sum of the Liquidation value which is obtained Ly
sellin; the old equipuent that is replaced at the bLe,inning of the
investrent.
i

Salvaye = Liguidvalold + Salvage, (11)
n+1

From this, the Depreciation has to be subtracted as well as the Loss.
The tax Lase is then derived frou the 3efore Tax Cash Flow:

Tax Base = Revenues - Expenses - Depreciation - Loss (12)
The loss is the difference betwecn the Booxkvalue and the Liquiuatiunvalue

of the old equipment. In case of a Liquidvalue beiny yreater than the
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Bookvalue the Loss gets a neyative sign and adds a "gain" to the Taxbase.
Loss = Bookvalueold - Liguidvalold (13)
The awount of income tax to be paid is given by the following
equation:

Taxes = Tax sase x Tax rate Ly
ihere the tax rate is the cowpany's overall income tax rate. The
investinent tax credit is conputed:

ITC = ITC rate x Depreciable Capital (19)
and the eneryy tax credit (ETC) as:

ETC = ETC rate x Depreciable Capital Yy
The After Tax Cash Flow (ATCF) is then:

ATCF = BTCF - Taxes + L[TC + ETC + Salva,c (17)
This ATCF is the base to calculate the net present value (ilPV)

T

HPVprog = 2o
t=1 (1+r)

AT\,Ft 10
t

where r is the discount rate that tie coupany uscs and the Internal late
of Return (IRhPROJ) is defined as:

IKKPROJ = r for HPVPROJ =0 (1Y)
The Pauyback period is the time when the cumulateu ATCF yets tu zero.

Debt Financing

The consideration of debt financiny in this kina of investuent

analysis is a very controversial subject among scholars working in the
field. The "purist" approach points out that the let Present Value and
the IRR have to be used as they are defined and no adjustient to the
iipacts of debt financiny can be made. The "practical" approach is of

the opinion that the debt financing can change considerably the results
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of investrent analyses. This can be caused by a change in expenditures
that may occur if the interest on debt does not equal the opportunity
cost for equity capital.

Furthermore there are side effects like issuiny costs or the tax
shields gained by the fact that interest on debt is tax deductible. These
effects can be taken into consideration by adjustiny the liet ¥Fresent
Value or the Discount Rate.

The adjustiient used in this financial model is in accourdance with tie
theory of flyers (1581).

The et Present Value of the totally egquity financed progect hias to
be adjusted to the effects of the yearly tax shields by adding the

present value of the tax shields.

WPV = [IPVproy +PVTaxshielu PR
T RTCF, Tex Shielu,
ey = 2 , * (1)
t=1 (1+4r) (1+1)

where i equals the interest rate on debt
Tax Shield = Tax rate x i x Debt, , (22,
Currently there is a discussion under way about whether the tax
shields have to be discounted differently assuming that the firu folluus
a policy of period by period adjustment of its borrowing. The
difference, however, is negligible in most of the cases.
With the same approach as for the Adjusted NPV the Adjusted Internal
Rate of Return can be calculated. The definition for the IRR is ayain
0 for NPV = 0O
This applies to (20) and (21):
T

0= 2

t=1 (1+r)t

ATCF

+ PVTaxshield {21a)
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where r has to be deteriiined of

.
2 L - . PVTaxshield (210)

A different way to consider debt financing is proposed by the
Engineering Societies Commission on Energy, Inc (ESCCE, 157%). The ESCOE
uethod avoids the dispute about whether or not it is right to introduce
debt financing in the et Present Value concept. (see ExnibLit Z)

Besides required product prices, the ESCUE procedure coiputes an
"overall rate of return" which is a weighted averaye cost of capital
based on a "return on equity" which is an "internal rate of return" wherc
the return is after paying the debt retireient and the interest and
therefore only the equity part of the capital is considered. Rewriting

thie ESCOE definition in terms of the Finacial liodel

T -
i = Return on Lquity for E: ECF + PVTaxshield = o

t=1 (i )" (23)
where L(F is the Equity Cash Flow
A reconciliation with the ESCOE guidclines is briefly given in

Exhibit 2.

Levelized Product Price

Given a certain, venture nanagement often vants to xnuw which prices
are required to obtain the desired profitability (in terms of return on
investiment/discount rate) to combine the investiient analysis with the
market analysis.

The price p has to be found which results in iiPV = G. With Equations

(17) and (18) this is:
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nev = 0, ATCE =+ PVTAKSHIELY (24)
t=1 (1+r)

which has analytically to be solved for the revenues:

T

0=, (Rev 4 X =) + PVTAXSHICLD (25)
t=1 (1+r) (T+r)

The coriputation of X is laid out in Appendix 3.
Equation (22) can be transformed:

T T

> Rev o ¥ (- A ) - pvTAXSiIELY (o0)
t=1  (T+r) t=1  (14r)

The present value of revenues (PVREV) is defined as:

PVRLV = 2 X - (20a)
t=1  (1+r)

T
PVREV has first to Le compounceu to tiie startup-year (first ycar of
operation)

PVievStartup = PViev  (1+r)° (27)
As tiie product price is reguired to be constant (levelized) the present

value of the revenues is annualized:

Annual Rev = PVRev A (28}
t
with A = QLE:Q%_
(r+d) = 1
The (levelized) price is then computed as:
. _ Annual Rev "
Price = Sales Vol (29)



Cost per Unit

For the comparison of different technical systes it may be of
interest to coupare the unit costs of generating steam or electricity in
the case of cogeneration. The concept of this cost calculation is not
based on accounting calculation procedures but rather annualizes the
capital costs, adds thien to the yearly operating expenses and divides

that by the production volume.

Annual Capital Cost = Cumulant + Capital Cousts * A {Sv)

Cap.Cost/kwh = Annual Capital Cost/Production Voluik

Electricity (31
Cap.Cost/BTU Steam = Annual Capital Cost/Steam Productiun (32)
Cperatiny Expenses/kwh = Expenses/Prod. Vol. ET. (33)
Operating Expenses/BTU Steam = Expenses Steai Production (34)
Fuel Cust/kwh = Fuel Cost/Prod.Vol.El. (35)
Fuel Cost/BTU Steam = Fuel Cost/Steam Production (36)

Costs/kwh = Cap.Cost/kuli + Uperating Exp./kwhi + Fuel Cost/rkwh  (37)
Costs/BTU=Cap.Cost/LTU Steam + Operating Exp./BTU Stean

+ Fuel Cost/STU Stean (30)

Usiny this uiodel in the actual form, the following underlyin,
assumptions are involved:

- For the wiicle Depreciation liodel only tax depreciation is used.

- For the Revenues, it is assuwed that production rate equals sales
volume (stock can be considered as workin; capital).

- It is assumed that the salvage value equals the book value at thc

tine of replacement.
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- The stream of cash flows is discounted to the first year of
construction.

- Estiwates of all costs and revenue ijtenis have to be adjusted to the
same base year.

- Each annual account is considered to be discrete end~of-the-year
transaction.

- Escalation of prices or cost estimates have to be applied at the
full rate to easch year's transaction. A1l cash flow transactions have to

be escalated.

E.4 Inputs

For the convenience of the user it is of interest to know that tiic
progran accepts inputs on all Tevels of detail.

These "levels of detail” correspond to the different steps of
computation of the proyram. That means that, for exauple, the Input can
be eithier Unit Cost of Fuel, requirenent of Fuel and Capacit, Factor,
or--as a second Tevel--Fuel Cost, or Variable Costs, or even only
cxpenses.

There is a file of "Default Values" implemented that keeps variacles
that are not defined "zero" or "1" for the escalation factors, for
exawle.

The value of each variable can be set and chanjed independently for
each year.

For the "Expenses" it should be noted, that it is up to the user to
define a given cost item as semi-variable (e.g., maintenance) or fixed
(overheads, etc.). Labor would, in most cases, have only a small part to

be considered as variable wherecas a major part would be fixed costs.
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“Depreciable Capital" includes the item "Indirect Costs" which consists
of planning and enjineering costs, tax or other depreciable costs that
are not yet included.

Land costs could be added to other non-depreciable costs as
"Contingencies". Contingencies include a reserve for unpredictable costs
(cost overruns) that may occur during the life of the project.

For computing the results there are some variables which can be
considered as strateyic. Whereas the "Life" of the investument is the Tax
Life and therefore not a controllable variable, the Discount rate and
souie assumiptions are set up by the user of the model i.e.,a particular
company.

In setting up the discount rate, one should first be sure to consider

inflation consistently. That means if the expenses and other variables
are given in constant dollars the discount rate must excludc inflation.
If inflation is considered in the projection of costs and revcnues, the
discount rate can take into account the "effective" cost of capital which
is related to the marxet.

Furthermore, the discount rate should be set according to tie risk
the project is considered to include.

When defining the tax rate one has not only to include the local,
state and federal incouwe taxes, but it has also to be seen how the
project is affecting the company's tax situation. The incremental tax
rate can be right but it can also happen that, at least during
construction period the company's taxable income is decreased.

A Tist of Input Variables is attached as Annex E-1.
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x E=1: LIST OF INPUTS

General

-Capacity Factor

-Tax rate

-Discount rate

-Interestrate

-ITC rate
-ETC rate

-Haturity

-Graceperiod

-vebtrate

Revenues

1. Revenues 1

[aS]

2. Revenues
3. Reéevenues 3
4. Revenues 4

Revenues 5

(&
.

Capital Outlay

1.1 Sales volune
2.1 Sales volume
3.1 Sales volune

4.1 Sales volune

5.1 Sales volume 5.

III. 1 Working Capital

III. 2 Depreciable Capital

2.1 Contingencies

2.2 Depreciable Capital not contingencies

2.2.1

2.2.2 Depreciable Capital 2

2.2.3 Depreciable Capital 3

Depreciable Capital 1

1.2 Price
2.2 Price
3.2 Price
4.2 Price

5.2 Price
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2.2.4 Uepreciable Capital 4
2.2.5 Depreciable Capital 5
2.2.1.1 Equipment
2.2.1.2 Construction Material
2.2.1.3 Construction Labor
2.2.1.4 Indirect Costs
2.2.2.1 Equiprent 2
2.2.2.2 Construction ilaterial 2
2.2.2.3 Construction Labor 2

2.2.2.4 Indirect Costs 2

2.2.3.1 Equipment 3

2.2.3.2 Construction ilaterial 3
2.2.3.3. Construction Labor 3
2.2.3.4. Indirect Costs 3

3. Non depreciavle Capital

IV. Expenses

1. Variable Costs

Semi-variable Costs

(S}
.

Fixed Costs

(88}
.

1. Variable Costs
1.1 Fuel
1.1.1 Requirement of Fuel at full capacity
(Reg.Fuel)
1.1.2 Unit Cost Fuel

1.1.3 Capacity Factor



V.

1.2 Process Haterial
1.2.1 Req. Process Material
1.2.2 Unit Cost Process iaterial
1.2.3 Capacity Factor
1.3 Electricity
1.3.1 Req. Electricity
1.3.2 Unit Cost Electricity
1.3.3 Capacity Factor
1.4 Other Utilities
1.4.1 Req. uther Utilities
1.4.2 Unit Cost Other Utilities
1.4.3 Capacity Factor
1.5 Labor
1.5.1 Req. Labor
1.5.2 Unit Cost Labor
1.5.3 Capacity Factor
1.6 Miscellaneous
Depreciation
V. 1.1 Depreciation itethud 1
1.2 Depreciation Hethod 2
1.3 Depreciation ilethod 3
1.4 Depreciation lethod 4
1.5 Depreciation Hethod 5

2.1

2.2

Tax Life 1
Tax Life 2



2.3 Tax Life 3
2.4 Tax Life 4

2.5 Tax Life §

3.1 Salvage 1
3.2 Salvage 2
3.3 Salvage 3

3.4 Salvage 4

3.5 Salvage 5

4.1 Acceleration constant 1
4.2 Acceleration constant 2
.3 Acceleration constant 3

Acceleration constant 4

4> +> -+
.
£

.5 Acceleration constant 5

5.1 SUITCiH OVER 1
5.2 SWITCH OVER 2
5.3 SHITCH OVLR

(98]

5.4 SWITCH OVER 4
5.5 SUITCH OVER

(&3]

VI. 01d Equipment

1. Uepreciable Capital U1d Equipuient
. Liquidation Value 0ld Equipment

Tax Life 01d Equipment

s W N

Salvage 01d Equipment
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5. Acceleration Constant 01d Equipwent
. SWITCH OVER Old Equipient

7. Actual year of life 01d Equipment

VII. Escalation Factors

1.1. Escalation Price 1
1.2. Escalation Price 2
1.5. Escalation Price 3
1.4. Escalation Price 4

1.5. Escalation Price 5

2.1. Escalation Working Capital

2.2. Escalation Depreciable Capital

—

2.1.1. Escalation Depreciable Capital

2.1.2. Escalation Depreciable Capital 2
2.1.3. Escalation vepreciable Capital 3

2.1.4. Lscalation Depreciable Capital 4

[&a]

2.1.5. Escalation Depreciable Capital

2.2.1.1. Escalation Equipiment 1
2.2.1.2. Escalation Equipment 2
2.2.1.3. Escalation Equipment 3
2.2.1.4. Escalation Equipment 4
2.2.1.5. Escalation Equipment 5

2.2.2.1. Escalation Construction Material 1

2.2.2.2. Escalation Construction llaterial 2



2.2.2.3.
2.2.2.4.
2.2.2.5.

2.2.3.1.
2.2.3.2.
2.2.3.3.

2.2.4.1.
2.2.4.¢.
2.2.4.3.
2.2.4.4.
2.2.4.5.

Escalation
Escalation

Escalation

Escalation
Escalation
Escalation
Escalation

Escalation

Escalation
tscalation
Escalation
Escalation

Escalation
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Construction
Construction

Construction

Construction
Construction
Construction
Construction

Construction

Material 3
Material 4

Material 5

Labor 1
Labor 2

2

Labor

Labor 4

w

Labor

Indirect Costs 1

Indirect Costs 2

Indirect Costs

w

Indirect Costs 4

Indirect Costs

Escalation Fixed Costs

Escalation Semi-variable Costs

Escalation Variable Costs

3.3.1.

3.3.1.1.

3.3.2.

3.3.2.1.

3.3.3.

3.3.3.1.

3.3.4.

Escalation Fuel

Escalation Unit Cost

Escalation Unit Cost

Escalation Electricity
tscalation Unit Cost
Escalation Other Utilities

3.3.4.1. Escalation Unit Cost

[Sad

Fuel

Escalation Process Material

Process ilaterial

Electricity

Other Utilities
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3.3.5. Escalation Miscellaneous
3.3.6. Escalation Labor

3.3.6.1. Escalation Unit Cost Labor
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Annex E-2: RECONCILIATION WITH ESCOE

Based on: Guidelines for Economic Evaluation of Coal Conversion

Processes, The Engineeriny Societies Commission on Energy, Inc. Prepared
for DOL, April 1979.
The approach used in the Financial Model is based on the principles
of the ESCUE guidelines. However, some assumptions are made differently:
The stream of cash flows is discounted to the first year of
construction instead of startup point.
The cash flow is viewed from a different point anu therefore has
opposite signs (outflows are negative, inflows are positive).
An Eneryy Tax Credit is considered in addition to the Investiuent
Tax Credit.
The ESCOE terminolojy uses the "Investors balance" (  for 3AL) as the
yearly accumulated investors contribution and interest or Balance.

For the Construction Period the approach is as follows:

B-T+S = Interest on Balance
Z = Investors Balance (BAL in L[SCUL)
By = ry*i*Zy_q: interest on debt (2)
Ty = frr* 7, 40 tax credit because of debt (3)
S¢ = (I-rd) i*Z, 4 return on equity (4)
The yearly balance is conpounded as:
Zt = Lt_] - Zt (5)
with
2 = Rgmly mrglg Loy Forg g 2o

(&)
S

-(1—rd) i Zyq (
(using (1) through (5)
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ip = (1f) rg dg + (1rg) 4 (7)
combined with (6):
Zg = Kg = Lp - Tplen (8)

If t = 1 is the first year of construction and t = y the startup year
(starting production), for the construction period the balance then is:
2,5 3 1=K+ )Y (9,
t-1
This balance of an unretired investient is called "total capitalized
investment".

This investors balance has an equity and a debt portion.

The equity portion (only S,, By, Ty = 0):
(T-r )2y = (Tor ) (Ke-1)-0-r ) 1244 (ba)
- -V : .V‘t )
(l-rd)Zy = (1-r4) (1=K ) (T+i ) (vaj
t=1

ror the Production period, the following computations are made:

The "return on equity" defined in the Financial Model is the "Equity,
Investors Rate of Return". Equity Investors Return is in each year the
sum of equity return St and equity retireient Ht'

The return on equity was defined as:

- - 3 7
Sg = (O=ry) io 7, 4 (4)
The equity retirement is:
Ht = (]-rd) Z (11)
The Equity Investors Return is then:
S¢ +Hy = (-r )i Zy ¢+ 1) (12)
with: L=1,4-1,
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Equation (12) transforms to :
St + Ht = (]-rd) (]"’is) Zt_" - ﬁt (]Za)
which has to be discounted with is to yet the equity portion of the

Present Value:

_ _ . _ .=t R
(]-rd) Zm-z: (1 rd) (]+1S)Zt_] Z, (1+1S) (13)
t=1
The rate of return on equity is is if:
] : b d - : "t_ - = 3 -
(T-rd) (#3102, 5 = Z, (W) "-(1-r )2 =0 (13a)

t=1
he Uverall Rate of Return is defined as ip in eguation (7). To
reconcile ESCOE with the Financial ilodel one has to be aware that the
ESCOL approach is a little different with respect tu the yenerating After
Tax Cash Flow ( ). The model takes into account all financial Inflous
and OQutflows and yives the value of what is Teft tu satisfy tue
investors. In the ESCOZ-approach these capital costs are alread)

t-] )o
The Return on Equiity is computed as the valance of the previous periou

included in the Investors balance ( )(ey:(4) S, ={1-r )iz

tines the equity portion(]-rd) tines the Return on Equitj(is) which
leads to equation (13a). In the Financial llodel the Return on [quity is
computed by analogy to the IRR:

ECF

i_ = Return on Equity for
s (1+i9)*

+ PVTaxshiecld = € (23)
Where ECF stands for Lguity CashFlow, which does not consider of Debt

Capital. Accordingly the remaining return is only related to the equity
portion of the investument.

ECF= ATCF -Interest -Debtretirement +PVTaxshield

-Debtrate*Investment (24)
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The overall rate of return is defined as computed in ESCOE(7):

Overall Rate of Return =(1-T)Debtrate Interestrate

+(1-Debtrate)Return on Equity ( )

List of Variables

A auxiliary variable a
B debt interest L
D debt retirenent d debt (subscript)

E expenses

f effective incone tax rate
H equity retirenent
I annual investment outlay i interest/discount ratc

is return on equity

id interest rate on debt

ip overall rate of return

Jj inflation rate
K investment tax credit
L revenue

i1 number of prouuction yearsv
N net operating cost

p overall (subscript)
R revenues r debt to total

investrent ratio

S equity return s equity (subscript)
T income taxes t year counter

Z balance of unretired investment
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Exhibit 3

Computation of X (separating the revenues from ATCF)

ATCF = Revenues - Investment expenditures - Expenses

- Taxes + ITC + ETC (7)

with equations (8) and (9)

ATCF = (1-T)(Rev - Expenses) - Inv. Expense
+ T(Depreciation + Loss) + ITC + ETC (10)

where T equals Tax Rate.

ATCF = Rev - Expenses - I?¥:T§xpend. (1Ca)

+ T(Depreciation + Loss) + ITC + ETC
(1-T)

According to equation (22) X defines as

X = Expenses - Rev] +

- Inv. Expend. + T(Deprec. + Loss) + ITC + ETC
(1-T)

so that (23) can be written as:
T
PVREV = 3 (Exp. - (- Inv. Expend. (23b)
t=1

+ T(Deprec. + Loss) + ITC + ETC)/(1-T)

! In case there is a byproduct with fixed prices.
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GLOSSARY
Tax Rate: equals the overall tax rate as a composition of federal,local
and state income taxes that a corporation has to pay on a taxable incone
(tax base).

Discount Rate: equals the firm's estimation of the cost of capital to

discount the present value of a future cash flow.

Payback Period: equals the tiie when the cuniulative After Tax Cash Flow

(ATCF) becomes positive (which indicates that the stream of inflows paid
back the investuent outlays).

Capacity Factor: equals the ratio of the actual production rate (in

physical units) and the maxiwum capacityon an annual basis.

Escalation Factors: E = (1 + i) The Escalation Factor E is used to

adjust dollar variables (X) to price increases:
Xp = X4 ¥ E. R equals the escalation ratc as fraction.

WPV (ilet Present Value) equals the sum of annual after tax casii flows

(ATCF) discounted over a yiven venture life to a selected tine zero.

IRR (Internal Rate of Return or Interest Rate of ieturn) equals the

discount rate at which NPV becomes zero.
3TCF: Before tax cash flow as defined in eguation 1C.
ATCF: After tax cash flow as defined in equation 17.

The stream of cash flows which serves as a base for the HPV and

IRR.
ECF: Equity cash flow as defined in equation 22. Serves as a base for

the return on equity.
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APPENDIX F
ENVIRONMENTAL MODEL
F.1 Introduction

An important aspect of the interfuel substitution project methodology
is the relationship between fuel use and air quality. There would be no
need for a study on this subject if the least environmentally harmful
fuels were also the least costly fuels. Of course this is not the case
and decision makers facing investment choices concerning future fuel use
are confronted with environmental/cost trade-offs.

Each fuel/technology case considered in this report has an associated
air quality dimension. The vehicle by which this dimension is described
and analyzed is the air quality simulation model. In essence what these
models do is take data pertaining to what is projected to be emmitted
from a stack, incorporate the local meteorology and translate all of this
into predicted distributions of pollution across a specified area.

This appendix is structured as follows. The Background section
discusses the fundamentals of air pollution processes. The primary
aspect covered in this section is meteorology. Next the basis of air
pollution simulation models is taken up. The class of models that have
been most extensively developed and utilized are the so-called
steady-state Gaussian plume models. Of this class of models, the model
used in this project, the Climatological Dispersion Model is explained in

detail.
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F.2 Background*
The process of air pollution can be simply depicted as a system of

three basic components:

Figure F-1
R ittt T L P 3
Emission Atmosphere Receptors

Sources

Air pollution originates as an emission source. Pollutants are emitted
to the atmosphere which acts as a medium for transport, dilution, and
physical and chemical transformation. Pollutants may subsequently be
detected by instruments or by human beings, animals, plants, or materials.
Once pollutants become airborne they are subject to the dispersing
action of the atmosphere. Occurring simultaneously with transport by the
wind (advection), and turbulent mixing (turbulent diffusion), are
chemical reactions which transform primary to secondary pollutants.
The atmospheric aspects of air pollution can be divided according to:
1 Atmospheric chemistry
2 Meteorology
3 Transport and dispersion of pollutants.
As mentioned, atmospheric chemistry involves the transformation processes
affecting airborne pollutants, processes which may take place on time

scales of a few seconds to several weeks. Meteorology concerns the

*Much of this section and Section F.3, Air Pollution Models, is taken
from Ref. [5].
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dynamics of the atmosphere, particularly pertaining to momentum and
energy. Meteorological scales of motion can be categorized as follows:

1 Macroscale: phenomena occurring on scales of thousands of
kilometers.

2 Mesoscale: phenomena occurring on scales of hundreds of
kilometers.

3 Microscale: phenomena occurring on scales of less than ten
kilometers, such as the meandering and dispersion of a stack
plume and the complicated flow regime in the wake of a large
building.

Each of these scales of motion plays a role in air pollution,
although over different periods of time. For example,
micrometeorological effects take place over scales of the order of
minutes to hours, whereas mesometeorological phenomena influence
transport and dispersal of pollutants over hours to days. Finally,
macrometeorological scales of motion have characteristic times of days to
weeks.

For our purposes the region of the atmosphere governing transport and
dispersion of pollutants is the so-called planetary boundary layer,
roughly the lowest 1000 meters. The planetary boundary layer represents
the extent of influence of the earth's surface on wind structure in the
atmosphere. Within this layer, winds are influenced by prevailing
high-level flows and the frictional drag of the surface. With respect to
air pollution, the key problem associated with the planetary boundary
layer is to predict the variation of wind speed and direction with
altitude as a function of surface roughness and temperature profile.

The atmospheric temperature profile (the variation of temperature
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with altitude), has an important effect on wind structure and turbulence
in the lowest 1000 meters. In the trophoshere (the 10 to 20 kilometers
of the atmosphere closest to the ground) the temperature normally
decreases with increasing altitude because of the decrease in pressure
with height. The temperature profile against which all others are judged
is that of a parcel of dry air as it moves upward in a hydrostatically
stable atmosphere and expands slowly to lower pressure with no gain or
loss of heat. If such a profile exists in the atmosphere, a parcel of
air at any height is in neutral equilibrium; that is, it has no tendency
either to rise or fall. Actually, the atmosphere is very seldom in such
delicate equilibrium; the influence of surface heating and large-scale
phenomena usually results in a temperature profile different from the
reference profile (also referred to as the adiabatic lapse rate)*.

If the temperature decreases faster with height than the reference
profile, air parcels at any height are unstable, that is, if they are
displaced either upward of downward, they will continue their movement in
the direction in which they were displaced. Such a condition is referred
to as unstable. On the other hand, if the temperature decreases more
slowly with height than the reference profile (or even increases), air
parcels are inhibited from either upward or downward motion and the
situation is referred to as stable. The stability condition of the
atmosphere plays an important role in determining the rate of dispersal
of pollutants.

The phenomenon of direct interest in predicting the dispersion of air

*This should not be too surprising considering the diurnal variation
of solar radiation from above coupled with ground surface
absorption/radiation from below acting as inputs to the planetary
boundary layer system.
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pollutants is turbulent diffusion. This phrase refers to the observed
spreading of a cloud of marked particles in a turbulent fluid at a rate
many orders of magnitude greater than that from molecular diffusion
alone. The spreading is really not due to a “diffusion" phenomenon such
as results from molecular collisions but rather is a result of the rapid,
irregular motion of macroscopic lumps of fluid (called eddies) in
turbulence. Thus, the scales of length in turbulent diffusion are much
greater than in molecular diffusion, with the contribution of the latter
to the dispersion of pollutants in turbulence being virtually
negligible. The level of turbulence in the planetary boundary layer
increases with increased wind speed, surface roughness, and instability.
Turbulence, therefore arises from both mechanical forces (shear, surface

friction) and themmal forces (buoyancy).

F.2 Air Pollution Models

In general mathematical models that attempt to simulate the complex
atmospheric processes involved in air pollution are based on the
equations of mass conservation for individual pollutant species. Models
based solely on the equations of conservation of mass cannot predict
variations in the wind velocity field or the temperature field. Wind and
temperature information thus must be input as data. What these models
can do, however, is relate in a managable set of equations the effects of
all the dynamic processes that influence the mass balance on a parcel of
air. Ideally these include the transport, turbulent diffusion, and
reaction of all pollutant species of interest. The introduction or
removal of species can also be treated by such models.

A model based on the equations of conservation of mass requires, as



F-6
part of its formulation or as data input the following general types of
information: emissions, meteorology, and atmospheric chemistry and
removal processes. Models may describe the behavior of reactive species,
or they may be Timited in application to inert species. Furthermore,
models may be formulated under the assumption of steady-state behavior,
or they may be descriptors of time-varying behavior. Temporal and
spatial resolution of models may vary widely. Models may be based on a
fixed grid, or they may be formulated so as to trace the variations in

concentration in an air parcel moving with the average wind field.

Temporal and Spatial Resolution

The temporal resolution of an ambient air quality model (i.e. the
time period over which the predicted concentrations are averaged) may
vary from several minutes to one year. For example, a model may predict
the 15-minute average pollutant concentration as a function of location
in the airshed, or it may predict the yearly average concentration as a
function of location. The requirements in implementing a model will be
strongly governed by its temporal resolution.

Certain simplifying assumptions involving steady source rates and
meteorology form the basis for the most widely used models. These
so-called steady-state models can predict the spatial distribution of
airborne pollutant concentrations under conditions of time-invariant
meteorological and source emission rates. Models of this type are
predicated upon the assumption that one meteorological “vector" prevails
throughout the region of interest. Hence it is not surprising that
steady-state models are not recommended for applications involving

distances exceeding 50 kilometers. Steady-state models will be discussed
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in more detail later.
Apart from temporal aspects there are spatial aspects associated with
air pollution modeling. The spatial resolution of an ambient air quality
model (i.e. the area over which the predicted concentrations are

averaged) may vary from several meters to several thousand kilometers.

F.4 Steady State Gaussian Plume Models
Climatological Dispersion Model (CDM)

The Climatological Dispersion Model (CDM) is one of a set of
steady-state Gaussian plume models designated by the Environmental
Protection Agency (EPA) as "guideline models" (EPA, 1981). What this
means is that assuming the models are used appropriately, the EPA will
recognize the results of such models in determining compliance with
federal air pollution laws and regulations. CDM is one of EPA's UNAMAP
air quality simulation models. UNAMAP is an acronym for User's Network
for Applied Modeling of Air Pollution. It contains all guideline models.

No single air quality simulation model is universally superior to all
others. Indeed, that is one of the reasons for there being several

guideline models. Each model has its own peculiar set of attributes.
These include temporal resolution (such as the ability to process hourly
meteorological data for the purpose of simulating ground level
concentrations for hourly, 3-hour, 24-hour as well as annual averages;
all of which are included in EPA's National Ambient Air Quality Standards
(NAAQS), see Table F-10).

Terrain adjustment is another attribute. For example, if a major
pollution source were located in a valley, the pollutant plume may

impinge upon the surrounding hills. Some guideline models provide for
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point sources and receptors to be designated at different levels thus
allowing for such situations to be more accurately modeled.

Although CDM can accommodate numerous point and area sources
distributed over a considerable area, some models are capable of handling
only a single emission source. There are models that are capable of
considering local or microscale situations such as downwash. Downwash
occurs when the stack plume dips down immediately on the leeward side of
the factory due to the drop in pressure caused by the areodynamic wake of
the building. It can be seen that the motive for having a set of
guideline models is to cover the myriad of situations that arise in air
quality simulation.

The Climatological Dispersion Model is particularly well suited for
the type of planning being performed in the Interfuel Substitution
Project.* Apart from being a guideline model, CDM's advantages include
its ability to accommodate many point and area sources distributed across

a wide area.
The Anatomy of CDM

The Climatological Dispersion Model simulates the long-term (seasonal
or annual) concentrations at ground level receptors of one or several air
pollution sources in a region (Busse and Zimmerman, 1973). Recall that
the size of the region should not exceed 50 kilometers in any direction
for any steady-state plume model. The CDM uses average emission rates
from sources and a joint frequency function of wind direction, wind speed

and atmospheric stability for the same period as inputs.

*A slightly modified version of CDM was used successfully in the MIT
Energy Lab long range planning study for Consolidated Edison of New York.
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The basic assumptions behind steady-state gaussian plume models are:
1) constant source emission rates
2) constant meteorological state over the entire region for
pollutant plumes to reach steady state
3) plume behavior is defined by a bi-variate gaussian

distribution as indicated in equation 1.

Q 1y 2uz-H?2
C‘X,y,Z) = ZTTUOy(X)OZ(X) exp[-z[(oy(x)) +(GZ(X)) ]] (1)

where

C(x,y,z) = pollutant concentration at a point x,y,z

x = downwind distance from emission source

y = crosswind displacement from plume centerline
z = verticle displacement from plume centerline
Q = emission rate gm/sec

U = mean wind speed

qy(x) = crosswind dispersion factor

oz(x) = verticle dispersion factor

H = virtual stack height (equal to actual stack height *+ plume rise)

The meteorological input to the CDM is in the form of a joint
frequency function d(k,1,m). The function gives the joint frequency of
occurance of a wind direction sector k, a wind speed class 1, and a
stability category index m. There are 576 entries in the table for the
joint frequency function. This number derives from 16 different wind
sectors (22.5 degrees each), 6 wind speed classes and 6 atmospheric
stability classes. Information for localities throughout the United
States can be obtained from the National Climatic Center.

Each “cell" of the joint frequency function has a value anywhere from



FIGURE F.2

GAUSSIAN PLUME
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zero to one representing its percentage of the hourly meteorological
measurements over a year. The steady-state plumes resulting under each
of the 576 possible meteorological situations is then multiplied by the
respective frequency of occurrence.
The wind speed U for the various weather bureau classes is taken as

the central wind speed of the class. See Table F-1.

Table F-1 Central Wind Speed

Wind Speed Class Speed Interval Knots Class Wind Speed m/s
1 0 to 3 1.50
2 4 to 6 2.41
3 7 to 10 4.47
4 11 to 16 6.93
5 17 to 21 9.61
6 greater than 21 12.52

The stability classes 1 through 6 indicate the following stability

states:
1 —e--- extremely unstable conditions
R moderately unstable conditions
3 ----- slightly unstable conditions
4 —eeee neutral conditions
R slightly stable conditions
6 --=-- moderately stable conditions

To account for an increase of wind with height above a height of 10

meters (anemometer height) to the level of the plume centerline, a power
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law relation of the following form is used in CDM:
= p
Ulz) = Uy(z/z)
where
z is vertical height

z, is height of reference wind speed U].

Table F-2 Exponents for Wind Profile

Stability Class Exponents (p)
1 0.1
2 0.15
3 0.20
4 0.25
5 0.25
6 0.3

The dispersion functions oy(x) and oz(x) depend on the stability
class and distance from the emission source. These functions have been
empirically estimated and are shown in Figures F-3 and F-4.

The dispersion function oz(x) used in CDM follows the approximation:
oz(x) = axP
where a and b are given in Table F-3.

An initial value of the dispersion function oz(x) is used in CDM to
represent the verticle dispersion created by the roughness of the
surrounding topography.

Apart from the Gaussian behavior of poliutant streams a major aspect

of this model is the establishment of the plume centerline. This is

accomplished through a formula describing plume rise. There are several




3x10°
\ /
LA
/ 1
L
10° y / LA
7 7 Z
-
y4 7 A
/, /’/ A‘//
£ ‘ Pg [~
r 2 N4 7 B>
"
.?of / 8 / e L ul
3 Al A A=
<1 - } g T
: 1 ], P J‘C T —""L;l”f" T
1 [VARYARy.1 o e ] =
T s J Ay ARra pZ L
g VA AV AN Ve o
{ ; L
K] <y F
'.‘:': 2 ///V 1//;/ 1/ el
3 // ol
; A
° 10" / LA A j A — Extremely unstable
i : = < B ~ Moderately unstable
VA ARRY.4 -~ Sl
v AVARY, C ~ Slightly unstable
S i D — Neutral
4 £ — Slightly stable
7 £ — Moderately stable
2
10°
10? 2 [ 100 2 5 10t 2 5 10°
Distance from source (m)
FIGURE £.3

o. as a function of downwind distance for the Pasquill-Gifford 'stability
categories.

1

SOURCE: REF (5)



104

P
=
P
5 T ry 2
v 8 v A
p
2 / 1C 1/’ f’
7
/:;/’//701// //
bq / i4Ps
- 10° Vi £l ¥
E A
- . i
s L, //
‘o y.a. A
é’ 3 ey r’"
g Hyd
S %
T2 A // palls
2 A g%
3 Pl i,/
y 4
_§ 11 A — Extremely unstable
L2 5 p 7 8 — Moderately unstable | [~
a / V@ C - Slightly unstable
® /. /;//V 0% D - Neutral
% E — Slightly stable
2 7? é ,/ F — Moderately stable
w0 LLAA
v
III
7 TI :
ax ‘00107 2 5 10° 2 5 10° 2 5 10°
Distance from source (m)
FIGURE F. Y4

o, as a function of downwind distance for the Pasquill-Gifford stability
categories,

SOURCE: REF (5)
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Table F-3  Parametric Values for cz(x)

Distance in Meters

Stability 100 to 500 500 to 5000 5000 to 50,000
Class a b a b a b
1 0.0383  1.2812  0.254x10™>  2.0886 - -
2 0.1393  0.9467  0.494x10™}  1.1137 - -
3 0.1120  0.9100  0.1014 0.9260 0.115¢  0.9109
4 0.0856  0.8650  0.2591 0.6869 0.7368  0.5642
5 0.0818  0.8155  0.2527 0.6344 1.2969  0.4421
6 0.0545  0.8124  0.2017 0.6020 1.5763  0.3606

such formulae all of which are based on empirical studies. The plume
rise formula attributable to Briggs and available in CDM is described

below (Briggs, 1971).
delta h = 1.6F1/3y-1x2/3 X < 3.5X"

and

1/3-1(3.5x")2/3 x5 3.5x"

delta h = 1.6F (3.5X

*

X" = 14r5/8 ¢ F ¢ 55

*

x* = 3¢F2/° i F > 55
delta h = plume rise (meters)

2
= oV REL(T T )/T ]

-n
i

acceleration due to gravity, m/sec2

= average exit velocity of gases of plume, m/sec
= inner radius of stack (meters)
average temperature of gases in plume, degrees K

ambient air temperature, degrees K

[ - - o) <
(]

= wind speed at stack height, m/sec

X = distance from source to receptor (meters)
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Mixing height is an important component in these models. The mixing
height defines the verticle dimension of the volume within which
pollutant emissions may be dispersed. The lower the mixing height, the
greater will be the levels of pollutant concentrations. Generally these
models assume perfect reflection of the plume off the ground and the
ceiling of the mixing layer. If the plume rise mechanisms force stack
emissions above the mixing height (a situation referred to as
“punch-through"), the Climatological Dispersion Model will set ground
level concentrations from that source to zero.

Figures F-5 and F-6 show how CDM handles several point sources.
Figure F-5 shows the wind direction that results in maximum plume
overlap. Figure F-6 shows the wind direction that results in minimum
plume overlap. Essentially, a steady-state plume is simulated for each
point source under each meteorological situation represented by the 576
cells of the joint frequency function. The ground level concentrations
attributable to each plume are sampled and stored for each receptor grid
point. If more than one plume crosses a receptor then the individual
contributions are simply added.

In this appendix an attempt has been made to acquaint the reader with
the basic aspects of air quality simulation models. Towards this goal,
the fundamental processses underlying air pollution were introduced as a
first step. With this understanding established, the bases for air
pollution modelling were explained. Next the class of air quality models
known as Guassian steady-state plume models were described. Finally the
model from the aforementioned class and used in this methodology, the

Climatological Dispersion Model, was explained in detail.



FIGURE F.5
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FIGURE F.6

STEADY STATE GAUSSIAN PLUME TRAJECTORY SUPERPOSITION MODEL

e

STABILITY-WIND FREQUENCY ROSE
16 WIND DIRECTIONS - 22.5°

6 WIND SPEED CLASSES

€ ATMOSPHERIC STABILITY CLASSES

WIND DIRECTION




TABLE F.10

NATIONAL AMBIENT AIR QUALITY STANDARDS (NAAQS)

ANNUAL M%AN 24-Hour M%AN 3-Hour MEAN
MICROGRAM/M’, PPM MICROGRAM/M?, PPM MICROGRAM/M?, PPM
S0 PRIMARY 80 0.03 365 0.14 --- -—
2 SECONDARY -—- -—- --- -—-- 1,300 0.5
PRIMARY /5 --- 260 -—- — —
TSP SECONDARY 60 --- 150 -—— - -—
- 1-HouR
o PRIy 10,000"°" g 40,000 % 35
SECONDARY -— -— " " " »

0 PRIMARY --- --- - —- MR 0 1
3 SECONDARY -—- —- —_— — " n
e PRIMARY --- --- --- —-- 180- : .24

SECONDARY - — _— — py "
PrRIMARY 100 0.05 —_— - — —
N02 " "
SECONDARY - -— — ——
3.
PRIMARY T?QTH MEAN - —_— — —
PB

”

SECONDARY -— _— _— _— _—
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TABLE F.11

PREVENTION OF SIGNIFICANT DETERIORATION °

Cuass | Cuass 11

POLLUTANT | INCREMENTS (M1CROGRAMS/MO)
3-HOUR % 512
. 30, . 2li-Hour 5 . 91
‘ ANNUAL . 2 -2
- | | | ) 7
TSP 24-HOuR . 10 3
ANNUAL ‘ 5 - 19

Excrusions - | -~ ” .
N

A, COAL CONVERSIONS TILL 1984

B, . TEMPORARY ACTIVITIES
| ' | o
VARIANCES MAY BE OBTAINED THROUGH “DUE PROCESS”

(GUBERNATORIAL AND/OR PRESIDENTIAL VARIANCES,
PUBLIC HEARING) |
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